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Abstract: Abandoned mining wastes are both an environmental challenge and a possible secondary
raw material source. The characterization and monitoring of these sites are often expensive and
cumbersome because of the need of repeated field surveys. Remote sensing data are a cost-effective
alternative that helps in producing multiscale maps of mining wastes. These maps can be used to
investigate and monitor the spatial patterns of different elements within the mining wastes. In this
work, Sentinel-2 images are combined with the geochemical samples in order to map the distribution
of iron, copper, chromium, and cobalt. The target area was the Vigonzano mining wastes in Northern
Apennines (Italy) where there are a small number of geochemical analyses but a large amount of
satellite image data. We used the multivariate geostatistical estimation method (Co-Kriging) that
exploit the meaningful spatial correlation between the elements of interest and band ratios (obtained
from Sentinel-2 images). The concentration maps highlighted subareas for Cu and Cr with an
estimated grade of about 0.3% and 0.2%, respectively. In addition, the critical element Co showed
an enrichment in the south-east part of the mining wastes, in a similar pattern as Cr. Instead, the
obtained maps show Ce, La, Rb, and Nb depletion compared to the surrounding agricultural areas.
The concentration maps were intended as a prefeasibility study to determine enriched areas for
further detailed investigation.

Keywords: Sentinel-2 image; grade mapping; mining wastes; Co-Kriging estimation

1. Introduction

In the energy transition time, there is an effort towards a society less dependent on
oil and gas. The energy transition requires critical metals to sustain a low-CO2 economic
and social development. Electric mobility, for example, requires cobalt, copper, nickel, and
silver, key ingredients in batteries that power e-vehicles [1].

In fact, many strategic metals are now termed critical raw material (CRM), listed in a
catalog regularly updated by the European Commission [2]. The CRM supply can derive
from primary and secondary sources such as extraction mining wastes (stockpiles and
tailings) stored at mine sites. Hence, the recovery of CRM from mining wastes has gained
attention because (1) mining and quarrying waste represents about a quarter of the total
waste production in Europe [3]; (2) hundreds to thousands of abandoned mine sites occur
in many countries, creating a European-scale concern [4]; (3) mining and quarrying waste
is an economic cost; and (4) they contain hazardous substances prone to polluting the
environment. The recovery of secondary raw materials has the additional benefit of adding
value to mining residues and reducing their environmental risks [5]. The old mining wastes
could represent a significant raw material source considering the deficiency of the old
extraction and processing methods. Therefore, prospecting new raw material resources
nearby abandoned mines can be prompted for reuse or removal of remained CRM.

The main bottleneck towards the recovery of secondary raw materials is the lack of
knowledge on the available resources [5]. There are few case studies with the available
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database for prefeasibility studies of resources. The preliminary information needed is
chemical and mineralogical composition, as well as volume of mining wastes deposits [6].
The national registries mainly provide basic information about mining sites location and
the main materials extracted [4]. However, for the preliminary characterization of mining
waste, there is the need of on-site geological and geophysical surveys, sampling, material
preparation for laboratory analyses, and the acquisition of quality compositional and
mineralogical data. Obtaining this information is time-consuming and expensive, especially
for large storage facilities.

Up until now, the main attention on mining wastes deals with environmental issues [7,8],
acid mine drainage [9], and stability monitoring [10]. Recently, the recovery of metals
and precious elements have become a new aspect to study the mining wastes [11–13].
In all mentioned studies, the main challenges are sampling and data collection from
mining wastes. A possibility of overcoming these issues could be through the use of earth
observation (EO) data, as already performed in some cases [14,15]. Hence, remote sensing
(RS) methods have a high potential to explore mineral deposits and mining residues,
with continuity of data in space and time. The European Union’s Copernicus [16] EO
program is an efficient free data source for mineral mapping, environmental monitoring,
urban area management, regional and local planning, etc. RS approaches benefit from
the high amount of data and high-tech facilities with minimum ground disturbances. In
mining applications, RS techniques can be used for volume evaluations and to detect
and classify different mineral formations and alterations on the surface [17]. On the basis
of the objective, different RS methods can be used to detect and map ground features,
such as band ratio analysis, principal component analysis, spectral angle mapper, spectral
unmixing, etc. Sentinel-2 images are part of the Copernicus program and are widely used
in mining applications and mining waste studies [18]. Sentinel-2 images are chosen since
they are freely accessible, with spatial resolution (10 m) and 5-day global revisit periodicity
appropriate for mining wastes.

In this research, the exploitation of EO data was highlighted to map elements of
potential interest in the Vigonzano mining wastes. The aim was to investigate how the
new prospects in environmental geochemistry are enhanced when limited on-site chemical
analyses are coupled with multispectral imagery analysis. This objective can be achieved
jointly with the regional investigation about the enrichment or depletion of critical elements
within the case study. The Vigonzano mining wastes derive from chalcopyrite extraction
during the 20th century and have been abandoned since the 1970s. No prefeasibility study
is available for this area.

To map the critical elements, we based the standard approach for estimation on
geostatistical modelling (an unbiased estimation with minimum error variance), specifically
when the variable of interest has a spatial distribution [19]. However, according to the
scarcity of in situ samples, as well as the objective of the study, we chose the geostatistical Co-
Kriging method. The Co-Kriging approach is well known in the case of multivariate variable
mapping, with the advantage of reducing the estimation variance [20,21]. Compared to
simple regression methods, the Co-Kriging method can provide uncertainty maps [22],
useful in this phase of the investigations.

2. Background

The Northern Apennines (Italy) consists of stacked tectonic units derived from an
accretionary wedge formed during the Cenozoic closure of the Ligurian Tethys ocean [23].
The uppermost, ophiolite-bearing tectonic unit is known as the Ligurian Domain and it is
traditionally divided into Internal and External Ligurian Domains (Figure 1). The former
represents the oceanic lithosphere close to the rifting zone, and the latter is interpreted as
a transitional zone towards the Adria continental margin. The ocean floor metamorphic
overprint does not exceed sub-greenschist facies conditions. The Vigonzano mine belongs to
the External Ligurian Domain, characterized by an ophiolite-bearing sedimentary mélange
overlain by a thick Upper Cretaceous sedimentary succession.
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The Cu mineralization of the Northern Apennines are classified as Cyprus-type vol-
canogenic massive sulfide deposits [24] and they occur as (i) massive sulfide lenses in
serpentinite breccia and (ii) stockwork-style mineralization hosted by serpentinite, gabbro,
and pillow basalt. The exploitation of copper sulfide from the Northern Apennines ophio-
lites has been known since the Bronze Age [25], even though the mining activity peaked
between 1850 and 1970 [26].
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Figure 1. Geological sketch of the Northern Apennine between Genova and Bologna, and location of
the study area. Modified from [26].

The Vigonzano mine ore geology consists of a stockwork mineralization hosted in a
100 m serpentinite block. The sulfide assemblage is mostly made of chalcopyrite and minor
pyrite and pyrrhotite, whereas quartz and calcite are the main gangue minerals [9]. Accord-
ing to petrography, fluid inclusion microthermometry, and trace element composition of
quartz veins in the stockwork zone [27], the estimated minimum temperature of formation
of the mineralized quartz veins is 260–330 ◦C. The high temperatures are related to seafloor
and sub-seafloor hydrothermal activity close to the hydrothermal centers [26,28].

The Vigonzano mine was one of the biggest copper sulfide deposits of the Northern
Apennines district and was active between the years 1948 and 1970. The main orebody was
about 300,000 t, with an estimated Cu-grade 2–4 wt % [29]. The detailed description of the
local geology and of the stockwork is reported elsewhere [26,30]. Today, the mining site
facilities are covered by mining waste dumps extending about 5000 m2. The slopes of the
stockpile are steep and shaped by the surface water runoff (Figure 2). The mining waste
materials are heterogeneous in grain size, with gravel size rock fragments embedded in an
ochraceous silt–clay matrix (Figure 2). The <2 µm fraction of the stockpile was previously
investigated, and its mineralogy and geochemistry was assessed [31]. The ochraceous
matrix is mostly composed of smectite, chlorite, talc, and variable amounts of goethite,
which derives from the oxidation of sulfides. The concentration of Zn; Ni; and, to a minor
extent, Cu, is controlled by the cation adsorption ability of matrix smectite [31].
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manually with a shovel, then quartered and sieved in laboratory to obtain a <2 mm 
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found in [35]. The loss on ignition (LOI) was determined by weighting the sample 
powders in platinum crucibles after heating at 950 °C for 10 h. 

 

Figure 2. The Vigonzano mine site on August 2020. (A) Overview of the rilled western slopes of
the mining waste, covering the serpentinite host rock. The mining waste front is about 15 m high.
(B) Detail of the superficial texture of the mining waste, with grain size sorting controlled by the water
runoff. Note the ochraceous matrix. Hammer (white rectangle) for scale. (Photographs by R. Braga).

3. Materials and Methods
3.1. Geochemistry

The sample set represents the result of a campaign aimed at investigating the surface
(0–10 cm depth) and the subsurface (10–160 cm depths) of the Vigonzano mining waste
and surrounding areas. The surface samples also include those from agricultural and
uncultivated soils, as well as two samples of soils developed on the serpentinite bedrock
(Figure 3). A total of 42 surface samples were considered, 29 from the waste dump and
13 samples from the adjacent areas, clearly outside from the mine site. Analyses of all
samples are reported in the Supplementary File (Tables S1–S4). All samples were collected
manually with a shovel, then quartered and sieved in laboratory to obtain a <2 mm fraction
(fines). The fines were finally milled in an agate mortar for geochemical analyses.
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Major and minor element concentrations (tables in the Supplementary File) were
acquired by X-ray fluorescence (XRF) spectrometry on pressed powder pellets using a
PHILIPS PW 1480 spectrometer, following the methods of [32–34] for matrix corrections.
Details of analytical procedures and discussion on reproducibility and accuracy can be
found in [35]. The loss on ignition (LOI) was determined by weighting the sample powders
in platinum crucibles after heating at 950 ◦C for 10 h.

3.2. Remote Sensing (RS)

One of the efficient and simplest methods of RS is band ratio, in order to enhance the
spectral features, and it can be used in geological mapping and mineral exploration [36].
Certain features can be highlighted on the basis of the spectral absorption and reflectance
characteristics of rocks and minerals, generating a specific ratio for mineral and rock
detection.

In the Vigonzano area, in situ samples are available (Figure 3). As is shown in Figure 3,
the sample distribution is directional, with more density in the central part of the mining
wastes. In addition, the Sentinel-2 image (sending date: 8 October 2020) was used. The
Sentinel-2 mission orbit is sun-synchronous with 98.62◦ inclination, and the mean local
solar time (MLST) at the descending node is 10:30 (a.m.). The multispectral instrument
(MIS) on board Sentinel-2 ensures large swath high geometrical and spectral performance
of the measurements. The MSI measures the Earth’s reflected radiance in 13 spectral bands
from VNIR to SWIR [37]. In the pre-processing step, all the Sentinel-2 bands were stacked
and resampled at the 10 × 10 m spatial resolution using the nearest neighbor method. The
time variable is not the target in this study, and it is considered constant. Then, several
band ratios, defined for Sentinel-2 images, were calculated for data analysis (on the basis of
the iron presence) such as iron oxides, ferrous iron oxides, ferric iron, and ferric oxides [17].
The function of the chosen band ratios is to detect any iron bearing features on the surface.
On the basis of the iron contents and its correlation with other selected elements, one can
use the most representative band ratio (with higher correlation coefficient). The band ratios
are selected on the basis of the previous studies for iron mineral detections [17]. Because of
the high density of vegetation in the area, the band ratios were used indirectly with the in
situ samples.

4. Results

The mining waste samples were enriched in total Fe2O3 (min–max: 10.06–28.60 wt %;
median: 16.4 wt %) and MgO (10.64–23.86 wt %; 20.2 wt %), and depleted in Al2O3
(3.37–14.14 wt %; 6.52 wt %) and K2O (0.04–1.37 wt %; 0.08 wt %) compared to the adjacent
topsoil from the surrounding areas (Figure 4).

The LOI was large in both sample groups within the mining waste (4.45–16.52 wt %),
in comparison with the surrounding areas (9.81–16.98 wt %). The CaO and LOI increased
in the subsurface samples with depth (exceeding 20 wt % from P1), coupled with a decrease
of SiO2, Al2O3, and Fe2O3 (Supplementary File, Figures S1 and S3). The trend shows the
approaching to the local bedrock, which is the carbonated serpentinite. The subsurface
samples from P2, instead, show limited variations relative to the surface samples, with the
exception of Fe2O3, which decreased with depth, from 25.99 to 12.65 wt %.

Among other elements, the concentrations of Ni, Pb, Sc, and Zn were similar within
the mining waste and the surrounding areas. Conversely, the concentrations of Cr, Co, Cu,
and V were enriched in the mining waste area compared to the surrounding areas (Figure 4).
The subsurface samples from the profile P1 showed a slight increasing in Co, Cr, and Cu
concentrations up to −50 cm depth (Figure S2). At the greater depths, concentration of Co
and Cu decreased, with the exception of Cr, which reached its maximum concentration
(around 2500 ppm) at 160 cm depth. The Co, Cr, and Cu concentrations at the site P2 did
not display variations, being more than 100 ppm, 1000 ppm, and 1750 ppm, respectively
(Figure S4).
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the non-outlier range; empty circles are outliers and stars (*) are extreme outliers.

Statistical analysis was performed to evaluate the variability of the geochemical ele-
ments. One of the sensitive elements in RS detection is iron, because of the iron absorption
features at multiple bands in VNIR [38]. Therefore, the correlation coefficient of iron with
different elements was studied (Table 1). The choice of iron was based on [31]: the heavy
metal carriers in Vigonzano are Fe-clay minerals (smectite and chlorite), thus making total
Fe2O3 a proxy for metal occurrence. We used this knowledge on the Fe2O3–metals relation-
ships in our statistical approach. Outliers were excluded for cerium data. The band ratios
for the iron mineral detection were tested, and only that showed the medium–high (>0.5)
correlation coefficient with the major and trace element concentrations were chosen.

Table 1. Statistical analysis and the correlation coefficient between band ratios and concentration of
different elements.

Feature
Correlation Coefficient with Iron
Oxides Band Ratio 4 (665 nm)/2

(490 nm)
Mean Value Maximum Minimum Num. Samples

Chromium (ppm) −0.761 1233 1965 308 42
Copper (ppm) −0.563 1615 5715 29 42
Cobalt (ppm) −0.672 93 158 38 42

Iron (%) −0.720 15 29 7 42

Feature
Correlation Coefficient with Ferrous
Iron Oxides Band Ratio 4 (665 nm)/11

(1610 nm)
Mean Value Maximum Minimum Num. Samples

Cerium (ppm) +0.771 28 86 1.5 41
Niobium (ppm) +0.718 6.5 17 0 42

Rubidium (ppm) +0.818 34.68 143 1.5 42
Lanthanum (ppm) +0.771 13.51 36 1.5 42
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To better understand the spatial variability of selected elements within the Vigonzano
mining waste, we calculated experimental variograms [22] (direct and cross-variograms).
Direct experimental variograms were obtained and modelled for the two main parameters:
target elements (chromium, copper, cobalt, cerium, niobium, rubidium, lanthanum, and
iron) and band ratios (Band Ratio 4/2 and Band Ratio 4/11). In order to analyze the
spatial correlation between band ratios and selected elements, we calculated the cross-
variograms and the co-regionalization models were fitted. Therefore, the Co-Kriging
estimation method [22] could be used to map the variability of geochemical elements in
Vigonzano mining wastes.

On the basis of the high correlation coefficient (≥0.6) between the element’s con-
centration and the band ratios (Table 1), we used the multivariate approach (Co-Kriging
estimation) to map the major and trace elements (Figures 5 and 6). Final maps have a
10 × 10 m grid, equal to the Sentinel-2 data spatial resolution.

The obtained maps for the major elements (Co, Cr, Fe2O3, and Cu) showed the higher
concentration inside the mining wastes in comparison with the boundaries. For Co and Cr,
similar spatial variability showed the highest concentration in the south and south-east
parts of the mining wastes, while for Fe2O3 and Cu, the central parts had the highest
concentration.

For trace elements (La, Ce, Nb, and Rb), the concentration was highest near the
boundaries, with similar spatial pattern for the four elements. The depleted area was from
the north-east into the south-west.
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concentration and the band ratios (Table 1), we used the multivariate approach (Co-
Kriging estimation) to map the major and trace elements (Figures 5 and 6). Final maps 
have a 10 × 10 m grid, equal to the Sentinel-2 data spatial resolution. 
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5. Discussion

Two databases for the selected area in Vigonzano were collected and studied. Geo-
chemical in situ samples were taken directly from the mining wastes, and EO data were
indirect data (Sentinel-2 image). At the first statistical analysis, iron showed a high cor-
relation with the major and trace elements (such as Cr, Co, Cu, Ce, La, Rb, and Nb). In
addition, since iron is an important element in RS to detect minerals, the iron band ratios
were considered as auxiliary database for mapping. To map the selected elements, we
needed the co-regionalization modeling to demonstrate the spatial correlations.

The co-regionalization modelling of major and trace elements was quite challenging
because (1) the limited numbers of geochemical samples and (2) the selectivity and direc-
tional sampling that resulted in having more samples in the middle and less samples from
the boundaries of the mining wastes, wherein the bedrock crops out. RS data provide a
homogenous 10 × 10 m data grid that plays a fundamental role in mapping because of the
large amount of data. The spatial correlation between RS data and in situ samples helped
in the estimation of the unknown areas using the Co-Kriging estimation.

The composition maps confirmed the geochemical interpretations of iron (Fe2O3)
and Cu and Cr enrichments in the Vigonzano mining wastes compared to the adjacent
agricultural areas. The Fe2O3 and Cu reflected the heterogeneity of the wastes, whereas the
Cr distribution was likely related to the bedrock lithological composition, i.e., serpentinized
ultramafic rocks.

The element distribution showed that about 20% of the mine area (around 1000 m2)
had Cu > 2500 ppm and Cr > 1500 ppm. Results were obtained from the integration of RS
and in situ samples (considering only the surface area) and assuming a bulk density of
1350 kg/m3 [39]. Therefore, a minimum grade of 0.3% for Cu and 0.2% for Cr was obtained
for one meter depth. For comparison with the main source of global copper, the Cu grade
in porphyry deposits is 0.2–1.5% [40]. Moreover, Co as a critical element, showing the
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enrichment in the south-east part of the Vigonzano abandoned site, with a similar pattern
as Cr. About 10% of the mining wastes area had Co > 130 ppm, with the minimum grade of
0.01%. This very low grade value is instead similar to the Co grade assessed for magmatic
Ni–Cu (Co-PGE) sulfide deposits worldwide [41]. The maps (Figure 6) indicate the Ce, La,
Rb, and Nb depletion within the Vigonzano mining waste relative to the surrounding areas.
The relative enrichment of these elements in the agriculture soils was not investigated,
but a working hypothesis is that the enrichment of these elements is related to the use
of fertilizers.

The main limitation of this practical approach is that it relies on the surface data
(surface samples and Sentinel-2 images). In general, the lack of concentration data along
vertical profiles in mining waste increases the uncertainties of the grade assessments.
Many challenges such as sampling along depth profiles, heterogeneity of materials, and
modification of the mineralogy due to weathering remain. To achieve a comprehensive
characterization of mining wastes, one requires precise and regular sampling (both for
environmental and economic aspects). Our practical approach, however, highlights the
suitable subregions inside the dump area where more detailed investigations, especially in
3D, should be performed.

The Vigonzano site is a small-scale abandoned mine that can be regarded as an
unimportant prospect for secondary recovery of critical and other strategic raw materials.
However, according to the most recent Italian catalogue on abandoned mine sites [42],
small-scale sites (with mining concessions less than 100,000 m2) account for about 19%
of the Italian legacy mines inventory. Therefore, the method applied to the Vigonzano
case study could be upscaled to a nation-wide program of secondary raw material poten-
tial availability.

6. Conclusions

Mining wastes are strategically important because of the high demand for the new raw
materials resources. The characterization and variability maps of compositions for the major
and trace elements are the main targets to evaluate the presence of any precious element.
However, the artificial spatial variability of mining wastes, which is different from natural
spatial variability of deposits, make the characterization complicated and challenging.

The surface geochemistry of the Vigonzano mining area was coupled with Sentinel-2
image from Copernicus data to study the major element detections. Band ratios related
to iron oxides and ferrous iron oxides were used to find a meaningful correlation with
the element’s concentrations. On the basis of the high correlation coefficients between
band ratios and some of the major and trace elements (Fe2O3, Cu, Co, Cr, Ce, La, Rb, and
Nb), we obtained composition maps using Co-Kriging method. Results show important
concentration within the mining wastes for Fe2O3, Cu, Co, and Cr and depletion for Ce,
La, Rb, and Nb compared to the surrounding agricultural soils. The grade estimation for
interesting metals such as Co, Cr, and Cu resulted in similar values to worldwide low-grade
ore deposits.

The results confirmed the essential advantage of combining remote sensing and in-
situ samples in mapping the major and trace elements. This low-cost approach based
on publicly available EO data is an interesting tool for decision makers to assess critical
raw material resources and to design projects to remove heavy metal contaminants from
abandoned mine sites.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12041928/s1, Figure S1. Chemical (major elements) stratigraphy
of profile P1. Figure S2. Co–Cr–Cu stratigraphy of profile P1. Figure S3. Chemical (major elements)
stratigraphy of profile P2. Figure S4. Co–Cr–Cu stratigraphy of profile P2. Tables S1–S4: Major (wt %)
and trace element (ppm) bulk composition of samples. All calculations were conducted using ISATIS
software, license of Bologna University.
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