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A MINI REVIEW 

Martina Pelliconi1, Serena Righi2 

 

Abstract:Polyhydroxyalkanoates (PHAs) are bio-based polyesters that are 

natural, renewables, biocompatible and biodegradable while having similar 

properties to commonly used plastic. However, their industrial production is 

still more expensive than the petroleum-based one. To make PHAs marketable 

on a large scale, it is therefore necessary to optimize every single phase of their 

production. This process must be accompanied by environmental assessments, 

to verify that PHAs are a greener alternative to conventional plastic. To do this, 

the best tool currently available is Life Cycle Assessment (LCA). The purpose 

of this study is to examine the state  of the art regarding the application of the 

LCA methodology to all phases of PHAs production. 

1. Introduction  

Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by numerous 

microorganisms through a fermentation process of sugar or lipids. They are accumulated as 

granules in cell cytoplasm and serve both as source of energy and carbon storage for the 

microorganism. These polymers have gained more and more attention in the last decade, due to 

their physical and mechanical properties, which resemble those of conventional plastics, such as 

polyethylene and polypropylene (Ciesielski et al., 2015). Therefore, PHAs are seen as a greener 

and more sustainable alternative to fossil fuel plastic derivatives, because they are natural, 

renewable, biocompatible, and completely biodegradable. However, their large-scale production 

and market presence is still precluded because of their high production cost, which is estimated 

to be about 5 times the cost of their petrochemical counterparts (Cristóbal et al, 2016). Rodriguez-

Perez et al., (2018) indicated feedstock as the main hindrance of affordable PHAs production. 

Therefore, its choice is of primary importance to obtain marketable PHA. However, both 

upstream and downstream costs add up determining the PHAs high production cost (Pagliano et 

al., 2021). So, every manufacturing phase needs to be made efficient. In this context, BioLaMer 

aim to answer these necessities. This is a pioneering project, whose target is to produce PHA in a 

cost-effective and environmentally sustainable way, by improving the bioreactor process 

efficiency. Therefore, two important aspects that define the success of the BioLaMer technologies 

are the environmental performance and sustainability. University of Bologna is leading one of the 

work packages of the project by applying its expertise in Life Cycle Thinking (LCT) and Analysis 

(LCA) to assess the environmental sustainability of BioLaMer system, which allow to understand 

and take into consideration the environmental impacts of the process, and to guide its 
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development. This review paper, which is an update of a previous works (Vogli et al., 2020), aims 

to present the results of a detailed literature research on LCA analysis applied to the various phases 

of PHA production. These phases can be grouped into three main steps: the feedstock selection 

and processing, the biorefinery PHA synthesis and the downstream process of PHA extraction 

and purification. 

2. LCA of feedstock 

Polyhydroxyalkanoates are produced by bacteria when they are provided with controlled diet 

having an excess of carbon and a limited supply (starvation) of phosphate and/or nitrogen sources 

(Anderson & Dawes, 1990). Different sources of carbon have been used as PHA biorefinery 

feedstock, from agricultural crops to waste streams. Figure 1 represent the carbon source 

considered by 34 studies on LCA of PHA production (some of which considered more than one 

carbon source). 

 

Figure 1: number of studies per carbon source feedstock 

Feedstock is an important part of PHA production process. In fact, its choice and treatment 

(for example its co-use for energy production) can greatly vary PHA production environmental 

impact, and even make the material a net carbon sink (Dietrich et al., 2017; Jiang et al. 2016). 

Biopolymers produced at industrial scale typically use purpose grown feedstocks, such as 

corn (Kendall, 2012), but it has been shown that the feedstock growth phase itself can have the 

highest impact on several environmental categories. An example reported by Cristobal (Cristóbal 

et al., 2016), stated that sugar production from sugarcane and corn starch accounted for more than 

two third of the value in aquatic marine eutrophication, terrestrial eutrophication, human toxicity, 

and particulate matter. A few attempts have also been made using genetically modified feedstock 

(Kurdikar et al., 2008). Therefore, alternative carbon sources are sought. The improvement on 

biorefinery’s technology and the development of mixed microbial culture PHA production, made 

it possible to also take into consideration raw materials other than agricultural ones, such as food 

waste or wastewater. Using waste streams as feedstock has the additional benefit to 

simultaneously address waste treatment and disposal problem (De Donno Novelli et al., 2021). 

Over the years, the number of studies that considered waste streams as carbon sources increased, 
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supporting preservation of biodiversity initiatives, while the use of agriculture crops to produce 

biopolymers is reduced (Samorì et al., 2019; Valentino et al., 2019; Vega et al., 2019; Yadav et 

al., 2020) 

3. LCA of PHA production 

Great heterogeneity can be found in current literature regarding the application of LCA to 

PHA production both in its scope (the focus could be on production optimization or on the 

comparison with their petrochemical counterpart) and in methodological choices. On this matter, 

a 2016 review by Cristobal and colleagues (Cristóbal et al., 2016) report that most of the studies 

limited the impact categories, while product environmental footprint (PEF) establishes fourteen 

of them, including human toxicity. Moreover, most of the reviewed studies’ results considered 

data from PHA production in laboratory or pilot facilities. They also indicate that the two most 

common chosen impact category are climate change and acidification. The first one is evaluated 

assessing the kg CO2 eq/kg PHA and showed great variability in the results, depending on the 

feedstock choice and the end-of-life treatment. The lowest values, that ranged from -2.3 to 2.3 kg 

CO2 eq/kg PHA, are obtained when the burn of waste streams lead to energy recovery. On the 

other hand, high end climate change emissions are reported when the feedstock of choice show a 

lower productivity when compared to sugar, as with rapeseed oil, whose kg CO2 eq/kg PHA 

ranged from 5 to 6.9. 

 

Lopez Arena and colleagues (Lopez-Arenas et al, 2017) focus their work on fermentation 

reaction dynamics, applying models to determine its best operation mode and feeding strategy. 

The importance of this stage has also been underlined by Hermann (Hermann et al., 2007) who 

claim that the environmental impacts of the studied processes depend to a large extent on the 

productivities, yields, and concentrations assumed for the fermentation stage. Moreover, this 

phase appears relevant also considering that Chen and Patel (Chen & Patel, 2012) claim the 

energy intensive needs for this process, that they state is the highest contributor to climate change 

potential. Of the different operating conditions analysed by Lopez Arena (Lopez-Arenas et al, 

2017), the fed-batch case showed the best results both from a cost – benefit profile and an 

environmental perspective. The fed-batch option, in fact, displays similar CO2 emissions (1.7 

PHB vs 1.9 kg CO2/ kg) in comparison to the batch fermentation model, while exhibiting lower 

energy requirement. The energy requirement, in fact, is reported to be 10 MJ/kg PHB for the fed-

batch option and 29.2 MJ/ kg PHB for the batch operation mode. Moreover, the fed-batch option 

exhibited the lowest water consumption of the of the analysed fermentation options. This last 

point is interesting considering that the process’ high water demand has been indicated as a 

potential concern for biobased chemicals, for the impact that it can have on stored fresh water 

(Pawelzik et al, 2013; Harding et al, 2007). Therefore, the development of a bioreactor and a 

fermentation process that saves water is of primary importance. This can lead to even better results 

if combined with the right feedstock. Cristóbal (Cristóbal et al., 2016) reported a lower water 

resource depletion for sugarcane (2.35 m3 water-eq) than for corn starch (3.91 m3 water-eq). 

 

Another aspect that varies both the environmental impacts and the cost-benefits of the 

process is the microbial culture, that can be pure or mixed. Also, recombinant strains have been 

used, aiming to increase fermentation yield.  Several PHA accumulating microorganism has been 

utilized in pure cultures for biopolymer production. Among them, Escherichia coli (Xuan Jiang 

et al., 2006; Martin et al., 2014; Zhou et al., 2012); Methylocystis hirsute (López et al. 2018)   

Ralstonia eutropha (Akiyama et al., 2003). However, the advantage of PHA from pure-culture in 

comparison to fossil-based polymers are hindered by the expensive and energy demanding 

feedstock, e.g. glucose or acetic acid, used during the fermentation process (Patel et al., 2005). 

Moreover, they require sterile cultivation condition, which also increases the production cost 

(Gholami et al., 2016). Therefore, if PHA production by pure microbial cultures has been initially 
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developed and assessed in several LCAs during the previous decade, nowadays the technology is 

focusing more on mixed-culture for PHAs production (Heimersson et al., 2014). Gurieff (Gurieff 

& Lant, 2007) compared mixed culture PHA production with pure culture PHA production and 

HDPE. For both pure and mixed-culture PHA production most of the non-renewable CO2 -eq 

emissions derived from the energy usage. While the energy expenditure aspect seems to be 

comparable between pure and mixed culture PHA production, an important aspect that needs to 

be taken into consideration is that with the latter it is possible to use waste streams as fermentation 

substrate, and the sterile fermentation conditions required by pure-culture are not needed. Waste 

streams often used as feedstock for PHA production are wastewater and food waste (Battista et 

al, 2020; Nielsen et al, 2017; Valentino et al, 2019). So, mixed cutures seems to have a large 

potential in optimizing PHAs production problems. On this matter, Heimersson et al. (2014) gave 

some recommendation for LCAs practitioners while analyzing a mixed culture. Among them, the 

authors reported to handle multifunctionality throught partial subdivision coupled with  

substitution or allocation and advise to include eutrophication and land use impact categories 

when studied system includes a comparison to a grain-based polymer. 

 

Methodological choices can also affect impact results. Among them, one important aspect in 

relation to biopolymers is the assessment of biogenic carbon storage in the polymer itself. In the 

literature, low grade of climate change impact values (0.49 kg CO2 eq/kg PHA) are reported from 

studies were the temporary storage of atmospheric CO2 in the polymer is accounted as carbon 

sequestration (Cristóbal et al., 2016). However, the concurrent existence of different approaches 

of evaluation can lead to non-comparable results. This particularly applies regarding how to 

account for the period of the carbon storage. This releasing delay is in fact the one that postpone 

the emissions’ radiative force (Hoxha et al 2020). An example of the different existing approaches 

can be found confronting the ISO 14067 (ISO 14067:2018) and the ILCD Handbook (2010). The 

first one account for the biogenic carbon storage time only when it occurs for at least 10 years 

and requires reporting it as a separate calculation. On the other hand, the ILCD Handbook account 

for delayed emissions within a 100-year period by applying a linear discounting for climate 

change emissions of 1%/year. Moreover, Pawelzik and colleagues emphasized that the account 

for bio-based carbon storage is particularly controversial when “cradle-to-factory gate” system 

boundaries are considered, because it excludes the end-of-life disposal of the product, and 

therefore the carbon’s fate (Pawelzik et al, 2013). Furthermore, other challenges are reported in 

the literature regarding LCA analysis of PHAs production using waste feedstock. Among them, 

the selection of the allocation method when multifunctionality occurs, the considerable 

dependence of the result on geographical specificity (in particular on the sensitivity to the selected 

energy mix), and the lack of inventory data for new technologies (Heimersson et al. 2014). 

4. LCA of the downstream process 

PHAs downstream processing usually comprehend a physical separation of the biomass 

which precedes the actual extraction step, and sometimes a pre-treatment step between them 

(Kosseva & Rusbandi, 2018). During these steps, various substances or hazardous solvents may 

be used, making the downstream process a bottleneck in the PHA value chain, due to the high 

indirect energy consumption and high process energy derived by these chemicals (Álvarez-

Chávez et al., 2012; Chen and Patel, 2012). The high potential of optimization of downstream 

processing has also been affirmed by Gurieff, who stated that both financial and environmental 

costs of PHA mixed culture process was related to energy used for the downstream processing 

(Gurieff & Lant, 2007). López-Abelairas compared the environmental performance of recovery 

treatments, based on acid or alkaline treatments. The alkaline sodium hydroxide and the acid 

sulfuric acid treatment had the lowest GHG emissions (respectively 4.08 kg CO2 eq/kg PHB and 

6.27 kg CO2 eq/kg PHB) and operational costs. Between them the sulfuric acid treatment showed 

high recovery efficiency, high polymer purity and low polymer degradation. Therefore, acid 
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treatment was proposed by the authors as a viable downstream processing alternative to the classic 

chloroform extraction (López-Abelairas et al., 2015). Moreover, also Fernández-Dacosta 

evaluated three treatments for PHA release, based on alkali, surfactant- hypochlorite and solvent 

treatments. Among them the less favourable one is the solvent extraction both for the high energy 

requirements (156 MJ/kg PHB) and GHG emissions (4.30 kg CO2-eq/kg PHB). On the other hand, 

the alkali treatment showed a global warming potential of 2.4 kg CO2-eq/kg PHB and non-

renewable energy use of 106 MJ/kg PHB, making it the most convenient one amidst the three 

evaluated downstream processing routes (Fernández-Dacosta et al., 2015). 

 

An interesting insight about PHA downstream processing was provided by Saavedra del Oso 

and colleagues. They analysed eight PHA downstream alternatives’ hotspot, both from an 

environmental and a tecno-economic point of view. From this investigation emerged that the most 

promising technology in terms of environmental performance appears to be mechanical 

disruption, even when the electricity mix is carbon intensive. For low- grade of PHA purification, 

surfactant treatment appears to be the most promising method. In fact, surfactants and sodium 

hydroxide are a good environmental alternative compared to organic solvent extractions. 

Nevertheless, the crystallization required for surfactant recovery can significantly reduce the 

environmental performance of the process. Higher performances can be obtained through 

chemical digestion or solvent extraction. The first has to be optimized by adding a chemical 

recovery unit. The large amounts of energy for solvent recovery required for the second are 

justified when low impurity in the products is required (Saavedra del Oso et al., 2021). 

5. Conclusions 

With characteristics that resemble those of conventional plastic, PHAs are seen as a 

promising bio-based alternative. However, their large-scale market is hindered by their high 

production cost. Therefore, to make PHA commercially suitable, every phase of its production 

needs to be cost-effective. So, advancement in the efficiency of the process is a focal point of new 

research projects, as BioLaMer. Over the years, LCA analysis has accompanied the production 

process’ development to evaluate PHA sustainability compared to petroleum- based plastic. In 

fact, life cycle thinking helps verifying that the bio-based polymer remains a greener alternative. 

On this matter, this study aims to examine and summarize the current literature regarding the 

application of LCA analysis on PHA production.  

Concerning feedstock, research showed that the focus has shifted from agricultural crops to 

waste. This not only makes the process circular, but simultaneously address the problem of waste 

treatment and disposal. With reference to both the production phase and the downstream 

processes, LCA studies helps choosing between possible alternatives and assist locate critical 

aspects on which attention must be placed during further development. For the production phase 

appear of particular importance the water consumption and the energy source during the 

fermentation process. Instead, extracting methods in downstream processes vary according to the 

needed grade of PHA purification, which depends on the final product application.  

Another aspect emerged from this research is that there is still great methodology 

heterogeneity. One of the most interesting and crucial one while analysing biopolymers is the 

account for carbon storage in the product, which is faced with different approaches. Still, LCA 

confirm itself as a key tool for an efficient optimisation of the production process in the 

technology development phase. 
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