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A B S T R A C T   

The initial inception of the landslide susceptibility concept defined it as a static property of the landscape, 
explaining the proneness of certain locations to generate slope failures. Since the spread of data-driven proba
bilistic solutions though, the original susceptibility definition has been challenged to incorporate dynamic ele
ments that would lead the occurrence probability to change both in space and in time. This is the starting point of 
this work, which combines the traditional strengths of the susceptibility framework together with the strengths 
typical of landslide early warning systems. Specifically, we model landslide occurrences in the norther sector of 
Vietnam, using a multi-temporal landslide inventory recently released by NASA. A set of static (terrain) and 
dynamic (cumulated rainfall) covariates are selected to explain the landslide presence/absence distribution via a 
Bayesian version of a binomial Generalized Additive Models (GAM). Thanks to the large spatiotemporal domain 
under consideration, we include a large suite of cross-validation routines, testing the landslide prediction 
through random sampling, as well as through stratified spatial and temporal sampling. We even extend the model 
test towards regions far away from the study site, to be used as external validation datasets. The overall per
formance appears to be quite high, with Area Under the Curve (AUC) values in the range of excellent model 
results, and very few localized exceptions. 

This model structure may serve as the basis for a new generation of early warning systems. However, the use of 
The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) for the rainfall component limits the 
model ability in terms of future prediction. Therefore, we envision subsequent development to take this direction 
and move towards a unified dynamic landslide forecast. Ultimately, as a proof-of-concept, we have also 
implemented a potential early warning system in Google Earth Engine.   

1. Introduction 

The need to understand landslide dynamics comes from the disas
trous impacts, with average economic losses recorded up to 5 billion 
USD for susceptible countries such as Japan, United States and India 
(Hidayat et al., 2019). Aside from the financial aspects, Petley (2012) 
reported over 32,000 victims globally in the years 2004–2010. With an 
increase in the frequency of rainfall extremes, the impacts are also ex
pected to worsen over time (Hidayat et al., 2019). To limit the impact 
due to landslides, Early Warning Systems (EWS) are commonly 

implemented to assist in management and precautionary measurements 
on regional levels (Guzzetti et al., 2020; Naidu et al., 2018). Particularly 
for rainfall-induced landslides (RIL), an early warning system is typi
cally developed by setting a rainfall-threshold that, once exceeded, 
initiates the system to issue alarms for further measures (Guzzetti et al., 
2008; Segoni et al., 2018). These systems can be developed over large 
regions as well as at the scale of single landslides (Guzzetti et al., 2020). 
In the first case, rainfall data is usually accessed from national rain 
gauge networks (Al-Thuwaynee et al., 2023), or even from satellite data 
(Wang et al., 2021) to estimate potentially unstable areas and their 
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temporal aspect. As for localized early warnings, they can usually rely on 
a rich hydrological and geotechnical information gathered through 
landslide-specific installations, from which rainfall thresholds are still 
derived to understand possible slope failures timing (Segoni et al., 
2018). Aside from the scale at which these tools are developed and used, 
another level of differentiation comes from the underlying methods they 
may rely on the definition of suitable thresholds. Specifically, both 
physically and statistically-based approaches constitute valid solutions 
(Guzzetti et al., 2020). Physics-based models essentially use detailed 
slope information in terms of its morphological structure, lithological 
characteristics and hydrological conditions to quantify the rainfall 
amount needed to trigger a failure (Guzzetti et al., 2007). Conversely, 
data-driven approaches (Chauhan et al., 2010; Guzzetti et al., 2020; He 
et al., 2021) do not deterministically solve hydro-mechanical equations 
but rather rely on historical landslide inventories to probabilistically 
estimate rainfall intensity-duration relations (Guzzetti et al., 2007). 
These relations are the foundation for the definition of rainfall thresh
olds in a given area. As for the concept of intensity-duration, this re
volves around combining precipitation amounts in a given period of 
time, whose length determines the required accumulation for failure to 
initiate (Guzzetti et al., 2020). Nowadays, most of the methods 
belonging to the latter class follow a quite standard procedure where 
alert levels are defined purely on the basis of rainfall estimates. This is 
considered independently from the proneness or susceptibility to failure 
typical of a given landscape. However, the orographic effect influences 
rainfall patterns, especially in highlands (Adler et al., 2003; Gariano 
et al., 2017; Guzzetti et al., 2008; Kirschbaum et al., 2012; Nguyen et al., 
2014). This element only comes in a second stage, with static suscepti
bility maps being combined only with a geographic overlay criterion 
(Lee et al., 2008). This post-processing routine contributes to the hazard 
level assigned to a given spatial unit (Kirschbaum and Stanley, 2018). 
Decoupling the landscape response into its two main components may 
have been a suitable solution in the past, due to the limited computa
tional tools. However, nowadays modeling approaches increasingly 
offer the ability to combine landslide susceptibility and rainfall thresh
olds in a single platform, with an inspirational example by Steger et al. 
(2023). Moreover, the reliability of EWS significantly changes across the 
globe, with regions that are able to rely on dense rain gauge networks as 
compared to those that lack resources and are limited in their data 
acquisition. In the case of Vietnam the spatial scale at which Landslide 
Early Warning Systems (LEWS) are developed varies significantly. There 
exists a number of such systems that require in-situ soil data as well as 
equipment operated and maintained by manual labor at catchment or 
slope level (Bui et al., 2013, 2012, 2011; Gian et al., 2017; Ha et al., 
2020). In-field measurements are of a more accurate nature and may be 
temporally consistent. However, they offer discrete spatial information 
and are infeasible to acquire over a larger extent. For this reason, we can 
recently witness an increasing use of alternative rainfall information 
estimated from radar satellites (Hong et al., 2006; Kirschbaum et al., 
2012, 2009). 

For extending the geographic scale, satellite products can offer very 
good temporal data, though generally at the expense of the spatial res
olution (Tang et al., 2020). Moreover, the availability of near-real-time 
satellite products allowed the evaluation of potential landslide hazard 
prediction, initially by using the Tropical Rainfall Measuring Mission 
(TRMM) Multi-satellite Precipitation Analysis (TMPA) at a relatively 
large spatial scale (Hong et al., 2006; Hong and Adler, 2007). Advancing 
on the basis of integrating satellite information, Hong & Adler (2007) 
later proposed an EWS based on real-time precipitation systems, tested 
on global and regional scales by Kirschbaum et al. (2012). Building on 
these steps, the most recent development on a global scale using the 
diversity of satellite products is the release of Landslide Hazard 
Assessment for Situational Awareness (LHASA) by NASA which provides 
moderate to high landslide hazard every half hour (Kirschbaum and 
Stanley, 2018). With the second version of LHASA in place (Stanley 
et al., 2021), the core of the model relies on a static susceptibility map 

overlaid with dynamic rainfall forecasts to produce landslide predictions 
globally in real time, with new components added for increasing pre
dictive power. However, a two-phased model such as LHASA essentially 
neglects the natural interaction of rainfall with terrain for modelling 
rainfall-induced landslides. Moreover, its current version does not ac
count for uncertainty estimation, which should be particularly impor
tant to connect the uncertainty coming from the static susceptibility 
component to the dynamic precipitation component. 

In this work, we combine the static and dynamic effects responsible 
for landslide occurrences in north Vietnam using a single space–time 
model. Specifically, we used a Bayesian approach to account for un
certainties and framed it in a Binomial GAM. Statistical influence was 
performed using the Integrated Nested Laplace Approximation (INLA; 
Rue et al., 2009) method, which provides fast computation of posteriori 
quantities of interest. 

2. Study area and materials 

The following section provides an insight into the event-based 
landslide inventory used in this work and the selection of the comple
mentary study area. Moreover, it describes the mapping unit used and 
covariate information used as an input to our model and the validation 
techniques implemented. 

2.1. Study area and landslide inventory information 

Among the vulnerable southeast-Asian countries (Titti et al., 2021), 
Vietnam shows the highest number of fatalities due to landslides in the 
rainy season extending from June to November (Amatya et al., 2022). 
For this reason, NASA’s efforts produced a landslide inventory for the 
Lower Mekong Region (LMR) for multiple rainfall triggering events (see 
Fig. 1). The resulting multi-temporal landslide inventory was generated 
using a semi-automated mapping approach (Amatya et al., 2022), that 
we also used to test LHASA at a regional scale (Biswas et al., 2022). 
These inventories are six and seem to reflect some degree of clustering 
although, this is mostly due to the space–time mapping approach that 
NASA followed. 

For the present experiment, we only extracted landslides that 
occurred within north-western Vietnam and use that as our study area 
shown in Fig. 1. This landslide subset accounts for a total of 9.310 
landslides, clustered into 6 rainfall triggered events, as listed in Table 1. 

This area is over 59,000 km2 wide with a mountainous topography 
and it also represents the poorest sector in Vietnam (Bangalore et al., 
2019). Therefore, the impact of landslide occurrences tends to have even 
worse impacts. 

2.2. Mapping unit 

Due to the spatial extent of the study area and to also ensure the use 
of a suitable mapping unit, we opted to partition the study area into 
Slope Units (SUs; Carrara et al., 1991). This spatial partition is rooted in 
the landslide literature and has offered a valid alternative to grid-cells 
(Reichenbach et al., 2018). The reason for their success lies in their 
ability to reflect the morpho-dynamic response of a slope if a landslide 
triggers at that specific location. In other words, these mapping units can 
be considered independent of each other (or very weakly dependent) for 
landslide susceptibility purposes (Lombardo et al., 2020; Titti et al., 
2021). To delineate such slope unit partition, we used the r.slopeunits 
tool proposed by Alvioli et al. (2016). This tool can be called from 
GRASS GIS (Neteler and Mitasova, 2013) and only requires a Digital 
Elevation Model (DEM) as the input. Here we used the Shuttle Radar 
Topography Mission (SRTM; Yang et al., 2011). As for how r.slopeunits 
works, it essentially clusters grids with analogous slope exposition and 
vectorize the results for a given study site. This is achieved by con
straining the procedure through a set of parameters whose explanation 
can be found in Alvioli et al. (2016). For this work, we initially tested a 
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number of possible parameter combinations (unreported results) and 
opted for a final setting as shown in Table 2. 

2.3. Predictors 

2.3.1. Dynamic covariates 
An important aspect of this study is the estimation of rainfall effect in 

landslide events that can be used to project future landslide suscepti
bility scenarios using a predictive equation. Prolonged rainfall before 
the landslide event contributes towards slope saturation (Guzzetti et al., 
2008; Segoni et al., 2018), which was integrated to develop cumulative 
antecedent rainfall (Chikalamo et al., 2020). This represents the dual 

rainfall effect (the event day and potential recent discharge prior to the 
event) as the triggering factor. To represent the spatio-temporal distri
bution of precipitation for each event, together with cumulative ante
cedent rainfall, we used CHIRPS (Funk et al., 2015). This choice is 
mainly due to the relatively high spatial resolution (~5.5 km) of this 
global product. As for its temporal characteristics, CHIRPS offers daily 
rainfall aggregates achieved with a 2-day latency (Funk et al., 2015). 

Alongside to the rainfall characteristics, we also considered 
including dynamic vegetation indices as part of our covariate set. We 
therefore opted for using Enhanced Vegetation Index (EVI) obtained 
from MODIS AQUA (Didan, 2015) at approximately 250 m of spatial 
resolution and a 16-day revisit time. Notably, both products were 
accessed, preprocessed and downloaded through Google Earth Engine 
(GEE; Gorelick et al., 2017; Mutanga and Kumar, 2019). There we 
aggregated them at the SU scale by taking the maximum daily rainfall as 
well as the mean 16-day value of the EVI. 

2.3.2. Static covariates 
Static predictors were also extracted through GEE. Specifically, we 

accessed the cloud-available SRTM DEM at 30 m resolution and 
computed terrain attributes by using the SRT function built by Titti et al. 
(2022). This tool allows to compute terrain characteristics and aggregate 
them at any spatial scale. The latter is a particularly important 
requirement because of the SU partition we opted for. In fact, hundreds 
of DEM pixels can fall in a single SU and therefore summary statistics of 
the corresponding covariate distribution per polygon have to be 
computed. Here we do so by taking the mean and standard deviation of 
every continuous covariate. These have been selected among a number 
of standard landslide predisposing factors in the susceptibility literature 
(see Budimir et al., 2015), listed as follows: (1) Elevation (Görüm, 2019), 
(2) Slope steepness (Wu and Sidle, 1995), (3) Planar and (4) Profile 
curvatures (Ohlmacher, 2007), (5) Eastness (Leempoel et al., 2015), (6) 
Northness (Epifânio et al., 2014) and (7) Internal Relief (Görüm, 2019; 

Fig. 1. Landslide points mapped by NASA in the Lower Mekong Region (Amatya et al., 2022) and the study area defined in North-western Vietnam. The lower-left 
panel reports the administrative boundaries in black solid lines, and the corresponding countries are labelled in white. 

Table 1 
Details of the multi-temporal landslide inventory contained in the study area 
(Fig. 1), generated by Amatya et al. (2022).  

Year Inventory Date Landslide Points 

2017 1 2nd-3rd August 2014 
2 23rd-28th August 99 
3 10th-11th October 3944 

2018 4 23rd-24th June 1310 
5 3rd August 302 
6 27th August-1st September 1641  

Table 2 
Parameter setting for generating slope units in the study area using r. 
slopunits.  

Parameter Set Value 

Minimum area of SU 40000 m2 

Circular variance 0.5 
Large flow accumulation threshold 800,000 m2 

Clean size 20,000 m2 

Number of iterations 20  
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Qiu et al., 2018). 

3. Method 

3.1. Modeling framework 

To model landslide susceptibility in space and time, we used a 
Bayesian version of a binomial GAM (Hastie, 2017). Assuming a priori 
that the probability of landslide occurrence can only be explained 
through a linear function may not hold for all predictors one may 
choose. For this reason, a GAM is much more versatile as it allows for the 
integration of linear as well as non-linear effects (Goetz et al., 2015). A 
logistic GAM, expressed for binary data (namely landslide presence/ 
absence), can be formulated in its simplest form through its equation for 
the log-odds as follows; 

log p/1 − p = βo + β1χ1⋯+ βmχm + f (χm+1) (1)  

where P indicates the probability of landslide presence in a mapping 
unit, βo is the global intercept, each βi represents the regression coeffi
cient of the accompanying covariate (χi), which are assumed to have a 
linear effect on unstable slope units and ƒ expresses nonlinear function of 
the covariate χm + 1. In practice, non-linear effects may be implemented 
by discretizing the continuous covariate χm + 1 into n discrete classes 
and enforcing statistical dependence (e.g., through an autoregressive 
structure) between the effects of neighboring classes. 

The modelling process has been implemented using R-INLA (Inte
grated Nested Laplace Approximation) package of R (RStudio Team, 
2023), commonly used for support Bayesian inference (Rue et al., 2009). 

3.2. Antecedent rainfall-window 

Intensity-duration relationships (Guzzetti et al., 2007, 2006; Hong 
et al., 2006; Kirschbaum et al., 2012) have been an essential part in most 
of the traditional LEWS. To adhere to that concept as part of our 
space–time modeling approach, we also explored the effect of cumula
tive antecedent rainfall. We do so by computing rainfall as 14 potential 
aggregated covariates, corresponding to the maximum daily sums from 
the day of the triggering event (inclusive) to the 14th day before the 
landslide occurrence. Specifically, we fit 14 separate space–time sus
ceptibility models and then use the Watanabe Akaike Information 
Criteria (WAIC; Whalen and Hoppitt, 2016) to select the most suitable 
day representing the intensity-duration effect. WAIC is commonly used 
as a model selection tool, which can be used to compare sets of cova
riates in order to identify the ideal combination whilst keeping the rest 
of the parameters the same. In fact, model ranking can be obtained by 
sorting WAIC in ascending order since the lowest value represents the 
best predictor set. Notably, Amatya et al. (2022) could not assign a 
specific landslide triggering day to each inventory out of the six we 
consider here. Therefore, not only the WAIC is here used to indicate the 
most suitable antecedent window but also the best triggering day, within 
the error date reported by the authors. 

3.3. Validation techniques 

Any susceptibility model needs to be equipped with a validation 
phase necessary to evaluate its capacity to suitably predict an unknown 
dataset (Chung and Fabbri, 2008, 2003; Lombardo and Tanyas, 2020; 
Remondo et al., 2003). Most of the landslide community adopts a purely 
random approach for validation (Neuhäuser et al., 2012). However, 
such bootstrap techniques do not usually perturb the dataset to the point 
of disaggregating the spatial structure in the data (Brenning, 2005). 
Thus, the resulting performances do not stray away from the ones esti
mated for the fit. This is why a fewer number of more rigorous articles 
adopt a spatial-cross-validation (SCV) technique instead (see Brenning, 
2012). For space–time models, the context explained above is even more 

relevant. In fact, removing observations entirely at random from a large 
spatio-temporal domain, leaves most of the data structure unchanged. 
Therefore, the resulting performances may be misleadingly and almost 
as high as for the fit to the entire observed dataset. For this reason, it is 
important to design suitable cross-validation (CV) techniques, and 
combine the SCV framework shown in Lin et al. (2021) together with 
temporal CV routines. In this work, we tested a number of those to 
retrieve the full spectrum of modeling performance offered by our 
space–time susceptibility model; more details will be provided below. 
For all of them, we will use the AUC of the Receiver Operator Charac
teristic (ROC) curve, as a performance indicator (Yang and Berdine, 
2017; Zou et al., 2007). 

3.3.1. Unstructured cross-validation 
The simplest validation routine we adopt is a 10-fold CV for which 

we partition the space–time domain into ten mutually-exclusive subsets 
for training (90 %) and testing (10 %). 

3.3.2. Spatial cross-validation 
Here we create a large gridded lattice (Fig. 2), which we iteratively 

use to select all the single-grid-intersected slope units for validation. The 
complementary sample, is used instead for calibration. 

3.3.3. Temporal cross-validation 
Here we opted for a dual temporal CV approach. The first one boils 

down to a leave-one-landslide-event-out (LOLEO) routine, where five 
out of six inventories are used for calibration and the predictive per
formance are iteratively monitored over the excluded inventory. 

By contrast, the second approach uses a sequential criterion where 
the first model is built using only the first inventory (in time) and is 
validated over the second. In the next step, the model integrates the first 
and second inventories validating over the third, until the last test uses 
the sixth inventory for validation, being trained over the combination of 
all the previous ones. 

Fig. 2. Representation of the lattice over the study area for spatial valida
tion scheme. 
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3.3.4. External cross-validation 
Even in the case of the validation suites we described above, the 

locations and time used for testing are essentially the same as used for 
the model fit. We opted to include another validation step based on an 
independent dataset to check if our model is able to extrapolate to a 
different space–time domain. We recall here that the multi-temporal 
landslide inventory mapped by NASA covers the LMR (see Amatya 
et al., 2022). We therefore decided to use three landslide clusters in 
Vietnam and two from Laos (shown later in Fig. 8) as the prediction 
target. 

4. Results 

4.1. Antecedent rainfall-window 

To select the best fitting cumulative rainfall capable to explain the 
landslide distribution, we computed the precipitation aggregated over 
multiple antecedent windows and retrieved the corresponding WAIC of 
each model. In complementary manner, for each aggregated rainfall 
measure, we also computed a LOLEO-CV to assist the selection of a 
suitable rainfall window. Both WAIC and AUC values are shown in 
Table 3, where we sorted the cumulative antecedent rainfall windows 
with ascending WAIC values. Interestingly, the WAIC and AUC seem to 
point out at slightly different antecedent windows. If we look at the 
WAIC results, the best antecedent rainfall corresponds to the 2-days 
cumulative antecedent rainfall window. Conversely, the highest 
average AUC across LOLEO-CVs belongs to 8-days antecedent rainfall 
window. An interesting consideration to be made here is, despite the fact 
that we tested up to 14 days of antecedent rain, the top half of the ranked 
performance table only includes a maximum of 9 antecedent days. This 
may indicate that any long-term meteorological signal may not bring 
any additional information to the model. In other words, it is the short- 
term rainfall discharge that controls the landslide distribution in the 
study area. 

As for the most suitable specific rainfall window, the first two best 
models according to the WAIC correspond to 1-day and 2-days prior to 
the landslide event. We recall that in Section 2.1, the maximum dating 
error among landslide-events was up to 6 days. For this reason, a WAIC- 
oriented choice would lead to a time window contained within the po
tential dating error. Hence, looking at the next viable option, the 8-days 
antecedent precipitation ranks third with the lowest WAIC, but also 
corresponds to the highest AUC resulted from the LOLEO-CV. For this 
reason, we opted for the 8-days’ time-window in the remainder of the 
manuscript, to be used as our reference antecedent window for rainfall 
during the modeling phase. 

4.2. Model fit 

In this section, we initially present the estimated covariate effects, 
both in their linear and nonlinear forms (see Fig. 3). Specifically, out of 
the sixteen covariates used for this study, mean Slope (expressed in 
degrees), Internal Relief (expressed in meters) and Maximum Distance 
(also expressed in meters) were modelled as ordinal variables, with an 
adjacent-class-dependence driven by a Random Walk of first order 

(RW1; for more information see Bakka et al., 2018). The remaining 
covariates were all featured as linear effects in the model (Fig. 3a). This 
choice emerged from a number of unreported test where we individually 
checked each covariate behavior, to isolate those that clearly required a 
non-linear use. 

In Fig. 3c, the mean slope displays an increasing trend, demon
strating the overall positive effect of the slope steepness to instability. A 
detailed look highlights a marked negative contribution until approxi
mately 25◦. From this point, the mean slope regression coefficient be
comes increasingly positive up to 35◦ after which it flattens out. The 
posterior distribution of the mean relief (Fig. 3b) also varies in its effect. 
It starts by depicting a positive trend until ~ 600 m, after which the 
curve indicates a decrease towards negligible effects from around 1200 
m onwards. The use of the SU maximum distance is meant to convey 
shape characteristics into the model under the assumption that elon
gated slope units may be more suitable for the development of shallow 
flow-like landslides such as the ones that comprise the inventory. This is 
reflected in the marginal plot (Fig. 3d), where short distances are asso
ciated to negative regression coefficients, which rapidly become positive 
already at maximum lengths of 2000 m. 

As for the contribution brought by the linear effects, significantly 
positive contributing covariates include elevation (standard deviation), 
Eastness (mean), planar curvature (standard deviation), Northness 
(mean and standard deviation), antecedent rainfall and EVI (standard 
deviation). Conversely, significantly negative contributions correspond 
to elevation (mean), slope (standard deviation), profile curvature (mean 
and standard deviation), EVI (mean) and roundness index of the slope 
unit. 

We present here the model results in map form by plotting summary 
statistics out of each susceptibility map. Specifically, our space–time 
model returns the full posterior distribution of the susceptibility, from 
which we initially estimate two metrics namely, the posterior mean and 
width of the 95 % credible interval (CI), measured as the difference 
between the 97.5 and 2.5 percentiles of the susceptibility for each of the 
six landslide events. These results are later combined by showing in 
Fig. 4, the mean value of the six posterior mean susceptibility distribu
tions across the six maps (Fig. 4a), together with the mean of the pos
terior 95 % CI measured across the same (Fig. 4b). 

4.3. Unstructured cross-validation 

Sampling the spatio-temporal domain into 10 random subsets and 
validating each subset yields an excellent model performance. Fig. 5 
displays the individual output of each validated subset. The relative 
range of the AUC for the ROC curves is shown as the boxplot in Fig. 5, 
which ranges between 0.855 and 0.880. 

4.4. Spatial cross-validation 

The grid numbers of the lattice over the study area (Fig. 2) are used 
as validation blocks with their representative performances summarised 
in Fig. 6. The corresponding AUC values show a variation within the 
grid-cells containing uneven SUs (study area covered). However, only a 
few blocks result in 0.6 < AUC < 0.7, while the rest reports good to 
excellent values. 

4.5. Temporal cross-validation 

In this section, we present two different temporal validation rou
tines. We recall that the first one makes use of the first inventory to 
predict the second, then a combination of the first two to predict the 
third and so on until the sixth one. Conversely, the second routine 
(LOLEO) calibrates over five inventories and predicts the sixth one, for 
each inventory separately. Fig. 7a summarises the sequential validation 
performance of our model, which appears to produce good classification 
results according to Hosmer et al. (2003). Differently from the previous 

Table 3 
First 7 models sorted in ascending order of WAIC with corresponding ROC-AUC 
values of the temporal validation.  

Antecedent Rainfall Days WAIC Average AUC 

2  23492.17  0.828 
1  23636.73  0.827 
8  23685.13  0.831 
3  23735.00  0.830 
9  23790.42  0.818 
4  23824.17  0.829 
7  23834.70  0.830  
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CV tests, here we observe a much larger spread of the resulting ROC 
curves. The situation goes back to an excellent performance for the 
LOLEO, as shown in Fig. 7b. 

4.6. External cross-validation 

The availability of inventories in nearby areas of study site, helped to 
test the model transferability over an independent dataset, for landslide 
events mapped far away. A total of five external sites are used for such a 
test, where three of the sites are still located within Vietnam (but in the 
south) and the other two are located in Laos (see Fig. 8). The resulting 
AUC values in Fig. 8 are good to excellent with an exception to test site 4, 
which gives poor but better-than-random predictions. 

4.7. Probability threshold 

To translate the model into an early warning system, one of the main 
requirements is to convert the continuous spectrum of probabilities into 
a dichotomous output that expresses the probabilistic expectation of a 
SU to be potentially stable or unstable. To binarize the probability 
spectrum, we initially assessed the True Negative Rate (TNR) and the 

True Positive Rate (TPR) at every 0.05th quantile for each of the LOLEO 
temporal validations. Fig. 9 depicts the patterns of TNR and TPR for each 
probability cut-off, whose intersection we considered suitable to choose 
a cutoff. Specifically, we took the six intersection points, and took the 
mean of the corresponding probabilities as our reference cutoff. 

4.8. Web application 

The interactive interface of the GEE application visualizes the mean 
susceptibility and converts them directly into alert levels using the 
probability cutoff mentioned in the previous section. In the backhand, 
the platform essentially takes the posterior mean of each covariate effect 
and solves the additive equation obtained from the original fitted model 
but over the data obtained for any date selected by the user. Notably, 
this web-App was built as a proof-of-concept and cannot be used for 
predictive purposes because CHIRPS products become available in GEE 
only after approximately six weeks. In other words, out web-App can be 
used to visualize previous events but cannot be used as a forecasting tool 
yet, given the unavailability of CHIRPS forecast product (Harrison et al., 
2022) in GEE to integrate in the webApp. The webApp can be accessed at 
this link: https://mahnoorahmed5593.users.earthengine.app/view/dy 

Fig. 3. Summary of each model component expressed in terms of regression coefficients. Panel (a) reports the contribution of the covariates used linearly. The suffix 
µ and σ denote the mean and standard deviation values computed from the original covariates per slope unit. CAR8d represents the dynamic rainfall covariate 
obtained over a 8-day cumulative antecedent window. Panels (b), (c) and (d) report the contribution of the nonlinear cases. 
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namicsusceptibility. 

5. Discussion 

Starting with the model selection tool, the results indicate the most 
suitable rainfall-window for our study area to be eight days. Theoreti
cally, a very short window would be indicative of the effect of intense 
rainfall discharge associated to short cloudburst. However, the emerging 
8-days aggregation window is diagnostic of a system where the duration 
also plays a determinant role. 

Most of the literature dedicated to temporal landslide prediction is 
based on rainfall thresholds and only very few recent studies have 
framed the same in the multivariate space–time data-driven contexts 
(see Nocentini et al., 2023; Steger et al., 2023). In this work, we follow 

an analogous approach, leaning towards a probabilistic solution that 
holistically integrates the rainfall signal together with terrain 
characteristics. 

Another interesting element we explore here relates to the use of 
suitable model assessment tools. In fact, space–time models can exhibit 
an internal spatio-temporal dependence, that often leads to overly pos
itive performance. For this reason, CV routines should break up any 
residual dependence in the data, in order to highlight how a model 

Fig. 4. Combined susceptibility of six inventories (used in calibration). Panel (a) showing the mean susceptibility, panel (b) showing the 95% credible interval.  

Fig. 5. ROC curves for AUC retrieved in 10-fold cross validation scheme along 
with the expanding range of AUC values. 

Fig. 6. AUC values for corresponding grid cells and combinations of grid cells 
obtained from the lattice over the study area for spatial validation. Purple: low 
AUC, Red: acceptable AUC, Yellow: good AUC, Green: excellent AUC. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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actually predicts over unseen test data. In this work, we do this exten
sively, exploring a number of spatial and temporal CV routines. 

The importance of such tools inevitably falls on how efficiently a 
given data-driven model can be extended towards its operational use. In 
fact, operational LEWS are often subject to large false positives. These 
are due to overestimation of the landslide occurrence probability in 
areas that are stable. Our model, irrespectively of the CV at hand, 
showed very high prediction capacity, which in turn suggests that the 
inclusion of terrain attributes into the model helps with suitably clas
sifying the landscape. Similar considerations can be made for false 
negatives cases, which usually refer to problematic situations where the 
failure of a given LEWS potentially leads to casualties. Precisely for this 
reason, we prescribe extensive validation tests, something that in this 
work have displayed not only locations and times where the model 
successfully performed but also where and when it failed. Specifically, 
the SCV highlighted the southernmost sector of the study area (grid 18, 
see Fig. 2) to be associated with the least classification performance 
(Fig. 6). Interestingly, when we extended the SCV outside the bound
aries of the study area through the external validation test, moving 
further to the south and west, it did not show a consistent performance 
drop. Actually, most of the unstable SUs were successfully predicted 
with the exception of site 4 (see Fig. 8). Therefore, since our model does 

not include some important covariate information (lithology, distance to 
road and river, etc.), which can be used to enhance the model and 
prediction ability, we cannot definitively conclude the reason behind 
this specific performance drop. Irrespective of such site-specific results, 
our space–time model suitably predicted the distribution of stable/un
stable SUs. However, the assessment discussed so far mainly revolves 
around the spatial dimension and needs to be therefore extended in time 
for our model to be evaluated as a LEWS valid alternative. We explored 
this element in our sequential and LOLEO-CV procedures, where almost 
all out-of-sample results were associated to an excellent performance. 
The only exception corresponded to the output of validating on in
ventory 2 in the sequential temporal validation scheme (see Fig. 7a) 
which interestingly is associated with the least number of landslides 
among all. Therefore, the low performance shown in this case leads to 
two considerations. The first one is that the reason for such drop can be 
justified with a model that may have locally overestimated the slope 
response. In turn, this implies that a potential failure if adopted as a 
LEWS would most likely produce false positives, and would therefore 
not lead to expected losses, which are common in case of the opposite 
error type. Also, a possible reason for the performance drop may be due 
to the error in the dating corresponding to a possible window of five days 
(see Table 2). This is something that unfortunately cannot be addressed 
here but that future research directions could potentially solve. In fact, a 
number of recent studies are trying to limit the error in landslide dating 
by incorporating information (coherence amplitude drop) from radar 
satellites in addition to the traditional optical one. Moreover, an 
increasing number of investments in new constellations would likely 
cover the earth surface on a more frequent basis in the future, thus 
limiting the dating error even further. 

We also stress once more the importance of an uncertainty estima
tion to be incorporated as part of any probabilistic model for landslide 
prediction. Here this is possible to produce it natively due to our 
Bayesian framework, but we also recommend it in case of frequentist 
alternatives through bootstrapping. Unfortunately, this is not always 
part of LEWS. 

As an additional nested experiment, we also tested the most suitable 
probability cutoff representative of multiple available landslide in
ventories. To do so, we have proposed a combination of sensitivity and 
specificity values to be explored as a function of a quantile description of 
the susceptibility spectrum (optimal region roughly between the 0.70th 

Fig. 7. ROC curves with AUC for panel (a) showing sequential temporal vali
dation and panel (b) showing LOLEO temporal validation. 

Fig. 8. External validation sites and their respective AUC values in external 
cross-validation scheme. 

Fig. 9. Combination of six inventories (when each used for validation) dis
playing sensitivity and specificity at every 0.05th quantile for selecting a 
threshold to define a probabilistic cutoff. 
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− 0.85th quantiles). The resulting cutoff was used to maximize the 
classification results displayed through the LEWS, which we translated 
into the ‘warning’ and ‘no warning’ shown in our interactive GEE 
WebApp. Notably, our WebApp highlights both the strengths of our 
approach as well as its weaknesses. In fact, as interesting as our space
–time model may be and as transparent our results may be through the 
WebApp, the system is bound to the rainfall product we used (CHIRPS). 
This product has a native latency of 1.5 months, which is the time 
required to make the data available in GEE, after the data itself have 
been re-processed to minimize the bias between raw radar acquisitions 
and ground-based rain gauge measures. For this reason, our model is 
only theoretically useful in an operational sense. In reality, by the time 
the rainfall estimates become available, potential landslides have 
already manifested and produced damages. Currently, we see our model 
as a proof-of-concept of how the future generation of LEWS may 
become. However, for this to happen, we already see potential im
provements in the form of rainfall data usage and processing. The first 
development involves the use of rainfall forecasts (e.g., GPM/TRMM) 
rather than re-processed data. In fact, if a LEWS would prove to suitably 
predict landslides as a function of past records of precipitation forecast, 
one could then use the space–time architecture as the basis for simu
lating future unstable SUs, plugging in future rainfall projections. 
However, even in this case, two main issues may affect the rainfall data 
and hence the model itself. The former is the difference between forecast 
data and rain gauge measurements, which should be ideally minimized. 
Interestingly, a number of valid solutions have been recently shown to 
minimize the gap or bias between observations and satellite estimates, 
individually (Beck et al., 2019, 2017) or through smart-data blending 
(Beikahmadi et al., 2023). Therefore, we expect better rainfall products 
in the future and through them, even better LEWS (Fang et al., 2023a, b). 
Where we see the major challenge is in the way to account for precipi
tation uncertainties. Currently, the uncertainty in the expected weather 
systems varies as one gets closer to the day of interest. In other words, 
precipitation patterns and amounts forecasted 10 days in advance may 
be different and less reliable as compared to the same parameters 
forecasted a day or just few hours ahead of time (Cuo et al., 2011). Our 
current regional model requires 8-days cumulative antecedent rainfall, 
but other study areas may require less. Therefore, the potential trans
ferability of such space–time solution would need to be tested also in the 
context of different uncertainty levels in the rainfall input. In this sense, 
we see the Bayesian framework as a perfect modeling platform to 
propagate different levels of uncertainty, recommending it especially in 
such cases, and among the available solutions, INLA would most likely 
offer the best estimation paradigm that allows fast Bayesian inference 
with relatively complex models (Simpson et al., 2011). 

Ultimately, we should stress that our model is currently valid only at 
the scale of the northern sector of Vietnam. As is, it is potentially 
transferrable in neighboring regions, especially with analogous terrain 
characteristics and exposed to analogous meteorological stresses. 
However, such experiments have not been made part of the present 
contribution. Thanks to the availability of landslides across other sectors 
of the Lower Mekong Region, we are now in the process of testing an 
extension of the model presented here but trained over the whole area 
where Amatya et al. (2022) mapped landslides. In the future, we plan to 
compare the performances of the two models, highlighting differences 
when a regional model such as the present one is benchmarked against a 
near continental one, and vice-versa. 

6. Conclusion 

Early warning systems for rainfall-induced landslides have histori
cally treated the precipitation signal separately from the landscape 
characteristics typical of susceptibility studies. However, space–time 
data-driven solutions allow one for incorporating both elements at once, 
potentially opening up for a new generation of alert systems. This work 
explores this topic, using several landslide inventories mapped for the 

northern territory of Vietnam. In doing so, we demonstrate how space
–time statistics can efficiently predict landslide occurrences, featuring a 
number of nested experiments, from the use of Bayesian models, to 
performance assessment via a suite of spatiotemporal CVs and ulti
mately by showcasing how web applications can graphically convert the 
results in a way that anyone can freely access them. 

Despite the novelty, a few elements still require further investigation 
before offering operational solutions, among them the use of rainfall 
forecast data rather than past projections. Moreover, we also envision 
additional efforts to be required for moving beyond the susceptibility 
context. For instance, one could model the extent of the landslides in 
space and time to ultimately generate space–time intensities rather than 
occurrence probabilities (Lombardo et al., 2020, 2018). Ultimately, this 
approach could even be extended to bind exposure data in space and 
time, giving birth to risk-oriented LEWS. To do so, one would need the 
statistic information of buildings and infrastructure as well as the dy
namic information of population densities. Overall, this is to say that 
space–time data-driven models are at an infancy phase in the context of 
landslides. They can certainly constitute the foundation for even systems 
that may exploit reliable rainfall forecast and return impact-based 
predictions. 
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Epifânio, B., Zêzere, J.L., Neves, M., 2014. Susceptibility assessment to different types of 
landslides in the coastal cliffs of Lourinhã (Central Portugal). J. Sea Res. 93, 
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