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REPRESENTATIONS OF AUTOMORPHISM GROUPS

ON THE HOMOLOGY OF MATROIDS

LUCA MOCI∗† AND GIAN MARCO PEZZOLI∗

Abstract. Given a group G of automorphisms of a matroid M , we describe the
representations of G on the homology of the independence complex of the dual
matroid M∗. These representations are related to the homology of the lattice of
flats of M , and (when M is realizable) to the top cohomology of a hyperplane
arrangement. Finally, we analyze in detail the case of the complete graph, which
has applications to algebraic geometry.
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1. Introduction

In the last years, matroid theory received increasing attention from geometers
because of its multiple connections with algebraic geometry, algebraic topology and
representation theory. One of the equivalent ways of defining a matroid M is by
specifying the family of its independent sets, which is an abstract simplicial complex
IN(M). A group G of automorphism of M acts naturally on IN(M); this gives rise
to representations of G on the homology of IN(M), which are studied in this article.

One motivation for our work comes from a paper by de Cataldo, Heinloth and
Migliorini, that computes the supports of the perverse cohomology sheaves of the
Hitchin fibration for GLm over the locus of reduced spectral curves, studying the
related Cattani-Kaplan-Schmid complex ([6]). The dual graph of such a spectral
curve is the complete graph, and the action of the symmetric group on the irreducible
components of the curve yields an action on its vertices, hence on the independence
complex of the dual matroid of the graph. A crucial step in the analysis performed in
[6] is then to determine the representations of the symmetric group on the homology
of this independence complex.

In this paper we describe representations on the homology of matroids in full
generality. Namely, given a matroid M of rank r on n elements and a group G of
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automorphisms of M , we consider the independence complex IN(M∗) of the matroid
dual to M . We prove that the reduced homology of this simplicial complex, up to
a shift and to a sign, is isomorphic to the reduced homology of the non-spanning
complex of M , NS(M), and to the reduced homology of the order complex of the
lattice of flats of M , L(M):

Theorem. The following representations of G are isomorphic for every i ≥ 0 (and
nonzero only for i = r − 2):

(1) H̃n−3−i(IN (M∗))⊗ sgn

(2) H̃i(NS (M))

(3) H̃i(L (M))

where n is the cardinality of the ground set of M and sgn is the sign representation
(restricted from Sn to its subgroup G).

Here, the isomorphism between (1) and (2) holds more generally for any simplicial
complex, being a consequence of Alexander duality (see Theorem 2). The proof that
we give in Section 2 is inspired by that of Björner and Tancer ([5]), but keeps track
of the action of the group G.

Also the isomorphism between (2) and (3) is a consequence of a more general
phenomenon: indeed, in Section 3 we develop an equivariant version of Folkman’s
machinery of cross-cuts [7]: see in particular our Theorem 12.

In Section 4 we specialize our results to the case of matroids, obtaining the above-
mentioned isomorphisms.

Furthermore, if the matroid M is realizable, then it is naturally associated with
a hyperplane arrangement A. The cohomology of the complement C(A) of the ar-
rangement admits a well-known presentation in terms of M , due to Orlik and Solomon
([16]). In Section 5 we show that the top-degree part of this cohomology is isomorphic
as a representation of G, up to a sign, to the reduced homology of the dual matroid
M∗

A associated to A:

Hr(C(A)) ≃G H̃n−r−1(IN(M∗
A))⊗ sgn

(see Theorem 21). This statement is a consequence of our main theorem and of results
of Orlik and Solomon [16].

In Section 6 we focus on the case when M is realized by a coned graph or by a
complete bipartite graph. Then our Theorem 19, combined with results by Kook and
Lee ([11, 12]), yields isomorphisms with the G−modules of edge-rooted and B-edged
rooted forests (6.1, 6.2).

Finally, in Section 7 we specialize our results to the case in which M is the matroid
of the complete graph Km, or equivalently of the root system of type Am−1, which
is the case of interest in [6]. For this matroid, whose group of automorphisms is the
symmetric group Sm and whose lattice of flats is the partition lattice Πm, a result of
Stanley [20] allows explicit determination of the representations:

H̃n−m(IN(M∗(Km))) ≃Sm
indSm

Cm
(e2πi/m)

where n =
(
m
2

)
is the number of edges Km, and Cm is the subgroup generated by an

m-cycle in Sm (see also Remark 26).
It is natural to wonder if a similar description can be provided for root systems

of other types. This seems to be a hard question, though, being equivalent to the
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following conjecture of Lehrer and Solomon ([14, Conj. 1.6]):

Hp(C(AW )) ≃W

⊕

c

IndW
Z(c)(ξc) p = 0, . . . , rank(W ).

A different direction of research, that we hope to develop in future papers, is to ex-
plicitly describe the representation arising for different classes of graphs or matroids.

Acknowledgements. We are grateful to Emanuele Delucchi, Luca Migliorini and
Roberto Pagaria for inspiring discussions and very valuable suggestions. We also
wish to thank the anonymous referees for many helpful remarks.

2. Representations and Alexander duality

We recall here some basic facts in combinatorial topology. For more details the
reader can refer to [9]. Let K be an abstract simplicial complex with vertex set V
with |V | = n. For σ ∈ K, let

σ = V r σ.

Definition 1. The Alexander dual of K is the simplicial complex on the same vertex
set defined by

K∗ = {σ ⊆ V | σ /∈ K}.

It is easy to see that K∗∗ = K.

Let G be a finite group of automorphisms of the face poset (K,⊆). Then G
is a subgroup of the symmetric group Sn on V , made out of the vertex maps
g : V −→ V such that whenever the vertices j1, . . . , ji+1 span an i-simplex of K,

the points g(j1), . . . , g(ji+1) span an i-simplex of K. Therefore g induces a simplicial
homeomorphism g̃, and g̃ induces a chain-isomorphism g̃# on the group of oriented
i-chains in the following way:

g̃#,i : Ci(K,C) −→ Ci(K,C).
[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)]

Moreover g̃# induces an isomorphism on the reduced homology groups H̃i(K) (and

the reduced cohomology groups H̃ i(K)):

ρi,g : H̃i(K,C) −→ H̃i(K,C).

This defines representations of G on the C-vector spaces H̃i(K,C), i.e., homomor-
phisms

ρi : G −→ GL(H̃i(K,C)).
g 7−→ ρi,g

It follows from the definition of K∗ that G is also a finite group of automorphisms of
the face poset of K∗. Therefore, following the construction above, we get representa-
tions ρ∗

i

of G on the reduced cohomology of K∗:

ρ∗
i

: G −→ GL(H̃ i(K∗,C)).
g 7−→ ρ∗ig

Theorem 2. Let K be an abstract simplicial complex and let K∗ be its Alexander
dual. Let G be a finite group of automorphisms of the face poset of K. Then:

ρi ≃ ρ∗
n−i−3

⊗ sgn
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where n = |V | and sgn is the sign representation (restricted from Sn to its subgroup
G). Or, equivalently, we have the following isomorphism of C[G]-modules:

H̃i(K,C) ≃G H̃n−i−3(K∗,C)⊗ sgn.

Our proof follows from Björner and Tancer ([5]), but carefully records the action
G. We introduce some notations: let us denote by {1, 2, . . . , n} the elements of V .
For j ∈ σ ∈ K, we define the sign

sgn(j, σ) = (−1)i−1

where j is the i-th smallest element of the set σ, and

p(σ) =
∏

j∈σ

(−1)j−1.

Take an i-face σ = {j1, . . . , ji+1} ∈ K with j1 < · · · < ji+1. We write eσ to denote the
oriented simplex associated to σ considered with an increasing order of its elements:

eσ = [j1, . . . , ji+1].

For every g ∈ G, we denote

g.σ = {g(j1), . . . , g(ji+1)} and g.eσ = [g(j1), . . . , g(ji+1)].

The g(j1), . . . , g(ji+1) are not necessarily in ascending order: let τ ∈ Si+1 ⊆ Sn

be the permutation that rearranges the elements in ascending order, and fixes the
elements that are not in g.σ, so that τ.(g.eσ) = eg.σ. We also define:

c(g, σ) = sgn(τ).

Since τ−1 permutes the elements of eg.σ we obtain:

g.eσ = τ−1.(eg.σ) = sgn(τ−1)eg.σ = sgn(τ)eg.σ = c(g, σ)eg.σ.

Similarly, we define a permutation τ ∈ Sn−1−i ⊆ Sn which rearranges the elements
of g.eσ in ascending order:

τ .(g.eσ) = eg.σ g.eσ = c(g, σ)eg.σ.

We can now formulate an important lemma that will prove to be crucial for the proof
of Lemma 4:

Lemma 3. Let V = {1, . . . , n} and let σ ⊆ V . Then, for every g ∈ Sn, we have the
following:

p(σ) sgn(g) c(g, σ) = c(g, σ) p(g.σ). (2.1)

Proof. For every g ∈ Sn, we define a permutation g′ = ττg. First we apply the
permutation g to σ and σ. Then applying τ and τ , we rearrange in ascending order
both g.eσ and g.eσ.

As we have defined it, g′ is a permutation of Sn such that:

if i, j ∈ σ with i < j then g′(i) < g′(j) and
if i, j ∈ σ with i < j then g′(i) < g′(j).

In particular, we have that:

g′.eσ = eg′.σ and g′.eσ = eg′.σ.
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We can express g in the following way g = τ−1 ◦ τ−1 ◦ g′. It easy to see that p(g.σ) =
p(g′.σ). Thus, Equation (2.1) is equivalent to:

p(σ)sgn(τ−1τ−1g′)c(g, σ) = c(g, σ)p(g.σ) ⇔ p(σ)sgn(τ−1)sgn(τ−1)sgn(g′)sgn(τ) = sgn(τ)p(g′.σ)

⇔ p(σ) sgn(g′) = p(g′.σ)

⇔
(∏

i∈σ

(−1)i−1
)
sgn(g′) =

∏

i∈σ

(−1)g
′(i)−1

⇔
(∏

i∈σ

(−1)i−g′(i)
)
sgn(g′) = 1

⇔
∏

i∈σ

(−1)i−g′(i) = sgn(g′). (2.2)

In order to prove Equation (2.2), let i ∈ σ be the k-th element of eσ and we define:

Ai = {(i, j) | j ∈ σ, i < j, g′(i) > g′(j)} and

Bi = {(j, i) | j ∈ σ, j < i, g′(j) > g′(i)}.

We have that:

sgn(g′) = (−1)
∑

i∈σ(|Ai|+|Bi|).

Let us assume that i < g′(i). It is easy to see that |Bi| = 0. Furthermore:

|{(i, j) | j ∈ σ, i < j}| = (n− i)− (|σ| − k) = n− i− |σ|+ k

and

|{(i, j) | j ∈ σ, i < j, g′(i) < g′(j)}| = |{(i, j) | j ∈ σ, g′(i) < g′(j)}|

= (n− g′(i))− (|σ| − k) = n− g′(i)− |σ|+ k.

By subtracting term by term the two equalities above, we get:

|Ai| = (n− i− |σ|+ k)− (n− g′(i)− |σ|+ k) = g′(i)− i.

Similarly, if i > g′(i) we have that |Bi| = i− g′(i) and |Ai| = 0. Therefore:

|Ai|+ |Bi| = |g′(i)− i|.

It follows that:

sgn(g′) = (−1)
∑

i∈σ |g′(i)−i| =
∏

i∈σ

(−1)|g
′(i)−i| =

∏

i∈σ

(−1)g
′(i)−i.

�

Let 2V be the full simplex with vertex set V .

Lemma 4. Let K be a simplicial complex with ground set V of size n. Then

H̃i+1(2
V , K) ≃ H̃n−i−3(K∗).

Furthermore, if we consider the following representations of the group G on the ho-
mology spaces of (2V , K) and K∗:

αi+1 : G −→ GL(H̃i+1(2
V , K),C)) and

ρ∗
n−i−3

: G −→ GL(H̃n−i−3(K∗,C)) ,

we have that

αi+1 ≃ ρ∗
n−i−3

⊗ sgn.



6

Or equivalently

H̃i+1(2
V , K) ≃G H̃n−i−3(K∗)⊗ sgn.

Proof. The chain complex for reduced homology of the pair (2V , K) is the complex:

· · ·Ri+1
di+1
−−→ Ri

di−→ Ri−1
di−1
−−→ · · · , i ∈ Z

where Ri = 〈eσ | σ ⊆ V, σ /∈ K, dim(σ) = i〉, and the di’s are the unique homomor-
phisms satisfying:

di(eσ) =
∑

k∈σ
σrk/∈K

sgn(k, σ) eσrk.

The cochain complex for reduced cohomology of K∗ is the complex:

· · ·
δi−1
−−→ C i−1 δi−→ C i δi+1

−−→ · · · , i ∈ Z

where

C i = 〈e∗σ | σ ⊆ V, dim(σ) = i, σ ∈ K∗〉

= 〈e∗σ | σ ⊆ V, dim(σ) = n− i− 2, σ /∈ K〉

and the δi’s are the unique homomorphisms satisfying:

δi(e
∗
σ) =

∑

k/∈σ
σ∪k∈K∗

sgn(k, σ ∪ k)e∗σ∪k =
∑

k∈σ
σrk/∈K

sgn(k, σ ∪ k)e∗
σrk

.

Let φi be the following isomorphism:

φi : Ri −→ Cn−i−2

eσ 7−→ p(σ) e∗σ
for σ /∈ K with dim(σ) = i. (2.3)

We then have the following diagram:

di+1
−−−→ Ri

di−−−→ Ri−1
di−1

−−−→

φi

y φi−1

y
δn−i−2
−−−−→ Cn−i−2 δn−i−1

−−−−→ Cn−i−1 δn−i
−−−→

We know from the proof of Lemma 4.2 of [5] that

φi−1 ◦ di = δn−i−1 ◦ φi. (2.4)

Thus, we have that

H̃i+1(2
V , K) ≃ H̃n−i−3(K∗).

We now define the following two representations:

ρ1 : G −→ GL(Ri)
g 7−→ ρ1g

by
ρ1g : Ri −→ Ri

eσ 7−→ g.eσ
and

ρ2 : G −→ GL(Cn−i−2 ⊗ C)
g 7−→ ρ2g

by
ρ2g : Cn−i−2 ⊗ C −→ Cn−i−2 ⊗ C

e∗σ ⊗ 1 7−→ g.e∗σ ⊗ sgn(g)

for σ /∈ K with dim(σ) = i. We want to show that this two representations are
isomorphic. We extend the isomorphism (2.3):

φ̃i : Ri −→ Cn−i−2 ⊗ C

eσ 7−→ p(σ) e∗σ ⊗ 1
for σ /∈ K with dim(σ) = i.
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To prove that ρ1 ≃ ρ2 we have to show that the following diagram commutes for
every g ∈ G:

Ri

ρ1g
−−−→ Ri−1yφ̃i

yφ̃i

Cn−i−2 ⊗ C
ρ2g

−−−→ Cn−i−1 ⊗ C
We have to prove that the following equation holds:

ρ2g ◦ φ̃i = φ̃i ◦ ρ
1
g. (2.5)

Note that for each eσ ∈ Ri,

(ρ2g ◦ φ̃i)(eσ) = ρ2g(p(σ) e
∗
σ ⊗ 1) = p(σ) g.e∗σ ⊗ sgn(g) = p(σ) sgn(g)c(g, σ)e∗g.σ ⊗ 1, and

(φ̃i ◦ ρ
1
g)(eσ) = φ̃i(g.eσ) = φ̃i(c(g, σ)eg.σ) = p(g.σ)c(g, σ)e∗g.σ ⊗ 1.

By applying Lemma 3, since g.σ = g.σ, we have that Equation (2.5) holds.
We consider now the following diagram:

di+1
−−−→ Ri

di−−−→ Ri−1
di−1

−−−→

φ̃i

y φ̃i−1

y
δ̃n−i−2
−−−−→ Cn−i−2 ⊗ C

δ̃n−i−1
−−−−→ Cn−i−1 ⊗ C

δ̃n−i
−−−→

And we define the δ̃i’s as an extension of the homomorphisms δi:

δ̃i(e
∗
σ ⊗ 1) =

∑

k/∈σ
σ∪k∈K∗

sgn(k, σ ∪ k)e∗σ∪k ⊗ 1.

From Equation (2.4) it follows that:

φ̃i−1 ◦ di = δ̃n−i−1 ◦ φ̃i.

Thus, we have that:

αi+1 ≃ ρ∗
n−i−3

⊗ sgn.

�

Lemma 5. Let K be a simplicial complex with ground set V . Then:

H̃i(K) ≃ H̃i+1((2
V , K),C).

Furthermore if we consider the representations of the group G on the reduced homology
spaces of K and (2V , K),

ρi : G −→ GL(H̃i(K,C)) and αi+1 : G −→ GL(H̃i+1((2
V , K),C)),

we have that
ρi ≃ αi+1.

Proof. The isomorphism follows from Theorem 23.3 of [15]: we have the long exact
sequence of the pair (2V , K):

· · · −→ H̃i+1(2
V ) −→ H̃i+1(2

V , K) −→ H̃i(K) −→ H̃i(2
V ) −→ · · ·

Since 2V is the full simplex the spaces H̃i+1(2
V ) and H̃i(2

V ) are zero. Hence, the
sequence becomes:

· · · −→ 0 −→ H̃i+1(2
V , K) −→ H̃i(K) −→ 0 −→ · · ·
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It follows that the groups H̃i+1(2
V , K) and H̃i(K) are isomorphic.

We now consider the following diagram:

H̃i+1(2
V , K)

∂∗

−−−→ H̃i(K)

αi+1,g

y ρi,g

y

H̃i+1(2
V , K)

∂∗

−−−→ H̃i(K)

where ∂∗ is the homology boundary isomorphism (see [15], Lemma 24.1):

Ci+1(2
V )

π#

−−−→ Ri+1(2
V , K)y∂V

i+1

Ci(K)
i#

−−−→ Ci(2
V )

The isomorphism ∂∗ is defined by a certain zig-zag process: pull back via π#, apply
∂V
i+1, and pull back via i#. For each g ∈ G we consider the action on the chain groups

of the full simplex, of K and of (2V , K):

g̃V#,i : Ci(2
V ) −→ Ci(2

V )
[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)],

g̃#,i : Ci(K) −→ Ci(K)
[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)],

g̃V,K#,i : Ri(2
V , K) −→ Ri(2

V , K).
[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)].

We have that:

g̃V#,i

∣∣
Ci(K)

= g̃#,i, g̃V#,i

∣∣
Ri(2V ,K)

= g̃V,K#,i .

We also know that each boundary operator commutes with g̃#,i, g̃
V
#,i and g̃V,K#,i+1

from Lemma 12.1 of [15]. Let b ∈ H̃i+1(2
V , K). There exists an a ∈ Ri+1(2

V , K)
such that b = a+ Im(di+2). Therefore:

ρi,g(∂
∗(b)) = ρi,g(∂

V
i+1(a) + Im(di+2)) = g̃#,i(∂

V
i+1(a)) + Im(di+2)

= g̃V#,i(∂
V
i+1(a)) + Im(di+2) = ∂V

i+1(g̃
V
#,i+1(a)) + Im(di+2), and

∂∗(αi+1,g(b)) = ∂∗(g̃V,K#,i+1(a) + Im(di+2)) = ∂V
i+1(g̃

V,K
#,i+1(a)) + Im(di+2)

= ∂V
i+1(g̃

V
#,i+1(a)) + Im(di+2).

Thus, we have that

∂∗ ◦ αi+1,g = ρi,g ◦ ∂
∗ for every g ∈ G,

and this implies that ρi ≃ αi+1. �

Combining the results of Lemma 5 and Lemma 4 we obtain the proof of Theorem
2.

Remark 6. From Alexander duality we know that for every simplicial complex K on
vertex set V such that V /∈ K, with n = |V |:

H̃i(K) ≃ H̃n−3−i(K∗).
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In fact, working with complex coefficients the reduced cohomology group H̃j(K) is

the dual vector space of the reduced homology group H̃j(K), so that H̃j(K) ≃ H̃j(K).
Combining the two results we obtain:

H̃i(K) ≃ H̃n−3−i(K
∗). (2.6)

3. Equivariant cross-cut theory

Let L be a lattice with maximal and minimal elements 1̂ and 0̂ respectively. We
recall the following definition from [7]:

Definition 7. If L is a lattice with 0̂ and 1̂, a cross-cut of L is a set C ⊆ L such
that:

i) 0̂ , 1̂ /∈ C.
ii) If x, y ∈ C then x ≮ y and y ≮ x. (x and y are incomparable)
iii) Any finite chain x1 < x2 < · · · < xn in L can be extended to a chain which

contains an element of C.

In particular, axiom iii) implies that every maximal chain contains an element of C.

Let L be a lattice with 0̂ and 1̂ and let C be a cross-cut of L.

Definition 8. A finite subset {x1, . . . , xn} ⊆ C ‘spans’ if and only if

x1 ∧ x2 ∧ · · · ∧ xn = 0̂ and x1 ∨ x2 ∨ · · · ∨ xn = 1̂

Here x∧y denotes the largest element ≤ x and ≤ y, and x∨y denotes the smallest
element ≥ x and ≥ y.

Let K(C) be the abstract simplicial complex whose vertices are the elements of
C and whose simplices are all finite subsets of C which do not ‘span’. We denote
H̃i(C) = H̃i(K(C)). Let K(L) be the order complex of the lattice L and denote

H̃i(L) = H̃i(K(L)). The following result was proved in [7], Theorem 3.1:

Theorem 9. Let L be a lattice and let C be a cross-cut of L, then:

H̃i(C) ≃ H̃i(L).

In order to see that the previous isomorphism is also a C[G]-module isomorphism
we need the following result:

Lemma 10. Let K be an abstract simplicial complex and let K ′ be its first barycentric
subdivision. Let also G be a finite group of automorphisms of the face poset of K.
Then we have the following isomorphism of C[G]-modules:

H̃i(K) ≃G H̃i(K
′).

Proof. First, we need to describe the action of G on K ′. Let L(K) be the face poset
of K; it is clear that the order complex of L(K) is the barycentric subdivision of
K. Thus, we have a straightforward G-action on the order complex of L(K) and
its homology spaces. We have to show that the following two representations are
isomorphic:

ρ̃i : G −→ GL(Hi(K))
g 7−→ ρ̃i,g

and
ρ̃′i : G −→ GL(Hi(K

′)).
g 7−→ ρ̃′i,g

Let w ∗K be a cone. If eσ = [a0, . . . , ai] is an oriented simplex of K, let
[
w, eσ

]
= [w, a0, . . . , ai]
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denote an oriented simplex of w ∗K. This operation is well defined and is called the
bracket operation (see [15], Section §8).

If σ = {a0, . . . , ai} is a simplex, let σ̂ denote the barycenter of σ. The complex K ′

equals the collection of all simplices of the form

[σ̂1, . . . , σ̂n] where σ1 ⊃ · · · ⊃ σn.

We know from [15], Section §17 that there is a unique augmentation-preserving chain
map sd : Ci(K) −→ Ci(K

′) called the barycentric subdivision operator that in-
duces an isomorphism of homology spaces. There is an inductive formula for the
operator sd. It is the following:

sd(v) = v̂ = v for v ∈ V, and

sd(eσ) =
[
σ̂, sd(∂i(eσ))

]
for σ ∈ K with dim(σ) = i.

Now we consider the following two representations:

ρi : G −→ GL(Ci(K))
g 7−→ ρi,g

ρ′i : G −→ GL(Ci(K
′))

g 7−→ ρ′i,g

We want to show that the following diagram

Ci(K)
sd

−−−→ Ci(K
′)

ρi,g

y ρ′i,g

y

Ci(K)
sd

−−−→ Ci(K
′)

(3.1)

commutes for every g ∈ G. We proceed by induction on i:

- Suppose i = 0. It follows from the action of G on the vertices of K and K ′

that ρ0,g(v) = ρ′0,g(v) for every v ∈ V . Thus:

ρ′0,g(sd(v)) = ρ′0,g(v) = ρ0,g(v) = sd(ρ0,g(v)).

- We now suppose the diagram commutes for i = n and we prove it for i = n+1.
Let g.σ = τ , thus:

ρ′i+1,g(sd(eσ)) = ρ′i+1,g(
[
σ̂, sd(∂i+1(eσ))

]
) =

[
τ̂ , ρ′i,g(sd(∂i+1(eσ)))

]

=
[
τ̂ , sd(ρi,g(∂i+1(eσ)))

]
=

[
τ̂ , sd(∂i+1(ρi+1,g(eσ)))

]

=
[
τ̂ , sd(∂i+1(g.eσ))

]
= sd(g.eσ) = sd(ρi+1,g(eσ)).

Since the diagram (3.1) commutes and both sd, ρi,g, ρ
′
i,g commute with the border

operator ∂ we have that the following diagram commutes and consequently the lemma
is proved:

H̃i(K)
sd

∗

−−−→ H̃i(K
′)

ρ̃i,g

y ρ̃′i,g

y

H̃i(K)
sd

∗

−−−→ H̃i(K
′).

�

Definition 11. Let L be a lattice and G a group of automorphism of L. A cross-cut
C of L is G-stable if G.C = C, i.e., if C is the union of G-orbits.
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Theorem 12. Let L be a lattice and G a group of automorphism of L. Let C be a
G-stable cross-cut of L. Then we have the following C[G]-module isomorphism:

H̃i(L) ≃G H̃i(C).

Proof. We briefly recall Folkman’s argument. Let K = K(L) be the order complex
of L and let C = {α1, . . . , αn} be a cross-cut of L fixed by G. For each α ∈ C let
Lα be the subcomplex of K consisting of all simplices {y1, . . . , yt} such that the set
{y1, . . . , yt, α} is totally ordered. By the third property of a cross-cut, the family
{Lα}α∈C is a covering of K. In the proof of Theorem 3.1 ([7]) Folkman shows that
Lα1

⋂
· · ·

⋂
Lαn

has the homology of a point or is empty and shows also that

K(C) = N ({Lα}α∈C) (3.2)

where K(C) is the simplicial complex associated to the cross-cut C and N = N ({Lα}α∈C)
is the nerve of the covering {Lα}α∈C . Thus, we can apply a nerve theorem. We fol-
low the construction made by Björner in [4] Theorem 10.6. Let P (K) and P (N ) be
the face lattice associated to K and N , respectively. Björner defines the following
order-reversing map of posets:

f̃ : P (K) −→ P (N )
σ 7−→ {α ∈ C | σ ∈ Lα}.

This map f̃ induces a simplicial map f between the respective order complex of P (K)
and P (N ) which are the first barycentric subdivision of K and N :

f : K ′ −→ N ′

{σ0, . . . , σi} 7−→ {f̃(σ0), . . . , f̃(σi)}

where σ0, . . . , σi are simplices of K, with σ0 ⊇ · · · ⊇ σi so that {σ0, . . . , σi} is a
simplex of K ′. Applying Theorem 10.6 of [4] we get, in particular, that f induces a
chain map f# between Ci(K

′) and Ci(N ′) in the following manner:

f#([σ0, . . . , σi]) =

{
[f̃(σ0), . . . , f̃(σi)], if f̃(v0), . . . , f̃(vi) are distinct

0, otherwise

and moreover an isomorphism f∗ on homology spaces:

H̃i(K
′) ≃ H̃i(N

′).

We need to describe the action of G on K ′ and N ′: the G-action on L induces an
action on K and therefore on K ′ (in the sense of 10). Since C is G-stable, every g ∈ G
acts on C permuting its elements. Furthermore, since g is an order automorphism
of L, it acts on the covering {Lα}α∈C respecting the intersection relations. Therefore
G yields an action on the nerve N and therefore on N ′. We want to show that the
following two representations are isomorphic:

ρ̃1 : G −→ GL(H̃i(K
′)),

g 7−→ ρ̃1,g

ρ̃2 : G −→ GL(H̃i(N ′)).
g 7−→ ρ̃2,g

Let
ρ1 : G −→ GL(Ci(K

′)),
g 7−→ ρ1,g

ρ2 : G −→ GL(Ci(N ′)).
g 7−→ ρ2,g
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be the representations on the chain spaces. Since g ∈ G is an order automorphism of L
we have the following: if f̃(σ) = {αj0, . . . , αjt} = β then f̃(g.σ) = {g.αj0, . . . , g.αjt} =
g.β. We explicitly describe the maps induced by g ∈ G on the chain spaces:

ρ1,g : Ci(K
′) −→ Ci(K

′)
[σ0, . . . , σi] 7−→ [g.σ0, . . . , g.σi],

ρ2,g : Ci(N
′) −→ Ci(N

′).
[βj0, . . . , βji] 7−→ [g.βj0, . . . , g.βji]

where βj are simplices of N satisfying βj0 ⊆ · · · ⊆ βji. We want to show that the
following diagram commutes:

Ci(K
′)

f#
−−−→ Ci(N ′)

ρ1,g

y ρ2,g

y

Ci(K
′)

f#
−−−→ Ci(N ′),

i.e., ρ2,g(f#([σ0, . . . , σi])) = [g.βj0, . . . , g.βji] = (f#(ρ1,g([σ0, . . . , σi])).
Therefore the diagram commutes and since f# is a chain map we have that ρ̃1 ≃ ρ̃2,

i.e., H̃i(K
′) ≃G H̃i(N ′). Using the results of Lemma 10 and Equation 3.2 we have

the following C[G]-module isomorphism

H̃i(K) ≃G H̃i((K(C)) = H̃i(C).

�

Remark 13. As one of the referees pointed out, in [13] Lasker proved that K(L) and
K(C) are homotopy equivalent. It could be shown that this homotopy equivalence is
G-equivariant, which would imply another proof of Theorem 12.

4. Applications to matroids

We now specialize the results of the previous two sections to matroids. For basic
facts on matroids, the reader may refer to [17]. Let M = (E, I) be a matroid with
ground set E and a collection of independent sets I, which forms an abstract simplicial
complex. Let M∗ = (E, I∗) be its dual. We recall that the rank of A ⊆ E is the
maximal cardinality of an element of I contained in A. We say that A ⊆ E is
non-spanning in M if rk(A) < rk(E), i.e., A does not contain any basis of M . Let

NS(M) = {A ⊆ E | A is non-spanning in M}.

It is easy to see that NS(M) is an abstract simplicial complex.

Proposition 14. A ⊆ E is non-spanning in M∗ if and only if Ac is dependent in
M .

Proof. If A ⊆ E is non-spanning in M∗ we have:

rk∗(A) < rk∗(E).

This is equivalent to:
rk(Ac) + |A| − rk(E) < rk∗(E)

and therefore to

rk(Ac) < −|A|+ rk(E) + rk∗(E) = |E| − |A| = |Ac| ⇐⇒ Ac /∈ I.

For every A ⊆ E, we have rk(A) 6 |A|, thus A is independent if and only if rk(A) =
|A|. �
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Proposition 15. Let IN(M) = I be the abstract simplicial complex associated with
the independent sets of the matroid M = (E, I) and let I∗ be its Alexander dual, then:

I∗ = NS(M∗).

Proof. Using the result shown in Proposition 14 we claim that:

I∗ = {A ⊆ E : Ac /∈ I}

= {A ⊆ E : Ac is dependent in M = (E, I)}

= {A ⊆ E : A is not spanning of M∗} = NS(M∗).

�

The previous result, together with Equation (2.6), implies the following:

H̃i(NS(M)) ≃ H̃n−3−i(IN(M∗)).

This is an isomorphism not only of vector spaces, but also of representations, up to
a sign. Indeed, by applying Theorem 2, we obtain:

Theorem 16. Let G be the automorphism group of a matroid. Then we have the
following C[G]-module isomorphism:

H̃i(NS(M)) ≃G H̃n−3−i(IN(M∗))⊗ sgn,

where n is the cardinality of the ground set of M .

Similarly, we can specialize the results from Section 3 to the case of matroids. Let
M = (E, I) be a simple matroid with E = {a1, . . . am}. Let L(M) be the lattice
of flats of M ordered by inclusion. Since M is simple, each singleton of E is a flat.
Thus {a1}, {a2}, . . . , {am} ∈ L(M) and each corresponds to an atom of the poset
(L(M),⊆). We now consider a set C defined as

C = {{a1}, {a2}, . . . , {am}} ⊆ L(M).

Since C satisfies the three axioms of Definition 7, the set C is a cross-cut of L. We
want to prove that:

K(C) = NS(M).

In the following proposition we perform a slight abuse of notation by identifying:

C = {{a1}, {a2}, . . . , {am}} = {a1, a2, . . . , am}.

Proposition 17. A ⊆ C does not ‘span’ (in the sense of Definition 8) if and only if
A is a non-spanning set in M = (E, I).

Proof.

=⇒) In L(M) we have:

0̂ = ∅ and 1̂ = E.

Let A = {ai1, ai2 , . . . , ain} be a subset of C. If A ⊆ C does not ‘span’ :

ai1 ∨ ai2 ∨ · · · ∨ ain = D 6= 1̂ (4.1)

D ∈ L(M) and D 6= 1̂ implies that D is a non-spanning subset of E because

the only spanning subset in L(M) is E = 1̂.
It follows from (4.1) that A ⊆ D; since D is a non-spanning subset of E

therefore A is a non-spanning subset of E.
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⇐=) In NS(M) the bases are the maximal non-spanning subsets of E, (i.e., the
subsets of E, such that if we add an element they become spanning set) so
they are flats, in particular they correspond to the co-atoms of (L(M),⊆).

Let A = {ai1 , ai2, . . . , ain} be a non-spanning subset of E, there exist a basis
B of NS(M) such that:

if A ⊆ B and B is a flat, then B ∈ L(M).

This implies:

ai1 ∨ ai2 ∨ · · · ∨ ain ⊆ B 6= 1̂

therefore A does not ‘span’.

�

Using the result of Proposition 17, we obtain:

K(C) = NS(M).

Since C is a cross-cut fixed by G, we can apply Theorem 12 to L(M) and C itself:

Theorem 18. Let G be the group of automorphism of the simple matroid M . Then
we have the following C[G]-module isomorphism:

H̃i(L(M)) ≃G H̃i(C) = H̃i(NS(M))

where C is the cross-cut of L(M) composed of its atoms.

By combining Theorem 16 and Theorem 18, we get the following theorem:

Theorem 19. Let G be the group of automorphism of the simple matroid M . Then
we have the following C[G]-module isomorphism:

H̃n−3−i(IN(M∗)) ≃G H̃i(L(M))⊗ sgn

where n is the cardinality of the ground set of M .

5. Top cohomology of hyperplane arrangements

Let A be a central arrangement of hyperplanes in Cr and let L(A) be its intersection
lattice. Let MA be the matroid associated with A; then the lattice of flats L(MA) of
MA is isomorphic to L(A). We can assume that the arrangement is essential: then
the rank of the matroid is r. We define the complement of the arrangement:

C(A) = Cr r
⋃

H∈A

H.

Let G be a subgroup of GL(Cr) that permutes the elements of A; it is easy to see
that G is also a group of automorphism of the matroid MA. Let A be the Orlik-
Solomon algebra associated to L(A), and let B be the algebra defined by shuffle
defined respectively in Section 2 and Section 3 of [16]. These algebras are Z−graded:
we denote by Ar and Br the direct summands corresponding to the top degree r. In
Theorem 3.7 of the same paper, Orlik and Solomon provide a G-isomorphism:

θ : A −→ B.

Furthermore, we state Theorem 4.3 of [16]:

Theorem 20. Let L be a finite geometric lattice of rank r > 1. Then Br and Hr−2(L)
are isomorphic C[G]-modules.
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Combining the previous results we get the following C[G]-module isomorphism:

Hr(C(A)) ≃G Ar ≃G Br ≃G Hr−2(L(A)). (5.1)

Applying Theorem 19 we obtain the following:

Theorem 21. Let A be a central essential hyperplane arrangement of dimension r
and let MA be the associated matroid with ground set of cardinality n. Then we have
the following C[G]-module isomorphism:

Hr(C(A)) ≃G Hn−r−1(IN(M∗
A))⊗ sgn.

In [14] Lehrer and Solomon conjecture that if W is a Coxeter group and AW is the
hyperplane arrangement associated to W then there is a C[G]-module isomorphism

Hp(C(AW )) ≃W

⊕

c

IndW
Z(c)(ξc) p = 0, . . . , rank(W )

where c runs over a set of representatives for the conjugacy classes of W such that
the dimension of the image of c (viewed as an element of GL(V )) is equal to p and ξc
is a suitable character of the centralizer Z(c) of c in W . They proved the conjecture
for group of rank 2 and for W = Sr. In the case of the symmetric group Sr the
arrangement ASr

is the braid arrangement and the intersection lattice L(A) is the
partition lattice Πr, that is, the family of all partitions of the set {1, . . . , r} partially
ordered by refinement. Stanley studied the representations on the homology of the
partition lattice in [20]. By Equation (5.1), his result agrees with the conjecture of
Lehrer and Solomon.

We remark that Theorem 21 allows us to rewrite Lehrer and Solomon’ conjecture
in the top cohomology case in the language of matroids:

Hn−r−1(IN(M∗
AW

)) ≃W

⊕

c

IndW
Z(c)(ξc))⊗ sgn.

6. Coned graphs and complete bipartite graphs

In [11], Woong Kook studied the homology of the independence complex IN(M(Γ̂))

of the matroid associated to a coned graph Γ̂, i.e. the graph obtained by adding a
new vertex p to a graph Γ and joining each vertex of Γ to p by a simple edge. We
recall the following definition from ([11], Section 2):

Definition 22. An edge-rooted forest (F, e) in Γ is a spanning forest F that contains
at least one edge for each connected component of Γ, together with the datum e of
one edge for each component (called edge root).

The rank of the only non zero homology group of IN(M(Γ̂)) is shown to be equal
to the cardinality of the set of edge-rooted forests Fe(Γ) in Γ.

In Section 3, Kook constructs a basis {zF,e : (F, e) ∈ Fe(Γ)} for H̃n−1(IN(M(Γ̂)))
(where n is the number of vertices of Γ). This basis is indexed by the elements
(F, e) ∈ Fe(Γ). In the same Section, Kook describes the action of the automorphism

group G = Aut(Γ) on H̃n−1(IN(M(Γ̂))) for a finite simple graph Γ, showing that
this action is isomorphic to the permutation action on Fe(Γ) tensored with the sign
representation:

g(zF,e) = sgn(g) zg(F,e)
where g(F, e) = (g(F ), g(e)) (see Theorem 6, [11]). Extending by linearity those two

G-actions, we obtain two representations of G, respectively on H̃n−1(IN(M(Γ̂)),C)
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and on the vector space Fe(Γ) of formal C-linear combinations of elements of Fe(Γ),
which are isomorphic up to a sign:

H̃n−1(IN(M(Γ̂))) ≃G Fe(Γ)⊗ sgn.

Applying Theorem 19 we obtain the following C[G]-module isomorphism:

H̃l−n−2(L(M
∗(Γ̂))) ≃G Fe(Γ) (6.1)

where l is the number of edges of Γ̂.
Furthermore, in [12] Woong Kook and Kang-Ju Lee studied the homology of the

independence complex IN(M(Km+1,n+1)) of the matroid associated to the complete
bipartite graph Km+1,n+1. We need the following definition:

Definition 23. A B-edge-rooted forest (F,b, e) in a complete bipartite graph Km,n(m,n ≥
1) is a spanning forest F in Km,n composed of two kinds of connected components
such that

- exactly one component is bi-rooted, i.e., has one vertex-root in each bipartite
set;

- each of the remaining components is edge-rooted, i.e., has one edge marked
as edge-root. (See Definition 3.3 in [12]).

The rank of the only non zero homology group of IN(M(Km+1,n+1)) is shown to
be equal to the cardinality of the set of the B-edge-rooted forests FB

e (Km,n) in Km,n.
In Section 5, the authors construct a basis {zF,b,e : (F,b, e) ∈ FB

e (Km,n)}

for H̃m+n(IN(M(Km+1,n+1))). This basis is indexed by the elements (F,b, e) ∈
FB

e (Km,n). In the same section, they proved the following theorem:

Theorem 24. The action of Sm ×Sn as a subgroup of Sm+1 ×Sn+1 on

H̃m+n(IN(M(Km+1,n+1))) is isomorphic to the action on FB
e (Km,n) tensored with the

sign representation:

σ(zF,b,e) = sgn(σ)zσ(F,b,e).

Now we consider the representations of the group Sm×Sn that extend by linearity

the two Sm×Sn- actions, respectively on the vector space H̃m+n(IN(M(Km+1,n+1)))
and on the vector space F

B
e
(Km,n) of formal C-linear combinations of elements of

FB
e (Km,n). Clearly we have the following C[Sm ×Sn]-module isomorphism:

H̃m+n(IN(M(Km+1,n+1))) ≃Sm×Sn
F

B
e
(Km,n)⊗ sgn.

Applying Theorem 19 we obtain the following C[Sm ×Sn]-module isomorphism:

H̃l−m−n−3(L(M
∗(Km+1,n+1))) ≃Sm×Sn

F
B
e
(Km,n) (6.2)

where l is the number of edges of Km+1,n+1.

7. The dual matroid of the complete graph

We now consider the matroid M(Km) of the complete graph Km, which has rank
r = m − 1 and ground set of cardinality n =

(
m
2

)
. This matroid is isomorphic to

the matroid M(Φ+
Am−1

) associated with the positive roots of the root system of type

Am−1. In fact, this is the case of interest in [6].
We recall that the lattice of flats of this matroid is isomorphic to the partition

lattice Πm. In this case, Theorem 19 specializes to the following:
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Theorem 25. H̃n−3−i(IN(M∗(Km))) and H̃i(Πm) ⊗ sgn are isomorphic as Sm-
modules for every i ≥ 0.

Remark 26. In [6], de Cataldo, Heinloth and Migliorini apply this result to the com-
putation of the supports of the perverse cohomology sheaves of the Hitchin fibration
for GLm over the locus of reduced spectral curves.

Rephrased in terms of root system of type Am−1, the theorem above yields the
following C[G]-module isomorphism:

H̃n−3−i(IN(M∗(Φ+
Am−1

))) ≃Sm
H̃i(Πm)⊗ sgn (7.1)

where

n = |E(M∗(Φ+
Am−1

))| = |Φ+(Am−1)| =

(
m

2

)
=

m(m− 1)

2
.

Remark 27. We can make a dimensional calculation to better understand the dimen-
sional shift. The matroid M(Φ+

Am−1
, I) has rank equal to m − 1, i.e. each basis has

m− 1 elements. Therefore, the matroid M∗(Φ+
Am−1

, I) has rank equal to:

n− (m− 1) =
m(m− 1)

2
− (m− 1) =

(m− 1)(m− 2)

2
.

Thus, the dimension of the top homology of IN(M∗(Φ+
Am−1

) is one less than the

number of the elements of a basis of M∗(Φ+
Am−1

, I):

(m− 1)(m− 2)

2
− 1.

By Equation 7.1 we have the following isomorphism of C-vector spaces:

H̃n−3−i(IN(M∗(Φ+
Am−1

))) ≃ H̃i(Πm).

We impose

n− 3− i =
(m− 1)(m− 2)

2
− 1

then we have i = m−3 from n = m(m−1)/2. Indeed, Hm−3(Πm) is the only nonzero
homology group of Πm.

By Theorem 25 these two representations

ρn−m : Sm −→ GL(H̃n−m(IN(M∗(Φ+
Am−1

))))

and
γm−3 : Sm −→ GL(H̃m−3(Πm)⊗ sgn)

are isomorphic. From a result due to Stanley ([20], Theorem 7.3) we know that the
representations on the top homology of the partition lattice

γ̃m−3 : Sm −→ GL(H̃m−3(Πm))

are the following
γ̃m−3 ≃ sgn ⊗ indSm

Cm
(e2πi/m).

Thus, we get
ρn−m ≃ indSm

Cm
(e2πi/m)

or as C[Sm]-modules:

H̃n−m(IN(M∗(Φ+
Am−1

))) ≃Sm
indSm

Cm
(e2πi/m).
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