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a b s t r a c t

We study a class of recursive least-squares estimators in an errors-in-variables setting where distur-
bances affect both the regressor and the regressand variables. We prove the existence and stability of
an optimal steady state and robustness with respect to the disturbances in form of input-to-state and
input–output stability relative to the unperturbed steady-state trajectories. Depending on the choice of
some design parameters, different specific estimators can be realized within the considered class, each
of which is associated with a different underlying optimization problem and with different excitation
requirements for the unperturbed regressor. As expected, we find that persistence of excitation is
associated with uniform, in fact exponential, convergence. In addition, we also show that choices of
the design parameters are possible for which convergence and robustness hold without persistence
of excitation and with the same asymptotic gain, the only difference being a loss of uniformity in the
convergence rate.

© 2022 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many adaptive control problems reduce to find, asymptoti-
ally, an unknown parameter θ ⋆ in a linear regression of the form

y⋆(t) = φ⋆(t)⊤θ ⋆ (1)

given some measurements of y⋆ and φ⋆. Typically, in control
pplications, y⋆ and φ⋆ are not directly accessible and, instead,
ne measures the perturbed signals

(t) := y⋆(t) + dy(t), φ(t) := φ⋆(t) + dφ(t), (2)

in which d := (dy, dφ) is an unmeasured disturbance term. In fact,
in practice measurements are never perfect and parameter esti-
mators are often components of a larger control scheme where
d is given by a combination of exogenous disturbances and other
closed-loop signals.

When dφ = 0 and dy is a purely exogenous stochastic process,
estimating θ ⋆ in (1) is probably the most well-studied problem
in statistical learning and system identification [1–4], where the
focus is on the statistical characterization of the residual identifi-
cation error and on the unbiasedness or consistency properties
of the estimator. In control applications, however, dφ is typi-
cally non-zero, making the estimation of θ ⋆ a considerably more
challenging errors-in-variables problem [3]. Moreover, d is hardly
characterizable in purely statistical terms, and typical assump-
tions (e.g., that d is white) do not hold. Indeed, d is, at least partly,
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endogenous, deterministic, and correlated with other closed-loop
signals and even with the present and past estimates of θ ⋆ (this
is typical of closed-loop operation [5–8]). As a consequence, clas-
sical results and methods of system identification are not directly
applicable in the analysis of closed-loop control systems.

In this article, we approach the problem of estimating θ ⋆ un-
der a different control-oriented perspective. We consider generic
disturbance terms d on which we make no statistical assumption,
and we shift the focus from unbiasedness and consistency to
robustness of the estimate with respect to d, formalized in terms
of input-to-state stability (ISS) [9,10]. In this way, as in [5–8], we
enable the use of canonical nonlinear control techniques applying
to ISS systems, such as small-gainmethods [11], for the analysis of
interconnections between controlled systems and identifiers. In
this connection, the branch of system identification most related
to this work is set membership identification [12,13], which deals
with generic bounded disturbances. Nevertheless, to the best of
the author’s knowledge, asymptotic stability and ISS properties
are not addressed in such literature, while they constitute the
main focus of this article.

Furthermore, motivated again by control applications, in this
article we limit our focus to estimation algorithms admitting
a recursive formulation [14], i.e. methods where the estimate,
say θ (t), of θ ⋆ is given by the output of a differential/difference
equation of the form

Dx(t) = f (x(t), y(t), φ(t), t),
(3)
θ (t) = g(x(t), y(t), φ(t), t),
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n which x(t) lies in some finite-dimensional normed space, and
represents the differentiation operator in continuous time and

he one-step difference operator in discrete time.
The use of deterministic update laws of the form (3) in adap-

ive control can be traced back at least to Whitaker’s heuristic
radient law [15], known as the ‘‘MIT rule’’ [16]. Estimation
aws with stability guarantees started to be developed shortly
hereafter based on Lyapunov analysis [17–19]. These are laws of
he form (3) with x = θ and f chosen to guarantee that a given
Lyapunov candidate has a negative derivative along the closed-
loop solutions. Typically, the stability analysis focuses on the
whole closed-loop system, and possible internal stability prop-
erties of the update laws per se are instead not studied. By
the end of the 70s, Lyapunov-based designs were applied to
many linear observation [20–22] and control [19,20,23,24] prob-
lems. Extensions to nonlinear systems pervaded most of the 80s
and 90s [16,25–33], eventually leading to the development of
adaptive backstepping [28–31,34,35] and to the idea of modular-
zation [31,34,35], aimed at separating the roles of the estimation
aw and the rest of the controller. With some notable exceptions,
uch as the immersion and invariance approach [36], the DREM
ethod [37,38], and the observer designs of [8,39–41], Lyapunov

heory still constitutes the main way of design of estimation laws
n control applications. See [33] for a comprehensive overview.

The vast majority of the aforementioned estimation schemes
oncern ideal cases where no disturbance is present (i.e., d = 0).
evertheless, it is well-known since the 70s that adaptive con-
rollers may suffer from critical robustness problems when dis-
urbances add to the measured signals, to the point that bounded
nd vanishing disturbances may destabilize the closed-loop sys-
em [23,33,42–44]. The ‘‘weak link’’ is usually the estimation
cheme, and the reason is that, as mentioned earlier, the esti-
ation law is typically designed to impose a desirable condition
n the entire closed-loop system, but the resulting system (3)
oes not typically possess any internal stability property neces-
ary to cope with disturbances. To obviate this problems, many
‘robustification’’ measures have been developed in the years (see,
.g., [33,42,45–50]). However, most of them deal with prediction-
rror models where only dy is present (i.e., dφ = 0). In turn,
ealing with errors-in-variables problems where dφ ̸= 0 is
onsiderably more complex than dealing with just dy (as a trivial
xample, notice that dφ = −φ⋆ would produce a null regressor φ).
The last two decades saw also the emergence of adaptive out-

ut regulation [5–7,51–53]. Unlike adaptive stabilization, where
he target steady state is typically a simple equilibrium and
daptation aims at finding a stabilizing controller, in adaptive
utput regulation the target steady state is generally a set where
non-trivial residual dynamics takes place (for instance, the

ontroller must oscillate to counteract disturbances), and a robust
tabilizer is generally assumed to be given. Adaptation, indeed,
ather concerns the controller’s internal model, with the goal
f learning at run time the right ‘‘feedforward’’ control action
oping with exogenous disturbances and tracking objectives. In
egulation, some kind of residual excitation of the regressor is
ypically obtained also at the steady state, since the residual
ynamics is not an equilibrium. Yet, especially in the recent
dentification-based designs of [6,7,53], the underlying adaptation
ask is an errors-in-variables problem of the kind (1)–(2), where
either dy nor dφ can be assumed zero nor exogenous stochastic
rocesses with known characteristics. Dealing with such distur-
ances poses additional challenges, but also leads to robustness
ith respect to exogenous disturbances, unmodeled dynamics,
nd persistent prediction errors due to the fact that even optimal
odels may not be perfect. Moreover, it also supports an anal-
sis based on small-gain conditions between the identifier and

he rest of the closed-loop system that, as in [31,34,35], allows
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odularity in the choice of the identifier and stabilizer, which can
e designed independently [6–8,53]. Yet, contrary to [31,34,35]
here modularity requires a robustification of the controller, the
pproaches [6–8,53] require robustness is also for the identifier.
With the aim of fulfilling such robustness conditions, [6–8,53]

roposed a robustified variation of Kreisselemeier’s weighted
east-squares estimator [22] possessing ISS-like properties with
espect to both dy and dφ . In this paper, we revise and extend
further this approach. Specifically, we study a class of generalized
recursive least-squares schemes containing the identifier of [7,8]
as a specific case. We prove robustness, in ISS terms, with re-
spect to both dy and dφ . Moreover, we show that, for different
choices of some design parameters, one can either achieve a uni-
form exponential convergence rate of the estimate by requiring
usual persistence of excitation (PE) [54] of the regressor φ⋆ or,
rather, a non-uniform convergence rate by requiring, however,
an excitation condition on φ⋆ that is strictly weaker than PE. In
particular, we find that the excitation assumptions necessary for
convergence and robustness depend on the choice of some of
the parameters only affecting the convergence rate and not the
asymptotic gain. In turn, this implies the notable fact that PE
is not necessary to obtain strong robustness properties such as
ISS. In this connection, this article aligns with the recent trend in
adaptive control studying parameter adaptation without PE (see,
for instance, [38,55,56]).

The paper is organized as follows. Section 2 presents some
preliminary notions. In Section 3, we formalize the problem. In
Section 4, we describe the considered least-squares estimators
and, in Section 5, we state and prove their main properties. In
Section 6, we then discuss some choices of the degrees of freedom
left open, and their connection with convergence rate and exci-
tation requirements. Finally, Section 7 reports some concluding
remarks.

2. Notation and preliminaries

We denote by R and N the set of real and natural numbers
respectively (0 ∈ N). If ∼ is a relation on a set S, for an s ∈

S we let S∼s := {c ∈ S : c ∼ s}. For a, b ∈ N, we let
[a, b] := {a, . . . , b}. The symbol ⊂ denotes non-strict inclusion,
and A \ B the set difference between A and B. We denote by
| · |p the vector or induced matrix p-norm. We drop the subscript
when p = 2 or the specific normed space is clear. If X is a
subset of a normed vector space X , |X | := sup{|x| : x ∈ X},
and d(a, X) := infx∈X |x − a| denotes the distance of a ∈ X
to X . If f : X → Y , with Y a normed vector space, we let
|f |X := |f (X)|. If A is a square matrix, A† denotes its Moore–
Penrose pseudoinverse, and λ(A) its smallest eigenvalue. Given
two square matrices A and B of the same dimension, we write
A ≥ B if A − B is positive semidefinite. If A1, . . . , An are matrices,
we denote by col(A1, . . . , An) and diag(A1, . . . , An) their column
and diagonal concatenations whenever they make sense.

A continuous function ρ : R≥0 → R≥0 is said to be of class-K
(ρ ∈ K) if ρ(0) = 0 and it is strictly increasing. A continuous
function β : R≥0 ×R≥0 → R≥0 is said to be of class-KL (β ∈ KL)
if β(·, t) ∈ K for all t ≥ 0, and β(s, ·) is strictly decreasing to zero
for all s ≥ 0. Given a function f , we denote by dom f its domain
and by ran f its range.

Let X , Y be normed vector spaces, g : X → Y , and X ⊂ X . A
function s : X → Y is said to be of class S(X, g) (s ∈ S(X, g)) if it
satisfies s(x) = g(x) for all x ∈ X , it is continuous everywhere if g
is continuous on X , and ran s is bounded in Y if X is bounded in X .
Class-S(X, g) functions are generalized ‘‘saturated versions’’ of g .
For instance, If X = R, Y = R, g is the identity, and X = [−a, a]
for some a > 0, the function s defined as s(x) = x if |x| ≤ a, and
s(x) = a sign(x) otherwise, is of class S(X, g).
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If X is bounded, the following property holds.

Lemma 1. Let X and Y be normed vector spaces, and let X, X ′
⊂ X

be bounded sets satisfying X ′
⊂ X and with the property that there

exists ν > 0 such that d(x, X ′) ≥ ν for all x ∈ X \ X. If s ∈ S(X, g)
and g is Lipschitz on X with Lipschitz constant L > 0, then s satisfies
|s(x1) − s(x2)| ≤ max{2c/ν, L}|x1 − x2| for all x1 ∈ X ′ and x2 ∈ X ,
where c = | ran s|.

Proof. Pick x1 ∈ X ′ and x2 ∈ X arbitrarily. If x2 ∈ X , then the
claim trivially holds as g is Lipschitz on X with Lipschitz constant
L. Otherwise, x2 ∈ X \ X , and the claim follows by the same
arguments of [57, Lemma A.7]: by assumption, d(x2, X ′) ≥ ν. As
X is bounded, c := | ran s| < ∞. Thus, |s(x1) − s(x2)| ≤ 2c ≤

(2c/ν)d(x2, X ′) ≤ (2c/ν)|x2 − x1|. □

3. Problem description

From a system-theoretic viewpoint, in absence of disturbances,
identifying θ ⋆ in (1) from the nominal data1 y⋆ and φ⋆ is an ob-
servation problem for the initial state z of the linear time-varying
system

y⋆(t) = φ⋆(t)⊤z(t), Dz(t) = 0, z(0) = θ ⋆, (4)

from the output y⋆(t), and given the knowledge of the system’s
model represented by φ⋆. In turn, a necessary and sufficient
condition for identifiability, is that the Gramian matrix (equal
to
∫ t
0 φ⋆(s)φ⋆(s)⊤ds in continuous time and

∑t
s=0 φ⋆(s)φ⋆(s)⊤ in

discrete time) is full-rank for some t > 0. This may suggest a basic
recursive estimation law of the kind (3) obtained with x = (x1, x2)
and

Dx1(t) = φ(t)φ(t)⊤, x1(0) = 0,
Dx2(t) = φ(t)y(t), x2(0) = 0,

θ (t) = x1(t)†x2(t).
(5)

When d = 0, this law guarantees θ (t) = θ ⋆ for all t for which the
previously-defined Gramian is invertible. Nevertheless, (5) suffers
from several drawbacks making it uninteresting for applications.
First, it needs initialization. Indeed, if x(0) ̸= 0, the estimate is
biased. This means that, in case θ ⋆ changes even slightly during
operation, (5) is not be able to track the new value. This problem
is due to the lack of global convergence of (5). If, moreover,
disturbances enter into play, then (5) provides unstable estimates
even with d bounded and arbitrarily small. Therefore, even if
(5) requires the weakest form of excitation on the regressor φ⋆,
being invertibility of the Gramian necessary for identifiability,
it nevertheless provides a fragile estimation law unable to cope
with practical needs. At the price of strengthen the requirements
on φ⋆, one is rather interested in estimation laws that are globally
convergent and well-behaved in presence of disturbances. In
particular, in this paper we consider the following requirements:

P1. Nominal Performance: when d = 0, the estimate of θ ⋆ must
converge to θ ⋆.

P2. Robustness: when d ̸= 0, the deviation of the resulting esti-
mate from that attained with d = 0 must vary continuously
with the asymptotic size of d.

In P1, convergence means limt→∞ |θ (t) − θ ⋆
| = 0, where θ (t)

denotes the estimate of θ ⋆ at time t , although in the following we
shall also consider approximate convergence in presence of regu-
larization (see Proposition 3 and Section 6.1). In P2, on the other

1 Throughout the article, the word ‘‘nominal’’ is used in reference to quan-
ities associated with d = 0. Specifically, ‘‘nominal data’’ refers to (y⋆, φ⋆),
epresenting the measured data (2) when d = 0.
 o
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hand, robustness may be seen as an asymptotic gain property [10].
Both properties, together, can be grouped within a stronger ISS
condition. Specifically, if the estimator is described by (3), then
we ask for the existence of a nominal steady-state pair (xss, θ ss),
solution of (3) for y = y⋆ and φ = φ⋆ (i.e., when d = 0), such
that θ ss satisfies P1, and for every solution pair (x, d) to (3) with
d ̸= 0 the following hold

|x(t) − xss(t)| ≤ β
(
|x(0) − xss(0)|, t

)
+ κ

(
|d|[0,t]

)
|θ (t) − θ ss(t)| ≤ α(|x(t) − xss(t)|) + ρ

(
|d|[0,t]

)
for all t , where κ, α, ρ ∈ K and β ∈ KL. In turn, with ω =

α ◦ κ + ρ ∈ K, this implies [10]

lim supt→∞ |θ (t) − θ ss(t)| ≤ ω

(
lim supt→∞ |d(t)|

)
, (6)

which is P2. Hence, designing a recursive estimator of the kind
(3) achieving P1 and P2 boils down to design a pair (f , g) guar-
anteeing the existence of a nominal steady state for the estimator
(3) when driven by the nominal inputs y⋆ and φ⋆, that is robustly
stable (in the ISS sense) when (3) is driven by the corrupted
inputs y and φ.

In the following, we present a generalized class of least-
squares algorithm of the form (3) fulfilling P1 and P2. For sim-
plicity, we limit to the scalar case where y⋆, dy : R≥0 → R,
φ⋆, dφ : R≥0 → Rnθ , and θ ⋆

∈ Rnθ for some nθ ∈ N≥1. The
case in which y⋆(t) ∈ Rm with m > 1 can be easily handled
by the ‘‘concatenation’’ of m single-variable problems of the kind
treated here. Moreover, we focus on discrete-time laws, as they
are more interesting in applications. However, most of what said
has a straightforward continuous-time counterpart.

Finally, we make the following assumption.

Assumption 1. φ⋆ and y⋆ are bounded, i.e. there exist φ̄, ȳ > 0
such that |φ⋆(t)| ≤ φ̄ and |y⋆(t)| ≤ ȳ for all t ∈ N.

4. Generalized recursive least squares

4.1. Basic definitions

In the following, we study a class of recursive estimators of
the kind (3) having the form

x1(t + 1) = µ(t)x1(t) + λ(t)σ
(
φ(t)

)
x2(t + 1) = µ(t)x2(t) + λ(t)δ

(
φ(t), y(t)

)
θ (t) = γ

(
x1(t), x2(t), t

) (7)

in which x1(t) ∈ Snθ
, being Snθ

the set of symmetric positive
semidefinite nθ -by-nθ matrices, x2(t), θ (t) ∈ Rnθ , µ(t) ∈ [0, 1)
and λ(t) ∈ R≥0 are such that2

t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s) ≤ 1, ∀t ∈ N, (8)

the inputs φ and y are given by (2), with d = (dy, dφ) : N →

R×Rnθ , and σ , δ and γ are functions to be designed later. In the
following, we let x := (x1, x2) ∈ X := Snθ

× Rnθ and |x(t)| :=

max{|x1(t)|, |x2(t)|}. Moreover, we call (x, d) a solution pair to (7)
if either dom(x, d) = [0, n] for some n ∈ N or dom(x, d) = N, and
if x solves (7) when φ and y are given by (2) with (dy, dφ) = d.

2 There is no loss of generality in assuming that the right-hand side of (8)
quals 1 as long as the left-hand side is finite, as one can always rescale λ to
btain (8).
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.2. Design of σ and δ, and robust stability

In this section, we detail the design of the functions σ and δ

n (7) and we prove that System (7) is ISS with respect to the
isturbance d and relative to a time-varying steady state xss =

x1,ss, x2,ss) defined by the nominal data (y⋆, φ⋆). As a first step,
e define two constants c1, c2 ∈ R>0 ∪ {∞} in such a way that

¯ ≤ c1, ȳ ≤ c2. (9)

We stress that c1 and c2 do not have to equal φ̄ and ȳ, and they
are allowed to be ∞. As clarified later (see Proposition 1, and
Remarks 1 and 2), choosing c1 = c2 = ∞ allows a simpler
choice of σ and δ but leads to a quadratic asymptotic gain in the
aforementioned ISS property. Instead, choosing c1 and c2 finite
(e.g., c1 = φ̄ and c2 = ȳ) requires a more complex design of σ

and δ but leads to a linear asymptotic gain.
Next, we construct σ and δ and prove two results (Lem-

mas 2 and 3) bounding the differences σ (φ⋆(t)) − σ (φ(t)) and
δ(φ⋆(t), y⋆(t)) − δ(φ(t), y(t)) by a function of the norm of the
disturbance d. These bounds are instrumental for the ISS results
that follows. Define B1 := {φ ∈ Rnθ : |φ| ≤ c1 + 1}, and let

1 : Rnθ → Rnθ ×nθ , φ ↦→ g1(φ) := φφ⊤.

Then, we fix σ : Rnθ → Snθ
as any arbitrary function of class

S(B1, g1) (see Section 2). If c1 < ∞, then ran σ is bounded. In
such case, we define σ̄ := | ran σ | and ℓ1 := max{2σ̄ , 2c1 + 2}.
hen, σ satisfies the following property.

Lemma 2. Suppose that Assumption 1 holds, and let ρ1 ∈ K be
defined as

ρ1(s) :=

{
2φ̄s + s2 if c1 = ∞

ℓ1s otherwise.

Then, for every t ∈ N, |σ (φ⋆(t)) − σ (φ(t))| ≤ ρ1(|dφ(t)|).

Lemma 2 is proved in the Appendix. Similarly, let B2 :=

{(φ, y) ∈ Rnθ × R : |φ|, |y| ≤ max{c1, c2} + 1} and define

g2 : Rnθ × R → Rnθ , (φ, y) ↦→ g2(φ, y) := φy.

Then, we fix δ as any arbitrary function of class S(B2, g2). As
before, if c1, c2 < ∞, we let δ̄ := | ran δ| and ℓ2 := {2δ̄, 2max{c1,
c2} + 2}. Then, the following holds.

Lemma 3. Suppose that Assumption 1 holds, and let ρ2 ∈ K be
defined as

ρ2(s) :=

{
(φ̄ + ȳ)s + s2 if c1 = ∞ or c2 = ∞

ℓ2s otherwise.

Then, for every t ∈ N, |δ(φ⋆(t), y⋆(t)) − δ(φ(t), y(t))| ≤ ρ2(|d(t)|).

The proof of Lemma 3 follows the same arguments of that of
Lemma 2, and it is thus omitted.

Remark 1 (Implementation of σ and δ). If c1 = c2 = ∞, then
necessarily σ = g1 and δ = g2, since in such case B1 = Rnθ

and B2 = Rnθ × R. Otherwise, σ and δ can be implemented, for
instance, as component-wise saturation functions. Namely, with
satk(·) := min{max{−k, · }, k}, σ (φ) can be defined as the matrix
with (i, j)th entry σ (φ)ij := satc1+1(φi)satc1+1(φj), and δ(φ, y) as
the vector with ith component δ(φ, y)i := sat(max{c1,c2}+1)2 (yφi).

With these definitions in mind, we now show that there exists

a steady-state trajectory xss = (x1,ss, x2,ss) which is robustly stable

4

for (7). In particular, we define x1,ss : N → Rnθ ×nθ and x2,ss : N →

Rnθ as

x1,ss(t) :=

t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s)φ⋆(s)φ⋆(s)⊤,

x2,ss(t) :=

t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s)φ⋆(s)y⋆(s).

(10)

Under Assumption 1, and by construction of σ and δ, σ (φ⋆(t)) =

φ⋆(t)φ⋆(t)⊤ and δ(φ⋆(t), y⋆(t)) = φ⋆(t)y⋆(t) for all t ∈ N. Hence, it
is easy to check that (10) is a solution of (7) starting at the origin
and corresponding to d = 0. Moreover, we underline that, once µ
and λ are fixed, the trajectories (10) only depend on the nominal
data φ⋆ and y⋆. Define the functions β ∈ KL and κ ∈ K as

β(s, t) := s
t−1∏
τ=0

µ(τ ), κ(s) := max{ρ1(s), ρ2(s)}, (11)

where ρ1 is given by Lemma 2, and ρ2 by Lemma 3. Then,
the following proposition establishes ISS of (7) relative to the
steady-state trajectory xss and with respect to the disturbance d.

Proposition 1. Suppose that Assumption 1 holds. Then, for every
solution pair (x, d) of (7) and every t ∈ dom(x, d),

|x(t) − xss(t)| ≤ β
(
|x(0) − xss(0)|, t

)
+ κ

(
|d|[0,t−1]

)
. (12)

In addition, if d is bounded and dom(x, d) = N, then

lim sup
t→∞

|x(t) − xss(t)| ≤ κ

(
lim sup
t→∞

|d(t)|
)

. (13)

The proof of Proposition 1 is given in the Appendix. In the
next section, we show that xss is also optimal with respect to a
specific weighted least-squares cost function.

Remark 2 (Linear Gains). When c1, c2 < ∞, Lemmas 2 and 3
guarantee that the differences σ (φ⋆(t)) − σ (φ(t)) and δ(φ⋆(t), y⋆

(t)) − δ(φ(t), y(t)) can be bounded by a linear function of the
size of the disturbance d at time t , rather than a quadratic bound
obtained when c1 = c2 = ∞. In turn, this implies that the
asymptotic gain κ in (12) and (13) is linear. This ‘‘linear gain
property’’ is used, for instance, in [7,53] to enforce a closed-loop
small-gain condition by using a linear ‘‘high-gain’’ stabilization
method.

4.3. Least-squares optimality of the steady state

From (1) and (10) we deduce

x1,ss(t)θ ⋆
= x2,ss(t), ∀t ∈ N. (14)

Hence, whenever x1,ss(t) is non-singular, θ ⋆ can be univocally
identified from the sole knowledge of xss(t).

More in general, the steady state xss univocally characterizes
the optimal solutions to the least-squares optimization problem
described hereafter. Consider the functional J : N × Rnθ → R≥0
mapping (t, θ ) to

J(t, θ ) :=

t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s)

(
y⋆(s) − φ⋆(s)⊤θ

)2
+ (θ − θ0(t))⊤Ω(t)(θ − θ0(t)),

(15)

in which θ0 : N → Rnθ and Ω : N → Snθ
are arbitrary

bounded functions. In (15), the first term is a sum of the squares
of the historical prediction errors y⋆(s) − φ⋆(s)⊤θ produced by θ ,
weighted by the terms

∏t−1
τ=s+1 µ(τ )λ(s). The second is instead a
regularization term penalizing the weighted distance of θ to θ0(t),
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here the weights are defined by the regularization matrix Ω(t).
We underline that θ0 = 0 and Ω = 0 are feasible choices, leading
to a pure unregularized least squares functional.

For each t ∈ N, let

Θ◦(t) :=
{
θ ∈ Rnθ : ∀θ ′

∈ Rnθ , J(t, θ ′) ≥ J(t, θ )
}

be the set of all minimizers of J(t, ·). Then, the following propo-
sition (proved in the Appendix) shows that Θ◦(t) is univocally
identified by xss(t).

Proposition 2. For all t ∈ N,

Θ◦(t) =
{
θ ∈ Rnθ :

(
x1,ss(t) + Ω(t)

)
θ = x2,ss(t) + Ω(t)θ0(t)

}
.

Clearly, the equality (x1,ss(t) + Ω(t))θ = x2,ss(t) + Ω(t)θ0(t)
reduces to (14) when Ω(t) = 0. Indeed, in such case θ ⋆

∈

Θ◦(t), while this is in general not true if Ω(t) ̸= 0. Indeed,
a non-zero Ω(t) induces a bias between the optimal solutions
minimizing J(t, θ ) and the parameter θ ⋆ in (1) or, more in general,
the quantity x1,ss(t)−1x2,ss(t) providing the unique least-squares
solution to (15) when Ω = 0 and x1,ss(t) is invertible. This bias is
quantified by the following proposition.

Proposition 3. For every (x1, x2) ∈ X such that x1 is invertible,
every Ω ∈ Snθ

, and every θ0 ∈ Rnθ⏐⏐(x1 + Ω)−1(x2 + Ωθ0) − x1−1x2
⏐⏐

≤ |x1−1
|
(
|x2 ∥ x1−1

| + |θ0|
)
|Ω| + |θ0 ∥ x1−1

|
2
|Ω|

2.
(16)

Thus, in particular, limΩ→0(x1 + Ω)−1(x2 + Ωθ0) = x1−1x2.

Proof. Since x1, Ω ∈ Snθ
and x1 is invertible, then x1 + Ω ∈ Snθ

is invertible. By adding and subtracting x1−1(x2 + Ωθ0) and using
(a−1

− b−1) = b−1(b − a)a−1 we obtain⏐⏐(x1 + Ω)−1(x2 + Ωθ0) − x1−1x2
⏐⏐

≤ |x2 + Ωθ0| · |(x1 + Ω)−1
| · |x1−1

| · |Ω| + |x1−1
| · |θ0| · |Ω|,

which implies (16) since |(x1 + Ω)−1
| ≤ |x1−1

| being x1, Ω, x1 +

Ω ∈ Snθ
. Indeed, for every invertible M ∈ Snθ

, |M−1
| = 1/λ(M).

Then, by taking a unitary v such that (x1+Ω)v = λ(x1+Ω)v, one
obtains 1/|(x1 + Ω)−1

| = λ(x1 + Ω) = v⊤(x1 + Ω)v ≥ v⊤x1v ≥

λ(x1) = 1/|x1−1
|, implying |(x1 + Ω)−1

| ≤ |x1−1
|. □

Using a non-zero Ω(t) in spite of this bias is nevertheless
a well-established practice in system identification [58] as, in
general, it makes numerically ill-posed problems treatable and it
may be used to penalize deviations from a given value θ0(t) of
interest, as typical for instance of continual learning. Moreover,
as discussed later in Section 6.1, it also ensures stability and
convergence (although necessarily approximate) in absence of
sufficient excitation.

4.4. Design of γ and state-to-output stability

In view of Propositions 1 and 2, one could be tempted to take
γ in (7) as

γ (x1, x2, t) =
(
x1 + Ω(t)

)†(x2 + Ω(t)θ0(t)
)
. (17)

Indeed, when computed along the steady-state trajectory xss, this
would give

θ ss(t) := γ (x1,ss(t), x2,ss(t), t)
=
(
x1,ss(t) + Ω(t)

)†(x2,ss(t) + Ω(t)θ0(t)
)

∈ Θ◦(t).

Nevertheless, the choice (17) does not allow us to establish a
relation between the difference θ (t)−θ ss(t) and x(t)−xss(t) since,
in general, the mapping x + Ω ↦→ (x + Ω)† is not continuous.
1 1

5

This, in turn, implies that a uniform bound of the form (6) cannot
be obtained in general with the choice (17). By following [8,53],
we solve this problem by designing γ as a robustified version of
(17).

With k1 := supt∈N |Ω(t)|, k2 := supt∈N |Ω(t)θ0(t)|, and ε > 0
an arbitrary constant, we define the set

Γε :=

{
(x1, x2) ∈ X : |x1| ≤ φ̄2

+ k1 + 1, λ(x1) ≥ ε/2,

|x2| ≤ φ̄ȳ + k2 + 1
}
.

Then, we define the map

gθ : Rnθ ×nθ × Rnθ → Rnθ , (x1, x2) ↦→ x1†x2,

we pick an arbitrary h ∈ S(Γε, gθ ), and we finally define γ :

X × N → Rnθ as

γ (x1, x2, t) := h
(
x1 + Ω(t), x2 + Ω(t)θ0(t)

)
. (18)

With h̄ := | ran h|, let

ρθ := max
{
4(φ̄ȳ + k2 + 1) + 2ε

ε2 ,
4h̄

min{2, ε}

}
. (19)

hen, γ satisfies the following state-to-output stability property
(the proof of Lemma 4 is given in the Appendix).

Lemma 4. Suppose that Assumption 1 holds. Then, for all t ∈ N
such that λ(x1,ss(t)+ Ω(t)) ≥ ε, |γ (x1(t), x2(t), t)− γ (x1,ss(t), x2,ss
(t), t)| ≤ ρθ |x(t) − xss(t)|.

emark 3 (Implementation of γ ). The function γ is fixed by (18)
once h is chosen. A possible choice of h satisfying the proper-
ies above is to pick h(x1, x2) as the vector with ith component
h(x1, x2)i := satθ̄ (ui) with ui the ith component of x1†x2, θ̄ :=

(φ̄ȳ + k2 + 1)/ε, and sat defined as in Remark 1. Indeed, if
x1, x2) ∈ Γε , then |ui| ≤ |x1−1x2| ≤ θ̄ and thus h(x1, x2) =

θ (x1, x2).

. Main result

In the previous section, we constructed a class of recursive
stimation laws of the form (7), under the assumption (Assump-
ion 1) that φ⋆ and y⋆ in (1) are bounded with known bounds.
he possible choices for the degrees of freedom µ, λ, σ , δ, γ in
7) are summarized below:

I1. µ(t) ∈ [0, 1) and λ(t) ≥ 0 satisfy (8).
I2. σ ∈ S(B1, g1) and δ ∈ S(B2, g2), in which the constants

c1, c2 ∈ R>0 ∪{∞} defining the sets B1 and B2 are arbitrary
provided that (9) hold (Section 4.2). See also Remark 1.

I3. γ is defined in (18), with h ∈ S(Γε, gθ ), Ω : N → Snθ

and θ0 : N → Rnθ arbitrary bounded signals, and ε > 0
arbitrary (Section 4.4). See also Remark 3.

We associate with the quantities µ, λ, Ω , and ε the following
xcitation condition on the unperturbed regressor φ⋆.

efinition 1. With t⋆ ∈ N, φ⋆ is said to be t⋆-exciting with
espect to (µ, λ, Ω, ε) if, for all t ≥ t⋆,

(t) +

t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s)φ⋆(s)φ⋆(s)⊤ ≥ εI. (20)

Remarks on Definition 1 and details on how it relates to typical
xcitation properties, such as PE, are postponed to Section 6,
hile here we limit to notice that (20) only involves the unper-
urbed regressor φ⋆, despite the presence of the disturbance dφ

n the measurements. Define

(t) := γ (x (t), x (t), t). (21)
ss 1,ss 2,ss
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hen, the following theorem summarizes the main properties of
he considered estimator (7).

heorem 1. Suppose that Assumption 1 holds, and consider System
7) with µ, λ, σ , δ, γ chosen according to Items I1–I3. Let xss =

x1,ss, x2,ss) and θ ss be defined, respectively, as in (10) and (21).
hen, for every solution pair (x, d) of (7), the following hold:

C1. For all t ∈ dom(x, d), (12) holds. If, in addition, d is bounded
and dom(x, d) = N, then also (13) holds.

C2. If φ⋆ is t⋆-exciting with respect to (µ, λ, Ω, ε), then

|θ (t) − θ ss(t)| ≤ ρθβ
(
|x(0) − xss(0)|, t

)
+ ρθκ

(
|d|[0,t−1]

)
(22)

holds for all t ∈ dom(x, d)≥t⋆ , with β and κ defined in (11),
and ρθ in (19). In particular, if d is bounded and dom(x, d) =

N, then

lim sup
t→∞

|θ (t) − θ ss(t)| ≤ ρθκ

(
lim sup
t→∞

|d(t)|
)

. (23)

C3. If, in addition to C2, limt→∞ Ω(t) = 0, then

lim sup
t→∞

|θ (t) − θ ⋆
| ≤ ρθκ

(
lim sup
t→∞

|d(t)|
)

.

roof. Claim C1 is Proposition 1.
Next, notice that the left-hand side of (20) equals Ω(t) +

1,ss(t). Hence, if φ⋆ is t⋆-exciting with respect to (µ, λ, Ω, ε),
hen λ(x1,ss(t) + Ω(t)) ≥ ε for all t ≥ t⋆. Thus, Claim C2 follows
rom Lemma 4 and Proposition 1.

Regarding Claim C3, first notice that, since µ(t), λ(t) ≥ 0 for
all t ∈ N, then from (8) and (10) we get |x1,ss(t)| ≤ φ̄2 and
x2,ss(t)| ≤ φ̄ȳ for all t ∈ N. Thus, if φ⋆ is t⋆-exciting with respect
to (µ, λ, Ω, ε), then (x1,ss(t) + Ω(t), x2,ss(t) + Ω(t)θ0(t)) ∈ Γε for
all t ≥ t⋆ and, by definition of γ ,

θ ss(t) =
(
x1,ss(t) + Ω(t)

)
−1(x2,ss(t) + Ω(t)θ0(t)

)
, ∀t ≥ t⋆. (24)

Next, notice that, if Ω(t) → 0 and φ⋆ is t⋆-exciting with re-
spect to (µ, λ, Ω, ε), then there exists t̄ ∈ N such that λ(x1,ss(t)) ≥

ε/2 for all t ≥ t̄ . Indeed, Ω(t) + x1,ss(t) ≥ εI implies ε ≤

v⊤
(
Ω(t)+x1,ss(t)

)
v ≤ |Ω(t)|+v⊤x1,ss(t)v for all unitary v. Taking

v as a unitary eigenvector of x1,ss(t) associated with λ(x1,ss(t))
yields λ(x1,ss(t)) ≥ ε − |Ω(t)|. As Ω → 0, we thus obtain the
existence of such t̄ .

The previous analysis, in particular, implies that x1,ss(t) is non-
singular for all t ≥ t̄ and, since x1,ss(t) ∈ Snθ

, that |x1,ss(t)−1
| =

λ(x1,ss(t))−1
≤ 2/ε. Moreover, in view of (14), it also implies

hat θ ⋆
= x1,ss(t)−1x2,ss(t) for all t ≥ t̄ . Then, from (24) and

Proposition 3, we obtain

|θ (t) − θ ⋆
| ≤ |θ (t) − θ ss(t)| + |θ ss(t) − θ ⋆

|

≤ |θ (t) − θ ss(t)| +

(
4φ̄ȳ
ε2 +

2|θ0(t)|
ε

)
|Ω(t)|

+
4|θ0(t)|

ε2 |Ω(t)|2

or all t ≥ t̄ . As θ0 is bounded and Ω → 0, then Claim C3 follows
rom (23). □

. Excitation and convergence rate

Condition (20) in Definition 1 is a joint property linking the un-
erturbed regressor φ⋆ and the degrees of freedom ε, Ω, µ, λ. As

these quantities also affect the estimate’s convergence properties,
such as bias (Proposition 3) and convergence rate (Proposition 1
6

and (11)), then it is licit to expect that the excitation level of
φ⋆ and the convergence properties of (7) are related to one an-
other. In this section, we further discuss Definition 1 and provide
insights about the relation between excitation and convergence
rate. In particular, we find that different choices of µ and λ
are associated with different excitation requirements on φ⋆ and
different convergence rates. However, notably, robustness with
respect to disturbances is not directly touched by the particular
choice of µ and λ, since the function κ in (11) does not depend
on µ or λ.

6.1. On the role of Ω

The regularization matrix Ω can be used to guarantee that
every φ⋆ is t⋆-exciting with respect to (µ, λ, Ω, ε) with the same
t⋆. Indeed, if for some t⋆ ∈ N, Ω(t) ≥ εI for all t ≥ t⋆, then
every φ⋆ is automatically t⋆-exciting with respect to (µ, λ, Ω, ε).
This can be seen by noticing that, in view of (10), the excitation
condition (20) can be written as Ω(t)+x1,ss(t) ≥ εI , and x1,ss(t) is
symmetric and positive semidefinite for every φ⋆ and t ∈ N. Thus,
for every v ∈ Rnθ and t ≥ t⋆, v⊤(Ω(t) + x1,ss(t))v ≥ v⊤Ω(t)v ≥

ε|v|
2.
As (20) plays a role in the construction of γ (Lemma 4),

and in particular in guaranteeing that the quantity (x1,ss(t) +

Ω(t), x2,ss(t) + Ω(t)θ0(t)) is inside the set Γε , then this property
of Ω is consistent with the usual interpretation of regularization
that it makes the problem numerically well-posed. However, we
remark once again that a non-zero Ω(t) induces a bias in the
parameter estimate (Proposition 3 and Theorem 1), so as it rep-
resents a trade-off between robustness with respect to excitation
properties of φ⋆ and bias. Finally, we underline that, although
they fall beyond the scope of this paper, feedback techniques
to adapt Ω(t) from data are a viable option. Indeed, Ω is a
free parameter and, for instance, in absence of disturbances the
following is a feasible a choice

Ω(t) = εI if λ(x1(t)) < ε

(t) ∈ {0, εI} if λ(x1(t)) = ε

Ω(t) = 0 otherwise

aimed at taking Ω(t) non-zero only when needed.

6.2. PE and uniform exponential convergence

One says that φ⋆ is PE if there exist T ∈ N≥1, t⋆ ∈ N, and k > 0
such that [54]
t−1∑

s=t−T

φ⋆(s)φ⋆(s)⊤ ≥ kI, ∀t ≥ max{t⋆, T }. (25)

It is a well-known general property of adaptive systems [33,54],
that persistence of excitation is associated with exponential con-
vergence, and System (7) makes no exception. Specifically, take
µ(t) constant (we shall refer to this constant as µ ∈ [0, 1) to
avoid introducing further notations), and λ = 1 − µ. Then, the
equations of x1 and x2 in (7) become moving averages, and (8)
holds, since
t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s) = (1 − µ)

t−1∑
s=0

µt−s−1

= (1 − µ)
t−1∑
τ=0

µτ
≤ (1 − µ)

∞∑
τ=0

µτ
= 1.

Moreover, in view of (11), the class-KL function β governing the
convergence rate (see Proposition 1 and Theorem 1) becomes

β(s, t) = sµt ,

which is exponentially decaying with rate µ.
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Regarding the excitation condition of Definition 1, by letting
Ω(t) = 0, Condition (20) becomes
t−1∑
s=0

µt−s−1φ⋆(s)φ⋆(s)⊤ ≥
ε

1 − µ
I, ∀t ≥ t⋆, (26)

which is equivalent to PE in the following sense.

Lemma 5. Suppose that Assumption 1 holds. If φ⋆ satisfies (26) for
some t⋆ ∈ N and ε > 0, then it satisfies (25) with the same t⋆, with
k ≤ ε/(2 − 2µ), and T ≥ max{1, log(ε/(2φ̄2))/ logµ}. Conversely,
if φ⋆ satisfies (25) for some k > 0, T ∈ N≥1, and t⋆ ∈ N≥T , then it
atisfies (26) with the same t⋆ and ε ≤ kµT−1(1 − µ).

The proof of Lemma 5 is omitted for reason of space. Finally,
e remark that this choice of µ and λ is associated with the
sual exponentially weighted least-squares cost functional. In
articular, (15) reads

(t, θ ) = (1 − µ)
t−1∑
s=0

µt−s−1(y⋆(s) − φ⋆(s)⊤θ
)2

+ (θ − θ0(t))⊤Ω(t)(θ − θ0(t)).

.3. Non-uniform convergence without PE

A different choice of µ and λ may be associated with a weaker
excitation condition on φ⋆, but with a weaker convergence rate.
We show this with the following choice

µ(t) =
t + a

t + a + 1
, λ(t) =

1
t + a + 1

, (27)

here a ∈ N is arbitrary. With this choice, we have
t−1

s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s) =

t−1∑
s=0

1
t + a

=
t

t + a
≤ 1,

o as (8) holds. With Ω = 0, Condition (20) now becomes

1
t + a

t−1∑
s=0

φ⋆(s)φ⋆(s)⊤ ≥ εI, ∀t ≥ t⋆. (28)

t turns out that (28) is strictly weaker than PE, as established by
he following proposition.

roposition 4. If φ⋆ is PE, i.e. it satisfies (25) for some T ∈ N≥1,
⋆

∈ N, and k > 0, then it also satisfies (28) for some t⋆ ∈ N and
ith ε = k/(2T + a). The converse implication, instead, does not
old in general. Namely, there exist bounded signals φ⋆ satisfying
28) that are not PE, i.e., for which (25) does not hold for any choice
f T ∈ N≥1, t⋆ ∈ N and k > 0.

Proposition 4 is proved at the end of the section, we first
iscuss some relevant consequences. First, we underline that,
ompared to the previous case, with this choice for µ the conver-
ence rate of x towards xss is hyperbolic instead of exponential.
ndeed, the function β in (11) now reads as

(s, t) = s
a

t + a
.

n turn, this implies that convergence is not uniform in the initial
ime. This is consistent with well-known facts about necessity of
E for uniform convergence [54]. Nevertheless, we underline that
he ISS condition of Proposition 1 is unchanged. In particular, the
symptotic gain relating the disturbance d and the differences
(t) − xss(t) and θ (t) − θ ss(t) (Theorem 1) is not touched by
the choice of µ. Therefore, PE is not only unnecessary for con-
vergence, but also for robustness, with the only difference that
7

the result of Proposition 1, as well as the limits in the claims
of Theorem 1, are no more uniform in the initial time. Hence,
to summarize, PE provides uniformity of convergence (at an ex-
ponential rate) in absence of disturbances and uniform ISS and
asymptotic gain properties in presence of disturbances. Without
PE, uniformity in the initial time is lost, but ISS and asymptotic
gain properties are maintained.

Finally, we notice that the choice (27) is associated with the
following unweighted least-squares functional

J(t, θ ) =
1

a + t

t−1∑
s=0

(
y⋆(s) − φ⋆(s)⊤θ

)2
+ (θ − θ0(t))⊤Ω(t)(θ − θ0(t)).

roof (Proposition 4). Assume φ⋆ is PE. Without loss of generality,
e prove the first implication of the proposition with t⋆ = 0 in

(25). Pick t ≥ T , and let n := max{m ∈ N : t ≥ mT }. Then, n ≥ 1,
≥ nT , and

1
t + a

t−1∑
s=0

φ⋆(s)φ⋆(s)⊤ ≥
1

t + a

nT−1∑
s=0

φ⋆(s)φ⋆(s)⊤

=
1

t + a

n−1∑
h=0

(h+1)T−1∑
s=hT

φ⋆(s)φ⋆(s)⊤ ≥
1

t + a

n−1∑
h=0

kI

=
nk

a + nT + (t − nT )
I =

k

T +
a + t − nT

n

I ≥
k

2T + a
I,

here, in the last inequality, we used the fact that t − nT ≤ T
and n ≥ 1, which imply (a + t − nT )/n ≤ a + T .

The second part of the proposition is proved with a counterex-
mple. Namely, we construct a bounded φ⋆ that is not PE but

satisfies (28). Consider a partition of N of the form N = ∪
∞

n=1In
with In =

{∑n−1
k=1 2

k, . . . ,
∑n−1

k=1 2
k
+ 2n

− 1
}
. Thus, in particular,

I1 = {0, 1}, I2 = {2, 3, 4, 5}, I3 = {6, . . . , 13} etc., and the nth
interval In has cardinality 2n. Let φ⋆ be defined in such a way that,
for all n ∈ N and all t ∈ In,

φ⋆(t) =

{
0 if t < min In + 2n−1

1 otherwise.
(29)

In particular, φ⋆(t) equals 0 on the first half of each In and 1 in
the second half.

Clearly, φ⋆ is not PE. Indeed, for every T ∈ N and t⋆ ∈ N, there
exist n and t > max{T , t⋆} such that [t−T , t−1] ⊂ In and t−1 <

min In + 2n−1. In turn, this implies that
∑t−1

t−T φ⋆(s)φ⋆(s)⊤ = 0.
Hence, (25) does not hold. However, Condition (28) holds with

t⋆ ≥ 3, ε =
1
4

(
1 −

a + 2
a + t⋆

)
.

o see this, pick t⋆ ≥ 3 and t ≥ t⋆ arbitrarily, and let m = m(t)
e the largest integer such that τ (m) := 2 + 4 + · · · + 2m

≤ t .
ince, in view of (29),
(m)−1∑
s=0

φ⋆(s) =

m∑
k=1

∑
s∈Ik

φ⋆(s) =
1
2

m∑
k=1

2k
=

τ (m)
2

and φ⋆(s)φ⋆(s)⊤ = φ⋆(s) ≥ 0 for all s ∈ N, then

1
t + a

t−1∑
s=0

φ⋆(s)φ⋆(s)⊤ ≥
1

t + a

τ (m)−1∑
s=0

φ⋆(s) =
τ (m)

2(t + a)

≥
1
4
t − 2
t + a

≥
1
4

(
1 −

a + 2
a + t⋆

)
= ε,

where we used the fact that, by definition of m, t ≤ τ (m + 1) =

τ (m) + 2m+1
= 2τ (m) + 2. □
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. Conclusions

In this paper, we studied a class of robustified least-squares es-
imators of the form (7) aimed to extract from the perturbed mea-
urements (2) the parameter θ ⋆ relating the unperturbed regres-
sor φ⋆ and regressand y⋆ according to (1). We considered distur-
bances acting on all the variables and, instead of studying the sta-
tistical properties of the estimates when the disturbances are ran-
dom processes, as typical of statistical learning, we approached
the estimation problem in control theoretic terms. Specifically,
we proved existence and stability of an optimal steady-state
defined by the unperturbed variables, and we proved robustness
with respect of disturbances in terms of ISS.

While robust stability always holds (Proposition 1), input–
output stability of the estimation error holds if the unperturbed
regressor carries enough excitation, where howmuch is ‘‘enough’’
is formalized in Definition 1 and, when Ω = 0, depends on the
degrees of freedom µ and λ. In this connection, we showed that
some choices of these degrees of freedom require PE of φ⋆ and
confer uniform exponential convergence on the produced esti-
mates. Moreover, we also showed that other choices are possible
that yield a non-uniform convergence rate but require excitation
conditions on φ⋆ that are strictly weaker than PE. Notably, the
asymptotic gain property relating the asymptotic estimation error
to the size of the disturbances is the same in the two cases.
Indeed, in general, all choices of µ and λ satisfying (8) do not
affect the function κ in (12). Finally, we showed that taking Ω(t)
positive definite ensures that every φ⋆ is PE, but introduces a bias
in the parameter estimate. This is, therefore, a degree of freedom
that must be traded off in applications.

Overall, our findings suggest that robustification is a good
way to achieve robustness with respect to disturbances, and that
robustness is not necessarily related to excitation, which instead
mainly affects the convergence rate.
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Appendix. Technical proofs

Proof of Lemma 2. If c1 = ∞, then B1 = Rnθ and, hence, σ = g1.
Therefore, for every a, b ∈ Rnθ , σ (a) − σ (b) = aa⊤

− bb⊤
=

(a−b)a⊤
+b(a−b)⊤. With a = φ(t) = φ⋆(t)+dφ(t) and b = φ⋆(t),

this yields |σ (φ(t)) − σ (φ⋆(t))| = |dφ(t)φ(t)⊤ + φ⋆(t)dφ(t)⊤| ≤

2φ̄|dφ(t)| + |dφ(t)|2 = ρ1(|dφ(t)|).
Next, suppose that c1 < ∞. From the previous computations,

we deduce that g1 is Lipschitz on B1 with Lipschitz constant
2c1 + 2. Let X ′

:= {φ ∈ Rnθ : |φ| ≤ c1}. Then, φ ∈ Rnθ \ B1,
implies d(φ, X ′) ≥ 1. Hence, we apply Lemma 1 with X = B1 to
btain |σ (a) − σ (b)| ≤ ℓ1|a − b| = ρ1(|a − b|) for all a ∈ X ′ and
∈ Rnθ , which concludes the proof since, by (9), φ⋆(t) ∈ X ′. □

roof of Proposition 1. Pick a solution pair (x, d) of (7) and a
∈ dom(x, d). From the first of (7), we obtain

1(t) =

(
t−1∏

µ(s)

)
x1(0) +

t−1∑(
t−1∏

µ(τ )

)
λ(s)σ

(
φ(s)

)

s=0 s=0 τ=s+1
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for all t ∈ N. By Assumption 1, φ⋆(t) ∈ B1. Since σ ∈ S(B1, g1),
then σ (φ⋆(t)) = φ⋆(t)φ⋆(t)⊤. Hence, from (10) and by using
Lemma 2, Inequality (8), and the fact that x1,ss(0) = 0 by
construction, we get

|x1(t) − x1,ss(t)|

≤

(
t−1∏
s=0

µ(s)

)
|x1(0) − x1,ss(0)|

+

t−1∑
s=0

(
t−1∏

τ=s+1

µ(τ )

)
λ(s)

⏐⏐σ (φ(s))− σ
(
φ⋆(s)

)⏐⏐
≤ β(|x1(0) − x1,ss(0)|, t) + ρ1

(
|d|[0,t−1]

)
,

where β is given in (11). By means of the same arguments, one
shows that

|x2(t) − x2,ss(t)| ≤ β(|x2(0) − x2,ss(0)|, t) + ρ2
(
|d|[0,t−1]

)
.

By construction, max{β(s1, t), β(s2, t)} = β(max{s1, s2}, t) for all
s1, s2, t ≥ 0. Then, (12) follows by the fact that |x(t) − xss(t)| =

max{|x1(t) − x1,ss(t)|, |x2(t) − x2,ss(t)|}.
Finally, if d is bounded, then lim supt→∞ |d(t)| < ∞, and

Inequality (13) follows from (12) by means of standard ISS ar-
guments (see, e.g., [10]). □

Proof of Proposition 2. Call for brevity S(t) := {θ ∈ Rnθ :(
x1,ss(t) + Ω(t)

)
θ = x2,ss(t) + Ω(t)θ0(t)}. We have to show

that Θ◦(t) = S(t). From (10), we obtain x1,ss(t) = Φ⊤WΦ

and x2,ss(t) = Φ⊤WY , where Y := col(y⋆(0), . . . , y⋆(t − 1)),
Φ := col(φ⋆(0)⊤, . . . , φ⋆(t −1)⊤), and W := diag(

∏t−1
τ=1 µ(τ )λ(0),

. . . , λ(t − 1)). This implies

S(t) =
{
θ ∈ Rnθ :

(
Φ⊤WΦ + Ω(t)

)
θ = Φ⊤WY + Ω(t)θ0(t)

}
.

Moreover, we can write J(t, θ ) = (Y − Φθ )⊤W (Y − Φθ ) + (θ −

θ0(t))⊤Ω(t)(θ − θ0(t)). Then, by substitution, one can show that,
for each θ̄ ∈ S(t),

J(t, θ ) = J(t, θ̄ ) + (θ − θ̄ )⊤(Φ⊤WΦ + Ω(t))(θ − θ̄ ) (A.1)

holds for all θ ∈ Rnθ . Then, since Φ⊤WΦ + Ω(t) is positive
semidefinite, J(t, θ ) ≥ J(t, θ̄ ). For the arbitrariness of θ ∈ Rnθ

and θ̄ ∈ S(t), we thus conclude that S(t) ⊂ Θ◦(t).
To prove the converse, pick θ ∈ Θ◦(t) and θ̄ ∈ S(t) arbitrarily.

In view of (A.1), we must have (θ−θ̄ )⊤(Φ⊤WΦ+Ω(t))(θ−θ̄ ) = 0.
As Φ⊤WΦ + Ω(t) is symmetric and positive semidefinite, this
implies (Φ⊤WΦ +Ω(t))(θ − θ̄ ) = 0. Hence, (Φ⊤WΦ +Ω(t))θ =

(Φ⊤WΦ + Ω(t))θ̄ = Φ⊤WY + Ω(t)θ0(t), which shows that
θ ∈ S(t). □

Proof of Lemma 4. Define the set Γ ′
:=
{
(x1, x2) ∈ X : |x1| ≤

φ̄2
+ k1, λ(x1) ≥ ε, |x2| ≤ φ̄ȳ + k2

}
. Then, the following lemma,

roved below, holds true.

emma 6. Γ ′
⊂ Γε and x ∈ (Rnθ ×nθ × Rnθ ) \ Γε implies

(x, Γ ′) ≥ min{1, ε/2}.

Since µ(t), λ(t) ≥ 0, from (8) and (10) we get |x1,ss(t)| ≤

¯ 2 and |x2,ss(t)| ≤ φ̄ȳ. Thus, if λ(x1,ss(t) + Ω(t)) ≥ ε, then
x1,ss(t)+ Ω(t), x2,ss(t)+ Ω(t)θ0(t)) ∈ Γ ′. Moreover, for arbitrary
(a1, b1), (a2, b2) ∈ Γε , we have

|gθ (a1, b1) − gθ (a2, b2)| = |a1†b1 − a2†b2 ± a2†b1|
≤ |a1†

− a2†
∥b1| + |a2†

∥b1 − b2|.

ince for both i = 1, 2, (ai, bi) ∈ Γε , then |bi| ≤ φ̄ȳ + k2 + 1,
ai ∈ Snθ

, and λ(ai) ≥ ε/2. Hence, ai is invertible, ai† = ai−1, and
|a †

| = |a−1
| = λ(a )−1

≤ 2ε−1. Thus, a †
− a †

= a −1
− a −1

=
i i i 1 2 1 2
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2
−1(a2 − a1)a1−1, which yields |a1†

− a2†
| ≤ |a1−1

| · |a2−1
| ·

a1 − a2| ≤ (4/ε2)|a1 − a2| and

gθ (a1, b1) − gθ (a2, b2)|

≤
4(φ̄ȳ + k2 + 1)

ε2 |a1 − a2| +
2
ε
|b1 − b2|

≤
4(φ̄ȳ + k2 + 1) + 2ε

ε2 |(a1, b1) − (a2, b2)|,

here we used |(a1, b1) − (a2, b2)| = max{|a1 − a2|, |b1 − b2|}.
amely, gθ is Lipschitz on Γε .
Since h ∈ S(Γε, gθ ) and, as proved earlier, (x1,ss(t)+Ω(t), x2,ss

(t) + Ω(t)θ0(t)) ∈ Γ ′, there follows from Lemmas 6 and 1 that

|γ (x1,ss(t), x2,ss(t), t) − γ (x1(t), x2(t), t)|
= |h(x1,ss(t) + Ω(t), x2,ss(t) + Ω(t)θ0(t))

− h(x1(t) + Ω(t), x2(t) + Ω(t)θ0(t))|
≤ ρθ |x(t) − xss(t)|,

with ρθ given by (19), which is the claim. □

Proof of Lemma 6. That Γ ′
⊂ Γε is obvious. If (a, b) /∈ Γε , then (i)

|a| > φ̄2
+k1+1, or (ii) |b| > φ̄ȳ+k2+1, or (iii) λ(a) < ε/2. In case

(i) or (ii) hold, for each (a′, b′) ∈ Γ ′ we have |(a, b) − (a′, b′)| =

max{|a − a′
|, |b − b′

|} ≥ max
{⏐⏐|a| − |a′

|
⏐⏐, ⏐⏐|b| − |b′

|
⏐⏐} > 1. Thus,

d((a, b), Γ ′) ≥ 1.
Consider now Case (iii). Let v be a unitary eigenvector of a

corresponding to λ(a). Then, for all (a′, b′) ∈ Γ ′

|a − a′
| = sup

|z|=1
|(a′

− a)z| ≥ |(a′
− a)v| ≥

⏐⏐|a′v| − λ(a)
⏐⏐. (A.2)

ince λ(a′) ≥ ε, a′ is invertible. Moreover, since a′
∈ Snθ

, |(a′)−1
| =

1/λ(a′), which implies λ(a′) = λ(a′)|v| = |(a′)−1a′v|/|(a′)−1
| ≤

a′v|. Thus, |a′v| ≥ λ(a′) ≥ ε > 2λ(a), and (A.2) yields |a − a′
| ≥

a′v| − λ(a) ≥ ε − ε/2 = ε/2. Hence, in all cases the claim
olds. □
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