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Abstract
In this paper we establish a variation-diminishing type estimate for the multivariate Kan-
torovich sampling operators with respect to the concept of multidimensional variation
introduced by Tonelli. A sharper estimate can be achieved when step functions with compact
support (digital images) are considered. Several examples of kernels have been presented.
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1 Introduction

The concept of variation and also of multidimensional variation of the type introduced
by Tonelli, was implicitly one of the first topics addressed by Prof. Domenico Candeloro
(Mimmo, for friends). He did so in his first two papers [20,21] where he studied the Geöcze
area as a Burkill–Cesari integral and the link between the absolute continuity and the Burkill–
Cesari integral, respectively. Subsequently, in the last years he has worked for a long time
on the variational integrals in the sense of Henstock–Kurzweil; in particular, in his papers
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[22,23], he managed to obtain, together with his co-authors, the existence of integrable selec-
tions in the variational sense,whichwas an open problem inMeasureTheory for several years.
It therefore seemed natural to us to dedicate the results of this paper to Mimmo, considering
that these issues represented part of his scientific training in the early years and beyond. Each
of us, in a different form, owes much to Mimmo; but surely together, we can express our
gratitude for what he has left us, both from a scientific and a human point of view, and this
contribution wants to be one of the many ways to tell him ... Thanks!

Working with families of operators in BV-spaces, a classical and important result that is
usually investigated is an estimate of the variation of the operators in terms of the variation
of the function to which they are applied: such property, known as ”variation diminishing
type estimate”, can be obtained for several families of operators, well-known and used in
approximation theory, such as the Bernstein polynomials, the convolution operators, the
Mellin operators, the sampling operators and others (see, e.g., [3–5,9,14,32]). In this paper
we study the case of multidimensional sampling Kantorovich operators, using the variation
in the sense of Tonelli. We also consider separately the one-dimensional case (Theorem 2),
that can be derived easily by the analogous result for the generalized sampling series [5]: in
this case, for non-negative kernels, it is possible to obtain a classical variation diminishing
result, i.e., the variation of the operators is smaller than the variation of the function itself.
The multidimensional case (Theorem 1) is much more delicate: this is due to the ”structure”
of the Tonelli variation that is responsible, in particular, of the dependance of the constant
in the estimate on the dimension of the space (this phenomenon is known as the curse-of-
dimensionality occurring in several approximation problems), and to the particular form of
the samplingKantorovich operators. Nevertheless, the approximation properties of such fam-
ily of operators, in their multidimensional form, are interesting and they have been widely
studied in last years in view of their connections to Sampling Theory and Digital Image
Processing, see e.g., [16,25,26,28–30,33,38]. Their definition has been introduced in 2007 in
the univariate form [15] and subsequently it was extended to the multidimensional setting in
[27]. The latter generalization has been given in order to have a class of approximation opera-
tors of the sampling-type, suitable in order to reconstruct not necessarily continuous signals,
that is exactly the context in which the problem of processing (reconstruction, enhancement,
smoothing etc) digital images is included [7,27].

In this direction, variation diminishing type estimates may have an applicative interpreta-
tion. Indeed, in case of step-type functions, that is, the mathematical model of digital images,
it is possible to obtain a sharper estimate (Corollary 1) proving that the L1-norm of the vari-
ation of the sections of the sampling Kantorovich operators, in case of non-negative kernels,
is smaller than the L1-norm of the variation of the sections of the function itself: from the
applicative point of view, this produces a smoothing effect on the image reconstructed by
means of the multidimensional sampling Kantorovich operators, with respect to the original
one.

2 Notations and preliminaries

In the present paper, we denote by BV (R) := { f : R −→ R : VR[ f ] < +∞} the space of
functions of bounded variation on R; the functional VR[ f ] := sup[a,b]⊂R V[a,b][ f ] denotes
the Jordan variation of f over R, and V[a,b][ f ] = sup

∑n
i=1 | f (xi ) − f (xi−1)|, where

the supremum is taken over all the possible partitions a = x0 < x1 < . . . < xn = b of
the interval [a, b], is the Jordan variation of f over [a, b] [3,11,12]. For what concerns the
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Variation diminishing-type properties for multivariate. . . 597

multivariate extension of the above concepts, several possible approaches can be found in
the literature (see, e.g., [13]).

In particular, here we consider the concept of variation introduced by Tonelli [35] for two
variables, extended to the general case of RN by Radó and Vinti [34,37]. In order to recall
it, we first introduce the following notation.

For a function f : R
N → R and x = (x1, . . . , xN ) ∈ R

N , we put x′
j =

(x1, . . . , x j−1, x j+1, . . . , xN ) ∈ R
N−1,x = (x′

j , x j ) and f (x) = f (x′
j , x j ), j = 1, . . . , N .

Moreover, given an N -dimensional interval I = ∏N
i=1[ai , bi ], by I ′

j = [a′
j ,b

′
j ] we will

denote the (N − 1)-dimensional interval obtained deleting by I the j-th coordinate, i.e.,
I = [a′

j ,b
′
j ] × [a j , b j ], j = 1, . . . , N . Given a vector x ∈ R

N and α ∈ R, we will use
the usual notation for products and quotients, i.e., αx = (αx1, . . . , αxN ) and, for α �= 0,
x
α

= ( x1
α

, . . . ,
xN
α

)
. Formore details and results about BV -spaces, see, e.g., [2–4,8–11,13,31].

Now, we are able to recall the definition of the multivariate Tonelli variation. First of all,
for any I = ∏N

i=1[ai , bi ] and j = 1, . . . , N we consider the (N − 1)-dimensional integrals
(Tonelli integrals)

� j ( f , I ) :=
∫

[a′
j ,b

′
j ]
V[a j ,b j ][ f (x′

j , ·)]dx′
j ,

(V[a j ,b j ][ f (x′
j , ·)] is the one-dimensional Jordan variation of the j−th section of f ) and their

Euclidean norm �( f , I ) :=
{∑N

j=1 �2
j ( f , I )

} 1
2
. Note that �( f , I ) = +∞ if � j ( f , I ) =

+∞ for some j = 1, . . . , N .
Then the variation of f on I ⊂ R

N can be defined as

VI [ f ] := sup
m∑

k=1

�( f , Jk),

where the supremum is taken over all the finite families of N -dimensional intervals
{J1, . . . , Jm} which form partitions of I . Passing to the supremum over all the intervals
I ⊂ R

N , we obtain the variation of f over the whole RN , i.e.,

V [ f ] := sup
I⊂RN

VI [ f ].

Definition 1 A measurable and bounded function f : RN → R is said to be of bounded
variation ( f ∈ BV (RN )) if V [ f ] < +∞.

By the definition it immediately follows that, for every f ∈ BV (RN ), ∇ f exists a.e. in R
N

and ∂ f
∂x j

∈ L1(RN ), for every j = 1, . . . , N (see e.g. [34,37]).

Definition 2 A function f : RN → R is locally absolutely continuous in the sense of Tonelli
( f ∈ ACloc(R

N )) if, for every interval I = ∏N
i=1[ai , bi ] and for every j = 1, 2, . . . , N ,

the j-th section of f , f (x′
j , ·) : [a j , b j ] → R is absolutely continuous for almost every

x′
j ∈ [a′

j ,b
′
j ].

Denoting by AC(RN ) := BV (RN ) ∩ ACloc(R
N ), it is well known that, if f ∈ AC(RN )

then V [ f ] = ∫
RN |∇ f (x)| dx (see [12,31,34,37]).

In order to provide some estimates with respect to the multivariate Tonelli variation for a
family of multivariate sampling-type operators, we now introduce the following definition.

A function χ : RN → R will be called a kernel if it satisfies the following assumptions:
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(χ1) χ ∈ L1(RN ) is such that
∑

k∈ZN χ(u − k) = 1, for every u ∈ R
N ;

(χ2) Aχ := supu∈RN
∑

k∈ZN |χ(u − k)| < +∞, where the convergence of the series is
uniform on the compact sets of RN .

In particular, the above conditions are usually satisfied by themultivariate discrete approx-
imate identities (see, e.g., [19]).

This paper deals with the family of multivariate sampling Kantorovich operators [27],
defined as

(Kw f )(t) :=
∑

k∈ZN

[

wN
∫

[ k
w

, k+1
w

]
f (u) du

]

χ(wt − k), t ∈ R
N , w > 0.

The sampling Kantorovich operators represent the L1-version of the generalized sampling
series

(Sw f )(t) :=
∑

k∈ZN

f

(
k

w

)

χ(wt − k), t ∈ R
N , w > 0,

(see, e.g., [17,18]).
Note that the operators (Kw f )w>0 and (Sw f )w>0 are well-defined, for instance, for any

f ∈ BV (RN ): indeed in this case it turns out that | f (t)| ≤ M , for some M > 0, and thus,
by (χ2), |(Kw f )(t)| ≤ M

∑
k∈ZN χ(wt − k) ≤ MAχ , t ∈ R

N .

In the present paper, in order to establish some estimates with respect to the Tonelli
variation for the operators Kw, we consider kernels which are given by the product of one-
dimensional kernels of averaged form (see, e.g., [5,7,32]). More precisely, we define

χ̄m(t) :=
N∏

i=1

χ̄i,m(ti )

where

χ̄i,m(t) := 1

m

∫ m
2

−m
2

χi (t + v) dv,

for some m ∈ N, and χi : R −→ R is a (one-dimensional) kernel for every i = 1, . . . , N
(i.e., satisfying (χ1) and (χ2) with N = 1). It is easy to see that χ̄m is a kernel itself and that,
for every i = 1, . . . , N ,

‖χ̄i,m‖1 ≤ ‖χi‖1. (1)

Moreover, χ̄m is everywhere differentiable and

∂χ̄m

∂t j
(t) = 1

m

∏

i �= j

χ̄i,m(ti )
[
χ j

(
t j + m

2

)
− χ j

(
t j − m

2

)]
, t ∈ R

N .

From now on, for the sake of simplicity, we will denote by K̄ m
w and S̄mw the multivariate

Kantorovich and generalized sampling series, respectively, both based upon the averaged
product kernel χ̄m .

3 Themain results

In this section, we prove the main result of the paper, i.e., an estimate for the variation of the
multivariate sampling Kantorovich operators.
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Theorem 1 For any f ∈ BV (RN ), m ∈ N, w > 0,

V [K̄ m
w f ] ≤ N

m + 1

m

N∏

i=1

‖χi‖1 V [ f ],

and hence K̄m
w f ∈ BV (RN ). Moreover K̄m

w f ∈ AC(RN ).

Proof First of all we can observe that, for f ∈ BV (RN ), ∂ K̄ m
w f

∂t j
(t) exists for every t ∈ R

N .

Indeed, for every j = 1, . . . , N , t ∈ R
N , there holds

∂ K̄ m
w f

∂t j
(t) = wN+1

m

∑

k∈ZN

[∫

[ k
w

, k+1
w

]
f (u) du

]
∏

i �= j

χ̄i,m(wti − ki )
[
χ j

(
wt j − k j + m

2

)

−χ j

(
wt j − k j − m

2

)]
, (2)

and hence, using (χ2) for each one-dimensional kernel χ̄i,m, χ j , we have, for every t ∈ R
N ,

∣
∣
∣
∣
∂ K̄ m

w f

∂t j
(t)

∣
∣
∣
∣ ≤ w

m
M

∑

k∈ZN

∏

i �= j

|χ̄i,m(wti − ki )|
[∣
∣
∣χ j

(
wt j − k j + m

2

)∣
∣
∣

+
∣
∣
∣χ j

(
wt j − k j − m

2

)∣
∣
∣
]

≤ 2w

m
M
∏

i �= j

Aχ̄i,m Aχ j ≤ 2w

m
M

N∏

i=1

Aχi < +∞.

(3)

The estimate (3) proves that K̄ m
w f ∈ ACloc(R

N ). Now, using (2) and the change of variable
k̃ j = k j + m, and k̃i = ki , if i �= j , we can write what follows

∂ K̄ m
w f

∂t j
(t) = wN+1

m

∑

k∈ZN

[∫

[ k
w

, k+1
w

]
f (u) du

]

×
⎛

⎝
∏

i �= j

χ̄i,m(wti − ki )

⎞

⎠χ j

(
wt j − k j + m

2

)

−wN+1

m

∑

k̃∈ZN

⎡

⎣
∫

∏
i �= j

[
k̃i
w

,
k̃i+1

w

]

×
[
k̃ j−m

w
,
k̃ j−m+1

w

] f (u) du

⎤

⎦

×
⎛

⎝
∏

i �= j

χ̄i,m(wti − k̃i )

⎞

⎠χ j

(
wt j − k̃ j + m

2

)

= wN+1

m

∑

k∈ZN

⎡

⎣
∫

[ k
w

, k+1
w

]
f (u)du −

∫
[
k′
j

w
,
k′
j+1

w

]

×
[ k j−m

w
,
k j−m+1

w

] f (u)du

⎤

⎦

×
⎛

⎝
∏

i �= j

χ̄i,m(wti − ki )

⎞

⎠χ j

(
wt j − k j + m

2

)
.

Now, putting v j = u j + m/w, and vi = ui , if i �= j , in the second integral, we get
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∣
∣
∣
∣
∂ K̄ m

w f

∂t j
(t)

∣
∣
∣
∣ ≤ wN+1

m

×
∑

k∈ZN

∣
∣
∣
∣
∣
∣

∫

[ k
w

, k+1
w

]
f (u)du −

∫
[
k′
j

w
,
k′
j +1

w

]

×
[ k j

w
,
k j +1

w

] f
(
v′
j , v j − m

w

)
dv

∣
∣
∣
∣
∣
∣

⎛

⎝
∏

i �= j

|χ̄i,m (wti − ki )|
⎞

⎠|χ j

(
wt j − k j + m

2

)
|

≤ wN+1

m

∑

k∈ZN

∫

[ k
w

, k+1
w

]

∣
∣
∣ f (u) − f

(
u′
j , u j − m

w

)∣
∣
∣ du

⎛

⎝
∏

i �= j

|χ̄i,m (wti − ki )|
⎞

⎠
∣
∣
∣χ j

(
wt j − k j + m

2

)∣
∣
∣

≤ wN+1

m

∑

k∈ZN

∫

[ k
′
j

w
,
k′
j +1

w
]

⎡

⎣
∫ (k j+1)/w

(k j /w)

V[ k j −m
w

,
k j +1

w

][ f (u′
j , ·)] du

⎛

⎝
∏

i �= j

|χ̄i,m (wti − ki )|
⎞

⎠
∣
∣
∣χ j

(
wt j − k j + m

2

)∣
∣
∣

wN

m

∑

k∈ZN

⎛

⎝
∏

i �= j

|χ̄i,m (wti − ki )|
⎞

⎠
∫

[ k
′
j

w
,
k′
j +1

w
]

[

V[ k j −m
w

,
k j −m+1

w

]
[
f
(
u′
j , ·
)]

+ ... + V[ k j
w

,
k j +1

w

]
[
f
(
u′
j , ·
)]]

du′
j

×
∣
∣
∣χ j

(
wt j − k j + m

2

)∣
∣
∣ .

Now, using the Fubini–Tonelli theorem, the change of variable y j = wt j − k j + m/2,
yi = wti − ki , i �= j , and the inequality (1) we have

V [K̄ m
w f ] =

∫

RN

⎛

⎝
N∑

j=1

∣
∣
∣
∣
∂ K̄ m

w f

∂t j
(t)

∣
∣
∣
∣

2
⎞

⎠

1/2

dt ≤
N∑

j=1

∫

RN

∣
∣
∣
∣
∂ K̄ m

w f

∂t j
(t)

∣
∣
∣
∣ dt

≤ wN

m

N∑

j=1

∑

k∈ZN

∫

[ k
′
j

w
,
k′
j +1

w
]

[

V[ k j −m
w

,
k j −m+1

w

]
[
f
(
u′
j , ·
)]

+ ... + V[ k j
w

,
k j +1

w

]
[
f
(
u′
j , ·
)]]

du′
j

×
∫

RN

⎛

⎝
∏

i �= j

|χ̄i,m (wti − ki )|
⎞

⎠
∣
∣
∣χ j

(
wt j − k j + m

2

)∣
∣
∣ dt

≤ 1

m

N∑

j=1

∑

k′
j∈ZN−1

∫

[ k
′
j

w
,
k′
j +1

w
]

∑

k j∈Z

[

V[ k j −m
w

,
k j −m+1

w

]
[
f
(
u′
j , ·
)]

+ ... + V[ k j
w

,
k j +1

w

]
[
f
(
u′
j , ·
)]]

du′
j

×
∫

RN
|χ j (y j )|

∏

i �= j

|χ̄i,m (yi )|dy ≤ m + 1

m

N∑

j=1

N∏

i=1

‖χi‖1
∑

k′
j∈ZN−1

∫

[ k
′
j

w
,
k′
j +1

w
]
VR

[
f
(
u′
j , ·
)]

du′
j

= m + 1

m

N∏

i=1

‖χi‖1
N∑

j=1

∫

RN−1
VR

[
f
(
u′
j , ·
)]

du′
j .

Now notice that, for I = ∏N
i=1[ai , bi ], � j ( f , I ) = ∫

I ′
j
V[a j ,b j ][ f (u′

j , ·)] du′
j ≤

�( f , I ) ≤ VI [ f ], j = 1, . . . , N , and so, passing to the supremum over I ⊂ R
N ,

∫
RN−1 VR

[
f
(
u′
j , ·
)]

du′
j ≤ V [ f ]; therefore

V [K̄ m
w f ] ≤ N

m + 1

m

N∏

i=1

‖χi‖1 V [ f ].

Hence K̄ m
w f ∈ BV (RN ) and therefore K̄ m

w f ∈ AC(RN ). �

In the one-dimensional case, namely for (K̄ m
w f )(t) := ∑

k∈Z w

(
∫ k+1

w
k
w

f (u) du

)

χ̄m(wt −
k), t ∈ R, w > 0, where χ̄m(t) = 1/m

∫ m
2

−m
2

χ(t + v) dv and χ is a one-dimensional kernel,

it is possible to obtain a sharper estimate. Notice that, in case of a non-negative kernel, this
gives a classical variation-diminishing result, since ‖χ‖1 = 1. Namely, we may obtain

Theorem 2 For f ∈ BV (R), m ∈ N, w > 0, there holds

V [K̄ m
w f ] ≤ ‖χ‖1 V [ f ].
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Therefore K̄m
w f ∈ BV (R) and so K̄m

w f ∈ AC(R).

Proof It is easy to see that (K̄ m
w f )(t) = (S̄mw I ϕ

w f )(t), t ∈ R, where (I ϕ
w f )(t) :=

w
∫
R
f (u)ϕ(w(t − u)) du, w > 0, for ϕ(u) = 1[−1,0](u) (see [6]). Therefore, taking into

account of Proposition 5.1 of [14] (with D = ‖wϕ(w·)‖1 = 1) and of Proposition 1 of [5]
(notice that the constant that multiplies V [ f ] is ‖χ‖1), there holds

V [K̄ m
w f ] = V [S̄mw I ϕ

w f ] ≤ ‖χ‖1V [I ϕ
w f ] ≤ ‖χ‖1V [ f ],

and so K̄ m
w f ∈ BV (R). Therefore K̄ m

w f ∈ AC(R) since, as in Theorem 1, it can be proved
that K̄ m

w f ∈ ACloc(R). �

4 Examples and applications

In the present section, we discuss some applicative aspects of the theory of sampling Kan-
torovich operators, in particular in the present setting of BV-spaces. For this purpose, we first
recall that some concrete applications of the above operators to the reconstruction and the
enhancement of digital images have already been obtained in [25,26].

Any given static gray scale image (matrix) M = (mi, j ), i, j = 0, ..., n − 1, can be easily
represented (from the analytic point of view) by a function of two variables with compact
support on the square [0, n] × [0, n]. More precisely, we can define the so-called image
function as follows

IM (x, y) :=
n−1∑

i=0

n−1∑

j=0

mi, j 1i, j (x, y), (x, y) ∈ R
2,

where 1i, j denotes the characteristic functions of the set [i, i + 1) × [ j, j + 1).
Obviously any step functionwith compact support (as IM ) is in fact a function belonging to

BV (R2). In suchparticular case, besides the estimate established inTheorem1, that obviously
holds, a sharper estimate for the variation of the two-dimensional sampling Kantorovich
operators can be proved, in fact resulting a variation diminishing type property.

Corollary 1 Let f : RN → R be a step function with compact support [a,b] ⊂ R
N , where

a,b ∈ Z
N , ai < bi , i = 1, ..., N, and f (x) = f (i) for every x ∈ [i,j[, i.e., f is constant

on each interval of a grid of multi-dimensional intervals of the form [i,j] ⊂ [a,b], with
i,j ∈ Z

N , and | jν − iν | = 1, ν = 1, ..., N, that form a partition of [a,b[. Then, for every
w ∈ N and m ∈ N,

� j (K̄
m
w f , [a,b]) ≤

N∏

i=1

‖χi‖1� j (K̄
m
w f , [a,b]), j = 1, . . . , N , (4)

and therefore

V [K̄ m
w f ] ≤ N

N∏

i=1

‖χi‖1 V [ f ].

In particular, if χi is non-negative, i = 1, . . . , N, it turns out that

� j (K̄
m
w f , [a,b]) ≤ � j (K̄

m
w f , [a,b]), j = 1, . . . , N , and V [K̄ m

w f ] ≤ NV [ f ].
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Fig. 1 a Original image; b result of thresholding on the original image; c reconstruction of the original image
by means of the operator Km

w , w = 5, based upon the bivariate averaged Fejér kernel with m = 10; d result
of thresholding on the reconstructed image

Proof Observing that, for any step function f as above and w ∈ N it turns out that K̄ m
w f =

S̄mw f , the proof immediately follows by Proposition 5 of [7]. �

As a consequence of (4), it turns out that for any image (matrix) M , the two-dimensional
sampling Kantorovich operator K̄ m

w IM , w, m ∈ N, based on χ̄m and generated by a non-
negative kernel χ , allows to obtain a filtered image in which globally, the variations of the
sections of the image are reduced: this may be interpreted as a reduction of the “jumps
of gray levels” with respect to the original image M , producing a smoothing effect on the
reconstructed image (see Fig. 1c). As it is well-known, smoothing procedures have a wide
range of applications in digital image processing: among them, image enhancement, noise
reduction, automatic selection procedures. Figure 1 illustrates an example of application of
our operators to the latter problem. The aim is to produce an automatic procedure to select
“big” objects from an image (the original, Fig. 1a, is a 250 × 250 Hubble space image):
this can be done by filtering the image with the sampling Kantorovich operator, producing a
smoothing effect (Fig. 1c), and hence applying thresholding to the filtered image (Fig. 1d).
This produces an image where just the largest objects are detected. The importance of the
application of the smoothing filter in this process can be easily deduced by comparing Fig.
1d to the result of thresholding applied directly to the original image (Fig. 1b).

Now, we can furnish some examples of kernels for which the above results hold.
As a first example, we can consider the multivariate product kernel of the averaged type

generated by the well-known Fejér kernel, defined by

F(x) := 1

2
sinc2(x/2), x ∈ R,

where the sinc-function (see, e.g., [6,24]) is of the form sinc(x) :=
{ sin(πx)

πx , x �= 0,
1, x = 0.

The

one-dimensional averaged Fejér kernel is then defined as

F̄m(t) := 1

2m

∫ m/2

−m/2
sinc2

(
t + v

2

)

dv, t ∈ R, m ∈ N,

and its corresponding multivariate version is Fm(t) := ∏N
i=1 F̄m(ti ),t ∈ R

N . In practice,
the averaged Fejér kernel represents the L1-version of the well-known Lanczos kernel [32],
which is defined as an averaged of a sinc-type function. Note that the Fejér kernel is non-
negative and then for the multivariate sampling Kantorovich series based upon Fm hold the
variation diminishing type properties established in both Theorem 1 and Corollary 1.
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Other examples of one-dimensional non-negative kernels with unbounded support that can
be used to define product averaged type kernels are, e.g., the Jackson-type kernels, defined
by

Jn(x) := cn sinc
2n
( x

2nπα

)
, x ∈ R,

with n ∈ N, α ≥ 1, and cn a non-zero normalization coefficient, given by cn :=
[∫

R
sinc2n

( u
2nπα

)
du
]−1

, [33]. The averaged-kernels by means of the functions Jn and
their multivariate product can be constructed as in the case of Fejér kernel.

Now, in order to give examples of duration limited kernels, i.e., one-dimensional kernels
with compact support, we recall the definition of the well-known central B-spline of order
n ∈ N (see, e.g., [1,36]), defined by

Mn(x) := 1

(n − 1)!
n∑

i=0

(−1)i
(
n

i

)(n

2
+ x − i

)n−1

+
, x ∈ R,

where (x)+ := max {x, 0} denotes “the positive part” of x ∈ R.
Now, let us denote by

M̄n,m(t) := m−1
∫ m/2

−m/2
Mn(t + v) dv, t ∈ R,

the averaged B-spline kernel of order n ∈ N. Recalling that M ′
n(t) = Mn−1(t + 1/2) −

Mn−1(t−1/2), t ∈ R (n ≥ 2), form = 1we have M̄ ′
n,1(t) = Mn(t+1/2) − Mn(t−1/2) =

M ′
n+1(t), t ∈ R (n ≥ 1), from which we can obtain that M̄n,1(t) = Mn+1(t), t ∈ R, for

every n ∈ N, namely, the averaged kernel withm = 1 generated by a central B-spline of order
n is a B-spline itself of order n+ 1. Thus, the multivariate averaged type product kernel with
m = 1 and generated by Mn is Mn

1(t) := ∏N
i=1 M̄n,1(ti ) = ∏N

i=1 Mn+1(ti ), t ∈ R
N .

In practice, in the latter case the multivariate sampling Kantorovich series based upon the
product of N averaged B-spline Mn with m = 1 coincide with the sampling Kantorovich
operators based upon the multidimensional central B-spline of order n + 1.
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13. Appell, J., Banaś, J., Merentes, N.: Bounded variation and around, 17 De Gruyter Series in Nonlinear
Analysis and Applications. De Gruyter, Berlin, Germany (2014)

14. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Convergence in variation and rates of approximation for
Bernstein-type polynomials and singular convolution integrals. Analysis 23, 299–340 (2003)

15. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Kantorovich-type generalized sampling series in the
setting of Orlicz spaces. Sampling Theory Signal Image Process 6, 29–52 (2007)

16. Bardaro, C., Mantellini, I.: On convergence properties for a class of Kantorovich discrete operators.
Numer. Funct. Anal. Optim. 33, 374–396 (2012)

17. Butzer, P.L., Fisher, A., Stens, R.L.: Generalized sampling approximation of multivariate signals: theory
and applications. Note di Matematica 10(1), 173–191 (1990)

18. Butzer, P.L., Fisher, A., Stens, R.L.: Generalized sampling approximation of multivariate signals: general
theory. Atti Sem. Mat. Fis. Univ. Modena 41(1), 17–37 (1993)

19. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation I. Academic Press, New York-London
(1971)

20. Candeloro, D.: L’area di Geöcze, per prodotti di applicazioni, come integrale alla Burkill-Cesari, Istit.
Lombardo Accad. Sci. Lett. Rend. A 110(2), 493–513 (1976)

21. Candeloro,D.: TheBurkill–Cesari integral and its relation to absolute continuity.Rend.Circ.Mat. Palermo
26(2), 251–274 (1977)

22. Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R.: Gauge integrals and selections of weakly
compact valued multifunctions. J. Math. Anal. Appl. 441(1), 293–308 (2016)

23. Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R.: Relations among gauge and Pettis integrals
for cwk(X)-valued multifunctions. Ann. Mat. Pura Appl. 197(4), 171–183 (2018)

24. Coroianu, L., Gal, S.G.: L p-approximation by truncatedmax-product sampling operators of Kantorovich-
type based on Féjer kernel. J. Integral Eq. Appl. 29(2), 349–364 (2017)

25. Costarelli, D., Seracini, M., Vinti, G.: A segmentation procedure of the pervious area of the aorta artery
from CT images without contrast medium. Math. Methods Appl. Sci. 43, 114–133 (2020)

26. Costarelli, D., Seracini, M., Vinti, G.: A comparison between the sampling Kantorovich algorithm for
digital image processing with some interpolation and quasi-interpolation methods. Appl. Math. Comp.
374, 125046 (2020)

27. Costarelli, D., Vinti, G.: Approximation by multivariate generalized sampling Kantorovich operators in
the setting of Orlicz spaces, Bollettino U.M.I., Special issue dedicated to Prof. Giovanni Prodi 9(IV),
445–468 (2011)

123



Variation diminishing-type properties for multivariate. . . 605

28. Costarelli, D., Vinti, G.: An inverse result of approximation by sampling Kantorovich series. Proc. Edinb.
Math. Soc. 62(1), 265–280 (2019)

29. Costarelli, D., Vinti, G.: Inverse results of approximation and the saturation order for the sampling
Kantorovich series. J. Approx. Theory 242, 64–82 (2019)

30. Costarelli, D., Vinti, G.: Saturation by the Fourier transform method for the sampling Kantorovich series
based on bandlimited kernels. Anal. Math. Phys. 9, 2263–2280 (2019)

31. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80.
Birkhäuser Verlag, Basel (1984)

32. Kivinukk, A., Metsmagi, T.: The variation detracting property of some Shannon sampling series and their
derivatives. Sampl. Theory Signal Image Process 13, 189–206 (2014)

33. Orlova, O., Tamberg, G.: On approximation properties of generalized Kantorovich-type sampling opera-
tors. J. Approx. Theory 201, 73–86 (2016)

34. Radó, T.: Length and Area, American Mathematical Society Colloquium Publications, vol. 30. American
Mathematical Society, New York (1948)

35. Tonelli, L.: Su alcuni concetti dell’analisi moderna. Ann. Scuola Norm. Super. Pisa. 2(11), 107–118
(1942)

36. Unser, M.: Ten good reasons for using spline wavelets. Wavelets Appli Signal Image Process 3169(5),
422–431 (1997)

37. Vinti, C.: Perimetro–variazione. Ann. Scuola Norm. Sup. Pisa 3(18), 201–231 (1964)
38. Vinti, G., Zampogni, L.: A unifying approach to convergence of linear sampling type operators in Orlicz

spaces. Adv. Diff. Eq. 16, 573–600 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Laura Angeloni1 · Danilo Costarelli1 ·Marco Seracini1 · Gianluca Vinti1 ·
Luca Zampogni1

Laura Angeloni
laura.angeloni@unipg.it

Marco Seracini
marco.seracini@dmi.unipg.it

Gianluca Vinti
gianluca.vinti@unipg.it

Luca Zampogni
luca.zampogni@unipg.it

1 Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1, 06123
Perugia, Italy

123

http://orcid.org/0000-0001-8834-8877

	Variation diminishing-type properties for multivariate sampling Kantorovich operators
	Abstract
	1 Introduction
	2 Notations and preliminaries
	3 The main results
	4 Examples and applications
	References




