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Abstract

Future large-scale structure surveys are expected to improve current bounds on primordial non-Gaussianity (PNG),
with a significant impact on our understanding of early universe physics. The level of such improvements will
however strongly depend on the extent to which late-time nonlinearities erase the PNG signal on small scales. In
this work, we show how much primordial information remains in the bispectrum of the nonlinear dark matter
density field by implementing a new, simulation-based methodology for joint estimation of PNG amplitudes ( fNL)
and standard Lambda cold dark matter parameters. The estimator is based on optimally compressed statistics,
which, for a given input density field, combine power spectrum and modal bispectrum measurements, and
numerically evaluate their covariance and their response to changes in cosmological parameters. In this first
analysis, we focus on the matter density field, and we train and validate the estimator using a large suite of N-body
simulations (QUIJOTE-PNG), including different types of PNG (local, equilateral, orthogonal). We explicitly test the
estimator’s unbiasedness, optimality, and stability with respect to changes in the total number of input realizations.
While the dark matter power spectrum itself contains negligible PNG information, as expected, including it as an
ancillary statistic increases the PNG information content extracted from the bispectrum by a factor of order 2. As a
result, we prove the capability of our approach to optimally extract PNG information on nonlinear scales beyond
the perturbative regime, up to k h0.5 Mpcmax

1= - . At the same time, we discuss the significant information on
cosmological parameters contained on these scales.

Unified Astronomy Thesaurus concepts: Non-Gaussianity (1116); Cosmological parameters from large-scale
structure (340); Fisher’s Information (1922)

1. Introduction

The best cosmological probe of primordial non-Gaussianity
(PNG) has been, up to now, the cosmic microwave background
(CMB; Akrami et al. 2020). The available information in the
angular bispectrum (i.e., the three-point function of harmonic
multipoles) of CMB primary anisotropies has been, however,
nearly completely extracted. If we want to obtain significant
improvements over current PNG constraints for most models, we
thus have to look at different observables. For this purpose, galaxy
clustering carries a significant potential (Alvarez et al. 2014;
Karagiannis et al. 2018; Meerburg et al. 2019), since the 3D
galaxy density field contains many more bispectrum modes than
the 2D CMB fluctuation fields. Most of these modes are however
in the gravitational nonlinear regime. The important challenge to
face is therefore to separate, up to the smallest possible scales, the

PNG signal from the late-time NG component, induced by
evolution of cosmic structures.
To tackle this issue, significant efforts have been devoted to

obtain theoretical predictions of the galaxy bispectrum, via a
suitable perturbative treatment valid on the largest scales (for the
current state of the art, see Ivanov et al. 2022, and references
therein). This approach has even recently led to the first
constraints on PNG using both the galaxy power spectrum and
bispectrum, by analyzing data from the BOSS survey (Dawson
et al. 2013; Cabass et al. 2022a, 2022b; D’Amico et al. 2022).13

Recent works based on field-level inference (Baumann &
Green 2021; Andrews et al. 2022), neural networks (Giri et al.
2022), or reconstruction methods (Shirasaki et al. 2021), have
however shown that much more information should be present
in the data. To extract this extra information, alternative
promising observables, such as the density probability density
function (Mao et al. 2014; Uhlemann et al. 2018; Friedrich
et al. 2020), persistent homology (Biagetti et al. 2021, 2022a),

The Astrophysical Journal, 940:71 (17pp), 2022 November 20 https://doi.org/10.3847/1538-4357/ac9837
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

13 Previous analyses based on the BOSS galaxy bispectrum, in different
cosmological contexts, can be found, for example, in Gil-Marín
(2015a, 2015b, 2017) and Slepian et al. (2017a, 2017b).
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or higher-order correlation functions in Fourier space (Gualdi
et al. 2021a, 2021b), have been considered. It has also been
confirmed that probing nonlinear scales, using the power
spectrum and the bispectrum, improves significantly the
constraints on cosmological parameters (Hahn et al. 2020;
Hahn & Villaescusa-Navarro 2021). Checking if this is also the
case for PNG is then an important question. It is however
unclear if analytical approaches can go significantly beyond the
mildly nonlinear regime.

In this work, we thus consider instead the alternative, simulation-
based route using a large number of realizations of the matter
density field. This paper, and its companion paper Coulton et al.
(2022), are the first of a series of studies, in which we plan to take a
step-by-step approach and address the problem in increasing level
of complexity. We start here by discussing the general implementa-
tion of our statistical estimation and data compression algorithms
based on the modal bispectrum estimator, while in Coulton et al.
(2022) we describe in more detail our input simulations and use
them to perform an independent Fisher matrix analysis using a
binned bispectrum estimator. Moreover, for additional complemen-
tarity, the two analyses are performed at different redshifts. In
Coulton et al. (2022), the main focus is on z= 0, where the
nonlinear effects are maximal. Here, we study the redshift z= 1,
more suited for comparison with upcoming surveys such as Euclid
(Laureijs et al. 2011; Amendola et al. 2018). At this initial stage, we
focus our analysis just on the dark matter field, with a twofold aim:
to set up the general pipeline that we will also use in the following
analyses and to address the first crucial question of how much PNG
information can be in principle extracted from the matter field, by
pushing the analysis up to small scales, which would be hard to
model analytically. In a follow-up paper, we will extend this
analysis to halos, whereas in later studies we will finally consider
the galaxy density field and account for additional important effects,
such as redshift-space distortions and incomplete sky coverage.

We extract the power spectrum and bispectrum of a large
number of realizations of the matter density field, allowing us to
precisely describe the contribution of PNG down to nonlinear
scales (k h0.5 Mpcmax

1= - ), as well as measuring the corresp-
onding covariance matrix, including all non-Gaussian and off-
diagonal terms (see Biagetti et al. 2022b for a discussion of their
relative importance). We then combine these measurements into
optimally compressed statistics, a procedure that has been shown
to be extremely efficient in dealing with the galaxy bispectrum in
Gualdi et al. (2018, 2019). Finally, following the general scheme
developed in Alsing & Wandelt (2018), we derive an estimator to
jointly measure Lambda cold dark matter (ΛCDM) and PNG
parameters.

This paper is organized as follows. In Section 2, we describe
the PNG models that we consider in this work and define the
parameters in our analysis; in Section 3, we describe our
estimators of the power spectrum and bispectrum and the
optimal data compression procedure applied to build a quasi-
maximum likelihood estimator of PNG and cosmological
parameters; in Section 4, we discuss the application of these
estimators to our input mock data sets and show the main
results of our analysis; in Section 5, we summarize our
conclusions and discuss future prospects.

2. Primordial Bispectrum Shapes

For most inflationary models, the main PNG signature is a
nonvanishing bispectrum in the primordial curvature perturbation

field, which is defined as
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enforces translation invariance. The quantity F(k1, k2, k3)
defines instead the functional dependence of the bispectrum on
different Fourier space triplets—the so-called bispectrum shape
—and it depends only on the length of the wavevectors in
virtue of rotation invariance. Finally, the dimensionless PNG
amplitude parameter fNL measures the strength of the PNG
signal, for a given shape. The main goal of our analysis is to
build an efficient fNL estimator for the three main bispectrum
shapes, namely, the local, equilateral, and orthogonal14 shapes,
defined by the following templates (see Akrami et al. 2020, and
references therein):
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In the present study we directly work with the matter density
field; in such case, for small PNG, nearly all the information on
fNL

local, fNL
equil, and fNL

ortho is contained in the field bispectrum.
When dealing instead with observed dark matter tracers, it is
well known that an important additional signature of PNG
arises in the form of a scale-dependent bias term, sourced by
the squeezed configurations of the primordial bispectrum
(Afshordi & Tolley 2008; Dalal et al. 2008; Matarrese &
Verde 2008; Slosar et al. 2008; Verde & Matarrese 2009;
Desjacques & Seljak 2010; hence, especially important for
PNG of the local type). In such case, the large-scale power
spectrum carries significant extra information on the PNG
amplitude. Since at this stage we perform joint estimation of
fNL and standard ΛCDM cosmological parameters, the power
spectrum is already included in our analysis. Therefore, in
follow-up studies that will consider dark matter halos and
galaxies, no essential modification of our current data analysis
pipeline will be needed, except in the input fields to analyze.

14 In the companion paper (Coulton et al. 2022), two different orthogonal
shapes are discussed: the standard CMB one, which we use here, and a
corrected template more accurate for LSS. While this may change the
numerical results presented in this work, as they have different behaviors in the
squeezed limit, it has no impact on the general conclusions.
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3. Estimators

3.1. Summary Statistics

As discussed, the aim of our work is to efficiently combine
power spectrum and bispectrum measurements of the matter
field in the input simulations, to maximize the PNG informa-
tion that can be extracted, up to the smallest possible scales.
This will be achieved by resorting to a suitable compression
scheme, taking the power spectrum and bispectrum as the
starting summary statistics and requiring numerical evaluation
of their covariances, to build the standard quasi-maximum
likelihood estimator described in Alsing & Wandelt (2018).
This data compression step is also a key ingredient in
performing density-estimation likelihood-free inference (see,
e.g., Alsing et al. 2019), an alternative approach we aim to
pursue in a future work. Forecasts based on data compression
also have the advantage of being conservative, whereas a
standard Fisher matrix analysis using the starting set of modes
could in principle underestimate errors; this would happen in
the case of a lack of statistical convergence in the Monte Carlo
averages, due to a low number of input simulations. In the
current analysis, we however explicitly show that we can
achieve optimality, thanks to fast and efficient estimators to
measure the power spectra and bispectra, which are applied to a
large enough set of input realizations.

3.1.1. Power Spectrum

To measure the power spectrum, we use the standard
estimator (e.g., Feldman et al. 1994)

*k kP k
VN

1
, 5

k
i

i i

ˆ ( ) ( ) ( ) ( )å d d=
ÎD

where δ(k) is the density field in Fourier space defined on a
grid, the k range has been divided into bins Δi of width the
fundamental mode, V is the survey volume, and Ni is the
number of vectors k in each bin.

3.1.2. Modal Bispectrum

A well-suited choice to measure the bispectrum statistics is
the so-called modal bispectrum estimator, originally developed
for CMB NG analysis in Fergusson et al. (2010, 2012a) and
then extended to LSS in Fergusson et al. (2012b), Regan et al.
(2012), and Schmittfull et al. (2013; see also Lazanu et al.
2016, 2017; Hung et al. 2019a, 2019b; Byun et al. 2021; Byun
& Krause 2022).

The main idea of modal estimation is to expand a general
weighted bispectrum shape on a factorizable basis:
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where Qn≡ q{p(k1)qr(k2)qs}(k3) corresponds to the symmetrized
product of one-dimensional basis functions qp(k) and a partial
ordering n↔ (p, q, r) has been introduced (see, e.g., Fergusson
et al. 2012a), w is a weight function and β are the expansion
coefficients. If the input bispectrum is a smooth function of k1, k2,
and k3, it can be well approximated by truncating the sum over a
number N of modes that is much smaller than the total number of
Fourier triangles. γmn≡ 〈Qm|Qn〉 is the inner product between
mode functions, where the following scalar product (see

Appendix A.2 for details on the derivation)
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is computed over the bispectrum tetrapyd domain T , i.e., the
set of all the Fourier triplets that form a closed triangle and such
that each wavenumber has a length in the chosen range of
kmin[ , kmax].
Each coefficient βn can be estimated by fitting the

corresponding mode Qn to the data bispectrum. Making the
customary choice of a separable weight function using the total
power spectrum P(k):
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one can show (e.g., Fergusson et al. 2012b) that the modal
estimator takes the form:
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This inverse Fourier transform can be computed in an efficient
way using fast Fourier transformation (FFT) routines (e.g.,
FFTW15), making nb̂ extremely fast to extract from data. In this
paper, we work directly with the observed modal coefficients
βn to estimate PNG amplitudes fNL and other cosmological
parameters. We therefore do not need to evaluate the inner
product matrix γ, a rather technical step of the numerical
pipeline. The only part in this work, for which the calculation
of γ is needed is when we reconstruct the bispectrum from the
modal basis, presented in Figures 2 and 14, obtained by
substituting the measured βn into Equation (6). We describe our
method to compute γ in detail in Appendix A.2.
The basis of one-dimensional functions qp(k) we use here is

mainly composed of well-behaved polynomials normalized
within the tetrapyd that fits inside a unit cube (see Fergusson
et al. 2012a for details). This means that in the above
expressions q k q k k k kp p min max min( ) (( ) ( )) - - . We also
include custom modes based on the separable matter
bispectrum shapes, i.e., the gravity-induced tree-level bispec-
trum and the local PNG template Equation (2) to further
improve the bispectrum decomposition in Equation (6). This
was introduced in Hung et al. (2019a) and further developed in
Byun et al. (2021); see Appendix A.1 for details. A general
useful feature of the modal estimator is that, for a proper choice
of basis, it allows for a preliminary data compression step,
by reconstructing the signal in a small number of modes,
compared to the starting amount of triplets in Fourier space.
This speeds up the numerical evaluation of covariances, which
is in turn a key ingredient for the final compression step
described in the next section.

15 http://www.fftw.org
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3.2. Data Compression and Quasi-maximum Likelihood
Estimator

To build an optimal estimator of PNG amplitude parameter
fNLʼs, we follow the method developed in Alsing & Wandelt
(2018), based on a two-step data compression scheme. The first
step consists of extracting a set of summary statistics from a full
data set, which in our case are the power spectrum P(k) and
bispectrum modes βn, described in the previous paragraphs. The
second step is an additional compression, down to only n
numbers where n is the number of parameters we aim to infer
from data. The optimal compressed quantities, in the sense that
no information about the wanted parameters is lost, are the
components of the score function (the parameter gradient of the
log-likelihood), which can be computed explicitly by assuming
an approximate form for the likelihood of the summary statistics.
When working with the power spectrum and bispectrum, a
Gaussian likelihood is a reasonable approximate choice, by
virtue of the central limit theorem.16 The compressed statistics,
called t, then take the following form:

* * *
t C d , 11T 1( ) ( )m m=  -q

-

where d corresponds to the summary statistics (a vector of
modal coefficients βn and possibly power spectrum bins P(k)),
μ and C are, respectively, the mean and the covariance of d, θ
denotes the parameters of interest and the subscript ∗ indicates
that the quantity is evaluated at the chosen fiducial cosmology.
Note that in Equation (11), we made the further assumption that
the covariance C does not depend on the parameters θ, and in
that case, the compressed statistics t is equivalent to the MOPED

data compression of Heavens et al. (2000). By construction, the
covariance of the compressed statistic t at the fiducial point θ*
is equal to the Fisher matrix F*, where

F C . 12T 1 T ( )m m=  q q
-

One can also write the following quasi-maximum likelihood
estimator for the parameters θ:

* *F t, 131ˆ ( )q q= + -

which has an expected covariance given by the Fisher matrix
evaluated at the fiducial point F*.

In this work, we compute both the derivatives and the
covariance matrix from N-body simulations, which makes it
possible to include nonlinear scales in the analysis and estimate
their constraining power on PNG.

4. Analysis

4.1. Simulations

The analysis presented in this work is mainly based on the
publicly available QUIJOTE suite of N-body simulations;17 see
Villaescusa-Navarro et al. (2020) for details. These simulations
are cubic boxes of length 1 h−1 Gpc, containing 5123 particles,
generated with the GADGET-III code (Springel 2005), with input
transfer functions computed by CAMB (Lewis et al. 2000).
Initial conditions are generated at zi= 127 using the code 2LPTIC
(Crocce et al. 2006). We use a set of 8000 simulations at fiducial
cosmology to evaluate the covariance matrix, together with
smaller sets of 500 realizations, in which parameters are one by
one slightly displaced from their fiducial values, to numerically
compute the derivatives in Equation (12). Fiducial parameter
values and steps used for numerical differentiation are reported
in Table 1. In Appendix B, we illustrate the effects of small
parameter variations on the power spectrum and bispectrum.
Throughout the analysis, we work at redshift z= 1.
To study the effects of PNG, we use the QUIJOTE-PNG set

presented in detail in the companion paper (Coulton et al.
2022). Non-Gaussian initial conditions are generated using the
method developed in Scoccimarro et al. (2012), and evolved
following the exact same procedure as the standard QUIJOTE N-
body simulations described above. For each of the three
standard primordial shapes—local (Equation (2)), equilateral
(Equation (3)), and orthogonal (Equation (4))—we analyze two
sets of 500 realizations, with either fNL=+100 or fNL=−100.
For further testing, we also consider three additional sets of

10 simulations, with f 40NL
local = - , 0, and 40, all generated

from the same Gaussian seeds, independently of the QUIJOTE
fiducial realizations, but with the same numerical specifications
and input cosmological parameters. For this suite of simula-
tions, initial conditions have been generated with a modified
version of the PNGRun code (Wagner et al. 2010) that imprints
local NG contributions on top of the primordial Gaussian
potential field, starting from a prescribed shape of the
primordial matter bispectrum (see Wagner et al. 2010 for a
detailed description of the PNGRun algorithm). The simula-
tions have been evolved with GADGET-III by including the
contribution of relativistic species in the background cosmic
expansion, which results in a different normalization at the
starting redshift of the runs, compared to QUIJOTE to match the
amplitude of the same perturbations at z= 0.

4.2. Results

The first step of our analysis consists of the extraction of
power spectrum and bispectrum modes from all available
simulations, using the methodology outlined in Section 3.1.
Modal bispectrum estimation requires us to fix kmax

beforehand. In this work, we consider three different values:
k h0.07 Mpcmax

1= - (linear), 0.2 hMpc−1 (mildly nonlinear),
and 0.5 hMpc−1 (nonlinear), in order to study the amount of

Table 1
Cosmological Parameters and PNG Amplitudes of the QUIJOTE and QUIJOTE-PNG Simulations

σ8 Ωm Ωb ns h fNL
local fNL

equil fNL
ortho

Fiducial 0.834 0.3175 0.049 0.9624 0.6711 0 0 0
Steps ±0.015 ±0.01 ±0.002 ±0.02 ±0.02 ±100 ±100 ±100

16 The validity of this assumption is tested a posteriori with the different
analyses presented in Section 4, where we verify that the estimator developed
yields unbiased and quasi-optimal results. 17 https://quijote-simulations.readthedocs.io
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information as a function of scales. We begin by depositing
particle positions into a regular grid using the public
Pylians318 code, with a fourth-order interpolation scheme
and a resolution Ngrid= 360 in the nonlinear case, as in Hahn
et al. (2020), and the faster cloud-in-cell interpolation at the
lower resolutions Ngrid= 128 and Ngrid= 6419 for the
k 0.2max = and 0.07 hMpc−1 cases, respectively.

As an initial visual check, in Figure 1 we show the impact on
the power spectrum of including PNG in the simulations at
redshift z= 1. As expected, such impact is essentially
negligible on linear scales and rises to the percent level, at
most, in the nonlinear regime, despite the large NG amplitudes
in input ( fNL=±100). Moreover, the effect of local and
equilateral NG is very degenerate. In Figure 2, we show the
same comparison for bispectrum configurations, reconstructed
from our modal basis, by using Equation (6), where the details
in calculating the γ matrix, needed for this step, can be found in
Appendix A.2. While the effect remains at the percent level for
a single triangle, we have now of course a much larger number
of available configurations. Moreover, we can clearly see how
the effect of the local primordial template peaks in the squeezed
limit—where one k is much smaller than the other two—
whereas the equilateral shape produces the largest signal when
three k are of the same order. The orthogonal bispectrum has
both squeezed and equilateral components.

In Figures 3 and 4, we show some modal bispectrum
coefficients βn of the QUIJOTE simulations, evaluated using
Equation (9). Figure 3 is the direct equivalent of Figure 2 at the
modal level, and also highlights the very distinct behaviors of
the three primordial shapes. In Figure 4, we compare the modal
coefficients of the fiducial Gaussian simulations to their

theoretical prediction, computed at the tree level. The first five
modes correspond to the special functions based on the tree
level and local separable templates (see Appendix A.2 for more
details), while the rest are polynomials of increasing degree,
from left to right. As expected, the difference between
measured and predicted signals increases significantly with
kmax. Note also that in this analysis we work with the Qn

separable modes defined in Equation (6). These, by definition,
are not orthogonal with respect to the inner product defined in
Equation (7) and always display nontrivial correlations. For this
reason, in modal bispectrum analyses a new basis is often
introduced, by orthogonalizing the Qn templates. This proce-
dure, however, only removes the correlations in the weakly
non-Gaussian case, and after verification, does not bring any
improvement to the results presented in this paper. On the
contrary, it can add some numerical instability when including
high-order polynomial modes; thus, it is not included here.
After extracting summary statistics from the data and

checking that they behave according to expectation, the next
step of the analysis is the optimal compression to the score
function, following the procedure described in Section 3.2.
This requires the evaluation of the mean and the inverse
covariance matrix of the estimated power spectrum bins and
bispectrum modal coefficients, as well as their derivatives with
respect to each considered parameter (cosmological + NG
amplitudes). We compute the data covariance Ĉ from 8000
QUIJOTE N-body simulations at fiducial cosmology and we
apply the Hartlap–Anderson correction factor (Hartlap et al.
2007) to obtain an unbiased estimate of the precision matrix:

C C
n n

n

2

1
, 141 r d

r

1ˆ ( )=
- -

-
- -

where nr is the number of realizations (8000 here) and nd
represents the size of the data vector (a few hundred at most
here).20 In Figure 5, we show the full correlation matrix given
by C C Cij ii jj , including both power spectrum bins P(k) and
mode amplitudes βn. As expected, the power spectrum
becomes more correlated on smaller scales. Bispectrum modal
coefficients however have the opposite behavior, becoming less
correlated at higher kmax. This is due to the fact that each mode
is, by definition, the fit of a given template (polynomial, or
simple separable bispectrum shape) to the data, including all
scales in the range of k k,min max[ ]. Thus, an increased kmax helps
to better distinguish between them, leading to lower correla-
tions. Note also the nonzero correlation between the power
spectrum and the bispectrum, which will play an important role
in the analyses presented in this paper. We do not include
super-sample covariance terms in our analyses, which have a
negligible impact on our results as shown in our companion
paper (Coulton et al. 2022). We also use these 8000 simulations
to compute the mean value of the modal coefficient vector,
which fixes the score function to zero at fiducial cosmology
with no PNG.
The derivatives can be calculated quickly from the sets of

500 simulations with one adjusted parameter and matching

Figure 1. Impact of PNG on the matter power spectrum at z = 1 (ratio NG/G,
averaged from 500 N-body simulations). We show the local (green), equilateral
(orange), and orthogonal (purple) shapes. Solid and dashed lines correspond,
respectively, to positive and negative fNL values (±100).

18 https://github.com/franciscovillaescusa/Pylians3
19 It has been argued in Sefusatti et al. (2016) that the FFT-based standard
bispectrum estimator can probe scales up to to k k2 3max Ny= , where the
Nyquist frequency is kNy = kfNgrid/2 and kf = 2π/L is the fundamental
frequency of the box. This is due to the factor e k k ki x1 2 3( )·+ + , present in the
standard estimator, which is invariant under a translation ki → ki + kfNgrid/3.
This indicates that any estimator that has this exponent factor will have the
above momentum cutoff scale, rather than k kmax Ny= . In Byun et al. (2021),
they test this and find indications that the modal estimator falls under the same
category, since it takes a form similar to the standard bispectrum estimator (see
Equation (A6)). Taking this into account, gives the largest values for the
wavenumbers k to be k 0.75max  , 0.26 and 0.13 hMpc−1 for Ngrid = 360,
128, and 64, respectively, well above our chosen kmax values.

20 This correction factor is never more than a few percent here, a regime where
it has been verified (see, e.g., Gualdi et al. 2021a; Gil-Marín 2022) that it
provides results similar to the more advanced method developed in Sellentin &
Heavens (2016) when estimating Fisher bounds.
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random seeds,21 using the standard formula:

d d d

2
, 15n n nfid fid( ) ( ) ( )

q
q q q q

q
¶
¶

+ D - - D
D

where θ can be any of the cosmological or NG amplitude
parameters considered in this paper and d is either power
spectrum or bispectrum mode estimates.

4.3. Fisher Constraints

With the numerically evaluated, joint covariance matrix of
power spectrum bins and bispectrum modes, described in the

Figure 2. Impact of PNG on the matter bispectrum at z = 1 (ratio NG/G, averaged from 500 N-body simulations). We show the local (top rows), equilateral (middle
rows), and orthogonal (bottom rows) shapes.

21 In addition to using matching random seeds, different step values between
simulations have been tested in order to reduce the numerical noise when
evaluating the derivatives.
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previous section, we can derive expected error bars for the
quasi-maximum likelihood estimator (Equation (13)), using the
Fisher matrix defined in Equation (12).

In Table 2, we present the resulting constraints on cosmological
parameters σ8, Ωm, Ωb, ns, and h, and PNG amplitude parameters
fNL

local, fNL
equil, and fNL

ortho, for the three different kmax studied. We
consider the power spectrum and the bispectrum (modal
coefficients) separately and then analyze them jointly, in order to
gain insight into their relative constraining power at different scales.

In the upper part of the table, we assume Gaussian initial
conditions. As pointed out in Hahn et al. (2020), we see in this
case that adding bispectrum information does help improve
power spectrum constraints on cosmological parameters. While
the gain is marginal on linear scales, it becomes significant in
the nonlinear regime, where the bispectrum alone is actually a
more powerful probe than the power spectrum alone, for all
considered parameters, with the exception of σ8.

In the lower part of the table, we include both cosmological
parameters and PNG of the three standard shapes. In this case,
if we look at bounds from the power spectrum alone, we not
only see that PNG amplitudes are essentially unconstrained, as
expected, but also that errors on other parameters significantly
degrade in comparison with the primordial Gaussian case. This
is due to degeneracies arising between fNL and cosmological
parameters, which are even more pronounced at nonlinear
scales. The most affected parameter is σ8, the error of which
increases by more than a factor 3. The bispectrum now plays a
crucial role not only in constraining PNG at a significant level,
but also in breaking such degeneracies and allowing for large
improvements in predicted errors for cosmological parameters.

Note also that in Table 2, we assume that all PNG shapes are
simultaneously present in the data. However, we verified that
similar degeneracies are introduced even when we consider one
NG shape at a time. This is not surprising, remembering that
introducing NG of different types produces a similar impact on
the power spectrum (see Figure 1).

When combining the power spectrum and bispectrum informa-
tion, we recover very similar error bars on cosmological parameters
as in the purely Gaussian case, meaning that degeneracies are

Figure 3. Impact of PNG on the modal bispectrum coefficients (ratio NG/G,
averaged from 500 N-body simulations) at z = 1. The vertical black lines show
the standard errors for 500 Gaussian fiducial simulations and for most modes
these are unobservably small.

Table 2
Joint Constraints on Cosmological Parameters and PNG from the Power Spectrum and the Modal Bispectrum at z = 1, for Different kmax

kmax σ8 Ωm Ωb ns h fNL
local fNL

equil fNL
ortho

Fiducial (h Mpc−1) 0.834 0.3175 0.049 0.9624 0.6711 0 0 0

P(k) 0.07 ±0.17 ±0.32 ±0.32 ±3.9 ±4.4
0.2 ±0.012 ±0.039 ±0.018 ±0.24 ±0.24
0.5 ±0.0045 ±0.011 ±0.0062 ±0.042 ±0.062

βn 0.07 ±0.59 ±0.95 ± 1. ±12 ±14
0.2 ±0.014 ±0.051 ±0.023 ±0.32 ±0.31
0.5 ±0.0063 ±0.016 ±0.006 ±0.066 ±0.071

P(k) + βn 0.07 ±0.17 ±0.31 ±0.31 ±3.7 ±4.2
0.2 ±0.011 ±0.035 ±0.015 ±0.21 ±0.21
0.5 ±0.0038 ±0.0091 ±0.0048 ±0.031 ±0.048

P(k) 0.07 ±0.55 ±0.41 ±0.36 ±4.5 ±4.9 ±200,000 ±500,000 ±180,000
0.2 ±0.13 ±0.07 ±0.031 ±0.49 ±0.39 ±31,000 ±85000 ±36,000
0.5 ±0.069 ±0.035 ±0.013 ±0.24 ±0.18 ±9600 ±29,000 ±11,000

βn 0.07 ±1.1 ±1.3 ±1.4 ±18 ±20 ±670 ±2300 ±1500
0.2 ±0.016 ±0.059 ±0.027 ±0.37 ±0.36 ±91 ±390 ±300
0.5 ±0.0068 ±0.018 ±0.0064 ±0.078 ±0.079 ±39 ±150 ±110

P(k) + βn 0.07 ±0.17 ±0.31 ±0.31 ±3.7 ±4.2 ±350 ±930 ±610
0.2 ±0.011 ±0.035 ±0.015 ±0.21 ±0.21 ±52 ±170 ±120
0.5 ±0.0038 ±0.0093 ±0.0048 ±0.033 ±0.048 ±22 ±94 ±58

Note. We analyzed 8000 QUIJOTE N-body simulations of 1 (Gpc/h)3 volume at fiducial cosmology, and sets of 500 N-body simulations with one adjusted parameter.
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strongly broken. For the same reason, we also see that PNG bounds
from the bispectrum alone are improved by a factor ∼2 when we
add power spectrum measurements, despite the fact that the power
spectrum yields almost no PNG constraining power by itself.
Interestingly, even if we completely fix cosmological parameters in
the analysis, combining power spectrum and bispectrum still
produces some improvement in PNG constraints. In this case,
degeneracies clearly cannot play a role. It turns out that the
improvements are now due to correlations between the power
spectrum and the bispectrum, displayed in Figure 5. Intuitively, at
the tree level, the gravitational bispectrum is linked to the power
spectrum squared, via a convolution kernel; hence, measuring the
latter produces an information gain also on the former (in each
simulation, fluctuations of the power spectrum and bispectrum
around their respective averages, which are fixed by fixing
cosmological parameters, are correlated). A better knowledge of
the gravitational bispectrum allows in turn for a better separation of
this component from the primordial signal.22

In Table 3, we report the independent Fisher bounds for the
three PNG shapes, after marginalizing over cosmological
parameters.
Another important result is that probing nonlinear scales

significantly improves the constraints on every considered
parameter. This is further illustrated in Figure 6, where we
show the contours obtained using jointly the power spectrum
and the bispectrum for different kmax. A more detailed analysis
of the information content of different scales is in our
companion paper (Coulton et al. 2022), where we show that
errors tend to saturate at k h0.3 Mpcmax

1= - , at z= 0, due to
correlations between Fourier modes at strongly nonlinear
scales.
The accuracy of the modal expansion of the bispectrum has a

strong impact on expected error bars and thus it is important to
verify that the modal results presented in this section are fully
converged. There are several solutions to improve the modal
reconstruction, in order to achieve higher accuracy with as
small as possible number of modes. Some of them involve
using custom separable templates, corresponding to, or highly
correlated with, expected signals in the data. In this work, we
already pursue this approach by including the tree-level matter
bispectrum and the primordial local shape in the modal basis.
In the future, we plan to explore it further, by considering, for
example, separable templates that are strongly correlated to the
predicted bispectrum at one loop in perturbation theory, or
describing the other primordial shapes.
The obvious, although less economical, alternative approach to

improve reconstruction accuracy simply consists of including
additional, higher-order polynomials in the basis. We consider
here polynomials up to degree 20, which are combined in triplets
to obtain several hundred bispectrum modes. In Figure 7, we

Table 3
Fisher 1σ Constraints on the Three PNG Shapes from the Power Spectrum and

the Modal Bispectrum at k h0.5 Mpcmax
1= - , for a Cubic Volume of

1 (Gpc/h)3 and at z = 1, after Marginalization Over Cosmological Parameters

fNL
local fNL

equil fNL
ortho

±16 ±77 ±40

Note. Each shape is analyzed independently.

Figure 4. The difference between the modal bispectrum coefficients of the QUIJOTE N-body simulations (average from 8000 simulations at fiducial cosmology) and
their theoretical prediction computed at the tree level, divided by their respective standard deviation. Note the different vertical scales of each plot.

Figure 5. The correlation matrix of the power spectrum P(k) and modal bispectrum coefficients βn of the QUIJOTE simulations for different kmax. We include a similar
number of bispectrum modes in each case, using polynomial basis functions up to a degree of 12.

22 An additional role is played by PNG contributions to the power spectrum, at
the loop level, if we perform a single-shape analysis. Such contributions are
however degenerate among different shapes.
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study the convergence of the constraints as a function of the
number of modes included in the modal expansion, each data
point from left to right corresponding to adding polynomials of 1
degree higher. As could be expected, the accurate description of
the bispectrum on small scales requires more modes. The
constraints on some cosmological parameters are not even fully
converged by taking polynomials up to degree 20, making our
Fisher forecast in such case slightly overly conservative; we verify
that the results on PNG are however always converged. The
situation is significantly better with the joint power spectrum and
bispectrum analysis. In the mildly nonlinear regime, we achieve
convergence with ∼100 modes, and using only 10 modes
produces constraints that are already within 10% of their
converged values. Even in the nonlinear regime, going beyond

∼100 modes we improve the Fisher bounds only by∼1% (except
for Ωb and h for which it is of a few percent). This means that, for
the combined power spectrum and bispectrum analysis, we can
stop the polynomial expansion to a lower degree than 20, with a
negligible loss of information. To be exact, the constraints given
in Table 2 use polynomials up to the degree 12 for the joint power
spectrum + bispectrum case, and 20 for the bispectrum-only
analysis. Note that using higher-order polynomials can add
numerical noise to the analysis, thus stopping the expansion at a
reasonable degree, like we do here, is a more robust approach.
The numbers discussed above show that the modal repre-

sentation is quite efficient. Compare, for example, the ∼100
modal coefficients in the current analysis to the thousands of k
triplets that are typically necessary to study the bispectrum at the

Figure 6. Joint constraints on cosmological parameters and PNG from the power spectrum and the modal bispectrum for different kmax at z = 1.
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same nonlinear scales, using the standard, binned estimator (e.g.,
∼2000 triangle configurations with rather large bins of width
3kF). This more efficient compression is, for example, important
to increase the accuracy of the numerical derivatives evaluated
from simulations.

Convergence tests have to be performed not only for the modal
basis, but also with respect to the total number of mock
realizations used to evaluate the Fisher matrix. In Figure 8, we
vary the number of simulations used to estimate derivatives and
verify the impact of this change on the final forecast. We find that
the constraints from the bispectrum and the joint power spectrum
+ bispectrum analyses remain very stable, even by using 25
simulations instead of the usual 500. At the same time, though, we
see that the power spectrum-only forecast is not fully converged,
even when we use the full 500 simulation sample, leading to
somewhat overoptimistic constraints in Table 2, when cosmolo-
gical parameters and PNG are studied jointly. As the power
spectrum-only case has already been reported as essentially
unconstraining for PNG, this does not change any of the main
conclusions presented above (see the companion paper Coulton
et al. 2022 for a more detailed study of this issue, which can for
example be mitigated by assuming some prior on fNL).

In Figure 8, we also verify that the constraints are highly
stable when we change the number of simulations (at fiducial
cosmology) used to estimate covariance matrices. Using only
1000 instead of 8000 simulations only leads to variations at the
percent level. However, the requirement on covariance precision
will become stricter in the next section, where we discuss the
actual parameter inference.

4.4. Parameter Estimation

After deriving Fisher matrix forecasts, we now build the
quasi-maximum likelihood estimator defined in Equation (13)
and apply it to different data sets, to verify its efficiency to
extract accurate cosmological information.

Our first validation test consists of estimating jointly
cosmological parameters and PNG amplitudes (σ8, Ωm, Ωb, ns,
h, fNL

local, fNL
equil, fNL

ortho) in the QUIJOTE simulations, for different
cosmologies. We include nonlinear scales (k h0.5 Mpcmax

1= - )
and use both the power spectrum and the bispectrum in this
analysis, as their combination should lead to smaller error bars, as
verified in the previous section.
In Figure 9, we show the corresponding results for fiducial

cosmology data sets, as well as others having PNG ( fNL
local =

100, f 100NL
equil = or f 100NL

ortho = ).23 We compute averages of
the estimated parameters and compare them to their input
values in the simulations. The correct values are recovered each
time, confirming the unbiasedness of the estimator. Note also
that we consider only cases in which these averages are
extracted from simulations not overlapping with those used to
evaluate derivatives and covariances. In this way, we avoid
spurious correlations, which could arise from using over-
lapping sets of data both to calibrate the estimator and to
measure parameters.
We also perform a similar analysis for the additional sets of

10 realizations, produced independently of the QUIJOTE
simulations and having respectively f 40NL

local = - , 0, and 40
described in Section 4.1. The quasi-maximum likelihood
estimator is built from all the available QUIJOTE simulations.
The results are shown in Figure 10, where we focus on the
combined power spectrum and modal bispectrum analysis at
different kmax. All estimated central values are within or very
close to the expected 1σ range. Moreover, the internal scatter
between cosmological parameter estimates for the three data
sets ( f 40NL

local = - , 0, and 40) is extremely small.

Figure 7. The convergence of constraints on cosmological parameters and PNG as a function of the number of modes used for the modal bispectrum estimation. The
top row corresponds to the bispectrum-only case, while the bottom row also includes the power spectrum information. Note the difference in scale between the top and
bottom rows. For each parameter, error bars are divided by the corresponding minimum; see Table 2 for the actual values. From left to right, each data point
corresponds to include polynomials of 1 degree higher in the modal basis.

23 We focus here on changes in fNL, rather than on other cosmological
parameters, both because the main focus of this work is on the study of PNG
and because, in the available QUIJOTE set, we can access realizations with
f 100NL

local = , which is more than a 4σ deviation from the fiducial value of
fNL = 0. This allows us to test an interesting regime, in which the data we
analyze are generated from parameters that are significantly displaced from the
model we use to build the estimator.
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In general, we expect the estimator to yield slightly different
results, depending on the exact set of simulations used for its
construction. For this reason, we perform several stability tests,
in which we study variations in the estimated parameters, by
changing the number of simulations used to calculate
covariances or derivatives. These tests highlight that less
accurate derivatives and covariances, which can be obtained if
we use a too small number of realizations in their evaluation,
have a different impact on the final measurements.
A less precise covariance matrix leads to a suboptimal

estimation of parameters, as shown in Figure 11. We compare
the error bars of the quasi-maximum likelihood estimator
applied to the QUIJOTE simulations at fiducial cosmology, as a
function of the number of realizations used to compute
covariances, to the Fisher forecasts described in Section 4.3.
This confirms that our estimator yields close to optimal
constraints, at the percent level for most parameters (5% for Ωb

and h), when using many simulations to evaluate the
covariance. Using only 1000 simulations, the increase of error
bars is still only of a reasonable order 10%, which is small
compared to the gain due to including nonlinear scales in the
analysis (a factor 2 or more for all parameters).
For the derivatives, the impact on optimality is negligible, but

the results can be biased, as shown in Figure 12. To study the

Figure 8. The stability of Fisher constraints under variations of the number of simulations. In the left panels, we vary the number of simulations used to calculate
numerical derivatives, while on the right panels we vary the number of simulations used to measure covariances. All error bars are normalized by the result obtained
using the full data set, see Table 7 for actual values. The top, middle, and bottom rows correspond respectively to power spectrum only, bispectrum only, and
combined power spectrum and bispectrum analyses. Each column corresponds to the constraints on one parameter, and they are all analyzed jointly. We consider five
different numbers of simulations to compute derivatives (from 25–500) and covariances (from 500–8000), each number corresponding to its own color and marker.
We include scales down to k h0.5 Mpcmax

1= - .

Figure 9. The unbiasedness of the quasi-maximum likelihood estimator
(Equation (13)), when measuring cosmological parameters and PNG
amplitudes. We use the power spectrum and the bispectrum jointly, up to
k h0.5 Mpcmax

1= - . Each individual column corresponds to a given parameter
(cosmological or PNG). To be exact, we show the difference between the
expected and measured values, divided by the respective Fisher error bar. Each
panel corresponds to a different cosmology of the data samples (i.e., one with
Gaussian initial conditions and the three types of PNG). For each of them, we
analyze five independent data sets of 100 realizations, each being indicated by
its own color and marker.
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typical size of the bias, we define less accurate estimators, using
smaller subsets of the 500 simulations, which are initially used to
compute derivatives. For example, using 25 simulations to
compute derivatives gives 20 independent estimators. Then, we
measure the difference between the measured parameters with
every estimator and the benchmark results, obtained with an
estimator calibrated using all available simulations. Finally, we
compute the standard deviation of this difference as a function of
the number of simulations used to calculate derivatives (from
1–400), which is what we show in Figure 12 after dividing it by
the corresponding Fisher error bar.

We apply the same procedure for different sizes of data
samples (10 and 100 simulations) to verify that the results are
indeed biased, and not suboptimal, as, in the latter case, the
spurious bias evaluated with this methodology would decrease
with the number of simulations. As data samples, we consider
three different choices. In the first, all parameters are set at their
fiducial values, meaning in particular that all PNG amplitudes
are set to 0. In the second, we set f 100;NL

equil = we will define
this case as close to fiducial since it corresponds to a 1σ
deviation from f 0NL

equil = . In the third, we take f 100;NL
local =

this is our far from fiducial case, since it is characterized by a
4σ deviation from f 0NL

local = . We see that the impact of the
number of simulations used to compute derivatives on the
fiducial and close to fiducial cases is negligible. However,
when analyzing the simulations with local PNG (far from

fiducial), the measured value of fNL
local displays a bias. However,

this effect decreases rapidly and becomes already negligible
when using more than 100 simulations to compute derivatives
(let us recall that in our main analysis we use 500 realizations
for this task). Even when using less than 10 simulations, it is
still smaller than the typical 1σ error bar. The two other
primordial shapes, both correlated with local PNG, are also
affected in similar ways, whereas for cosmological parameters
the effect is negligible.
We can thus conclude that the quasi-maximum likelihood

estimator combining power spectrum and modal bispectrum is
unbiased and can optimally extract information about cosmol-
ogy and PNG up to significantly nonlinear scales, provided a
sufficiently large number of simulations to calculate covariance
and derivatives is used.
An important caveat is that to achieve optimality, it is also

important to evaluate covariances and derivatives by using an
input fiducial cosmology in the simulations, which is close
enough to the actual value of parameters in the data. In our current
test, this is true by construction. However, in general, it may be
necessary to reach a good enough fiducial set of parameters by
iteration. This poses the numerical challenge of generating
thousands of N-body simulations at several different cosmologies.
One efficient solution to overcome this issue is to use the
CARPool method (Chartier & Wandelt 2021, 2022; Chartier et al.
2021), which combines a few high-fidelity simulations with many
fast surrogates (typically 100–1000 times faster to produce) to
obtain accurate estimates of the mean and covariance matrix of
our observables. This approach is under investigation and will be
further discussed in a forthcoming publication.

5. Conclusions

In this paper, we discussed the implementation of a new,
simulation-based, joint power spectrum and bispectrum statistical
estimator of PNG amplitudes and standard ΛCDM parameters in
LSS data. The methodology follows the general approach
developed in Alsing & Wandelt (2018) and Heavens et al.
(2000), and it is based on extracting summary power spectrum
and bispectrum statistics from the data and computing the score
function, making the reasonable assumption that sampling
distributions are Gaussian to a good approximation. This produces
a vector of optimally compressed statistics, which is then used to
build a quasi-maximum likelihood estimator of the parameters.

Figure 10. Cosmological and PNG amplitude parameters estimated from
several sets of 10 N-body simulations for different kmax with a different amount
of local PNG in their initial conditions. The orange circles, green squares, and
purple crosses correspond respectively to f 40NL

local = , 0, and −40, and the
vertical dashed lines are the expected standard errors on the average from 10
simulations. The horizontal dashed lines are the expected values of the different
data sets. The vertical scale is linear around 0, and logarithmic close to the
edges.

Figure 11. The error bars of the quasi-maximum likelihood estimator as a
function of the number of realizations used to calculate the covariance matrix.
We analyze the 8000 QUIJOTE simulations at z = 1, including both the power
spectrum and the bispectrum, up to k h0.5 Mpcmax

1= - . All error bars are
divided by their corresponding Fisher prediction, as described in Section 4.3.
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The required covariances and numerical derivatives with respect
to parameters are evaluated from a large set of mock realizations
with Gaussian and non-Gaussian initial conditions. To extract
bispectrum summaries, we implement an efficient numerical
pipeline for modal bispectrum estimation, allowing for a useful
preliminary compression step, in which the information in all
available Fourier triplets is described by a relatively small set of
mode amplitudes.

Our pipeline was applied to a large set of QUIJOTE
simulations at z= 1, including newly produced sets of
realizations with PNG of the local, equilateral, and orthogonal
types. In the analysis presented here, we focused on the study
of the dark matter field. Of course this is a vastly idealized
scenario, compared to the analysis of the galaxy density field
in redshift space, required in a real data set. However, a
preliminary study of the matter field is a very useful starting
point, as it both enables validating the entire methodology—
developed here for the first time—and addresses at the same
time the interesting question of how much information on
PNG and cosmological parameters we can in principle extract,
by pushing the analysis to small scales, where perturbative
approaches fail, as we show, even in this simplified context.
For this purpose, we derived Fisher bounds for the parameter
set f f f n h, , , , , , ,m b sNL

local
NL
equil

NL
ortho

8{ }s W W , using the covar-
iance of the summary statistics—extracted from a training set
of 8000 realizations—at three different cutoff scales, namely,
k h0.07 Mpcmax

1= - , k h0.2 Mpcmax
1= - , and kmax =

h0.5 Mpc 1- . We then applied the quasi-maximum likelihood
estimator to our mock data and verified its unbiasedness.

The robustness of the results was thoroughly checked, for
example, by reducing the number of training realizations used
to calibrate the estimator, or to compute the Fisher forecasts.
We confirmed that all our results are fully converged and
remain stable (e.g., with results within the 1σ range, even when
we used a few times less data to evaluate covariances).
Moreover, we run the pipeline on a set of NG realizations,
generated independently of the QUIJOTE suite and displaying a
different input fNL from the training set; also in this case, we
recovered the unbiasedness of the estimator. In further
consistency tests, we considered power spectrum and bispec-
trum estimates separately. Interestingly, starting from bispec-
trum results, we found out that PNG constraints significantly
improve when we add power spectrum estimates. This effect
persists when we fix all standard cosmological parameters to
their known fiducial values. This might seem surprising at first,
since there are no fNL signatures at the tree level in the dark
matter power spectrum, for any PNG shape. However, it turns
out that the power spectrum works in this case as an ancillary

statistic, able to improve the separation between the primordial
(signal) and gravitational (noise) bispectrum component,
through its correlation with the latter.
In summary, the outcome of our analysis shows that our

pipeline can extract information on fNL and cosmological
parameters up to small scales, deep into the nonlinear regime,
which is a very promising starting point. The overall estimation
procedure is unbiased and fast, once input simulations to train
the estimator have been generated. A large set of input
realizations, based on the QUIJOTE suite, was produced for this
purpose and are publicly available.24 These simulations are
fully described in our companion paper (Coulton et al. 2022).
In the same companion paper, we also study in more detail the
information content of the power spectrum and bispectrum, at
z= 0, addressing the important points of quantifying how large
the information contribution coming from nonlinear scales is
and of establishing when such contribution saturates. This is
done via a Fisher matrix analysis using bispectrum Fourier
modes, which also includes a further battery of numerical
convergence and validation tests.
In the work presented here, the training and validation sets are

characterized in most cases by matching input cosmological
parameters. In general, this would not be the case and too large a
mismatch between the input fiducial cosmology and the actual
value of parameters in the data would make the results suboptimal
or biased. This can be solved by implementing a recursive
procedure, in which the fiducial cosmology is updated by taking
the best-fit values of the parameters at each step. Such an approach
has the extra cost of having to generate new sets of simulations to
recalibrate the estimator weights at each step. This issue can in
principle be significantly alleviated by resorting to the CARPool
method, which allows for accurate estimates of covariances by
resorting to just a small set of high-fidelity realizations, combined
with a large set of fast surrogates. This approach is under
investigation and will be the object of a separate publication.
In forthcoming works, we will also gradually extend our

analysis to include more and more realistic scenarios: first, we will
analyze the actual density field of biased tracers (dark matter halos
and galaxies), and later, we will account for redshift space,
incomplete sky coverage, and other crucial observational effects, to
finally reach the capability to analyze real data sets. Note that,
given our simulation-based approach, this will not require any
significant modification in the pipeline that was illustrated and
validated here, but only changes in the input training sets and data.

Figure 12. The typical size of the bias on estimated parameters, divided by their corresponding Fisher error bars, as a function of the number of simulations used to
compute derivatives. We analyze QUIJOTE simulations for three different cosmologies, fiducial (left panel), f 100NL

local = (middle panel), and f 100NL
equil = (right

panel), and include both the power spectrum and the bispectrum up to k h0.5 Mpcmax
1= - . The solid lines correspond to data sets of 10 simulations, while the dashed

lines correspond to data sets of 100 simulations.

24 https://quijote-simulations.readthedocs.io/en/latest/png.html
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Appendix A
Modal Estimator

A.1. Modal Basis

The custom modes we use in this work are based on those
developed in Hung et al. (2019a) and Byun et al. (2021). From
the one-dimensional functions
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where PL(k) is the linear matter power spectrum, one can write
the following four modes:
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which fit exactly the standard tree-level matter bispectrum.
Similarly, the local bispectrum template given in

Equation (2) can be described by a single mode:
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A.2. Gamma Matrix

The gamma matrix is defined as the inner product
(Equation (7)) of the mode functions Qn, given by
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The above inner product matrix needs to be calculated only
once for a chosen basis function Qn and scale range
k k,min max[ ]. Different ways exist to calculate the integral of
the γ matrix, where these methods have been summarized and
compared extensively in Byun et al. (2021). In this work, we
use the method applied for the first time in Karagiannis (2018),
where the inner product is calculated by utilizing 1D FFTs. In
order to describe this method, we need to take a step back
and use the definition of the inner product used to derive
Equations (9) and (10), as well as Equation (A5), which is
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The integral over ki can be separated into a radial and angular
part, where the latter is written as

kd Y 4 , A10k ℓ m i ℓ m0 0i i i i i( ˆ ) ( )ò pd dW =

where to derive the above we have used the normalization
of spherical harmonics, i.e., kd Y 1k ℓ m i

2
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Y 1 400 p= . The above equation forces all ℓi and mi in
Equation (A9) to zero, giving
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Now, if we use for the integration over x the fact that,
xd Y 1 4x 00

3( )ò pW = and ∫dx x2j0(k1x)j0(k2x)j0(k3x)=
π/(8k1k2k3), where the latter is nonzero only for wavevectors
that form a triangle, then we retrieve the expression in
Equation (A6). However, at this point we will only use the
expression for the angular part of the x integral, while we
substitute in Equation (A11) the basis functions Qm =
q k q k q kp r s1 2 3

1 1 1
( ) ( ) ( ){ } and Q q k q k q kn p r s1 2 3

2 2 2
( ) ( ) ( ){ }= , which

is a separable product of one-dimensional functions qp(k).
Furthermore, we use the expression for the zero-order Bessel
function, i.e., j k x k x k xsini i i0 ( ) ( ) ( )= , thus getting
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The above integral over k can be calculated by using one-
dimensional FFTs, as described in Chapter 13.9 of Numerical
Recipes (Press et al. 1992), while the integration over x in
Equation (A12) can be done by using conventional numerical
integration methods, like the five-point Newton–Cotes quadrature
rule used here. The accuracy of the outlined method, on calculating
Equation (A12), depends on the grid resolution of k, which has to
be sufficient, not only to accurately calculate the integral of
Equation (A13), but the derived range and resolution of x
generated by the FFT, should be adequate enough, as well, to
retrieve accurate numerical result for the outermost integration over
x. More details on this method can be found in Press et al. (1992).

Appendix B
Impact of Cosmological Parameters

In Figures 13 and 14, we show the impact on the power
spectrum and on the bispectrum of varying the cosmological
parameters considered in this work, similar to what was done
for PNG in Section 4.2. This highlights distinct behaviors for
each parameter and each observable, in contrast with PNG,
which is strongly degenerate at the power spectrum level.

Figure 13. Impact of cosmological parameters on the matter power spectrum
(averaged from 500 N-body simulations). Solid and dashed lines correspond
respectively to values perturbed above and below the fiducial.
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