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Abstract 39 

This paper presents an evaluation of predictions submitted for the "HMBS" challenge, a component of 40 

the sixth round of the Critical Assessment of Genome Interpretation held in 2021. The challenge 41 

required participants to predict the effects of missense variants of the human HMBS gene on yeast 42 



growth. The HMBS enzyme, critical for the biosynthesis of heme in eukaryotic cells, is highly conserved 43 

among eukaryotes. Despite the application of a variety of algorithms and methods, the performance of 44 

predictors was relatively similar, with Kendall tau correlation coefficients between predictions and 45 

experimental scores around 0.3 for a majority of submissions. Notably, the median correlation (>=0.34) 46 

observed among these predictors, especially the top predictions from different groups, was greater than 47 

the correlation observed between their predictions and the actual experimental results. Most predictors 48 

were moderately successful in distinguishing between deleterious and benign variants, as evidenced by 49 

an area under the receiver operating characteristic (ROC) curve (AUC) of approximately 0.7 respectively. 50 

Compared with the recent two rounds of CAGI competitions, we noticed more predictors outperformed 51 

the baseline predictor, which is solely based on the amino acid frequencies. Nevertheless, the overall 52 

accuracy of predictions is still far short of positive control, which is derived from experimental scores, 53 

indicating the necessity for considerable improvements in the field. The most inaccurately predicted 54 

variants in this round were associated with the insertion loop, which is absent in many orthologs, 55 

suggesting the predictors still heavily rely on the information from multiple sequence alignment.  56 

Introduction 57 

Understanding the relationship between genotype and phenotype is pivotal, as it underpins human trait 58 

diversity and plays a critical role in the onset and progression of diseases. Despite the advances in 59 

techniques to deduce the phenotypic effects of genomic variants (Adzhubei et al. 2013; Ancien et al. 60 

2018; Calabrese et al. 2009; Capriotti et al. 2006; Choi and Chan 2015; Dehouck et al. 2009; Ioannidis et 61 

al. 2016; Katsonis and Lichtarge 2014; Ng and Henikoff 2001; Raimondi et al. 2017) and the formation of 62 

various global consortia (Genomes Project et al. 2015; International Cancer Genome et al. 2010; Lander 63 

et al. 2001; Turnbull et al. 2018) for the collection and analysis of genomic data, the exact link between 64 

genotype and phenotype remains elusive. This gap in knowledge persists despite advancements in 65 

comprehending diseases, including cancer, and their genetic bases. Echoing the objectives of The Critical 66 

Assessment of Protein Structure Prediction (CASP) (Kryshtafovych et al. 2021), which rigorously 67 

evaluates computational models for macromolecular structures and complexes, the Critical Assessment 68 

of Genome Interpretation (CAGI) (Critical Assessment of Genome Interpretation 2024)  is established for 69 

a similar purpose in genomics. CAGI aims to rigorously assess computational methods for predicting the 70 

impacts of genomic variation and to gauge our proximity to the ultimate goal of in silico phenotype 71 

prediction from genotypes.  72 

The CAGI, round six, includes 13 challenges, and here we present the assessment of a challenge called 73 

"HMBS".  In this challenge, fitness scores were provided through a complementation assay developed in 74 

Frederick Roth's Lab (Warren van et al. 2023). The assay assessed the ability of human 75 

hydroxymethylbilane synthase (HMBS) missense variants to rescue a temperature-sensitive mutation of 76 

the yeast ortholog HEM3. The fitness score conceptually represents the relative growth rate of yeast 77 

expressing HMBS missense variants compared to yeast expressing wild-type HMBS. Deleterious 78 

missense variants have fitness scores closer to 0, while tolerated variants have fitness scores closer to 1. 79 

Participants were expected to predict fitness scores with experimental standard error for 6,589 variants 80 

of HMBS, including 310 synonymous, 317 nonsense, and 5,962 missense variants. Although the exact 81 

values of experimental fitness scores were not disclosed during the challenge, a distribution was 82 

provided to aid in normalizing predictions. In this assessment, we will only focus on the prediction 83 

performance of missense mutations.  84 



HMBS is a protein involved in heme biosynthesis. It catalyzes the sequential polymerization of four 85 

molecules of porphobilinogen to form hydroxymethylbilane (Song et al. 2009). Dysfunction of the 86 

protein may lead to acute intermittent porphyria (AIP), a rare autosomal dominant disease with 87 

symptoms such as abdominal pain, nausea, vomiting, peripheral neuropathy, and seizures. HMBS served 88 

as a good target for evaluating predictors’ ability to predict the effects of variants. First, HMBS is 89 

ubiquitous in most eukaryotic cells, providing numerous sequence homologs for sequence analysis. 90 

Secondly, there are numerous structures available for HMBS that aid in understanding the functional 91 

relevance of mutations (Bustad et al. 2021; Gill et al. 2009; Pluta et al. 2018; Sato et al. 2021; Song et al. 92 

2009). Thirdly, various studies have explored how mutations affect the functions of the protein and the 93 

underlying mechanism by which they cause AIP (Kauppinen and von und zu Fraunberg 2002; Lenglet et 94 

al. 2018; Schneider-Yin et al. 2008; Ulbrichova et al. 2009). Overall, the wealth of existing knowledge 95 

regarding HMBS allows for the application of various methods, making it a suitable target for evaluating 96 

computational approaches. 97 

In this round of CAGI, we received 50 predictions from 11 teams (Table 1 and detailed information in 98 
Supplementary material). Among them, Teams 1, 3, 5, 6, and 10 incorporated deep learning methods in 99 
some or all of their submissions. Team 1 applied two modules by combining a feature extractor using a 100 
long short-term memory network and a pathogenicity classifier composed of two fully connected layers; 101 
Team 3 combined pre-trained protein language models from bidirectional transformer encoder (BERT) 102 
(Devlin et al. 2018) with fine-tuning using HEM3_human multiple sequence alignment. Team 5 103 
developed cross-protein transfer models (Jagota et al. 2023) that used deep mutational scanning data 104 
available in public databases along with predictions from REVEL (Ioannidis et al. 2016) , ESM-1v (Meier 105 
et al. 2021) , and DeepSequence (Riesselman et al. 2018). Notably, ESM-1v and DeepSequence are both 106 
deep learning methods. Team 6 also incorporated one predictor based on deep-learning method, Team 107 
10 used ELASPIC2 (Strokach et al. 2021), ProteinSolver (Strokach et al. 2020), ProteinBert (Brandes et al. 108 
2022), and ELASPIC2 with AlphaFold (Jumper et al. 2021) features for their submissions 1, 2, 3 and 5, 109 
respectively and these four methods are deep learning methods while submission 4 utilized Rosetta's 110 
cartesian_ddg protocol (Park et al. 2016). Team 7 applied Evolutionary Action scores (Katsonis and 111 
Lichtarge 2014), which accounts for phylogenetic divergence (Lichtarge et al. 1996) and amino acid 112 
substitution odds, calculated using protein evolution data and Katsonis and Lichtarge team also 113 
participated in the previous CAGI rounds using the similar methods (Katsonis and Lichtarge 2017, 2019). 114 
Team 9 used SNPMuSiC (Ancien et al., 2018) for submission 1, FiTMuSiC (Tsishyn et al., 2023) for 115 
submission 2, and PoPMuSiC (Dehouck et al. 2011) for submission 3. Team 2 developed a novel 116 
phylogeny-dependent probabilistic model that utilized phylogenetic tree information to measure the 117 
deleteriousness of a given variant. This draft version was an initial attempt that served as a foundation 118 
for PHACT (Kuru et al. 2022). PHACT differs from the approach submitted to CAGI in terms of 119 
considering position diversity through phylogenetically independent amino acid alterations as well as 120 
scaling the final score. On the GitHub page 121 
(https://github.com/CompGenomeLab/PHACT/tree/main/CAGI6_HMBS)  of the tool, the authors 122 
demonstrated that PHACT outperformed both this draft version, PolyPhen-2, and the baseline predictor 123 
in various measures over the experimental results used in this challenge. Team 4 combined structural 124 
analysis with consensus of predictions from 3 stability predictors, namely FoldX (Schymkowitz et al. 125 
2005), INPS3D (Savojardo et al. 2016), and PoPMuSiC 2.1 (Dehouck et al. 2011),  while the Team 6 126 
applied the random forest method to combine several published predictors. Team 11 applied PhyloP 127 
(Pollard et al. 2010), PhD-SNPg (Capriotti and Fariselli 2017, 2023), PhD-SNP (Capriotti et al. 2006), and 128 
SNPs-and-GO (Calabrese et al. 2009; Capriotti and Altman 2011; Capriotti et al. 2017) with/without 129 
structure and various linear transformations for different submissions. All the above methods involved 130 



the multiple sequence alignment directly or indirectly, except for Team 8, which solely focused on 131 
structural information with molecular dynamics. Notably, Team 5 and 6 and submission2 from Team 9 132 
also utilized published yeast complementation assay data for proteins such as UBE2I and CALM1 (Weile 133 
et al. 2017) to help train their models.  134 

In this HMBS challenge, all top-performing predictors (Team 5 from the Yun Song group, Team 10 from 135 

the Alexey Strokach group, and Team 9 from the Fabrizio Pucci group) exhibit similarly moderate 136 

correlations with experimental scores, with a Kendall tau correlation coefficient around 0.3. When 137 

compared to prior CAGI rounds, a greater number of these predictors surpassed baseline performance, 138 

showcasing the progress in the field. Despite this progress, the application of deep learning methods did 139 

not achieve the groundbreaking performance seen in approaches like AlphaFold (Jumper et al. 2021) for 140 

CASP. Furthermore, regardless of whether deep learning methods were employed, these leading 141 

predictors showed stronger correlations with each other than with experimental scores. This pattern 142 

suggests a shared reliance on similar types of information, such as amino acid frequency and 143 

conservation, within the multiple sequence alignment. Additionally, top-performing predictions, 144 

submissions from Team 5 and submission 2 from Team 9, leveraged publicly available yeast 145 

complementation assay data for other proteins to transform the values of their raw predictions. This 146 

approach suggests that taking advantage of experimental data, such as deep mutational scanning, could 147 

improve predictions of mutation effects.  148 

Results 149 

The distribution of experimental scores and predicted scores 150 

In the yeast complementation assay, three types of mutations were provided: nonsense, synonymous, 151 

and missense. Interestingly, we observed a wide distribution of relative growth scores for synonymous 152 

mutations, which overlapped with the distribution of nonsense mutations. Meanwhile, approximately 153 

20% of the missense mutations in our dataset exhibited extreme deleterious effects with experimental 154 

scores of 0 (Fig 1A). 155 

During the HMBS challenge, significant variations were observed in the distribution and value scaling of 156 

scores predicted by different teams (Fig 1B) although the distribution of experimental scores was 157 

provided to help participants rescale their raw predicted scores. Notably, submission 6 from Team 8 158 

(submission 8_6) was the sole group with predictions not statistically different from the distribution of 159 

experimental scores, as confirmed by the Kolmogorov-Smirnov test (P > 0.01, detailed in Table S1). In 160 

contrast, submission 1 from Team 3 (submission 3_1) provided some predicted scores exceeding 89,700, 161 

with 134 missense mutations having predicted scores above 10. Furthermore, both Team 1 and Team 8 162 

submitted predictions that included negative scores. To ensure a fair comparison across predictors and 163 

to comply with the guidelines of the challenge that submitted predictions should be numeric values on a 164 

log scale greater than or equal to 0, we implemented a quantile transformation to rescale their 165 

predictions and shift all negative scores to 0, adhering to the method employed in prior CAGI 166 

assessments (Zhang et al. 2019; Zhang et al. 2017). Additionally, we took into account the distributions 167 

of nonsense and synonymous mutations. We characterized mutations with growth scores below 0.3 as 168 

deleterious, a category that contained less than 5% of synonymous mutations. On the other hand, 169 

benign missense mutations were identified as those with growth scores ranging between 0.8 because 170 

there are less than 5% of nonsense mutations scored above this threshold. Additionally, we observed 171 



several hyper-complementing mutations (Warren van et al. 2023; Weile et al. 2017). Some of these 172 

mutations could be deleterious to humans, while others might result from experimental errors. As such, 173 

we excluded mutations with experimental scores over 1.36, a threshold above which the top 5% of 174 

synonymous mutations reside. After eliminating these hyper-complementing mutations, our predictor 175 

evaluation dataset contained 5811 missense mutations, including 2043 deleterious and 1942 benign 176 

mutations, in line with our classification criteria. 177 

Moderate performance achieved but falls significantly short of positive control 178 

We have applied the same evaluation strategy (Table 2) as CAGI4 (Zhang et al. 2017) and CAGI5 (Zhang 179 

et al. 2019) to assess the predictions in terms of (1) classification of missense mutations, (2) ranking 180 

variants by fitness effects, and (3) numerical prediction of fitness scores with both positive control, from 181 

experimental scores, and a baseline predictor based on solely multiple sequence alignment from 182 

orthologs in orthoDB (Zdobnov et al. 2021) as references. We also included PolyPhen (Adzhubei et al. 183 

2013) with the HumVar model in the comparison. Table 3 provides a detailed summary of the 184 

performance of the predictors against each of these criteria. With the exception of Team 8, which 185 

utilized molecular dynamics to predict the effects of variants, all participants demonstrated significantly 186 

better than random predictions, with the best-performing teams achieving Kendall's tau correlation 187 

coefficients of approximately 0.3. All predictions from Team 1 negatively correlate with experimental 188 

scores, which indicates a potential misinterpretation regarding the orientation of the scores. 189 

For discriminating deleterious and non-deleterious mutations, the best-performing submissions for each 190 

team are displayed in Fig 2A. Although predictors still fall considerably behind the positive control, a 191 

number of them (Team 5, Team 7, Team 9, Team 10, and Team 11) show an improvement in 192 

performance compared with the baseline predictor. Interestingly, although submission 11_8 displays an 193 

overall better performance, its initial worse performance compared with the baseline predictor at a 194 

lower false positive rate suggests it is less specific for recognizing the most deleterious mutations 195 

compared with the baseline predictor. In contrast, submission 4 from Team 3 displayed a higher AUC at 196 

the initial of the ROC, while performance rapidly deteriorates when a false positive reaches around 0.08, 197 

suggesting it is able to predict extremely deleterious mutations but discrimination ability lowered for 198 

more benign cases. Team 8 is the only team showing nearly random predictions for deleterious 199 

mutations. Team 1 likely reversed the deleterious mutations and benign mutations in the submission. 200 

Upon inverting the predictions, Team 1's performance (AUC 0.73 for submission 1) aligns more closely 201 

with that of the other top-performing teams (0.75 for submission 10_5, 0.73 for submissions 9_2 202 

(Matsvei et al. 2023)  and 11_8), exhibiting comparable metrics. In addition, 7 teams (Team 1, Team 5, 203 

Team 6, Team 7, Team 9, Team 10 and Team 11) with predictors surpass the PolyPhen, signifying 204 

advancements in recent years. 205 

In contrast to previous rounds of CAGI4 (Zhang et al. 2017) and CAGI5 (Zhang et al. 2019), the current 206 

challenge to predict the effects of missense mutations in HEM3 has witnessed the emergence of several 207 

predictors, including submissions 5_1, 10_5, 5_2, 9_2, 10_3, and 5_5, that surpass the performance of 208 

the baseline predictor, which relies solely on amino acid frequency in a multiple sequence alignment. 209 

Notably, submission 5_1 stands out as the overall top-performing predictor when encompassing rank-210 

based scores, original value-based scores, and rescaled-value-based scores. However, a closer 211 

examination of the scores reveals that Team5's superior performance primarily stems from its 212 

proficiency in original-value-based scores. Conversely, when considering rank-based scores and rescaled 213 



values, predictors from submissions 10_5 and 9_2 exhibit marginal superiority (with a difference around 214 

0.01 to 0.03 in ranked-based measures) over Team5, indicating that Team5 excels over submission 10_5 215 

and submission 9_2 in value assignment. Compared with Team 10 and Team 9, predictions from Team 5 216 

align closer to the distribution of experimental scores (Table S1), and they used publicly available yeast 217 

complementation assay scores for other proteins to transform the values of their predictions, which 218 

may explain its superiority in original-score-based measures. 219 

To ascertain the statistical significance of our evaluation, we undertook simulations involving 5,000 220 

datasets, assuming a Gaussian distribution for the fitness scores of each variant. The mean and standard 221 

deviation for this distribution were derived from the experimental fitness scores and their 222 

corresponding standard errors, respectively. For every simulated dataset, we calculated the evaluation 223 

metrics, computed Z-scores for each set of predictions, and tallied the number of times one predictor 224 

outperformed another. The head-to-head comparisons, depicted in Fig 2B, reveal that submission 5-1 225 

consistently outshone the other predictors across the majority of the simulated datasets, while 226 

submission 10_5, 9_2, and 5_2 appeared to be neck and neck. In alignment with the head-to-head 227 

analysis, the distribution of ranks for the predictors, as shown in Fig 2C, further supports the notion that 228 

submission 5_1 takes the lead in a significant number of simulated datasets. Concurrently, submissions 229 

10_5, 9_2, and 5_2 demonstrate comparable rank distributions, indicating a virtual tie among them. 230 

Inaccurate predictions on functional loops 231 

 To investigate the missense mutations where the predictions failed, we examined the absolute 232 

difference between the median of rescaled scores from top-performing predictors and experimental 233 

scores. Subsequently, we calculated the median absolute difference for each position and visualized it 234 

using a heat map (Fig 3A). We observed significant discrepancies between the predictions and 235 

experimental scores in/around two specific regions: the active site loop (56 to 76aa) of the 236 

diazomethane cofactor binding domain and “insertion regions” (296 to 324aa), a loop constraining the 237 

movement of domain 1 (residues 1-114, 219-236) and 2 (residues 120-212) relative to domain 3 238 

(residues 241-361). Other small regions showing high disparities include the cofactor-binding loop (257 239 

to 262aa) and 354-356aa. (Fig 3A and B). Remarkably, domain 3 stands out for its enrichment of 240 

missense mutations whose effects are challenging to predict, with 42 (35%) positions exhibiting absolute 241 

difference >= 0.4. This is in stark contrast to domain 1 and domain 2, which have only 17 positions (15%) 242 

and 19 positions (20%), respectively. Interestingly, domain 3 also has the lowest average alignment 243 

depth (Table S2) and conservation score (Table S3).  244 

Upon detailed examination of the distributions of experimental scores and predicted scores from the 245 

top-performing predictor, submission 5_1, it is observed that the predictor tends to classify mutations 246 

on the active-site loop and cofactor-binding loop as deleterious, although many of them are actually 247 

benign. Conversely, around 200 mutations in the insertion regions are predicted to be benign, despite 248 

their deleterious effects (Fig 3C). All those regions are less conserved, and the insertion region is even 249 

missing in more than 50% of sequences in the HEM3 ortholog group we used to construct our baseline 250 

predictor (Table S2).  251 

The high correlation between predictors and conservation plays a significant role in 252 

predictions 253 

 To evaluate the similarity among the predictors, the absolute Kendall tau correlation coefficients were 254 

computed to measure the association between their predictions. Interestingly, a notable degree of 255 



correlation was observed among predictions from different teams, which exceeded the correlation 256 

between the experimental scores and the predictions themselves (Fig 4A). To discern what might be 257 

contributing to this high similarity among predictors, we analyzed the correlation between conservation 258 

scores and predictions, as well as between conservation scores and experimental scores (Fig 4B). This 259 

analysis was conducted given that a majority of predictors were based, either directly or indirectly, on 260 

multiple sequence alignment. Both the experimental and prediction scores demonstrated a correlation 261 

with the conservation index, with Kendall tau correlation coefficients of approximately 0.6 and 0.4, 262 

respectively. However, the range of prediction scores across different levels of the conservation index 263 

was considerably narrower compared to that of the experimental scores. 264 

Furthermore, we calculated the proportion of deleterious missense mutations occurring at conserved 265 

positions versus benign mutations at non-conserved sites, as indicated by both experimental scores and 266 

predictions. The experimental scores indicated that about 60% of mutations at conserved sites were 267 

deleterious, whereas several predictors were inclined to predict a higher proportion of mutations at 268 

conserved sites as deleterious (Fig 4C above). On the flip side, experimental scores suggested that 269 

approximately 44% of mutations at non-conserved sites were benign, while many predictors, 270 

particularly those that performed well, tended to predict a higher proportion of benign mutations at 271 

non-conserved sites. For instance, submissions 5_1, 10_5, and 9_2 estimated that 72.5%, 76%, and 76%, 272 

respectively, of mutations at non-conserved positions were benign (Fig 4C below). 273 

Discussions 274 

Advantages and possible disadvantages of using yeast complementation assay for 275 

accessing effects of mutations.  276 

The choice of datasets to evaluate mutation effects plays a vital role in shaping the conclusions drawn 277 

from the assessment. Many prediction models rely on publicly available datasets like OMIM (Hamosh et 278 

al. 2005), dbSNP (Sherry et al. 1999), and ClinVar (Landrum et al. 2014), extracting variant information 279 

from these sources. Thus, relying solely on public datasets for evaluation comes with inherent 280 

drawbacks: 1) the potential for biased assessments, 2) an overestimation of performance, 3) limitations 281 

in generalizing functional effects to new variants, and 4) the possibility of errors in public databases. 282 

To overcome these limitations, the CAGI committee offers a unique dataset of experimentally 283 

determined variant fitness that is not publicly accessible. This dataset is distinct from the training data 284 

used by existing predictors and comprises a large number of missense variants. For the HMBS challenge 285 

in CAGI6, there are, on average, 17 missense mutations in each position, nearly harboring all the 286 

possible missense mutations for each position. By doing so, it fully challenges the predictive capabilities 287 

of existing models in determining the functional effects of new variants. Although employing such a 288 

dataset can avoid significant data overlapping with training dataset predictors used and thus avoid over-289 

optimistic evaluation, the yeast system may also bring other disadvantages. Due to the disparity 290 

between humans and yeast, the protein properties may still be quite different between yeast and 291 

humans. For example, in the calmodulin challenge of CAGI5, the budding yeast, Saccharomyces 292 

cerevisiae, can survive with all EF-hands ablated although CALM1 is essential for yeast (Geiser et al. 293 

1991) and predictors are most inconsistent with experiment scores around calcium binding sites, 294 

suggesting possible limitations of the map derived from this model system (Zhang et al. 2019) and yet 295 

the map is still useful as evidence for and against pathogenicity (Weile et al. 2017).  296 



In addition, yeast only has around 6000 proteins, while the number of human proteins is more than 297 

22000. Although yeast and human share a considerable number of orthologs and biological pathways, 298 

most human proteins lack yeast counterparts which suggests the lack of a yeast-based 299 

 300 

complementation assay with which to assess human variants in these proteins. Even where a 301 

complementation assay exists, interactions that the complementing human protein might have in 302 

human cells may not exist in yeast. Thus missense mutations affecting those interactions may not show 303 

severe effects on yeast growth. However, they may severely affect protein functions in human. 304 

Therefore, considering the predictor performance and the characteristics of the yeast complementation 305 

assay, it is recommended that future challenges involving the yeast assay as an evaluation dataset focus 306 

on protein targets that meet the following criteria: 1) Has a strong phenotype that is suitable for 307 

selection (e.g. growth or fluorescence reporter); 2) Demonstrate a high degree of similarity in protein 308 

function and properties between yeast and humans, with all functional regions in the human protein 309 

being also crucial for optimal yeast protein functioning; 3) Prioritize proteins with fewer interactions or 310 

those with interacting partners that have counterparts in yeast and share similar interacting interfaces. 311 

Notwithstanding, where many pathogenic and benign human variants are known, a yeast or any other 312 

functional assay may be considered empirically validated as accurate if it is able to accurately distinguish 313 

pathogenic from benign variation (Brnich et al. 2019; van Loggerenberg et al. 2023). 314 

Participants applied deep learning methods for the first time in CAGI 315 

With the remarkable success of Alphafold, "deep learning" has gained increasingly widespread 316 

recognition in the field. In this challenge, several teams, namely team 1, team 3, team 5, and team 10, 317 

directly or indirectly incorporated deep learning methods into several to all of their approaches. 318 

Additionally, team 9 also employed neural networks, albeit with a shallower architecture. However, no 319 

groundbreaking advancements were observed, akin to the Alphafold breakthrough in structure 320 

prediction. Team 3 also did not demonstrate a better performance compared to the other teams. 321 

Additionally, the high correlation between methods with and without the application of deep learning, 322 

as well as the strong correlations between conservation scores and predictions, suggest that amino acid 323 

conservation and frequency in each position may be the most important features captured by both 324 

types of methods. Consequently, the effective construction and analysis of multiple sequence 325 

alignments are crucial for accurate predictions. Studies have demonstrated that deep multiple sequence 326 

alignments can improve protein structure predictions by approximately 22%. This is also exemplified in 327 

the HMBS challenge, where predictors generally exhibited reduced performance in domain 3, which had 328 

a more shallow sequence alignment. In addition, one potential improvement lies in devising methods to 329 

derive overall statistics from alignments while taking into account the precise sequences and unique 330 

properties of the target proteins, especially when regions with a more shallow alignment depth.  331 

The improvement of predictors compared with previous CAGI challenges 332 

As assessors for CAGI4, CAGI5 and CAGI6 (this round), we noticed that the performance of predictors 333 

became comparable to CAIG4, higher than CAGI5 with median Kendall’s tau correlation coefficient are 334 

0.26 in CAIG4, 0.15 in CAGI5 and 0.25 in CAGI6 while top-performing predictors are 0.34, 0.17 and 0.31 335 

for CAGI4, CAGI5 and CAGI6, respectively. One particularly exciting development is that several 336 

predictors have demonstrated superior performance compared to a baseline predictor based solely on 337 



the frequency of amino acids in the sequence alignment. In CAGI4, only one group surpassed the 338 

performance of the baseline predictor, whereas in CAGI5, the baseline predictor itself performed the 339 

best. However, in the CAGI6, several teams (Team 5, Team 9, Team 10, and Team 1 if they do not 340 

reverse the score scale) have surpassed the performance of the dummy predictors, indicating 341 

substantial progress in the field. Furthermore, the top-performing predictors in CAGI6 have shown 342 

significantly improved performance compared to previous methods like PolyPhen, which was developed 343 

around a decade ago to predict the effects of missense mutations. This indicates advancements in 344 

predicting the impact of missense mutations and showcases the evolving capabilities of the top-345 

performing predictors. 346 

Overall, the performance of predictors in the CAGI challenges has shown promising advancements and 347 

highlights the ongoing progress in this field. 348 

Methods 349 

Positive control and the baseline predictor 350 

As in CAGI4 (Zhang et al. 2017) and CAGI5 (Zhang et al. 2019), we defined a positive control and a 351 

dummy predictor serving as crucial reference points just as a marathon competition has a distinct start 352 

line and finish line. The positive control consists of fitness scores for each variant randomly drawn from 353 

an assumed Gaussian distribution with the given fitness score as the mean and the experimental 354 

standard error as the standard deviation. The baseline predictor was based on the frequency of amino 355 

acids at each position in an HMBS multiple sequence alignment (MSA). About 2360 ortholog/inparalog 356 

sequences of HMBS were extracted from orthoDB at the metazoa level and were aligned using 357 

Promals3D (Pei et al. 2008). The original predicted score for each variant was calculated using the 358 

following formula:  359 

𝑙𝑛
𝑄𝑚

𝑃𝑚
− 𝑙𝑛

𝑄𝑤

𝑃𝑤
 360 

In this formula, 𝑄𝑚 denotes the estimated probability of the amino acid variant (mutated) occurring at 361 

the position where the mutation is located within the alignment, while 𝑄𝑤 is the estimated probability 362 

of the original (wild-type) amino acid at the same position. And 𝑃𝑚 and 𝑃𝑤  are the Robinson-Robinson 363 

background frequencies for the mutated amino acid and the wild-type amino acid, respectively. The 364 

original predicted scores were normalized according to the distribution of experimental fitness scores. 365 

Quantile transformation of original predictions 366 

Although the distribution of experimental fitness scores was provided, most participants did not 367 

calibrate their predictions using this information. Therefore, it was necessary to normalize the 368 

predictions in order to facilitate a fair and meaningful comparison among predictors, particularly for 369 

numerical assessment. To achieve this, we conducted quantile transformation on both the original 370 

predictions from participants and our baseline predictor. To accommodate the requirement that 371 

predictors cannot predict negative values, any negative competitive growth scores were adjusted to 0 372 

prior to the transformation. The variants were then ranked based on their predicted values, and each 373 

variant was assigned the experimental score corresponding to its rank. In cases where multiple mutants 374 

were predicted to have the same rank, the assigned experimental scores were averaged to yield the 375 

final transformed predictions. 376 



Measures for prediction assessment 377 

Each predictor was evaluated by their ability (1) to classify variants into categories such as deleterious 378 

and non-deleterious variants (classification), (2) to rank variants by their impacts on yeast fitness 379 

(ordinal association), and (3) to predict experimental fitness scores (numeric comparison). For the 380 

assessment, variants were assigned to the following categories by their experimental fitness score: less 381 

than 0.3 for deleterious, between 0.3 and 0.8 for intermediate, and from 0.8 to 1.36 for wild type. Table 382 

2 summarizes all scores used for the evaluation. One important aspect to note is that if the original root 383 

mean square deviation (RMSD) based on the predicted values from Team 3 exceeds a certain threshold, 384 

which is 1.05 times the maximum RMSD among all other predictors, due to the presence of very large 385 

numbers in their predictions, we replaced it with 1.05 times the maximum RMSD among all other 386 

predictors. 387 

Evaluation of overall performance and its statistical significance 388 

Four of the measures listed in Table 2 (i.e. the three ordinal associations and the AUC) are purely based 389 

on rank and are not sensitive to the distribution of numeric values. Five others depend on the 390 

distribution of numeric values and thus were calculated with both original and quantile‐transformed 391 

predictions. For each measure, we transformed the original scores to Z scores, and positive control and 392 

baseline predictor were excluded from the calculation of mean and standard deviation of original scores 393 

to avoid their influence on the score distribution. The average Z scores of the rank-based, original-value-394 

based, and transformed-value-based measures were computed and summed up to be the final score to 395 

assess the performance of each subset. 396 

To take experimental errors into consideration, we assumed that the fitness score for each variant can 397 

be randomly drawn from a Gaussian distribution defined by the reported fitness score and the standard 398 

error. We simulated 50 datasets using the above method. Then, we performed bootstrap resampling on 399 

each simulated dataset 100 times and thus generated 5000 mock datasets. We obtained the distribution 400 

of ranks for each group on 5000 mock datasets. 401 

Identification of well-/poorly predicted mutations 402 

We calculated median difference between top-performing predictions and experimental scores for 403 

mutations at each position. The conservation index was calculated by Al2CO (Pei and Grishin 2001) using 404 

multiple sequence alignment from orthologs of HEM3 with allowing gap ratio up to 0.8. We defined the 405 

positions with conservation index <= -0.95 as unconserved positions while conservation index >=1.42 as 406 

conserved positions.  407 
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Legends 416 

Table 1. A brief summary of methods employed by each team.  417 

Table 2. Metrics for evaluating performances for predictors.  418 

Table 3. Assessment of predictors.  419 

Fig 1. Distributions of experimental fitness scores and predicted scores. (A) Histogram showing the 420 

distribution of experimental fitness scores for nonsense and synonymous mutations (left) and missense 421 

mutations (right); (B) histograms of predicted scores from a selected submission from each participating 422 

team. The Y-axis represents the proportion of mutations, while the X-axis represents experimental 423 

scores in panels (A) and (B) 424 

Fig 2. Performance assessment of predictors. (A) Receiver Operating Characteristic (ROC) curves for 425 

predicting deleterious mutations; (B) Head-to-head comparison matrix of predictors, with colors 426 

indicating the number of datasets in which one predictor (row) outperforms another (column); (C) 427 

Boxplot of the distribution of ranks for predictors in simulated datasets. The box edges represent the 428 

first and third quartiles of the ranks, the line inside the box denotes the median rank, whiskers extend to 429 

1.5 times the interquartile range from the box edges, and circles represent outliers beyond 1.5 times the 430 

interquartile range. 431 

Fig 3. Effects of mutations on functional loops were poorly predicted by top-performing predictors. (A) 432 

Heatmap of the median differences between experimental scores and those of the top-performing 433 

predictors at each position, with blue indicating lower and red indicating higher differences; (B) 434 

Structural representation of HEM3 (PDB ID: 5m6r, chain A) highlighting the active-site loop, cofactor-435 

binding loop, insertion region, and residues 354 to 356 in red. ES2 and the phosphate group are 436 

displayed as spheres; (C) Distributions of experimental scores (blue) and predicted scores from 437 

submission 5_1 (green) within the active-site loop, cofactor-binding loop, and insertion region. 438 

Fig 4. Correlation among predictors and the role of conservation in prediction. (A) A heatmap 439 

displaying absolute Kendall's tau correlation coefficients between predictors. The absolute correlation 440 

coefficients are color-coded, with blue indicating lower and red indicating higher correlation; (B) Scatter 441 

plots depicting the correlation between the conservation index and the median of all predicted scores 442 

(left) or experimental scores (right) for mutations at each position. The Y-axis represents the median 443 

predicted/experimental score, while the X-axis represents the conservation index; (C) Bar graphs 444 

showing the ratio of deleterious mutations at conserved positions as indicated by experimental scores 445 

and predictors (upper graph) and the ratio of benign mutations at unconserved positions as indicated by 446 

experimental scores and predictors (lower graph). 447 
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Table 1 453 

Teams DL-based Brief Summary 

Used public data from  
yeast-based functional 

complementation 
assay to rescale 

predictions 

Team 1 Yes 
A feature extractor using a long short-term memory network and a 
pathogenicity classifier composed of two fully connected layer 

No 

Team 2 No Phylogeny-Aware Amino Acid Substitution Scoring No 

Team 3 Yes Protein language models (BERT) No 

Team 4 No 

Combining of functional annotation analysis (e.g., active sites, 
post-modification sites and other biologically important sites) from 
sequences and structures with a consensus of stability predictions 
from consensus of INPS3D (Savojardo et al. 2016), PoPMuSiC 2.1 
(Dehouck et al. 2011) and FoldX (Guerois et al. 2002) 

No 

Team 5 

No, but they use 
the predictions of 

other deep 
learning methods  

Ensemble of ordinary linear regression models combining 
sequence features and predictions from one or several of REVEL 
(Ioannidis et al. 2016), DeepSequence (Riesselman et al. 2018) and 
ESM-1v (Meier et al. 2021).  

Yes 

Team 6 

No, but 
predictions from 

MetaRNN, a deep 
learning method, 
was used in their 

models.  

Random forest models to combine several scores such as 
MetaSVM (Kim et al. 2017), MetaLR (Liu et al. 2020), MetaRNN (Li 
et al. 2022), REVEL, MPC (Kaitlin et al. 2017), PROVEAN (Choi and 
Chan 2015), GERP RS (Cooper et al. 2005), 
phyloP100way_vertebrate, GM12878_fitCons (Gulko et al. 2015) 
and H1.hESC_fitCons (Gulko et al. 2015).  

Yes 

Team 7 No Evolutionary Action (Katsonis and Lichtarge 2014) No 

Team 8 No 
Weighted changes of root mean square fluctuation between wild 
type and variants simulated by molecular dynamics 

No 

Team 9 

No, but shallow 
artificial and 
probabilistic 

neural networks 

SNPMuSiC (Ancien et al. 2018), PoPMuSiC (Dehouck et al. 2011), 
and FiTMuSiC (Tsishyn et al. 2024), a new linear regression model 
incorporating multiple predictions (Matsvei et al. 2023) including 
PoPMuSiC, Maestro (Laimer et al. 2015), EVCoupling (Hopf et al. 
2019), PROVEAN (Choi and Chan 2015) and DEOGEN2 (Raimondi et 
al. 2017) 

Yes, but only for 
submission 2 

Team 10 Yes 
ELASPIC2 (Strokach et al. 2021), ProteinSolver (Strokach et al. 
2020), ProtBert (Elnaggar et al. 2022) and Rosetta's cartesian_ddg 
protocol (Park et al. 2016) 

No 

Team 11 No 
PhD-SNPg (Capriotti and Fariselli 2023) , SNPs-and-GO (Capriotti et 
al. 2017) and PhyloP100 

No 
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Table 2  459 

Classification 

Area Under 
ROC 

1

𝑃𝑁
∑ (𝑅𝑗 − 𝑗)𝑁

𝑗=1 𝑃,   

𝑃: number of true deleterious mutations based on experimental scores; N: number of 
true non-deleterious mutations. All mutations are ranked by the predicted growth score.  

(𝑅𝑗 − 𝑗) is the count of true deleterious mutations that are ranked no worse than the 𝑗𝑡ℎ 

true non-deleterious mutation. Each true deleterious mutation ranked the same as the 

𝑗𝑡ℎ true non-deleterious mutation is counted as 0.5.  

MCC 
(𝑇𝑃𝑖 × 𝑇𝑁𝑖 − 𝐹𝑃𝑖 × 𝐹𝑁𝑖) √(𝑇𝑃𝑖 + 𝐹𝑃𝑖)(𝑇𝑃𝑖 + 𝐹𝑁𝑖)(𝑇𝑁𝑖 + 𝐹𝑃𝑖)(𝑇𝑁𝑖 + 𝐹𝑁𝑖)⁄ ,  
i ∊ (deleterious, intermediate, benig); TP: true positive; TN: true negative; FP: false 
positive; FN: false negative. 

F1 

(2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙) (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)⁄ , 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ ; 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  
TP: true positive; TN: true negative; FP: false positive; FN: false negative. 
Mutations were divided into three categories: deleterious, intermediate, and benign.  We 
used f1_score from the sklearn.metrics package with the 'micro' for averaging 

Ordinal association 

Kendall  
tau-b rank 
correlation  

(𝑛𝑐 − 𝑛𝑑) √(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)⁄ , 𝑛0 = 𝑛(𝑛 − 1) 2⁄ ; 𝑛1 = ∑ 𝑡𝑘(𝑡𝑘 − 1)𝑘 2⁄ ; 𝑛2 =

∑ 𝑢𝑗(𝑢𝑗 − 1)𝑗 2⁄ ; 𝑛𝑐 , the number of concordant pairs; 𝑛𝑑 , the number of discordant 

pairs; 𝑛 , the total number of pairs; 𝑡𝑘 , number of values in the 𝑘𝑡ℎ  group of ties by 

predictions; 𝑢𝑗, number of values in the 𝑗𝑡ℎ group of ties by experimental scores. 

Spearman’s 
rank 
correlation  

𝑐𝑜𝑣(𝑅𝑝𝑟𝑒𝑑 , 𝑅𝑒𝑥𝑝) 𝜎𝑅𝑝𝑟𝑒𝑑
𝜎𝑅𝑒𝑥𝑝

⁄   

𝑐𝑜𝑣(𝑅𝑝𝑟𝑒𝑑 , 𝑅𝑒𝑥𝑝), covariance between predicted and experimental ranks of mutants; 

𝜎𝑅𝑝𝑟𝑒𝑑
 and 𝜎𝑅𝑒𝑥𝑝

, standard deviations of predicted and experimental ranks, respectively. 

Ties were randomly assigned distinct ranks first and then the average of these ranks 
were assigned to each of them.  

Numeric comparison 

Pearson’s 
correlation 

𝑐𝑜𝑣(𝑝𝑟𝑒𝑑, 𝑒𝑥𝑝) 𝜎𝑝𝑟𝑒𝑑𝜎𝑒𝑥𝑝⁄ , 𝑐𝑜𝑣(𝑝𝑟𝑒𝑑, 𝑒𝑥𝑝), the covariance between predictions and 

experimental scores; 𝜎𝑝𝑟𝑒𝑑 , the standard deviation of predictions; 𝜎𝑒𝑥𝑝 , standard 

deviation of experimental scores  

RMSD 
√1

𝑁
∑ (𝑝𝑟𝑒𝑑𝑗 − 𝑒𝑥𝑝𝑗)𝑁

𝑗=1

2
  

N, the size of a dataset; 𝑝𝑟𝑒𝑑𝑗, 𝑗𝑡ℎ predictions; 𝑒𝑥𝑝𝑗, 𝑗𝑡ℎ experimental scores 

Value 
agreement 
test 
(value_diff) 

∑ 𝐶𝑖  
C is the percentage of mutants with the difference between the predicted and 
experimental growth scores below a certain cutoff i. The cutoffs are taken from 0 to 1 
with an incremental of 0.01. The area under the curve was used as a measurement. 
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