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Abstract 140 

Background: Bioelectrical impedance analysis (BIA) is a technique widely used for 141 

estimating body composition and health-related parameters. The technology is relatively 142 

simple, quick, and non-invasive, and is currently used globally in diverse settings, 143 

including private clinicians’ offices, sports and health clubs, and hospitals, and across a 144 

spectrum of age, body weight, and disease states. BIA parameters can be used to estimate 145 

body composition (fat, fat-free mass, total-body water and its compartments). Moreover, 146 

raw measurements including resistance, reactance, phase angle, and impedance vector 147 

length can also be used to track health-related markers, including hydration and 148 

malnutrition, and disease-prognostic, athletic and general health status. Body composition 149 

shows profound variability in association with age, sex, race and ethnicity, geographic 150 

ancestry, lifestyle, and health status. To advance understanding of this variability, we 151 

propose to develop a large and diverse multi-country dataset of BIA raw measures and 152 

derived body components. The aim of this paper is to describe the ‘BIA International 153 

Database’ project and encourage researchers to join the consortium.  154 

Methods: The Exercise and Health Laboratory of the Faculty of Human Kinetics, 155 

University of Lisbon has agreed to host the database using an online portal. At present, 156 

the database contains 277,922 measures from individuals ranging from 11 months to 102 157 

years, along with additional data on these participants.  158 

Conclusion: The BIA International Database represents a key resource for research on 159 

body composition. 160 

Keywords: Reactance, Phase angle, Vector length, Body composition, Nutrition, 161 

Obesity, Consortium 162 
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Background 163 

The use of bioelectrical impedance analysis (BIA) to investigate human body 164 

composition began in the 1960s, when Thomasett showed that total body water (TBW) 165 

could be estimated from whole-body impedance 1. Subsequent development of this 166 

approach has substantially extended its capacity to provide information about tissue 167 

composition and function 2-5. The feasibility, portability, and safety of BIA makes it 168 

relatively unique among body composition methods 6. The technology is relatively 169 

simple, quick, and non-invasive, and is currently used globally in diverse settings, 170 

including private clinicians’ offices, sports and health clubs, and hospitals, and across a 171 

spectrum of age, body weight, and disease states. In turn, this has resulted in an 172 

exponential increase in the availability of BIA data. As yet, however, the potential of this 173 

high data volume has not been comprehensively exploited to improve our understanding 174 

of human body composition variability, in relation to sex, age, health status, lifestyle and 175 

population. 176 

Several different approaches can be used to extract information on body composition 177 

from BIA. In the single frequency approach (SF-BIA), through the application of a 50 178 

kHz alternating current, BIA provides measures of impedance (Z, ohm) by conductive 179 

tissues such as blood, muscle/organs and cerebrospinal fluid. Z comprises a purely 180 

resistive component (resistance, R, ohm) that is related to water and electrolytes in fluids 181 

and tissues, and a capacitive component (reactance, Xc, ohm) responsible for the delay 182 

of the current entering cells, associated with cell membrane integrity and cell interfaces 183 
7, 8. While single-frequency 50 kHz BIA machines are popular, tetra polar multi-frequency 184 

BIA (MF-BIA) or bioelectrical impedance spectroscopy (BIS) instruments also provide 185 

frequency-specific readings at 50 kHz. 186 

One approach to estimating body composition from raw BIA data is to predict TBW or 187 

fat-free mass (FFM) from the impedance index, calculated as the square of height (HT, 188 

cm) over impedance (HT2/Z). Based on research studies, numerous such equations have 189 

been published for healthy populations and with diseases 1, 9-33. This approach can be 190 

extended to the main compartments of TBW, extracellular water (ECW) and intracellular 191 

water (ICW), by exploiting the fact that whether the current passes only through ECW, 192 

or through both ECW and ICW, depends on its frequency 34, 35. At the cellular level, BIA-193 

derived body cell mass 18, 36, 37, and at the tissue level, skeletal muscle (SM) mass, can be 194 
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accurately predicted in healthy populations, as compared to magnetic resonance imaging 195 

or computerized tomography38. These components have a recognized implication in 196 

health and performance, specifically intracellular water 39-41, but also in disease 197 

susceptibility due to increased levels of fatness and loss of SM 42-45. The latter is also a 198 

key characteristic of sarcopenia, a SM disease rooted in adverse muscle changes that 199 

accrue across a lifetime 46. Indeed, for sarcopenia diagnosis, BIA has been recognized as 200 

a useful tool to estimate SM quantity (mass) and quality (amount of strength and/or power 201 

per unit of SM mass)46.  202 

A second approach focuses on direct measures provided by BIA that have been widely 203 

used to explore malnutrition, growth and development, athletic performance, sexual 204 

dimorphism, pregnancy, and ageing in several populations 47-55. Indeed, the raw BIA 205 

parameter phase angle (PhA), representing the arc tangent of Xc/R, is a compound 206 

indicator of the distribution between intra and extracellular fluids and of body cell mass 207 
8, 53. There has been growing interest in the use of such raw BIA parameters as proxy 208 

markers of health, physical fitness and function, and disease status, avoiding the need for 209 

prediction equations 56-64. However, the practical application of PhA measurements to 210 

define nutrition status still requires normative values. To date, reference data for PhA are 211 

available for healthy American 65, 66, German 67 and Swiss 68 adult populations, as well as 212 

athletes 69 and UK children 70, but given the large inter individual variability associated 213 

with factors such as age, sex and ethnicity, consensus on the normal range is still lacking 214 

and more comprehensive standards are required.  215 

An interesting extension of the insights from research on PhA is represented by 216 

bioelectrical impedance vector analysis (BIVA) 71, which in turn has been developed in 217 

different ways. BIVA 71, 72 analyzes R and Xc, and the derived variables PhA and vector 218 

length (i.e., Z,) without relying on assumptions of a fixed FFM hydration, or on constant 219 

body geometry and resistivity values. Particularly, PhA describes the direction of the 220 

vector on the R-Xc graph and represents the distance from the vector to the X axis. Classic 221 

BIVA adjusts raw BIA parameters for HT, whereas specific BIVA standardizes on the 222 

basis of estimated body volume, derived from data on both HT and cross-sectional area. 223 

This means that specific (sp) BIVA parameters (Rsp, Xcsp, Zsp) are influenced by the 224 

properties of the tissues rather than body size and shape. BIVA allows a better 225 

understanding of body composition variability than does PhA alone independent of vector 226 

length, or R independent of Xc. In classic BIVA, variation in vector length indicates 227 
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different hydration conditions for a given PhA 71, whereas in specific BIVA it indicates 228 

different levels of FM% 72-74. Hence, both classic and specific BIVA can be used 229 

simultaneously 75. Population-specific reference values for classic and specific BIVA are 230 

available for U.S. children, adolescents, and adults, Italian children and adolescents, 231 

Italian-Spain young adults and elderly Italians 72-74, 76-79, but factors such as race and 232 

ethnicity, geographic ancestry, lifestyle, socio-economic status have not yet been 233 

considered in depth.  234 

Body composition shows profound variability in association with age, sex, race and 235 

ethnicity, geographic ancestry, lifestyle and health status. In turn, this incorporates 236 

variability both in bio-conducting tissues, and also in total and regional body composition 237 
52, 80-82. To date, due in part to the difficulty of applying most methods at scale, we lack a 238 

large representative body composition database that incorporates variability in age, sex, 239 

race and ethnicity, geographic ancestry, lifestyle, environment, socio economic factors 240 

and athletic status. 241 

Developing such a database for BIA would allow a range of potential applications. 242 

Among these we highlight: 243 

• Developing a comprehensive integrated model of healthy body composition by 244 

pooling BIA data across multiple populations. 245 

• Relating BIA data to other phenotype data on health, lifestyle and disease state. 246 

• The capacity for BIA data to guide clinical management across a wide range of 247 

disease states. 248 

• The capacity for BIA data to help assess the efficacy of large public health 249 

interventions. 250 

• The capacity for BIA data to be routinely collected by individuals in the home, 251 

gyms and health clubs, in order to help them maintain healthy weight and body 252 

composition. 253 

• To contribute to academic training and teaching by enabling the use of a large and 254 

unique dataset adequately managed. 255 
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Beyond the direct implications for health, increasing the capacity to measure body 256 

composition at scale may have substantial economic benefits, through increasing the 257 

success of lifestyle interventions, optimising drug dose calculations, and improving the 258 

efficiency of healthcare. 259 

The aim of this project is therefore to build a large and diverse dataset of BIA raw 260 

measures and derived body components by pooling data from multiple countries. These 261 

data can be shared for research investigations to enable a better understanding about body 262 

composition variability in association with age, sex, race and ethnicity, geographic 263 

ancestry, lifestyle and health status and to develop robust normative values. Here, we 264 

describe this ongoing ‘BIA International Database’ project and encourage researchers, 265 

especially those from low- and middle-income countries, to contribute data. 266 

 267 

Call for data 268 

The BIA International Database had its genesis in 2017 at a Summer School training 269 

workshop in Sardinia, Italy (https://sssnsa.wordpress.com/), when the idea and benefits 270 

of compiling all published BIA measurements on humans was proposed. Alone, each 271 

individual dataset is unable to tackle relevant questions in sports, nutritional, and medical 272 

sciences, whereas combining information across studies offers many new opportunities. 273 

The application of BIA to humans vastly increased since 2000 83, with 19713 publications 274 

between 1960 and 2021 based on a search in the ISI Web of Science core collection using 275 

the search string ((Bioeletrical impedance analysis) OR BIA OR bioimpedance), as 276 

illustrated in Figure 1.  277 

**INSERT FIGURE 1** 278 

This large-scale application of BIA demonstrates the data that is potentially available for 279 

pooled analysis. We therefore invite contributions from researchers worldwide. The 280 

Faculty of Human Kinetics of University of Lisbon agreed to host the database, and a 281 

total of 276,410 measurements (1 record = 1 measurement on 1 person) have been initially 282 

uploaded to the website. The URL of the website is 283 

https://labes.fmh.ulisboa.pt/projetos/a-decorrer/item/101-bia-international-database . 284 
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 285 

Overall Approach and Procedures  286 

This is an ongoing project, soliciting collaboration among researchers for sharing BIA 287 

datasets with particular emphasis on low-income countries to complement the extensive 288 

data from high-income countries already received and published in the literature. All 289 

participants included in the final dataset have provided their consent to participate in the 290 

study conducted by each contributor, following the approval granted by the institution’s 291 

ethics committee. 292 

We will address the following steps: 293 

Step 1: Building a large database of BIA raw and derived parameters, with the 294 

following characteristics: 295 

1. Minimal BIA and associated data: age, sex, anthropometry (body mass and 296 

height), R, Xc, Z, and PhA, population, year of data collection, device 297 

characteristic (SF-BIA, MF-BIA / BIS), and health status. 298 

2. Additional data: segmental raw BIA measures (R, Xc, PhA, Z), for specific 299 

BIVA, arm, waist and calf circumferences, race and ethnicity (White, Black, 300 

Hispanic, Asian, Other), and geographic ancestry (Africa, America, Central South 301 

Asia, East Asia, Europe, Middle East, Oceania). 302 

3. Desirable additional data: to explore links between BIA raw parameters and 303 

other outcomes: other body composition data (e.g., dual-energy X-ray 304 

absorptiometry- DXA total and regional estimates), physiological/metabolic data 305 

(e.g., glucose, lipid, and protein metabolism, hormones), and physical function 306 

(e.g., strength and physical performance), athletic status, education, socio-307 

economic and lifestyle characteristics (e.g., physical activity, diet). Specific 308 

guidelines for preparing the database for providing these additional variables will 309 

be detailed on the website https://labes.fmh.ulisboa.pt/projetos/a-310 

decorrer/item/101-bia-international-database . 311 

 All data are de-identified, being either the data of partners or collaborators of the 312 

consortium, or open-access public use files from international databases (e.g., NHANES). 313 
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In order to integrate disparate and heterogeneous data, we will compare and harmonise 314 

different acquisition technologies and operation procedures of BIA, including the 315 

calibration and standardization of methods (data quality assessment) while also taking 316 

into consideration the position in which the exam was performed (i.e., standing, sitting, 317 

and lying). The end result of this step will comprise information on representative groups 318 

of children, adults, and elderly people; it will be a large and homogeneous database of 319 

BIA raw and derived parameters, demographics, anthropometrics, and when available, 320 

metabolic variables, education, lifestyle, and socio-economic information, performance-321 

related information, and data on other body components such as those derived from DXA.  322 

Step 2. Data Management  323 

The data will be deposited at the research database at Lisbon. The site is interactive and 324 

contains the number and type of measurements made in any target country. 325 

Regarding data security, all included datasets will be part of projects approved by the 326 

respective ethics committee of each research group. After confirmation of inclusion by 327 

the management group, each individual in each database will be given a new code (related 328 

to the current project) to further guarantee confidentiality and privacy. Hence, the 329 

received databases have already codified data without any personal identifier, making the 330 

data untraceable to the corresponding individual, and complying with the General Data 331 

Protection Regulation (GDPR) key requirements. Furthermore, all received data will be 332 

converted into password protected files and stored at FMH server, with access limited to 333 

the chairman of the management group, Analiza M Silva, or designated members. 334 

Access to the whole or part of the database will be supervised, as authors aiming to use 335 

the database must first obtain the approval by the management group, providing their 336 

intended analysis (i.e., scope and aim of the analysis, the intended variables and sample 337 

characteristics, as well a list of authors and a brief chronogram) and assuring that rules of 338 

privacy and data protection will be complied with. After following these steps, and if 339 

accepted by the management group, a separate password-protected file will be generated 340 

including the selected columns of interest. A detailed record will be created to monitor 341 

this data-sharing process.  342 

Step 3. Data Analysis  343 
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A short description of the types of data already available in the database is displayed in 344 

Figure 2, including the geographical distribution of where the data was collected, the sex 345 

and age distribution of the sample.  346 

**INSERT FIGURE 2** 347 

An overall description of the types of data available in the database can be also found on 348 

the website under the “data overview tab”. A more comprehensive understanding of the 349 

database contents can be obtained by downloading the excel file example including 350 

details on the variables included in the main database. 351 

So far, the database includes 277,922 measurements of children and adult male 352 

(n=59,450) and female measurements (n=218,472) aged between 11 months up to 102 353 

years, mainly healthy. As an indication of the size of the database and the variability in 354 

the data it contains, Figure 3 illustrates data from heathy individuals, stratified by sex 355 

and age (<18 and ≥18 years) for the relationship between impedance index (cm2/kHz) and 356 

FFM (assessed by DXA).  357 

**INSERT FIGURE 3** 358 

The plots illustrated in Figure 3 show the strong association between impedance index 359 

and FFM assessed by DXA in both sexes and age categories, particularly in children, 360 

underscoring the relevance of the impedance index as an indicator of volume, though a 361 

large inter individual variability is observed in males and females among age categories. 362 

 Step 4. Data access 363 

If the contributors wish to perform an analysis in the database several steps are required. 364 

Briefly, contributors should: i) Examine the list of planned analyses; ii) check out sample 365 

data set to determine if there are sufficient data; iii) download and fill out a template form 366 

with a succinct summary, including the variables from the dataset that will be required; 367 

iv) agree up front to the publication policy and approve the manuscript within 21 days. 368 

The management group will discuss the idea and will provide feedback within 4 weeks 369 

along with a form to be signed and returned. If the analysis is not performed within 18 370 

months of approval the application will be removed from the planned analyses. 371 

Step 5. Publication policy 372 
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The new knowledge provided by the BIA International database will be disseminated 373 

through scientific publications as a key performance indicator for academic partners, 374 

remaining a priority for the project, subject to intellectual property restrictions and the 375 

publication management model. 376 

Individuals submitting data will be acknowledged as authors on publications from the 377 

database that use the data they contributed, allowing up to 2 authors per contributed 378 

dataset. Manuscripts using the database must adhere to a number of rules that have been 379 

agreed upon by the management group, including that draft manuscripts must be 380 

approved by the management group, though the authors still maintain the authority and 381 

ownership of their own dataset, allowing them to use their dataset for other purposes. This 382 

may generate a large author list but follows the common practice in many multi-383 

laboratory collaborations. 384 

 385 

Discussion 386 

This paper describes the BIA International Database goals, scope, and issues a “call for 387 

data”. Through pooling BIA raw and derived population-based data from several 388 

countries, our consortium will be able to break new ground exploring human body 389 

composition variability and its potential associations with environment, lifestyle, socio-390 

economic factors, disease-related malnutrition, and sports-related outcomes, while also 391 

providing normative values for diagnostic purposes. 392 

We anticipate the impact of this project in several different contexts. First, we expect to 393 

improve understanding of the factors that drive the individual variability evident in figure 394 

3 plots. Evidence has been accumulating underlining the influence of the life cycle, sexual 395 

dimorphism, race and ethnicity, geographic ancestry, athletic and disease status 47, 48, 50, 396 
51, 55, 59, 60, 84, 85 on variability in raw BIA variables among populations. A comprehensive 397 

appreciation of these factors is required for a better understanding of the wide variability 398 

in body composition, with emphasis on regional and total fatness and SM. 399 

Second, by providing a target to achieve a “healthier” body composition, this project will 400 

contribute to the design of appropriate lifestyle interventions, enabling personalised 401 

exercise or dietary interventions and improving optimal clinical decision making. For 402 
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instance, by proposing robust normative values for BIA-derived SM, cancer treatment 403 

doses can be optimized and the benefits of chemotherapy maximized, as SM loss is 404 

associated with an increased toxicity of chemotherapy and thus poorer prognosis 86. Drug 405 

clearance rates depend on body composition and, consequently, we expect that normative 406 

values for BIA-derived body components may advance therapeutic options. 407 

Individualized prevention of non-communicable diseases and risk factors may also 408 

benefit from personalized data at the population level. 409 

Third, this project will contribute to stimulating research, technology development and 410 

innovation. The large database will contribute to strengthening of scientific knowledge 411 

and to the academic training of young researchers. This new knowledge will benefit the 412 

research community by providing a simple and practical way of using quality data. 413 

Additionally, the BIA International Database findings will contribute to developing 414 

potential technological outputs, with benefits for a wide range of stakeholders, including 415 

fitness and sports fields, the healthcare system and the general public that can benefit 416 

from potential applications of the findings into technological products and services. 417 

Finally, we expect environmental and social impacts from this project. The social value 418 

of the BIA international outputs is potentially substantial. The project will include and 419 

analyse data from both high- and low-income populations, helping understand the social 420 

determinants of body composition variability 87. We look forward in particular to 421 

receiving data from vulnerable populations in countries with weaker health systems and 422 

those facing existing humanitarian crises, in order to identify new opportunities whereby 423 

body composition assessment can aid in describing and combating the emerging double 424 

burden of malnutrition at the individual level 88. More generally, the project provides a 425 

new basis for personalized medicine, addressing age, race and ethnicity, geographic 426 

ancestry, disease-related malnutrition, environment, and socio-economic factors. This is 427 

challenging across worldwide populations that are facing an obesity epidemic, related 428 

non-communicable diseases and demographic changes due to e.g., ageing and migration. 429 

This contributes to healthier communities, enables informed disease prevention, 430 

ultimately reducing healthcare costs that represents an increased proportion of overall 431 

state spending. Nevertheless, we anticipate some limitations in the process of building the 432 

dataset, as it is likely that the repository will lack representation from ethnic minorities 433 

given the principles for indigenous data sovereignty and governance (https://www.gida-434 
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global.org/history-of-indigenous-data-sovereignty), as there are population groups for 435 

whom the sharing of biometric data with overseas entities is difficult. 436 

 437 

Conclusion 438 

The goals, scope and procedures of the ‘BIA International Database’ project are described 439 

and we issue a “call for data”. The consortium aims to pool raw and derived population-440 

based BIA data from multiple countries to enable analyses that capture the heterogeneity 441 

of the global population. We expect this project to provide a comprehensive integrated 442 

model of healthy body composition, clarify its wide variability, and contribute to 443 

developing and improving diagnostic tools.  444 
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