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The Hawking-Penrose theorem is not covariant under field redefinitions. Should the in-
variance under such transformations be a true principle in Nature, spacetime singularities

become dubious objects. We here review the concept of covariant singularities, that is,
singularities that are invariant under both spacetime diffeomorphisms and field redefini-

tions.
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1. Introduction

A major issue in gravitational physics is the prediction of singularities. The most

common approaches to such a problem comprise modifications in the gravitational

sector or the particle content of the theory, so as to falsify one of the premises of the
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Hawking-Penrose theorem.1 Because singularities take place at Planckian energies,

it is a widespread opinion that some quantum theory of gravity ought to exist

to induce the aforementioned modifications. Even though such a theory remains

unknown, investigations of structural properties of quantum field theory might shed

some light on the singularity problem. The invariance under field redefinitions is one

such property.2,3

Field redefinitions play prominent roles in physics. They are primarily used at

the linear and perturbative level in high-energy physics,4–7 but their non-linear

generalizations are being met with increasing interest, particularly in the study of

gravity.8–17 Fields are dummy variables in the path integral, hence it is generally

expected that quantities computed from functional integrals, hence physics, should

remain invariant under field reparametrizations. The calculation of off-shell observ-

ables (e.g. in-in correlation functions) is, however, usually performed with functional

generators, such as the partition function and the effective action. These generators

are defined by the coupling with an external source or background field and this

coupling is not invariant under field redefinitions.

In the background field method, this non-invariance of the standard effective ac-

tion is intimately tied to its gauge-fixing dependence.18 Needless to say, this leads to

several problems, particularly with the interpretation of the renormalization group

equations and with off-shell correlation functions of the kind that is measured in

cosmology, for instance. It is thus reasonable to conjecture the principle of invariance

under field redefinitions and perform modifications on the functional generators in

order to obey such a principle. From this viewpoint, fields are coordinates in the

infinite-dimensional configuration space, field redefinitions are changes of coordi-

nates in this space, and path integrals take on a more geometrical taste, generalizing

the usual theory of integration on manifolds. This has led to the Vilkovisky-DeWitt

effective action,18–21 where the coupling to the background field is made invari-

ant by the introduction of a Levi-Civita connection in configuration space. The

theory of path integration, however, still lacks a complete and rigorous mathemat-

ical understanding, thus depending on a particular procedure for its calculation,

e.g. discretization. Otherwise it only making sense at a formal level.

In this review, we shall take the position that physics at the fundamental level

should not depend on the way fields are parameterized. There are at least three

important reasons for this:

(i) as explained above, dependence on the field parametrization also leads to

gauge-fixing dependence, thus the latter is automatically solved with a the-

ory invariant under field redefinitions;

(ii) the classical action does not depend on the field parameterization, thus it

is reasonable to keep this property in the quantum theory as well;

(iii) no particular parameterization is, in principle, favored. Giving special

meaning to one such choice thus seems rather artificial. Indeed, experi-

mental results do not imply any specific field parameterization.
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The paper is organized as follows: in Section 2, we introduce the concept of

covariant singularities. There are two subclasses of these singularities, one that

results from singularities in the configuration-space geometry (Section 2.1) and an-

other that takes place directly in the observables (Section 2.2). The latter is of

topological nature and can be characterized by a non-vanishing winding number.

In Section 2.3, we apply the formalism to a simple example in cosmology, where a

spacetime singularity exists but turns out not to correspond to singular observables.

We then draw our conclusions in Section 3.

The presence of many types of indices and spacetime dependence makes it useful

to adopt DeWitt’s condensed notation (for more details, see Ref. 21). Mid-alphabet

Greek letters (e.g. µ, ν, ρ, . . .) shall thus denote spacetime indices, as usual; lower-

case mid-alphabet Latin indices (e.g. i, j, k, . . .) collectively represent both discrete

indices (denoted by the corresponding capital Latin letters I, J,K, . . .), and the con-

tinuum spacetime coordinates x ≡ xµ. This correspondence can be formally written

as i = (I, x), thus ϕi = ϕI(x) are the coordinates of a field configuration. Repeated

mid-alphabet lowercase indices result in summations over all the discrete indices

and integration over the spacetime Ω of dimension dim(Ω) = n. Lowercase Latin

indices of the beginning of the alphabet (e.g. a, b, c, . . .) shall correspond to gauge

indices, whereas indices from the beginning of the Greek alphabet (e.g. α, β, γ, . . .)

will be reserved to spinor indices.

2. Covariant Singularities

When the principle of field-redefinition invariance is postulated, many known re-

sults in physics should be reexamined. There is no guarantee that established re-

sults remain invariant under field redefinitions. One such example is the Hawking-

Penrose theorem, whose formulation does not transform covariantly under field re-

definitions.2 Singularities present for certain configuration-space coordinates might

therefore not correspond to singular points in the field space parameterised in some

other coordinates, in very much the same way that the event horizon is singular in

the standard Schwarzschild spacetime coordinates but not in other coordinates. We

thus define covariant singularities as the ones that are invariant under both changes

of spacetime coordinates and field redefinitions.

2.1. Configuration-space Singularities

One type of covariant singularities is given by the ones appearing in curva-

ture invariants of the configuration space.22–27 If one adopts a Riemannian (or

pseudo-Riemannian) structure for the configuration space, one needs to specify a

configuration-space metric. Such a metric, hereby denoted Gij , must be seen as part

of the definition of the theory, along with the classical action. The line element is

then defined as usual as

ds2 = Gij dϕ
i dϕj =

∫
Ω

dnx

∫
Ω

dnx′GIJ(x, x
′) dϕI(x) dϕJ(x′) . (2.1)
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One must furthermore require that Gij be invariant under the same gauge symme-

tries of the classical action. This is important in order to enforce these symmetries

at the quantum level via the path integral measure, which takes a factor
√
detGij

to cancel out the Jacobian determinant from the field redefinition, thus preventing

gauge anomalies. Apart from symmetry, we require ultralocality

Gij = GIJ δ(x, x
′) (2.2)

where GIJ depends only on the fields ϕI but not on their derivatives. Ultralocal-

ity is particularly important to make contact with the theory of scattering ampli-

tudes. There still remains to be determined the metric GIJ defined on the finite-

dimensional subspace of the configuration space with fixed spacetime point xµ =

const. We can adopt the spirit of effective field theory to organize all the infinite

possible terms in the GIJ according to their mass dimensions. We shall then focus

on the leading contribution, which contains only dimensionless parameters.

For metric theories of gravity, one identifies ϕI(x) = gµν(x). The assumption of

simplicity, together with the symmetries of GIJ , then leads to the two-parameter

family of field-space metrics28

Gij =
1

2
(−g)ϵ (gµρ gσν + gµσ gρν + c gµν gρσ) δ(x, x

′) , (2.3)

with g = det gµν , which involves only the dimensionless parameters c and ϵ. The

coefficients of the first two terms in Eq. (2.3) are determined by requiring that GIJ
is a spacetime tensor that satisfies the invertibility condition GIJ G

JK = δKI .

The connection in configuration space is then assumed to be of the Levi-Civita

type:

Γijk =
1

2
Gil (∂jGkl + ∂kGjl − ∂lGjk) (2.4)

and the functional Riemannian tensor is defined in the usual way

Ri
jkl = ∂kΓ

i
lj − ∂lΓ

i
kj + Γikm Γmlj + Γilm Γmkj , (2.5)

with Rjl = Ri
jil and R = Ri

i being the functional Ricci tensor and functional

Ricci scalar, respectively. Note that the assumption of ultralocality implies that

many contractions will diverge as δ(x, x). This only reflects the infinite dimension

of the configuration space and can be easily amended by defining densities, such as

RijklRijkl

dim(M)
∝
∫

dnxRIJKLR
IJKL , (2.6)

where M denotes the configuration space and dim(M) = Gij G
ij its dimension.

Therefore, one good way to reveal the presence of singularities is through the cal-

culation of the functional Kretschmann scalar

K = RIJKLRIJKL . (2.7)
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Since Eq. (2.7) is invariant under both spacetime diffeomorphisms and field redefini-

tions, a singular field configuration in K would signal the existence of a singularity.

In particular, the Kretschmann scalar for the functional metric (2.3) reads2

K =
n

8
(−g)−2ϵ

(
n3

4
+

3n2

4
− 1

)
. (2.8)

Different choices for ϵ are in principle possible,29 with ϵ = 0 originally proposed by

Misner30 and ϵ = 1/2 by DeWitt.22,31,32 Notice that apart from the case ϵ = 0,

where K is independent of the spacetime metric, there is a covariant singularity at

either g = 0 or |g| → ∞. In any case, it is not clear whether a singularity in K
would be a real issue. a Since covariant singularities belong to the boundary of the

configuration space, and not to the configuration space itself, singular configurations

cannot be solutions to the theory.

It is also not clear how singularities in the configuration-space geometry affect

the physical observables. At the quantum level, quantities of interest result from the

interplay of the configuration-space geometry, the classical action, and the boundary

conditions, thus assessing only the first of these is not sufficient.

2.2. Functional Singularities

A more transparent study of covariant singularities should be made in terms of

physical observables. A natural candidate for this investigation is the effective ac-

tion, where it is contained all observables of a quantum field theory. As we have

pointed out in the Introduction, the Vilkovisky-DeWitt effective action is a modi-

fied version of the standard effective action that incorporates the configuration-space

geometry in its definition so as to preserve the invariance under field redefinitions.

By replacing functional derivatives by their covariant counterparts and differences

by distances along geodesics in configuration space, one is then able to couple the

background field with the quantum field in an invariant manner: b19

exp {iΓ[φ]} =

∫
dµ[ϕ] exp

{
i
(
S[ϕ]− σi(φ, ϕ) (C−1)ji[φ]∇jΓ[φ]

)}
, (2.1)

where

σi(φ, ϕ) =
1

2

(∫
γ(φ,ϕ)

ds

)2

(2.2)

is the geodetic interval (analogous to Synge’s world function33), calculated along

the geodesic γ with end-points φ and ϕ, and Cij = ⟨∇jσ
i(φ, ϕ)⟩T . The angular

brackets here denote the functional average, which, for any functional F [φ, ϕ], is

aWe recall that the spacetime Kretschmann scalar diverges for physically acceptable integrable

singularities in which tidal forces remain finite.
bWe set ℏ = 1 for simplicity.
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given by

⟨F [φ, ϕ]⟩T = exp {−iΓ[φ]}
∫

dµ[ϕ]F [φ, ϕ] exp
{
i
(
S[ϕ] + T i[φ, ϕ]∇iΓ[φ]

)}
,

(2.3)

where T i[φ, ϕ] = σi(φ, ϕ)(C−1)ji[φ]. Note that Cij is defined recursively since Cij
shows up in the functional average as well. Solving for Cij is clearly not easy and

one usually resorts to an expansion in power series. Being Γ[φ] invariant under

field redefinitions, we can define a covariant singularity as a solution φ = φ0 to

the effective equations of motion such that the Vilkovisky-DeWitt effective action

Γ[φ0] evaluated at that point is not well-defined. Contrary to the singularity in the

configuration-space geometry defined before, the covariant singularity φ0 does be-

long to the configuration spaceM. Such a singularity thus corresponds to an existing

configuration with undefined observables. Some of these covariant singularities can,

however, be removed by local alterations in the effective action without affecting

its continuity in the far region. One example of such a procedure is the definition

of Γ[φ0] as the limit of Γ[φ] when φ approaches φ0. When such a procedure cannot

be performed, the covariant singularity is not removable. To such a non-removable

covariant singularity we shall reserve the name of functional singularity.

Functional singularities cannot be removed without altering the global aspects

of the theory. They indeed affect physical configurations arbitrarily far away in the

configuration space. Their details, however, depend on the full knowledge of the

effective action, thus are difficult to come by. Fortunately, topological techniques

come to our rescue in that they can provide tools to infer the presence of functional

singularities.

Functional singularities can be related to the topology of maps between the

configuration space and the real circle S1. Indeed, as suggested by the LHS of

Eq. (2.1), it is natural to define the functional order parameter c

ψ[φ] = eiΓ[φ] , (2.4)

to investigate functional singularities. Points where the functional order parameter is

singular correspond to configurations where the effective action is undefined, hence

to functional singularities. Functional singularities thus play a role analogous to

topological defects in condensed matter.34 Assuming that Γ is real, d the functional

order parameter ψ defines the map

ψ : M → S1, (2.5)

from the configuration space to the unit circle. Should we encircle an exact solution

φ0 with a d-dimensional hypersurface γd(φ0) ⊂ M with the topology of Sd, the
functional order parameter restricted to γd(φ0) induces the map

ψ|γd : Sd → S1 (2.6)

cThis nomenclature is reminiscent of the study of topological defects in condensed matter.
dThe functional order parameter space corresponding to complex effective actions is simply con-

nected, thus its fundamental group is trivial and no functional singularity exists.
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between higher-dimensional spheres centered at φ0 and the circle. The number of

times W that ψ|γd wraps around S1 determines the nature of the functional sin-

gularity, with each value of W corresponding to topologically distinct cases. The

functional singularity is absent (or removable) if, and only if, W = 0. The topology

of maps, hence the study of functional singularities, is characterise via the homo-

topy groups πd(S1), which encode the topologically different ways of wrapping ψ|γd
around the unit circle. The interested reader can consult Refs. 34, 35 for more details

on homotopy groups for physicists.

Luckily, higher homotopy groups of the circle are all trivial, that is πd(S1) = ∅ for
d > 1. The information on functional singularities is therefore fully contained in the

fundamental group π1(S1) = Z, which is isomorphic to the integers. These integers

precisely represent the number of turns W defined above. Because configurations

with W ≠ 0 are topologically distinct from W = 0, one cannot remove functional

singularities by local and continuous alterations in the effective action, as we have

already pointed out. In other words, one cannot continuously deform the loop γ1,

encircling a functional singularity, to a point. Notice that functional singularities

are, in general, higher-dimensional subspaces of the configuration space and not

points of zero dimensions.

The number of turns W is precisely accounted by the winding number:

W =
1

2π i

∮
ψ[γ1]

δψ

ψ

=
1

2π

∫ 2π

0

dθ

∫
Ω

dnx
∂L(x)
∂φI(x)

∣∣∣∣
φI(x)=γI(x;θ)

dγI(x; θ)

dθ
, (2.7)

where ψ[γ1] denotes the image of γ1 under the map ψ[φ]. The field configurations

γi = γI(x; θ) are an explicit parameterisation of γ1 in terms of the angle 0 ≤ θ ≤ 2π

such that γI(x; 0) = γI(x; 2π) and, of course,

Γ[φ] =

∫
Ω

dnxL(φI , ∂µφI , . . .) , (2.8)

with L the effective Lagrangian density. We should stress that, since δΓ = δψ/ψ is an

exact form, the winding number is independent of the curve γ1. Finally, since W ≠ 0

is a necessary and sufficient condition for the presence of a functional singularity,

Eq. (2.7) provides a direct procedure to determine the extent to which a theory is

well-defined.

2.3. Example: scalar field in cosmology

In this subsection, we will illustrate the formalism introduced above for a theory of a

massless scalar field ϕ minimally coupled to general relativity. e For this purpose, we

eWe refer the reader to Ref. 3 for more details on this calculation.
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shall assume that the effective action is known and given by the simple expression: f

Γ̃ =

∫
Ω

d4x
√
−g
(

R

16πGN
− 1

2
∂µϕ∂

µϕ

)
, (2.9)

where GN denotes Newton’s constant and R is the spacetime Ricci scalar. In real

situations, the effective action is much more complicated (if calculable exactly at

all) and it is usually non-local or non-analytic. One can also think of Eq. (2.9) as

the dominant contribution in the saddle-point approximation of path integrals.

The simplest cosmological spacetime is given by the spatially-flat Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = −N2 dt2 + a2
[
(dx1)2 + (dx2)2 + (dx3)2

]
(2.10)

where N = N(t) denotes the lapse function and a = a(t) is the scale factor. Without

loss of generality, we have set the shift functions Ni to zero. For a homogeneous

scalar field ϕ = ϕ(t), we find

a3±(t) = ±3
√
κ pϕ t (2.11)

ϕ±(t) = ± 1√
κ

log

(
± t

t0

)
, (2.12)

where t0 is an integration constant, pϕ = a3 ϕ̇ is a constant of motion that follows

from the equation for ϕ and we have set N = 1 in the final expressions. The different

signs above correspond to different regimes of evolution of the universe. Expansion

takes place for the positive sign, with 0 < t < ∞, and contraction for the negative

sign, with −∞ < t < 0. We have also adjusted the integration constants accordingly

in order to obtain a±(0) = 0. With such a choice we can join the two regimes of

evolution at t = 0 to form a “bouncing” configuration, which shall be denoted by

φis = (as(t), ϕs(t)).

It is not difficult to show that the Ricci scalar for the solution (2.11) diverges

for t → 0, which indicates the existence of a spacetime singularity at the bounce.

We also note that the determinant of the spacetime metric vanishes at the bounce,

which could suggest the presence of a covariant singularity for ϵ > 0 (see Eq. (2.8)).

The effective action (2.9) diverges when evaluated on the solutions (2.11)-(2.12)

for t → 0. Thus, everything seems to indicate that the spacetime singularity at

t = 0 corresponds to a functional singularity, which would prevent us from defining

observables for the bouncing solution φis.

However, the calculation of the functional winding number W shows otherwise.

Following the formalism of Sec. 2.2, we encircle the potentially singular configuration

φis with a curve γ1 parameterised as

γI(t; θ) = (as(t) +A cos θ, ϕs(t) +A sin θ, 1) , (2.13)

fBecause we shall only consider the homogeneous case, integration over space will produce an

infinite volume. The notation Γ̃ is just a reminder that this action is IR divergent. We then define

the IR-finite action Γ, without the tilde, to be the ratio between Γ̃ and the infinite volume.
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for all values of t for which a = as(t) and ϕ = ϕs(t) are defined, and A is a

positive constant. Since the effective action diverges when computed along (2.13),

the calculation of the winding number for such a parameterization is quite tricky.

Nothing forbids us from parameterizing γ1 differently, but it is easier to exploit

the freedom to add total derivatives to the effective action. By including the total

derivative

F =
A3

3
cos3 θ ϕ̇+

A2

2
cos2 θ ȧ , (2.14)

we can cancel out the divergence in the time integral over the configurations (2.13).

This results in Γ[φs] = 0, already suggesting that the apparent singularity is remov-

able. Indeed, the effective action evaluated along (2.13) vanishes identically, namely

Γ(θ) = 0, which yields

W = 0 . (2.15)

This implies that the apparent singularity at φs is indeed removable by local al-

terations of the effective action in the vicinity of φs. In fact, by imposing a cutoff

T > 0 in the lower limit of the time integral in Eq. (2.9) and taking T → 0 in the

end, one finds

lim
T→0

ΓT [φs] = 0 , (2.16)

where ΓT [φs] denotes the regularized effective action. Therefore, the spacetime sin-

gularity at t = 0 does not correspond to a functional singularity and physical ob-

servables can be defined normally. This shows that configuration-space coordinates

must exist in which the spacetime singularity vanishes completely.36–38

3. Conclusions

In this article, we have reviewed some aspects of covariant singularities. It has been

known for some time now that some spacetime singularities can be removed by

field redefinitions. This is reflected in the fact that the Hawking-Penrose theorem

does not transform covariantly under such transformations. The authors have thus

proposed the idea of covariant singularities, namely singularities that are invariant

under both spacetime and configuration-space diffeomorphisms. Such singularities

can be envisaged as boundary points in the infinite-dimensional configuration space

or configurations at which the Vilkovisky-DeWitt effective action is undefined, the

so-called functional singularities. We argued that the former can be interpreted as

missing configurations, which offers no issues to physics as they cannot be solutions

to the theory. The latter, on the other hand, are solutions by definition, but no

observables may be defined for them. Functional singularities are of topological

origin and affect the entire structure of the theory, thus they cannot be removed

without severely modifying the physical model.

We have shown a simple example in cosmology where a spacetime singularity is

known to exist, but no corresponding functional singularities take place. Despite the
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apparent spacetime singularity, observables can be well-defined in this case. There

are, indeed, different configuration-space coordinates that make the aforementioned

spacetime singularity look smooth. There is, however, no guarantee that functional

singularities are absent for all popular physical models. While there remains a lot

to be learned about these covariant singularities, the functional winding number

provides a systematical procedure for building self-consistent models, which is the

first step for the construction of a quantum theory of gravity.
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