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A 1-DIMENSIONAL COMPONENT

OF K-MODULI OF DEL PEZZO SURFACES

ANDREA PETRACCI

Abstract. We explicitly construct a component of the K-moduli space of

K-polystable del Pezzo surfaces which is a smooth rational curve.

1. Introduction

One of the most important and recent results in K-stability and in the theory
of Fano varieties is the construction of K-moduli [3, 8–10, 15, 18, 22, 35, 37]. It has
been proved that, for every positive integer n and every positive rational number
V , Q-Gorenstein families of K-semistable Fano varieties over C of dimension n
and anticanonical volume V form an algebraic stack MKss

n,V of finite type over C.

Moreover, this stack admits a good moduli spaceMKps
n,V , which is a projective scheme

over C, and the set of closed points of MKps
n,V coincides with the set of K-polystable

Fano varieties over C of dimension n and anticanonical volume V . We refer the
reader to [36] for a survey on these topics.

The case of smoothable del Pezzo surfaces has been extensively studied [23, 25,
26]. Moreover, K-moduli are understood for cubic 3-folds [21], cubic 4-folds [19],
and for certain pairs (S,C) where S is a surface and C is a curve on S [5, 6].

The goal of this note is to show how toric geometry and deformation theory can
help understanding the geometry of explicit components of K-moduli. Similar ideas
were used in [16] to construct examples of reducible or non-reduced K-moduli of
Fano 3-folds (see also [28, 29]), in [20] to study the K-stability of certain del Pezzo
surfaces with Fano index 2, and in [24] to study the dimension of K-moduli. In this
note we analyse a specific example of K-polystable toric del Pezzo surface and we
prove the following:

Theorem 1.1. There exists a connected component of MKps

2, 2215
which is isomorphic

to P1.

It is natural to wonder about the following:

Question 1.2. Does there exist V ∈ Q>0 such that a connected component of MKps
2,V

is a smooth curve of positive genus?

Outline. In §2.1 we briefly recall the deformation theory of the surface singularity
given by the cone over the rational normal curve of degree 4. In §2.2 we introduce
a Fano polygon P and a K-polystable toric del Pezzo surface X, and we analyse its
deformation theory; in particular, we show that the connected component of the
K-moduli space of K-polystable del Pezzo surfaces that contains X is smooth and
1-dimensional. In §2.4 we prove that X is a hypersurface in a toric 3-fold Y and in
§2.5 we prove that deforming X inside the linear system |OY (X)| on Y gives the
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2 ANDREA PETRACCI

versal deformation of X. This gives a non-constant morphism from an open subset
of |OY (X)| to the K-moduli space. In §2.3 we conclude the proof of Theorem 1.1.
In §3 we sketch what mirror symmetry says in this context.

Notation and conventions. We work over an algebraically closed field of charac-
teristic zero, which is denoted by C. A Fano variety is a normal projective variety
over C such that its anticanonical divisor is Q-Cartier and ample. A del Pezzo
surface is a Fano variety of dimension 2. We assume that the reader is familiar
with toric geometry [14]. Every toric variety we consider is normal.

If r, a1, . . . , an are integers and r ≥ 1, then the symbol 1
r (a1, . . . , an) stands

for the quotient of An under the action of the cyclic group µr defined by ζ ·
(x1, . . . , xn) = (ζa1x1, . . . , ζ

anxn) for every ζ ∈ µr. We use the same symbol
to indicate the étale-equivalence class of the singularity of this quotient variety at
the image of the origin of An.

Acknowledgements. The author learnt most of the techniques and the ideas
described in this note during countless conversations with Tom Coates, Alessio
Corti, Al Kasprzyk and Thomas Prince over the years; it is a pleasure to thank
them.

2. Proof

2.1. Deformations of 1
4 (1, 1). The cyclic quotient singularity 1

4 (1, 1) is the affine

cone over the 4th Veronese embedding of P1 into P4. The deformations of this
singularity have been studied by Pinkham [32, §4]. Here we concentrate on the
Q-Gorenstein deformations – see [29, §2] for a quick recap.

The singularity 1
4 (1, 1) has Gorenstein index 2. Its index 1 cover is 1

2 (1, 1), which

is the hypersurface singularity (xy − z2 = 0) in A3
x,y,z = SpecC[x, y, z]. Therefore

1
4 (1, 1) is the closed subscheme of the 3-fold quotient singularity 1

2 (1, 1, 1)x,y,z given,

with respect to the orbifold coordinates x, y, z, by the equation xy − z2 = 0.
Since the miniversal deformation of 1

2 (1, 1) is given by xy − z2 + t = 0 in A3
x,y,z

over C[[t]], we have that the miniversal Q-Gorenstein deformation of 1
4 (1, 1) is given

by

(1) xy − z2 + t = 0

inside 1
2 (1, 1, 1)x,y,z over C[[t]]. This specifies a formal morphism

(2) Spf(C[[t]]) −→ DefqG

(
1

4
(1, 1)

)
,

which is smooth and induces an isomorphism on tangent spaces. Here Spf denotes
the formal spectrum of a local noetherian C-algebra. We will always use this mor-
phism when considering the Q-Gorenstein deformation functor of the singularity
1
4 (1, 1).

Now we make a calculation which will be useful in §2.5. Consider the 2-parameter
deformation

(3) xy − z2 + s1 + s2z
4 = 0
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Figure 1. The polygon P in §2.2

in 1
2 (1, 1, 1)x,y,z over C[[s1, s2]]. By versality this deformation comes from the

miniversal deformation (1) via pull-back along a formal morphism

(4) Spf(C[[s1, s2]]) −→ Spf(C[[t]])
(2)−→ DefqG

(
1

4
(1, 1)

)
,

which is induced by a local C-algebra homomorphism C[[t]] → C[[s1, s2]]. Via the
automorphism of 1

2 (1, 1, 1)x,y,z × Spf(C[[s1, s2]]) given by

z 7→ z
√

1− s2z2 =

∞∑
n=0

(2n)!

4n(n!)2(1− 2n)
sn2 z

n+1

we get an isomorphism of the deformation (3) with xy−z2+s1 = 0, which is exactly
the miniversal deformation (1) once we use the equality t = s1. Therefore the
morphism in (4) is induced by the local C-algebra homomorphism C[[t]]→ C[[s1, s2]]
given by t 7→ s1.

2.2. The surface X. In the lattice N = Z2 consider the polygon P which is the
convex hull of the points(

2
1

)
,

(
1
2

)
,

(
−1
2

)
,

(
−2
−1

)
,

(
−1
−2

)
,

(
1
−2

)
and is depicted in Figure 1. (The meaning of the red segments in this figure will
be clear in §2.4.) It is clear that P is a Fano polytope, i.e. it is a lattice polytope
such that the origin is in the interior and the vertices are primitive lattice points.
Because of this we can consider the face fan (also called spanning fan) of P : this is
the collection of cones (with apex at the origin) over the faces of P ; it is made up
of 6 rational cones in N .

Proposition 2.1. Let X be the toric variety associated to the face fan of P . Then:

(1) X is a K-polystable toric del Pezzo surface with anticanonical volume 22
15 ;

(2) the surface X has exactly 6 singular points: 2 points of type 1
3 (1, 1), 2 points

of type 1
4 (1, 1), 2 points of type 1

5 (1, 2);

(3) the automorphism group Aut(X) is isomorphic to (C∗)2 oC2, where C2 is
the cyclic group of order 2 and the non-trivial element of C2 acts on (C∗)2

via (z, w) 7→ (z−1, w−1).
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Proof. (1) Since N has rank 2, the dimension of X is 2. By a slight modification of
[14, Theorem 8.3.4], since the fan of X is the face fan of a Fano polytope, we have
that X is Fano.

Let P ◦ denote the polar of P (see [16, §2.4]); it is a rational polytope in the
dual lattice M = HomZ(N,Z) and is the moment polytope of the toric boundary
of X, which is the reduced sum of the torus invariant prime divisors of X and is
an anticanonical divisor. The anticanonical volume of X is the normalised volume
of P ◦, which is 22

15 . Here the normalised volume is the double of the Lebesgue
measure: in this way the normalised volume of a unimodular simplex is 1. Since
P is centrally symmetric (i.e. P = −P ), also P ◦ is centrally symmetric, hence the
barycentre of P ◦ is the origin. Therefore X is K-polystable by [7].

In order to prove (2) one needs to analyse the six 2-dimensional cones of the face
fan of P and apply [14, §10.1]. For instance, the two horizontal edges of P give the
two 1

4 (1, 1) singularities.

(3) let TN denote the 2-dimensional torus N⊗Z (C∗)2 = SpecC[M ] which acts on
X. Let Aut(P ) be the group of the symmetries of P : it is generated by −idN . Since
every facet of P ◦ has no interior lattice points, by [16, Proposition 2.8] Aut(X) is
the semidirect product TN o {±idN}. �

The points of type 1
3 (1, 1) and 1

5 (1, 2) are Q-Gorenstein rigid, i.e. they do not

deform Q-Gorensteinly. The Q-Gorenstein deformations of 1
4 (1, 1) have been con-

sidered in §2.1.
By [1, Lemma 6] there are no local-to-global obstructions for Q-Gorenstein defor-

mations of X, so the Q-Gorenstein smoothings of the two 1
4 (1, 1) points of X, which

we denote p1 and p2, can be realised globally and simultaneously. More precisely,
since Hi(X,TX) = 0 for i ≥ 1 by [30], the product of the restriction morphisms to
the germs (pi ∈ X)

(5) DefqG(X) −→ DefqG(p1 ∈ X)×DefqG(p2 ∈ X)

is smooth and induces an isomorphism on tangent spaces. So C[[t1, t2]] is the hull
of DefqG(X) and ti is the Q-Gorenstein smoothing parameter of (pi ∈ X). Here
the parameter ti is defined through (2). In the next section we will realise the
miniversal Q-Gorenstein deformation of X in a linear system in a toric Fano 3-fold.

Proposition 2.2. Let M (resp. M) be the connected component of the K-moduli

stack MKss
2, 2215

(resp. the K-moduli space MKps

2, 2215
) which contains the point correspond-

ing to X. Then M is a smooth projective irreducible curve.

Proof. Since Q-Gorenstein deformations of del Pezzo surfaces are unobstructed by
[1, Lemma 6], by [16, Remark 2.4] we get that M is smooth and M is normal.
Moreover M is projective by [22].

The automorphism group Aut(X) acts on the hull C[[t1, t2]]. The weights of
t1 (resp. t2) in M is (0, 1) (resp. (0,−1)). Therefore the invariant subring of the
formal action of TN = (C∗)2 on C[[t1, t2]] is C[[t1t2]]. The group C2 swaps t1 and t2,
so it leaves t1t2 invariant. Therefore the invariant subring of the formal action of
Aut(X) on C[[t1, t2]] is C[[t1t2]].
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By the Luna étale slice theorem for algebraic stacks [4] the local structure of
M→M is given by the commutative square

[Spf C[[t1, t2]] / Aut(X)]

��

//M

��
Spf C[[t1t2]] // M

where the horizontal maps are formally étale and maps the closed point to [X].
This implies that M has dimension 1. Hence M is a smooth projective curve. �

2.3. The 3-fold Y and the proof of Theorem 1.1. Consider A6 with coordi-
nates x1, x2, y1, y2, z1, z2. Consider the toric 3-fold Y given by the GIT quotient
A6//(C∗)3 where the linear action of (C∗)3 on A6 is specified by the weights

x1 x2 y1 y2 z1 z2

0 0 1 1 1 1 L1

0 1 3 1 0 6 L2

1 0 1 3 6 0 L3

and by the stability condition whose unstable locus is the vanishing locus of the
ideal

(6) (x1, x2, z1) · (x1, x2, z2) · (y1, y2) · (y1, z2) · (y2, z1)

in the polynomial ring C[x1, x2, y1, y2, z1, z2]. Now L1, L2, L3 are the Q-line bundles
on Y which come from the standard basis of the character lattice of (C∗)3. They
form a Z-basis of the divisor class group of Y .

We see that H0(Y, 2L1 + 6L2 + 6L3) has dimension 4 and its monomial basis is
made up of the monomials

z1z2, y1y2x
2
1x

2
2, x

4
1y

2
1 , x

4
2y

2
2 .

We consider a special affine subspace H0(Y, 2L1 + 6L2 + 6L3) and we relate to the
surface X considered in §2.2:

Proposition 2.3. Let Y be the toric 3-fold defined above. Let X be the toric del
Pezzo surface considered in §2.2. Consider the flat family X → A2 = SpecC[s1, s2]
of hypersurfaces in the linear system |2L1 +6L2 +6L3| on Y defined by the equation

(7) z1z2 − y1y2x
2
1x

2
2 + s1x

4
1y

2
1 + s2x

4
2y

2
2 = 0.

Then:

(A) the fibre of X → A2 over the origin 0 ∈ A2 is the toric surface X;
(B) the base change of X → A2 to C[[s1, s2]] is the miniversal Q-Gorenstein

deformation of X.

We postpone the proof of this proposition: the proof of (A) is given in §2.4 and
the proof of (B) is given in §2.5. Now we show how this proposition implies our
main result.

Proof of Theorem 1.1. LetM and M be as in Proposition 2.2. We have that M is
a smooth projective irreducible curve. We want to show that M is isomorphic to
P1.

Let X → A2 be the Q-Gorenstein family considered in Proposition 2.3. Since the
central fibre is K-polystable, by openness of K-semistability [9], there exists an open
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neighbourhood U of the origin in A2 such that the fibred product X ×A2 U → U
induces a morphism U →M, which is formally smooth at the origin.

By looking at the action of Aut(X) on the base of the miniversal Q-Gorenstein
deformation of X (see the proof of Proposition 2.2), we see that there are K-
polystable surfaces in U non-isomorphic to X. Therefore, by composing U → M
withM→M , we get a non-constant morphism U →M . By restricting to a general
line passing through the origin in U ⊆ A2, we get that M is unirational. Therefore
M is rational by Lüroth’s theorem. This concludes the proof of Theorem 1.1. �

2.4. Proof of Proposition 2.3(A). We need to prove that the surface X is the
hypersurface in the 3-fold Y defined by the equation z1z2−y1y2x

2
1x

2
2 = 0. We apply

the Laurent inversion method [13,33,34].
Let e1, e2 be the standard basis of N = Z2. Consider the decomposition

N = N ⊕NU
where N = Ze1 and NU = Ze2. Let M be the dual lattice of N . Let Z be the
TM -toric variety associated to complete fan in the lattice M with rays generated
by e∗1 and −e∗1. It is clear that Z is isomorphic to P1. Let DivTM

(Z) be the rank-2
lattice consisting of the torus invariant divisors on Z: a basis of DivTM

(Z) is given
by the torus invariant prime divisors on Z, namely E+, E−, which are associated
to the rays e∗1, −e∗1 respectively. The divisor sequence [14, Theorem 4.1.3] of Z is

0 −→ N = Ze1

ρ?=

 1
−1


−−−−−−−→ DivTM

(Z) = ZE+ ⊕ ZE−

(
1 1

)
−−−−−→ Pic(Z) = Z −→ 0.

We consider the following ample torus invariant divisors on Z

Dx1
= E+ + E− Dy1 = −E+ + 2E−

Dx2
= E+ + E− Dy2 = 2E+ − E−

and their corresponding moment polytopes in N :

PDx1
= conv {−e1, e1} PDy1

= conv {e1, 2e1} ,
PDx2

= conv {−e1, e1} PDy2
= conv {−2e1,−e1} .

Now consider the following elements in the lattice NU = Ze2:

χx1
= 2e2 χy1 = e2

χx2
= −2e2 χy2 = −e2.

The polytopes

PDx1
+ χx1

PDy1
+ χy1

PDx2
+ χx2

PDy2
+ χy2

in N = N ⊕ NU are the four red segments in Figure 1. Clearly the polygon P is
the convex hull of these four segments. By [13, Definition 3.1] the set

S = {(Dx1
, χx1

) , (Dx2
, χx2

) , (Dy1 , χy1) , (Dy2 , χy2)}

is a ‘scaffolding’ on the Fano polygon P .
Consider the rank-3 lattice Ñ := DivTM

(Z)⊕NU = ZE+ ⊕ ZE− ⊕ Ze2. Let M̃

be the dual lattice of Ñ and let 〈·, ·〉 : M̃× Ñ → Z be the duality pairing. Following
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[13, Definition A.1] we consider the polytope QS ⊆ M̃R defined by the following
inequalities:

〈 · ,−Dx1 + χx1〉 ≥ −1,

〈 · ,−Dx2 + χx2〉 ≥ −1,

〈 · ,−Dy1 + χy1〉 ≥ −1,

〈 · ,−Dy2 + χy2〉 ≥ −1,

〈 · , E+〉 ≥ 0,

〈 · , E−〉 ≥ 0.

Let ΣS be the normal fan of QS . One can see that ΣS is the complete simplicial
fan in Ñ = DivTM

(Z)⊕NU with rays generated by the following vectors:

x1 = −Dx1
+ χx1

= −E+ − E− + 2e2

x2 = −Dx2
+ χx2

= −E+ − E− − 2e2

y1 = −Dy1 + χy1 = E+ − 2E− + e2

y2 = −Dy2 + χy2 = −2E+ + E− − e2

z1 = E+,

z2 = E−.

Let Y be the TÑ -toric variety associated to the fan ΣS . Thus Y is a Q-factorial
Fano 3-fold with Cox coordinates x1, x2, y1, y2, z1, z2 . With respect to the basis of
Ñ given by E+, E−, e2, the rays of the fan ΣS are the columns of the matrix−1 −1 1 −2 1 0

−1 −1 −2 1 0 1
2 −2 1 −1 0 0

 .

The transpose of this matrix gives an injective Z-linear homomorphism M̃ → Z6.
By [14, Theorem 4.1.3] the cokernel of this is the divisor map of Y and is isomorphic
to the divisor class group of Y . In this case, one finds that the divisor map of Y is
the Z-linear homomorphism Z6 → Cl(Y ) ' Z3 given by the following matrix.

x1 x2 y1 y2 z1 z2

0 0 1 1 1 1 L1

0 1 3 1 0 6 L2

1 0 1 3 6 0 L3

Here L1, L2, L3 are the elements of the chosen Z-basis of Cl(Y ). This 3× 6 matrix
gives the weights of a linear action of the torus (C∗)3 on A6. By [14, §5.1] Y is
the GIT quotient of this action with respect to the stability condition given by the
irrelevant ideal

(x1, x2, z1) · (x1, x2, z2) · (y1, y2) · (y1, z2) · (y2, z1).

Therefore Y is the toric 3-fold considered in §2.3.
We now consider the injective linear map

θ := ρ? ⊕ idNU
: N = N ⊕NU −→ Ñ = DivTM

(Z)⊕NU .

By [13, Theorem 5.5] θ induces a toric morphism X → Y which is a closed embed-
ding. We want to understand the ideal of this closed embedding in the Cox ring of
Y by using the map θ.
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We follow [34, Remark 2.6]. We see that θ(N) is the hyperplane defined by the

vanishing of h = E∗+ + E∗− ∈ M̃ . Now we compute the duality pairing between h
and the primitive generators of the rays of ΣS : 〈h, x1〉 = 〈h, x2〉 = −2, 〈h, y1〉 =
〈h, y2〉 = −1, 〈h, z1〉 = 〈h, z2〉 = 1. We get that the polynomial

(8) z1z2 − y1y2x
2
1x

2
2

is the generator of the ideal of the closed embedding X ↪→ Y in the Cox ring of Y .
In other words, X is the hypersurface in Y defined by the vanishing of the polyno-
mial (8) in the Cox coordinates of Y . This concludes of (A) in Proposition 2.3.

2.5. Proof of Proposition 2.3(B). We want to show that, after base change
to C[[s1, s2]], the family of hypersurfaces in Y defined by the vanishing of (7) is
the miniversal Q-Gorenstein deformation of X. Since the map in (5) is smooth and
induces an isomorphism on tangent spaces, we need to check that locally this family
induces the miniversal deformations of the singularity germs of X. Let t1 and t2
be the two smoothing parameters of the two 1

4 (1, 1) singularities of X, as fixed in
§2.1. We proceed by analysing each chart of the affine open cover of Y given by
the fan ΣS .

• The cone σx1,z1,z2 gives the isolated singularity 1
2 (1, 1, 1)x1,z1,z2 on Y . In

this chart, by dehomogenising (7), we get the equation z1z2−x2
1+s1x

4
1+s2 =

0 in the orbifold coordinates. This is exactly the Q-Gorenstein smoothing
of 1

4 (1, 1) described at the end of §2.1. So we have t2 = s2.

• The cone σx2,z1,z2 gives the isolated singularity 1
2 (1, 1, 1)x2,z1,z2 on Y . In

this chart we get the equation z1z2 − x2
2 + s1 + s2x

4
2 = 0. We are in a

completely analogous situation as the previous case, so t1 = s1.
• The cone σx1,y2,z2 gives the isolated singularity 1

5 (2, 1, 4)x1,y2,z2 on Y . In

this chart we get the equation z2 − y2x
2
1 + s1x

4
1 + s2y

2
2 = 0, which is quasi-

smooth because there is no constant term and z2 appears with degree 1.
So all fibres of X → A2 have a 1

5 (1, 2) singularity at the 0-stratum of this
chart of Y .
• The cone σx2,y1,z1 gives the isolated singularity 1

5 (1, 2, 4)x2,y1,z1 on Y . The

equation is z1 − y1x
2
2 + s1y

2
1 + s2x

4
2 = 0 and, in a way analogous to the

previous case, we get a 1
5 (1, 2) singularity on every fibre of X → A2 at the

0-stratum of this chart of Y .
• The cone σx1,y1,z1 gives the non-isolated singularity 1

3 (1, 1, 0)x1,y1,z1 . The

equation is z1− y1x
2
1 + s1x

4
1y

2
1 + s2 = 0. Since it is quasi-smooth, this gives

a 1
3 (1, 1) singularity on every fibre of X → A2 at a point on the curve

(x1 = y1 = 0) ⊂ Y .
• The cone σx2,y2,z2 gives the non-isolated singularity 1

3 (1, 1, 0)x2,y2,z2 . The

equation is z2− y2x
2
2 + s1 + s2x

4
2y

2
2 = 0 and, similarly to the previous case,

we have a 1
3 (1, 1) singularity on every fibre of X → A2 at a point on the

curve (x2 = y2 = 0) ⊂ Y .
• In the fan ΣS there are two 3-dimensional cones which we have not been

analysed yet: these are σx1,x2,y1 , whose corresponding chart on Y is the non-
isolated singularity 1

12 (3, 1, 4)x1,x2,y1 , and σx1,x2,y2 , which gives the non-

isolated singularity 1
12 (4, 1, 3)x1,x2,y2 on Y . We want to show that it is

useless to analyse these cones. Let V denote the complement in Y of
the union of the already analysed charts; V is made up of 3 torus-orbits:
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the 0-stratum corresponding to σx1,x2,y1 , the 0-stratum corresponding to
σx1,x2,y2 , and the 1-stratum corresponding to σx1,x2 . In other words V is
the projective curve (x1 = x2 = 0) in Y . By looking at the equation (7)
and at the irrelevant ideal (6) it is clear that V does not intersect any fibre
of X → A2.

To sum up, we have that the family X → A2 realises the Q-Gorenstein smooth-
ings of the two 1

4 (1, 1) points on X and leaves the 1
3 (1, 1) points and 1

5 (1, 2)
points untouched (i.e. the deformation is formally isomorphic to a product around
these points of the central fibre). By versality the family X → A2 induces a
morphism Spf(C[[s1, s2]]) → DefqG(X), which is associated to the isomorphism
C[[s1, s2]] ' C[[t1, t2]], where s1 = t1 and s2 = t2. In other words, the base change
of X → A2 to C[[s1, s2]] is the miniversal Q-Gorenstein deformation of X. This
concludes the proof of Proposition 2.3(B).

3. Mirror symmetry

In [1] some conjectures for del Pezzo surfaces were formulated. In this section
we sketch some evidence for these conjectures in the case of the toric del Pezzo
surface X and of its Q-Gorenstein deformations. In addition to [1], we refer the
reader to [11,12,31] and to the references therein for more details about the notions
introduced below.

3.1. Combinatorial avatars of connected components of moduli of del
Pezzo surfaces. According to [1, Conjecture A] there is a 1-to-1 correspondence
between

• connected components of the moduli stack of del Pezzo surfaces (with a
toric degeneration) and
• mutation equivalence classes of Fano polygons.

Here a Fano polygon is a lattice polygon whose face fan defines a del Pezzo surface
(an example is P in §2.2); and mutation is a certain equivalence relation on Fano
polygons introduced in [2] — we do not give further details here and we refer the
reader to [1, 17].

The correspondence works in the following way: to (the mutation equivalence
class of) the Fano polygon P one associates the connected component M of the
moduli stack of del Pezzo surfaces which contains the surface X, which is the toric
del Pezzo surface associated to the face fan of P . One has that M is smooth
and contains M (the connected component of the K-moduli stack parametrising
K-semistable del Pezzo surfaces and containing X) as an open substack.

3.2. Classical period. Consider the family of maximally mutable Laurent poly-
nomials with Newton polytope P and with T-binomial edge coefficients [1, Defini-
tion 4]. This is the 6-dimensional family

f = x2y + x−2y−1 + (x+ 2 + x−1)(y2 + y−2)

+ a1xy + a2x
−1y−1 + b1x+ b2x

−1 + c1xy
−1 + c2x

−1y

in Q[a1, a2, b1, b2, c1, c2][x±, y±], where a1, a2, b1, b2, c1, c2 are indeterminates. In
Figure 2 the coefficients of f are written next to the corresponding lattice points of
P .
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1 2 1

c2 0 a1 1

b2 0 b1

1 a2 0 c1

1 2 1

Figure 2. The coefficients of the maximally mutable Laurent
polynomials with Newton polytope P and with T-binomial edge
coefficients (see §3.2)

The classical period of f is the power series

πf (t) =

(
1

2πi

)2 ∫
{(x,y)∈(C∗)2||x|=|y|=ε}

1

1− tf(x, y)

dx

x

dy

y

in Q[a1, a2, b1, b2, c1, c2][[t]], for some 0 < ε� 1. The first coefficients of πf are:

πf (t) = 1 + 2(a1a2 + b1b2 + c1c2 + 7)t2+

+ 6(a1b1 + 2a1c2 + a2b2 + 2a2c1 + 4b1 + 4b2 + c1 + c2)t3 + · · · .

3.3. Quantum period. Let X ′ be the surface corresponding to a general point in
M ; in other words, X ′ is a general Q-Gorenstein deformation of the toric surface X.
The quantum period of X ′ [27, Definition 3.2] is a certain generating function for
genus zero Gromov–Witten invariants of X ′ which depends on certain parameters
related to the singularities of X ′. In this case there are 6 parameters because the
singular locus of X ′ is made up of 2 points of type 1

3 (1, 1) and 2 points of type
1
5 (1, 2).

In general it is very difficult to compute the quantum period of a Fano orbifold.
Since X ′ is a hypersurface in the toric Fano Y , one can use the quantum Lefschetz
theorem to compute a specialisation of the quantum period of X ′, i.e. the power
series GX′ ∈ Q[[t]] obtained from the quantum period by setting the parameters
equal to some numbers. This can be done as follows. We use the notation as in
§2.4. One can see that the nef cone of Y is spanned by the divisor classes

L1 + 3L2 + 3L3,

4L1 + 9L2 + 9L3,

5L1 + 9L2 + 15L3,

5L1 + 15L2 + 9L3.
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We consider the cone Λ ⊆ R3 defined by the inequalities

l1 + 3l2 + 3l3 ≥ 0,

4l1 + 9l2 + 9l3 ≥ 0,

5l1 + 9l2 + 15l3 ≥ 0,

5l1 + 15l2 + 9l3 ≥ 0

and by the inequalities

l3 ≥ 0,

l2 ≥ 0,

l1 + 3l2 + l3 ≥ 0,

l1 + l2 + 3l3 ≥ 0,

l1 + 6l3 ≥ 0,

l1 + 6l2 ≥ 0.

The first inequalities say that we are taking (the closure of) the cone of the effective
curves in N1(Y )R, i.e. we are taking the dual of the nef cone of Y ; with the second
inequalities we are taking the curve classes on which the prime torus-invariant
divisors of Y have non negative degrees.

By using methods similar to [27], one can prove that a specialisation of the
quantum period of X ′ is the power series GX′(t) ∈ Q[[t]] equal to∑
(l1,l2,l3)∈Λ∩Z3

(2l1 + 6l2 + 6l3)!

l3! l2! (l1 + 3l2 + l3)! (l1 + l2 + 3l3)! (l1 + 6l3)! (l1 + 6l2)!
t2l1+5l2+5l3 .

Notice the following numerology: at the denominator there are the factorial of the
degrees of the prime torus-invariant divisors of Y , the numerator is the factorial of
the degree of the Q-line bundle OY (X ′) = 2L1 + 6L2 + 6L3, the exponent of t is
the degree of the Q-line bundle −KY −X ′ = 2L1 + 5L2 + 5L3, which by adjunction
restricts to −KX′ on X ′.

If
∑
d≥0 Cdt

d is the quantum period of X ′, then the regularised quantum period of

X ′ is
∑
d≥0 d! Cdt

d. From the computation above one computes the first coefficients

of a specialisation of the regularised quantum period of X ′:

ĜX′(t) = 1 + 16t2 + 936t4 + 520t5 + 76840t6 + 131880t7 + 7360920t8+

+ 22806000t9 + 770459256t10 + 3451657440t11 + 85553394696t12 + · · · .

3.4. Equality of periods. A second mirror-symmetric expectation [1, Conjec-
ture B] is that there is an equality between

• the regularised quantum period of a general surface X ′ in M and
• the classical period of the family of maximally mutable Laurent polynomials

with Newton polytope P and with T-binomial edge coefficients.

Notice that in our case both periods depend on 6 parameters which should be
identified.

Combining §3.2 and §3.3 one can verify the equality between a specialisation
of the regularised quantum period of X ′ and the classical period of the Laurent
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polynomial obtained from f by setting a1 = a2 = 1 and b1 = b2 = c1 = c2 = 0:

ĜX′(t) = πf (t)|a1=a2=1, b1=b2=c1=c2=0.

References

[1] M. Akhtar, T. Coates, A. Corti, L. Heuberger, A. Kasprzyk, A. Oneto, A. Petracci, T. Prince,
and K. Tveiten, Mirror symmetry and the classification of orbifold del Pezzo surfaces, Proc.

Amer. Math. Soc. 144 (2016), no. 2, 513–527.

[2] M. Akhtar, T. Coates, S. Galkin, and A. M. Kasprzyk, Minkowski polynomials and mutations,
SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17.

[3] J. Alper, H. Blum, D. Halpern-Leistner, and C. Xu, Reductivity of the automorphism group

of K-polystable Fano varieties, Invent. Math. 222 (2020), no. 3, 995–1032.
[4] J. Alper, J. Hall, and D. Rydh, A Luna étale slice theorem for algebraic stacks, Ann. of Math.

(2) 191 (2020), no. 3, 675–738.
[5] K. Ascher, K. DeVleming, and Y. Liu, K-moduli of curves on a quadric surface and K3

surfaces. To appear in J. Inst. Math. Jussieu, arXiv:2006.06816.

[6] , Wall crossing for K-moduli spaces of plane curves. arXiv:1909.04576.
[7] R. J. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, Invent.

Math. 203 (2016), no. 3, 973–1025.

[8] H. Blum, D. Halpern-Leistner, Y. Liu, and C. Xu, On properness of K-moduli spaces and
optimal degenerations of Fano varieties, Selecta Math. (N.S.) 27 (2021), no. 4, Paper No.

73, 39.

[9] H. Blum, Y. Liu, and C. Xu, Openness of K-semistability for Fano varieties. To appear in
Duke Math. J., arXiv:1907.02408.

[10] H. Blum and C. Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of

Math. (2) 190 (2019), no. 2, 609–656.
[11] T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, Mirror symmetry and Fano

manifolds, European Congress of Mathematics, 2013, pp. 285–300.

[12] T. Coates, A. Corti, S. Galkin, and A. Kasprzyk, Quantum periods for 3-dimensional Fano
manifolds, Geom. Topol. 20 (2016), no. 1, 103–256.

[13] T. Coates, A. Kasprzyk, and T. Prince, Laurent inversion, Pure Appl. Math. Q. 15 (2019),
no. 4, 1135–1179.

[14] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics,

vol. 124, American Mathematical Society, Providence, RI, 2011.
[15] C. Jiang, Boundedness of Q-Fano varieties with degrees and alpha-invariants bounded from
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