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A Cautionary Tale for Machine Learning Design: 
Why We Still Need Human-Assisted Big Data 
Analysis  

 
 
Marco Roccetti, Giovanni Delnevo, Luca Casini, Paola Salomoni 

 

 
Abstract Supervised Machine Learning (ML) requires that smart algorithms 

scrutinize a very large number of labeled samples before they can make right 

predictions. And this is not always true either. In our experience, in fact, a neural 

network trained with a huge database comprised of over fifteen million water meter 

readings had essentially failed to predict when a meter would malfunction/need 

disassembly based on a history of water consumption measurements. With a second 

step, we developed a methodology, based on the enforcement of a specialized data 

semantics, that allowed us to extract only those samples for training that were not 

noised by data impurities. With this methodology, we re-trained the neural network 

up to a prediction accuracy of over 80%. Yet, we simultaneously realized that the 

new training dataset was significantly different from the initial one in statistical 

terms, and much smaller, as well. We had reached a sort of paradox: We had 

alleviated the initial problem with a better interpretable model, but we had changed 

the replicated form of the initial data. To reconcile that paradox, we further enhanced 

our data semantics with the contribution of field experts. This has finally led to the 

extrapolation of a training dataset truly representative of regular/defective water 

meters and able to describe the underlying statistical phenomenon, while still 

providing an excellent prediction accuracy of the resulting classifier. At the end of 

this path, the lesson we have learnt is that a human-in-the-loop approach may 

significantly help to clean and re-organize noised datasets for an empowered ML 

design experience. 
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1 Introduction  
 

This time, we would like to begin our research paper with a clear question: What do 

we talk about when we talk about Machine Learning (or ML, for short)? An 

oversimplifying, yet precise, answer is that ML algorithms essentially scrutinize large 

piles of data to recognize hidden relationships buried deep within them, while using 

patterns, that are eventually found, to classify, interpret and make predictions on a 

variety of different real-world phenomena [1-3]. Nonetheless, it often goes 

disregarded that algorithms that learn are, at least for now, just another form of 

machine instruction, still driven and influenced by a continuous gathering of 

information, with which ML algorithms are fed and trained [4]. 
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Yet, to come to our point: while we can recognize myriad uses for these smart 

algorithms, even more crucial is to harness the power of the data that can make them 

sensitive to past experiences. Needless to hide it any longer, one can use a clever ML 

algorithm, but it is not the elaborate design of that procedure that wins, at the end. 

Rather, the statistical validity, the sense, the references, the subtle implications, in 

one single word: the semantics of the data that are used to train the algorithm [5, 6]. 

Our experience in this field has gone far enough to justify the above 

statements of our thinking. What we have done, in fact, has been to work on a huge 

dataset comprised of over fifteen million water meter readings, provided by a 

company that distributes water in Northern Italy. The aim was to design a ML-based 

classifier, able to predict defective water meters, based on the history of the 

measurements of the water that was consumed over the years. 

On a first phase of this research activity, we tried to train a neural network 

with (almost) all of the fifteen million water meter readings, without any specific 

attention to the quality of those data. What we have inevitably obtained has been a 

ML model essentially unable to predict, with a sufficient precision, when a given 

water meter would fail/need disassembly. 

With a second step, we developed a methodology, based on the enforcement 

of a specialized data semantics, that allowed us to extract only those samples for 

training that were not noised by data impurities. Applying this data semantics, most 

of those impurities were filtered out, and our neural network was re-trained based on 

a more stable dataset up to a prediction accuracy of over 80%. Yet, we simultaneously 

realized that this new training dataset was significantly different from the initial one 

in statistical terms, and much smaller, as well. We had reached an apparent paradox: 

We had alleviated the initial classification problem with a better interpretable data 

model to be used by a ML algorithm, but we had changed the replicated form of the 

initial data [7-9]. 

In an effort to reconcile this paradox, with a third and final step, a further new 

training dataset was obtained, reaching a greater standard of data quality. In close 

collaboration with domain experts, in fact, a new data semantics was defined with the 

aim of: i) not only cleaning the initially noised dataset, but also ii) privileging for 

training just those data that human experts consider representative of what a normal 

history of water consumption can either be (regular meters) or not be (defective 

meters). This has finally led to the extrapolation of a training dataset able to represent 

the underlying statistical phenomenon, while still providing an excellent prediction 

accuracy of the classifier. Simply told, we have found out that, if we use a sufficient 

number of readings from this final dataset, there is no statistical paradox at all, and 

the accuracy of the correspondent ML classifier equals, or even outperforms, that of 

its predecessor. To summarize our results, we can maintain that a human-in-the-loop 

approach may significantly help to clean and re-organize noised datasets for an 

empowered ML design experience. 

The remainder of this paper proceeds as follows. In Section 2, we discuss on 

the importance of the quality of data that are used for training ML algorithms, with 

some relevant examples, while in Section 3 and 4 we present the initial problem and 

the first naïve approaches we had adopted to design a ML model able to predict 

defective water meters, with its correspondent (and not fully convincing) results. 

Section 5 describes, instead, the final data semantics that was agreed upon with 

experts and has led both to an improved prediction accuracy of the classifier and to a 

statistical compliance with the initial dataset. Section 6, finally, concludes the paper. 

 

 

2 Related Work 
 

The importance of having data that provide an accurate and high-quality description 

of a given phenomenon is not that new for computer science, even before the advent 

of the current ML age. This motivates why data quality has been a subject of intense 

study for many years in the past [10]. Along this line of reasoning, it should be noticed 

that before the International Organization for Standardization (ISO) had standardized 

its own definition of what quality means for data (i.e., ISO 8000-8:2015, too long to 
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be reported here), many researchers have contended for the most effective one [11]. 

And so, data quality has been intended in a variety of different ways over the 

years, ranging, for example, from: “(we have data of) high quality if it is fit for its 

intended uses in operations, decision making and planning” [12], to: “(quality as) the 

totality of features and characteristics of data that bears on its ability to satisfy a given 

purpose; the sum of the degrees of excellence for factors related to data” [13]. 

Further to a given general definition, more important is to note that, from a 

more practical standpoint, data quality can be returned in terms of the various 

dimensions that identify specific facets of the process that utilizes those data. 

Obviously, those dimensions can vary, depending on both the objectives and the 

context of use of the data. Nonetheless, to simplify this complex subject, we are often 

concerned with the quality of data expressed in terms of: accuracy, completeness and 

consistency [14-16].   

 While data quality, prior to the big data era, was essentially meant in terms of 

the aforementioned features (i.e., accuracy, completeness and consistency) yet with 

a specific attention to the databases that store them, the advent of what we have called 

big data has significantly changed the picture. The specific characteristics of this 

huge and uninterrupted flow of data (to be treated not only based on its volume, but 

also facing issues like velocity and value variety) have posed unique challenges to 

the interpretation of what quality has become. To convince skeptical readers to accept 

this new challenge, it should be enough to think about the diversity of application 

fields where the quality of data that are exploited can make a real difference, like for 

example: health and biology, social media and politics, logistics and transport, just to 

cite a few [18-22].  

 At this point, you will end up really disappointed to know that the most 

relevant ML initiatives disregard data quality as a crucial factor for success. Those 

who train learning machines, in fact, are still convinced that the focus has to be put 

more on algorithms and computational infrastructures, rather than on data and their 

quality [23]. In some sense, in the ML arena, many are those who think that: “Until 

we have all the data, any other issue comes after”. This is also the motivation behind 

the scarcity, in the specialized scientific literature, of research papers where issues of 

ML and data quality are treated with the same level of mindfulness. Fortunately, some 

happy few examples exist that contradict our previous narration. 

For example, Sessions and Valtorta discuss on the influence that the quality 

of data may have if one wants to learn the structure of a Bayesian network, starting 

from data [24]. More interestingly, Foidl and Felderer try to assess the risk of using 

poor data for training a learning machine. Specifically, they discuss how much is to 

the harm of the final performance of a ML algorithm trying to learn a feature which 

is described only by low quality data [25]. 

 Our present paper extends this last discussion to a more general ML setting, 

and also gives considerations to alternative solutions useful to overcome the problem 

of using low quality data for training a modern ML algorithm, in a realistic situation.  

 
 
3 Learning from Big (Non-Quality) Data 
 

At the beginning of our research adventure, we were provided with a huge dataset 

comprised of almost fifteen million readings (plus other contextual information) 

coming from almost one million water meters. This large dataset spanned a period in 

time, from the beginning of 2014 to the end of 2018. As already mentioned, all those 

data were supplied by a company that distributes water over a large area in Northern 

Italy. To guarantee its privacy, we keep it here anonymized.   

The target of this operation was to train a neural network with those data, and 

then implement an intelligent classifier able to make a prediction on when a given 

meter would have failed/needed disassembly, based on a history of water 

consumption quantities (the readings, for short). An additional requirement was that 

of keeping the number of the consecutive readings, useful for a prediction for a given 

meter, as small as possible. All this with the intent to try to respond to the request, 

expressed by the company, to better organize the number and the type of 
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interventions that human operators have to carry out on site, for water meter 

maintenance and repair.  

Unfortunately, the problem with this initial dataset was that many of the 

provided readings came with numerous impurities, many of which traced down to a 

point where different business processes have conflicts that are too complex to be 

explained in this paper. As a simple example of this complexity, and of its reflection 

on data, take the fact that, at a certain point of one of these processes, a human 

operator has to validate a given water reading. In the absence of such positive 

validation, that reading is to be considered as non-valid and cannot be taken into 

consideration. 

If you look at Table 1 (uppermost part), you can find reported the quantity of 

valid/non-valid readings, starting from the initial amount of circa fifteen million 

readings. Precisely: almost 2 million readings are to be considered as non-valid, 

based on the precise company terms we have explained above. 

Not only, out of the 13 million readings generically considered as valid, the 

company further classifies those readings using several different categories (of 

validity), into which a given reading can fall, depending on the combination of the 

values that are assigned to three specific fields of the record implementing that 

reading. This brings to a total combination of some 45 different categories of validity 

for readings. Yet, just seven of them are the categories of validity into which almost 

the 99% of the readings, comprised in the dataset, do fall. These seven categories of 

readings are shown in the middle part of Table 1, defined through the combination of 

the different values that the three fields, termed X, Y and Z, can assume.  

In essence, the higher the position of the category in (the middle section of) 

Table 1, the more reliable are to be considered the corresponding readings falling in 

that category. For the sake of secrecy, we have used codes in Table 1 (i.e., capital 

letters and numbers), that hide the meaning of both the record fields and their values. 

Anyway, at this point, it should be clear that the company considers as highly 

reliable especially all those readings comprised in the category denoted by the 

following code combination: X=1, Y=Z=2 (see Table 1). For the sake of simplicity, 

from now on we will identify those readings as those enjoying the so-called 1-2-2 

Factor. 

Needless to say, as the company considers all the readings in that category as 

reliable and safe, they were passed to us as the candidates to be used as 

positive/negative examples to train a supervised neural network. 

Unfortunately, we are not yet at the end of this story. A further analysis of the 

total amount of readings considered valid by the company as enjoying the 1-2-2 

Factor (that is, more than 11 million readings), has revealed that many of them were 

not genuine measurements of a real water consumption, rather just a kind of an ex-

post correction of estimates of quantities of consumed water, computed on the basis 

of a certain mathematical model.  

What we are saying is that not all the 11 million readings mentioned above 

correspond to real water consumption measurements taken on the field, rather they 

are complex mathematical re-adjustments of presumed values of water consumption; 

simply put, they are just rough approximations of real values. The balance between 

real measurements vs. re-adjustments is shown at the bottom of Table 1, yielding an 

amount of 8.186.163 real readings enjoying the 1-2-2 Factor. 

Not only, prior to beginning our machine learning activity, we tried to define 

the sets of positive and negative examples to be shown to our algorithm. In essence, 

we used our 8.186.163 real readings, all enjoying the 1-2-2 Factor, to precisely 

identify the sets of both defective and non-defective meters to be used as positive and 

negative examples, respectively. The results of this latter activity are shown in the 

first two lines of Table 2, where counted is the total number of water meters with 

readings enjoying the 1-2-2 Factor (first line, Table 2), contrasted against the quantity 

of faulty meters with readings enjoying the 1-2-2 Factor (second line, Table 2). 

 

Table 1. Water meter readings: their validity, as seen from a company perspective 
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Table 2.  Water Meters (with readings enjoying the 1-2-2 Factor) 

 

1-2-2 Factor # of Meters 

Total 1.177.806 

Faulty 23.752 

1-2-2 (at least 1 reading) 1.154.054 

1-2-2 (at least 2 readings) 1.091.334 

1-2-2 (at least 3 readings) 1.038.337 

1-2-2 (at least 4 readings) 981.420 

1-2-2 (at least 5 readings) 915.441 

 

However, this kind of information is not yet complete, as we have to consider 

also how many valid readings we have for each meter; where valid, here, means that 

the 1-2-2 Factor is satisfied.  

Within the five lines in the lowermost part of Table 2, we report the number 

of all the water meters comprised in our dataset, that have a history with, respectively, 

at least: 1, 2, 3, 4, and 5 readings, all enjoying the 1-2-2 Factor. 

Finally, what is still missing in this narration is the role played by time. 

In essence, of great importance is the time past between two consecutive and valid 
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readings read on a given meter. In fact, to correctly train a neural network, crucial is 

the regularity of the frequency with which a reading is read over time. Unfortunately, 

we have no good news here. 

Figure 1 provides insightful information with this regard. On the x axis of 

Figure 1, plotted are the differences of the two values (i.e., cubic meters of consumed 

water) recorded at two subsequent consecutive readings, while on the y axis we can 

see the time intervals (measured in days) between those readings. 

This Figure 1 essentially summarizes some millions of recorded reading 

values taken over time, and shows very clearly the type of dispersion that is 

experienced both in terms of time and of measured values, even for readings enjoying 

the 1-2-2 Factor. (Note that negative values can be observed on the x axis, owing to 

the phenomenon of the ex-post re-adjustments of some readings explained before). 

Summing up, looking at this problem from all the possible perspectives, the 

data that were made available to us, in their initial form, cannot be considered a good 

starting point to train a machine, as they can hardly provide unambiguous examples to 

be learnt by a learning algorithm. 

 

 
 

Figure 1. Time intervals vs differential water consumption (between two consecutive 
readings) 

 

The confirmation of all our doubts concerning the appropriateness of these 

data for training a machine came definitely with our first attempt to train a recurrent 

neural network, using positive/negative examples assembled by sampling faulty and 

non-faulty meters, with their corresponding readings, from those mentioned in Table 

2. 

We employed a deep neural network with two parallel inputs: a feed forward 

one for the contextual attributes of a water meter and a recurrent one for its water 

reading series. We implemented it using the Keras library. We experimented with 

series of readings of different lengths, containing either two or three consecutive 

readings, using data taken from the period beginning 2014 – mid 2018. 

Upon completion of the training activity, we moved to the testing phase that 

was carried out on that set of data that the network never looked at before (that is, 

readings taken in the period: mid 2018 - end 2018). 

Unfortunate, yet well expected, was the final result, in terms of accuracy of 

the prediction. Using the standard AUC-ROC metrics, we never were able to surpass 

the AUC value of 61%. In simple words, our classifier, trained on the data at the 

center of our current discussion, was never able to predict a possible water 

failure/disassembly event with an accuracy larger than 0.61. 

 

 

4 Enhancing Big Data with Semantics: Pros and Cons 

 
To make all the complex piles of data described above genuinely valid for carrying 

out a learning activity, we moved towards an alternative approach, at the basis of 

which lies a procedure developed to clean our data. In essence a novel semantics of 

data validity was defined to be satisfied by our readings that can be summarized as 

follows. 
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A reading is valid only if each of the following requirements is satisfied: 

• a human operator has read and confirmed that reading, on the reading site;  

• that reading value has been correctly transmitted and recorded onto the 

company ERP; 

• that reading value has been definitely certified by another human operator on 

the company ERP; and, finally, 

• the instants in time when that reading was taken and then certified are 

coherent: i.e., certified as real and time-congruent, by a specific process. 

 

Said simpler, this new semantics confirms the 1-2-2 Factor, with the addition 

that valid readings must possess a certification on the validity of the dates when a 

given reading has been read, and then processed by human operators. For the sake of 

simplicity, we will call this enhanced data semantics, from now on, as the X-Factor. 

At this point, we enforced the aforementioned X-Factor semantics on our 

initial data, with the result of reducing the number of valid readings down to two 

million valid readings. After that, we re-trained our recurrent neural network on a 

sample of faulty and non-faulty meters, with their corresponding (circa 135.000) 

valid readings, enjoying that X-Factor. 

After this new training activity, we subjected our neural network to a new 

testing phase, using again all the valid data of the period mid 2018 – end 2018. 

Results from this test are plotted in Figure 2, where the AUC-ROC metrics is 

used to measure the accuracy of the obtained predictions. It is easy to see that now 

water meter failure events are predicted with an improved precision, in the range of 

[86 - 89] %, depending on the number of consecutive readings exploited to make the 

prediction (2 readings vs. 3 readings). 

 

 
 

Figure 2. A dataset with an X-Factor: improved prediction accuracy  
 

 

At this point, we were satisfied with the prediction accuracy reached after 

having enforced the so called X-Factor on our data, but we began to reflect on the 

statistical meaning and validity of the operations we had carried out to reach our 

result. 

We simply asked ourselves: Did the X-Factor semantics just realign our data 

and clean them from the initial impurities, or has it actually transformed them from 

some (statistical) viewpoint? To answer to this question, we conducted various 

statistical tests. 

To start the narration of this kind of analysis, we report in Table 3 the total 

number of readings, respectively: i) from the initial dataset, ii) from the dataset 

cleaned with our X-Factor semantics, and finally iii) belonging to the sample (with 

the X-Factor) that was used for training our neural network. 

In Table 3, reported are also the average (µ) and standard deviation (σ) values 

for the correspondent set of water readings (in terms of cubic meters of consumed 

0 0.2 0.4 0.6 0.8 1

3

2

AUC

St
ep
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water). 

 

Table 3. Water readings: statistics 

  

Id 1 2 3 

Dataset Initial 
Total with X-

Factor 

Sampled for 

training 

# of Readings 13.231.251 1.973.493 135.018 

µ 5.307 3.674 3.647 

σ 86.450 17.796 11.852 

 

 

The values of averages and standard deviations reported in Table 3, and also 

a simple observation of the shapes of the curves portrayed in Figure 3 below, have 

raised our doubts. 

To understand, consider Figure 3. It shows two curves: they both aim to 

measure the number of water meter readings (on the y axis), whose average value 

equals a given value, say X (on the x axis). Gray is the color for the case of the initial 

(not filtered) dataset, while in Black we have the X-Factor case. 

Comparing the two plots, we have a clear impression that the shapes of the 

two curves are somewhat different, because the value of each Gray reading (initial 

dataset) is always much larger than the value of the correspondent Black reading (X-

Factor), for each given value X of consumed water. 

To better understand this phenomenon, we conducted some statistical tests. 

In other words, we wanted to have a confirmation to the hypothesis that the average 

quantity of consumed water, as measured by the readings comprised in the initial 

dataset, was larger than that measured by those readings chosen by using the X-Factor 

semantics. 

 

 
Figure 3. Water consumptions: initial dataset (gray); dataset with the X-Factor 
(black) 

 

We assumed normal distributions (with known values for the average and 

standard deviation values) and proceeded with a Z Test, whose results are reported 

in the uppermost part of Table 4. We tested our null hypotheses (the two average 

values are equal) with two different significance α factors.  

As seen from the results of Table 4, the null hypothesis that the average 

quantity of consumed water as per the readings of the initial dataset and the average 

quantity of consumed water as per the readings subjected to the X-Factor are equal is 

to be rejected. Instead, as expected, it cannot be rejected the null hypothesis that those 

specific readings with the X-Factor we used for training show an average quantity of 

consumed water equal to the average quantity of the consumed water as per all the 

readings with the X-Factor. 

To have a further confirmation, we repeated the same kind of test, yet with a 

different statistic. Simply, we tried to use a Student’s T test (with an unknown 

standard deviation). This has to be intended just as an additional attempt to confirm 
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the previous results and, in fact, not surprisingly, we got very similar outcomes, as 

shown in the lowermost part of Table 4. 

In conclusion, while it is true that training a recurrent neural network with 

just those data cleaned by our semantics has improved the prediction accuracy of the 

resulting classifier, on the other side we have reached a (statistical) paradox that can 

be expressed as follows: 

As we aim to improve the ML performances in terms of accuracy of the 

predictions, enabling the transformation of the initial data through re-organization, 

we simultaneously change the replicated forms of those data.  

 

 

 

 

Table 4. Z and T Tests: results 

 
 
5 An Empowered ML Design with Humans in the Loop  

 

Following the controversial phase described at the previous Section 4, we had a 

debate with the company experts and decided to agree upon a new data semantics 

(extending the one we had previously proposed); with the intent to reconcile the 

statistical paradox that emerged from the transformation of the dataset due to the use 

of the X-Factor. 

To do that, we have to introduce first the concept of plateau. A plateau is to 

be intended as a series of two or more consecutive water readings, whose values do 

not change over time, since that meter is faulty. 

This said, the set of validation criteria which were agreed upon with the 

company experts can be summarized as follows (note that those in italics were 

already comprised in the X-Factor): 

 

1. A human operator has read and confirmed a reading, on the reading site;  

2. That reading value has been correctly transmitted and recorded onto the 

company ERP; 

3. That reading value has been definitely certified by another human operator 

on the company ERP; and, finally, 

4. The instants in time when that reading was taken and then certified are 

coherent: i.e., certified as real and time-congruent, by a specific process,  

5. The time separating two consecutive readings cannot exceed the value of 

seven months,  

6. When a plateau is found in a defective meter, only the first reading of this 

plateau is taken into consideration for training, and then we go back in the 

series to choose other previous readings to be used for training our recurrent 

neural network.  

 

To provide further motivations on the meaning of Rules 5 and 6 above, please 

consider what follows. Rule 5 has emerged from the consideration that water readings 

that are too far apart in time can lead our neural network to learn water consumption 

patterns whose discontinuity cannot be related to any reasonable human behavior.  

Understanding the meaning of Rule 6 is, instead, somewhat trickier. The point 

is as follows. It goes undisputed that a long series of readings whose values do not 

change over time amount to a situation where either the client has quit to consume 

Test 

µ1 = µ2 µ2 = µ3 

p-

value 
α=0.05 α=0.01 

p-

value 
α=0.05 α=0.01 

Z Test <10-5 Reject Reject <10-5 
Fail to 

reject 

Fail to 

reject 

T Test 0,75 Reject Reject 0,62 
Fail to 

reject 

Fail to 

reject 
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water or the meter has become defective. Nonetheless, there would be no need to 

instruct a complex learning algorithm, if we simply want to use this unique information 

to infer that a water meter has broken. Two lines of code would be enough: “if 

reading(n)=reading(n-1)=reading(n-2), then the meter is broken”. 

But we want much more than this. We want to anticipate as much as possible 

the instant in time when the meter is going to break (this is, actually, the meaning of 

“making a prediction”). Only an attempt to anticipate a meter failure event can 

motivate our idea to train a machine that learns by examining the readings that come 

before a plateau.  

This said, we tried to train our recurrent neural network by exploiting two 

alternative usages of Rule 6. In one case, we used for training just the first reading of 

a given plateau (plus other readings that come before it). This situation was denoted 

with the abbreviation 1P. In the second case, we used the first two (identical) values 

of a plateau, plus other readings that come before that value. This second situation was 

denoted with the abbreviation 2P. The difference is clear. If we succeed with just the 

1P approach, this means that our neural network has achieved a very good ability to 

anticipate a fault in the meter, almost without any need to know that a plateau has 

come.  

At this point, we re-trained our network by applying this extension of our data 

semantics. In particular, 18.949 non-faulty meters were utilized with their 

corresponding readings, plus 2.279 defective meters with readings of type 1P and 

2.260 meters with readings of type 2P. Then, we subjected our re-trained neural 

network to a subsequent testing phase. Experiments were conducted with series of 

consecutive readings that were respectively as long as: 2, 3, 4, 5. 

The results are portrayed in Figure 4, where the black histograms represent 

the case where defective meters with readings of type 1P are employed, while gray 

histograms represent the case where defective meters with readings of type 2P are 

utilized. The adopted metrics for the prediction accuracy is the usual AUC-ROC. 

 

 

 
Figure 4. Accuracy of the classifier after the enforcement of the new data semantics 

 

Two are the issues emerging in Figure 4 that deserve a comment. 

The first one is that the classifier, obtained by training a recurrent neural 

network with the data subjected to our new extended semantics, achieves a very good 

performance, on average, in terms of prediction accuracy, with AUC values in the 

range [84 - 96] %. 

The second one is that, while it is evident that the situation that makes use of 

the 2P case outperforms the one using the 1P type of information, nonetheless we can 

maintain that our ML model has an excellent prediction ability even in the case where 

no explicit information about the plateau is provided during the training phase. In fact, 

even with the 1P case we yield prediction accuracy values in the range [84 - 86] %.  

To conclude, it is now the time to understand if the extension we have made 

to our data semantics has been also of some utility to overcome the statistical paradox 

we have illustrated in the previous Section 4. 
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To do that, we conducted a new Z test to verify if we can reject the null 

hypothesis that the readings of the initial dataset show an average quantity of 

consumed water that equals that exhibited by those readings that were used to train 

our neural network at this final phase of our experience. 

The results are really interesting and portrayed in Table 5. They can be 

summarized as follows. With a number of water readings equal or less than three (P 

readings plus regular ones), we are still in presence of the statistical paradox discussed 

in Section 4, as the null hypothesis above comes rejected. Instead, if we use four 

readings or more (P readings plus regular ones), the null hypothesis cannot be rejected, 

and hence we cannot say that we have a clear discrepancy between the two datasets 

(namely, the initial one and that used for training our ML model) from a statistical 

viewpoint. What is convincing here is the fact that the more we add readings to our 

series selected for training the more we achieve a general statistical congruence.  

 
Table 5: Z Test: initial vs sampled for training  

Z Test 
p-

value 

Result  Z Test p-

value 

Result 

1P + 

1reading 

0.007  Reject     

1P +  

2readings 

0.029  Reject  2P + 

1reading 

0.028 Reject 

1P + 

3readings 

0.28  Fail to 

Reject 

 2P + 

2 readings 

0.29 Fail to 

Reject 

1P + 

4readings 

0.65  Fail to 

Reject 

 2P + 

3readings 

0.70 Fail to 

Reject 
 

 Without any intention to further elaborate on the deep technical motivations 

behind this result, it goes unquestioned the fact that the intervention of field experts 

has given a fundamental contribution to the development of a data semantics on the 

basis of which water readings (and water meters) were finally chosen that have trained 

our neural network, adequately. We say adequate, in the sense that both the classifier 

makes, at the end, reliable predictions and no statistical discrepancy emerges between 

the huge dataset with all the readings we were provided initially with, and the subset 

of only those readings selected for the final training activity. 

 
 
6 Conclusions  

 

In this paper, we have presented our experience with a huge dataset comprised of 

over fifteen million water meter readings, with the intent to design a ML-based 

classifier, able to predict defective water meters based on the history of the 

measurements of the water that was consumed. 

On a first phase, we trained a neural network with (almost) all of the fifteen 

million water meter readings, unfortunately resulting into a definitive failure of our 

attempt to predict with a sufficient precision when a given water meter will fail. 

With a second step, we selected samples for training based on a naïve data 

semantics that has allowed us to achieve a good prediction accuracy (over 80%). Yet, 

simultaneously this new training dataset resulted significantly different from the 

initial one, in statistical terms. 

With a third and final step, we elaborated a more complex data semantics, 

agreed upon with experts of this specific application field, that allowed us to use 

samples for training that still got excellent performances in terms of prediction 

accuracy, while guaranteeing a general statistical compliance of the underlying 

phenomenon. All this has confirmed our hypothesis that even complex form of 

machine intelligences can benefit by the role that human experts can play.  
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