
30 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Delle Donne, D., Furini, F., Malaguti, E., Wolfler Calvo, R. (2021). A branch-and-price algorithm for the
Minimum Sum Coloring Problem. DISCRETE APPLIED MATHEMATICS, 303, 39-56
[10.1016/j.dam.2020.08.031].

Published Version:

A branch-and-price algorithm for the Minimum Sum Coloring Problem

Published:
DOI: http://doi.org/10.1016/j.dam.2020.08.031

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/850070 since: 2024-02-27

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.dam.2020.08.031
https://hdl.handle.net/11585/850070

A Branch-and-Price Algorithm for the Minimum Sum
Coloring Problem

Diego Delle Donne1, Fabio Furini2, Enrico Malaguti3 and Roberto Wolfler Calvo4

1 LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.

delledonne@lix.polytechnique.fr

2 Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” – Consiglio Nazionale delle
Ricerche (IASI-CNR), Roma, Italy.

fabio.furini@iasi.cnr.it

3 DEI, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

enrico.malaguti@unibo.it

4 LIPN, Université Paris 13, CNRS UMR 7030, F-93430, Villetaneuse, France.

wolfler@lipn.univ-paris13.fr

Last update: September 7, 2020

Abstract

A proper coloring of a given graph is an assignment of a positive integer number
(color) to each vertex such that two adjacent vertices receive different colors. This paper
studies the Minimum Sum Coloring Problem (MSCP), which asks for finding a proper
coloring while minimizing the sum of the colors assigned to the vertices. We propose the
first branch-and-price algorithm to solve the MSCP to proven optimality. The newly
developed exact approach is based on an Integer Programming (IP) formulation with
an exponential number of variables which is tackled by column generation. We present
extensive computational experiments, on synthetic and benchmark DIMACS graphs from
the literature, to compare the performance of our newly developed branch-and-price
algorithm against three compact IP formulations. On synthetic graphs, our algorithm
outperforms the compact formulations in terms of: (i) number of solved instances, (ii)
running times and (iii) exit gaps obtained when optimality is not achieved. For the
DIMACS instances, our algorithm is competitive with the best compact formulation and
provides very strong dual bounds.

keywords: Minimum Sum Coloring, Vertex Coloring, Integer Linear Programming, Col-
umn Generation, Branch-and-Price Algorithm.

1. Introduction

Let G = (V,E) be a simple undirected graph with n = |V | vertices and m = |E| edges, a
proper coloring C (or simply a coloring) of G is a partition {V1, . . . , Vk} of V into k stable
sets , i.e., subsets of pairwise non-adjacent vertices. All vertices belonging to Vi are colored

1

with color i (i ∈ {1, . . . , k}), i.e., color i is denoted by the integer number i. The sum of the
colors of a coloring C is given by the function

f(C) =
k∑
i=1

i · |Vi|.

The Minimum Sum Coloring Problem (MSCP) consists in finding a coloring C of G with the
minimum value of the function f(C). This minimum value is denoted by Σ(G) and is called
the chromatic sum of G (see [18]). The smallest number of colors (or equivalently stable
sets) associated with Σ(G) is called the strength of the graph and it is denoted by s(G).

The MSCP models relevant applications in several areas including VLSI design [29],
scheduling problems [10, 17] and resource allocation [1]. For instance, the MSCP models
scheduling of jobs incompatibilities (see [10]). The incompatibilities can be represented by
a graph where the vertices are the jobs and the edges represent the conflicts which forbid
scheduling jobs at the same time (e.g., if the jobs requires the same non-sharable resource).
Assuming that jobs have unitary execution time, a schedule of the jobs corresponds to a
coloring of the graph where the integer numbers representing the colors are the completion
times of the jobs. In this context, the MSCP corresponds to the minimization of the average
completion time of the jobs.

The MSCP is NP-Hard (see [18]) and related to the classical Vertex Coloring Problem
(VCP). The VCP asks for a coloring of a graph G with the minimum number χ(G) of colors,
the chromatic number of G. We recall in what follows the main features of MSCP optimal
solutions which help in understanding the peculiarities of the problem with respect to other
coloring problems.

Observation 1 Given a graph G, the strength s(G) can be greater than the chromatic num-
ber χ(G).

An example graph where Observation 1 applies is depicted in Figure 1, where two col-
orings are illustrated. The integer numbers on the vertices encode the assigned colors. The
coloring C1 (on the left part of the figure) uses χ(G) = 2 colors with f(C1) = 12, while the
coloring C2 (on the right part of the figure) is characterized by f(C2) = 11 and it uses an
extra color. For this example graph, the strength s(G) is equal to 3. This example can be
extended by using t pendant vertices on each side of the central edge (instead of 3) thus
obtaining f(C1) = 3t+ 3 and f(C2) = 2t+ 5. With this configuration, the loss incurred by
using only χ(G) colors grows linearly with the size of the graph.

The following observation states that the stable sets are ordered by non-increasing car-
dinality in any optimal MSCP solution.

Observation 2 If C = {V1, . . . , Vk} is an optimal sum coloring of a graph G, then |Vi| ≥ |Vj|
for i, j ∈ {1, . . . , k} and j > i.

We denote by G[W] the subgraph of G induced by a vertex subset W ⊆ V , i.e., G[W] =
(W,EW), where EW = {uv ∈ E : u, v ∈ W}. The following observation holds:

Observation 3 If C = {V1, . . . , Vk} is an optimal sum coloring of a graph G, then for
j ∈ {1, . . . , k}, Vj is a maximal stable set in the subgraph G[∪ki=jVi].

2

1v3 1

1v2 1

1v1 1

2
v4

2 1
v5

1

2 v82

2 v72

2 v62

1v3 1

1v2 1

1v1 1

2
v4

2 3
v5

3

1 v81

1 v71

1 v61

Figure 1: A coloring of a graph G using χ(G) = 2 colors (left) and an optimal MSCP coloring
of the same graph with s(G) = 3 colors and Σ(G) = 11(right).

Given a optimal sum coloring C, Observation 3 states that each stable set Vj (j =
{1, . . . , k}) is a maximal stable set in the subgraph G[∪ki=jVi], but it is not necessarily a
maximum cardinality stable set of this subgraph. An example is given in Figure 2 where
two colorings of a graph are illustrated; the coloring C1 (on the left part of the figure) uses
maximum cardinality stable sets (i.e., each Vj is of maximum cardinality in G[∪ki=jVi]) and
has f(C1) = 19, while the coloring C2 (on the right part of the figure) is characterized by
f(C2) = 18 and it uses maximal, but non-maximum, cardinality stable sets. As in Figure 1,
the integer numbers on the vertices represent the assigned colors.

v7

v6

v10

v9 v8

v2

v1

v5

v4 v3

1

2

1

3
1

2

1

3

1

4

v7

v6

v10

v9 v8

v2

v1

v5

v4 v3

1

1

2

2
3

3

1

1

2

2

Figure 2: A coloring of a graph using maximum cardinality stable sets (left) and an optimal
MSCP solution of the same graph using non-maximum cardinality stable sets (right).

1.1 Literature review

We address the interested reader to [14] for a complete survey on MSCP topics and we
briefly mention in this section some of the main results and algorithms. The MSCP has
been originally introduced in [18]. Several articles proposed lower bounds for both Σ(G) and
s(G). In [30] it is shown that d

√
8me ≤ Σ(G) ≤ b3

2
(m+1)c holds for any graph G. Later, [25]

proved that s(G) ≤ ∆(G)+1, where ∆(G) is the maximum degree of the vertices of G, while

3

[9] proved that s(G) ≤ d∆(G)+col(G)
2

e where col(G) is an invariant based on linear orderings

of the vertices. Based on this bound, the authors also conjecture that s(G) ≤ d∆(G)+χ(G)
2

e
holds. In [28] the MSCP and its variants are studied, and the authors proved complexity
results for specific classes of graphs, while [26] proposed a range of lower bounds for the
MSCP based on clique decomposition; for every clique partition {K1, . . . , Kt} of a graph G,

a lower bound on Σ(G) is given by
∑t

j=1
|Kj |(|Kj |−1)

2
. This bound is valid since each clique

Kj must receive at least |Kj| different colors.
Many heuristic algorithms have also been developed over the years to find good upper

bounds for the MSCP. In [19] greedy algorithms are developed by adapting the classical VCP
greedy algorithms DSATUR and RLF. Local search algorithms have been developed as well
in [13]. Later, [33, 34] devised a sophisticated greedy algorithm combined with tabu search
that showed particularly effective for large graphs. Different genetic algorithms and tabu
search algorithms have been developed in [15, 16].

One of the state-of-the-art algorithms for lower and upper MSCP bounds is called HESA
and it has been proposed in [15]; the algorithm is based on a stochastic hybrid evolutionary
search. Recently, some new lower bounds have been proposed in [20] which improved some
of the results presented in previous works.

To the best of our knowledge, little attention has been given to exact methods for the
MSCP. A compact Integer Programming (IP) formulation for the MSCP has been firstly
proposed in [29]. This formulation was originally proposed to tackle a generalization of
MSCP in which each color has a predefined cost. No computational results were reported
in [29]. Some preliminary computational results using this compact formulation can be
found in [6] where also an exponential-size formulation has been proposed, but no exact
solution algorithm for the latter is given. We finally mention that the linear relaxation of
the exponential-size formulation proposed in [6] has been tackled via a dual ascent heuristic
algorithm in [27].

1.2 Paper contribution

In this paper we propose the first exact algorithm for MSCP. It is based on an exponential-
size IP formulation. The linear relaxation of the formulation provides very strong lower
bounds, improving on several best known bounds from the literature. By combining col-
umn generation with a suited branching strategy, we design the first full branch-and-price
algorithm for MSCP.

The remainder of the paper is organized as follows. In Section 2, we review a compact
integer programming formulation for MSCP and, in Section 3, we propose two additional
compact formulations. Section 4 is devoted to present the exponential-size formulation for
MSCP and the corresponding branch-and-price algorithm. Finally, in Section 5 we report
on computational experiments performed on a set of VCP benchmark instances and a set of
random instances comparing the models and the algorithms addressed in this work.

4

2. A natural compact IP formulation

In this section, we describe a natural compact IP formulation for the MSCP originally
proposed in [29], which is based on the well-known classical formulation for the VCP (see
e.g., [24]). This model uses a binary variable xiv for each vertex v ∈ V and each (potential)
color i ∈ [k] := {1, . . . , k}, specifying whether the vertex v is assigned to color i or not. The
value k represents an upper bound on the strength s(G) of the graph. With this encoding,
the MSCP can be formulated by the following compact IP model, which we call IPC :

[IPC] min
∑
i∈[k]

∑
v∈V

i · xiv (1a)

xiu + xiv ≤ 1 uv ∈ E, i ∈ [k], (1b)∑
i∈[k]

xiv = 1 v ∈ V, (1c)

xiv ∈ {0, 1} v ∈ V, i ∈ [k]. (1d)

The objective function (1a) minimizes the cost of the coloring. Constraints (1b) ensure
that for each edge uv ∈ E and each color i ∈ [k], at most one endpoint of the edge receives
color i. Constraints (1c) ensure that each vertex is colored with exactly one color.

In the VCP, one of the main drawbacks of the use of variables xiv, assigning color i to
vertex v, is the strong symmetry presented by the associated polytope, as each coloring
can be replaced by an equivalent one by picking a different set of colors to be used and by
permuting the order of the colors. For the MSCP however, this symmetry does not hold
because the cost of each color is different, and, according to Observation 2, in any optimal
solution sets of vertices receiving the same color are ordered by non-increasing cardinality.
Equivalent solutions can only be obtained by swapping colors that are used for exactly the
same number of vertices.

By replacing the integrality constraints (1d) with xiv ≥ 0, for v ∈ V and i ∈ [k], we obtain
the linear relaxation of IPC , denoted as LPC , whose optimal solution value Z(LPC) provides
a lower bound on the optimal solution value Z(IPC) of IPC . The following proposition
provides an upper bound for Z(LPC):

Proposition 1 Z(LPC) ≤ n+ n
2
.

Proof. A feasible LPC solution x̂ of value n + n
2

can be obtained as follows: x̂1
v = x̂2

v = 1
2

(v ∈ V) and x̂iv = 0 (v ∈ V, i ≥ 3). �

Proposition 1 shows that Z(LPC) cannot be greater than n + n
2
. However, the optimal

solution value Z(IPC) may raise up to the quadratic term n2−n
2

(e.g., for complete graphs),
fact that shows that Z(LPC) can provide a very weak lower bound. See also Section 5, for
a computational evaluation of the quality of this lower bound.

3. Additional compact formulations

In this section, we introduce other two additional compact IP formulations for MSCP, both

5

based on well-known VCP formulations from the literature. In particular, in Section 3.1 we
introduce the orientation formulation and in Section 3.2, the representatives formulation.

3.1 Orientation formulation

The orientation formulation for VCP [2] uses an integer variable xv for each vertex v ∈ V to
determine the color assigned to v. In addition, a binary variable yvw is used for each edge
vw ∈ E with v < w (assuming a total ordering for V , e.g., V = {1, 2, . . . , n}) which takes
value 1 if and only if xv < xw (i.e., the color assign to v is smaller than the color assigned to
w). With this encoding, MSCP can be formulated by the following IP model, which we call
IPO:

[IPO] min
∑
v∈V

xv (2a)

xu − xv ≥ 1− k yuv uv ∈ E, u < v, (2b)

xv − xu ≥ 1− k (1− yuv) uv ∈ E, u < v, (2c)

xv ∈ [k] v ∈ V, (2d)

yuv ∈ {0, 1} uv ∈ E, u < v. (2e)

The objective function (2a) minimizes the cost of the colors assigned to each vertex. Con-
straints (2b) and (2c) impose |xu − xv| ≥ 1 for each edge uv ∈ E. If yuv = 0 then constraint
(2b) implies xu > xv (and constraint (2c) does not impose any condition), whereas if yuv = 1
then constraint (2c) implies xv > xu (and constraint (2b) does not impose any condition). As
in the compact formulation IPC , this model also presents a strong symmetry in the context
of VCP, but as we stated before, this symmetry is not a drawback for MSCP since each color
has a different cost.

By replacing constraints (2d) and (2e), with 1 ≤ xv ≤ k, for v ∈ V and 0 ≤ yuv ≤ 1,
for each uv ∈ E, u < v, respectively, we obtain the linear relaxation of IPO, denoted by
LPO. We denote by Z(LPO) the optimal solution value of IPO. The following proposition
characterizes the value of Z(LPO), which provides in general a very weak lower bound.

Proposition 2 For any k ≥ 2, Z(LPO) = n, where n = |V |.

Proof. Let (x̂, ŷ) be such that:

x̂v = 1, ∀v ∈ V,

ŷuv =
1

2
, ∀uv ∈ E, u < v,

and all other variables set to 0. For this vector, both right hand sides of constraints (2b) and
(2c) become 1 − k

2
which is never greater than 0, when k ≥ 2. Then, assigning color 1 for

each vertex trivially satisfies constraints (2b) and (2c) for any graph. Since each variable xv
is at its lower bound, we conclude that x̂ is an optimal solution, and the objective function
on x̂ equals n, thus proving the result. �

6

3.2 The asymmetric representatives formulation

For each vertex u ∈ V , let N(u) := {v ∈ V : uv /∈ E} be the anti-neighborhood of
the vertex. Given an (arbitrary) total order relation ≺ of the vertices of the graph G, the
anti-neighborhood of a vertex u ∈ V can be partitioned into its lower anti-neighborhood
NL(u) := {v ∈ N(u) : v ≺ u} ∪ {u} and its upper anti-neighborhood NU(u) := {v ∈ N(u) :
u ≺ v} ∪ {u} (with N

∗
U(u) := NU(u) \ {u}).

In the asymmetric representatives formulation, which has been originally introduced for
the VCP in [3], a coloring is determined by selecting a representative vertex for each color.
This representative vertex is the vertex with the smallest index for the color. Let xiuv be a
binary variable for each color i ∈ [k] and each pair of vertices u ∈ V and v ∈ NU(u), which
takes value 1 if and only if vertex u is the representative of vertex v for color i. With this
encoding, the MSCP can be formulated by the following IP model, which we call IPR:

[IPR] min
∑
i∈[k]

∑
u∈V

∑
v∈NU (u)

i · xiuv (3a)

∑
i∈[k]

∑
v∈NL(u)

xivu = 1 u ∈ V, (3b)

xiuv + xiuw ≤ xiuu u ∈ V, v, w ∈ N∗U(u), vw ∈ E, i ∈ [k], (3c)

xiuv ≤ xiuu u ∈ V, v ∈ N∗U(u), i ∈ [k], (3d)∑
u∈V

xiuu ≤ 1 i ∈ [k], (3e)

xiuv ∈ {0, 1} i ∈ [k], u ∈ V, v ∈ NU(u). (3f)

The objective function (3a) minimizes the cost of the colors. Constraints (3b) ensure
that each vertex has exactly one representative vertex (potentially itself). Constraints (3c)
avoid that two adjacent vertices have the same representative vertex (i.e., the same color),
and prevent that any of these two vertices is represented by a non representative vertex.
Constraints (3d) avoid that a vertex in the anti-neighborhood N

∗
U(u) can be represented by

a non representative vertex. Finally, constraints (3e) impose that each color is represented
by at most one vertex.

By replacing constraints (3f) with xiuv ≥ 0 for i ∈ [k], u ∈ V, v ∈ N(u), we obtain the
linear relaxation of IPR, which we denote by LPR. In line with previous notation, we denote
by Z(LPR) the optimal solution value of LPR.

4. An exponential-size IP formulation

An exponential-size formulation is a model where variables are in correspondence with an
exponential set of elements. In this section, we describe an exponential-size IP formulation
for the MSCP, inspired by the Set Covering formulation for VCP introduced by [23]. This
model is one of the most effective formulation for the VCP, and was successfully exploited
to design the best performing exact algorithms for the problem by [21, 7, 12]. In [11], the

7

authors propose an alternative Set Packing formulation for the VCP, although computa-
tional experiments did not show a clear superiority of one model with respect to the other.
We address the interested reader to [22] for a discussion on most important models and
algorithmic approaches for the VCP and some generalizations.

We denote by SG the collection of all stable sets of a graph SG = {S ⊆ V : uv /∈ E, for
all pairs u, v ∈ S}. Given a vertex v ∈ V , we define S v

G := {S ∈ SG : v ∈ S} as the collection
of all stable sets containing vertex v. The exponential-size formulation for the MSCP uses
a binary variable ξiS for each stable set S ∈ SG and each color i ∈ [k] := {1, . . . , k}. The
value k has the same meaning as for IPC and it represents an upper bound on the strength
s(G) of the graph. These variables state whether color i is assigned to the stable set S, or
not. With this encoding, the MSCP can be formulated by the following exponential-size IP
model, which we call IPE:

[IPE] min
∑
i∈[k]

∑
S∈SG

ciS · ξiS (4a)

∑
S∈SG

ξiS ≤ 1 i ∈ [k], (4b)∑
i∈[k]

∑
S∈S v

G

ξiS ≥ 1 v ∈ V, (4c)

ξiS ∈ {0, 1} i ∈ [k], S ∈ SG, (4d)

where ciS = i · |S| corresponds to the cost of the stable set S ∈ SG. The objective
function (4a) minimizes the cost of the coloring. Constraints (4b) prevent from assigning
more than one stable set to each color and constraints (4c) ensures that each vertex is
colored. Although in any optimal solution constraints (4c) are satisfied by equality (see
Observation 4), by defining them as inequalities we get non-negative dual variables for the
pricing problem (see Section 4.1). We observe that constraints (4b) can be stated as equalities
by allowing the use of the empty set as a valid stable set. This fact is used to develop a
complete branching scheme (see Section 4.2). We also point out that IPE can be seen as
a Dantzig-Wolfe reformulation of Constraints (1b) of IPC (see e.g., [32]). Concerning the
relationship of IPE with the Set Covering formulation for the classical VCP, in the latter
problem all the colors are identical and have unitary cost regardless the number of vertices
receiving the color. This has two important modeling consequences: first, in the VCP the
color index is not relevant, and hence index i and constraint (4b) are dropped from the model.
Second, in the VCP it is possible to consider maximal stable sets only, thus obtaining a Set
Covering formulation with a much smaller, though exponential, number of variables (from
each solution where a vertex is colored more than once, a proper coloring of the same cost
can be trivially obtained). In the MSCP instead the number of vertices receiving a color
impacts the color cost, and hence, for each color i ∈ [k], we have to consider all the stables
sets of G.

By replacing constraints (4d) with ξiS ≥ 0, for i ∈ [k] and S ∈ SG, we obtain the linear
relaxation of IPE, denoted as LPE, whose optimal solution value Z(LPE) gives a lower bound
on the optimal solution value Z(IPE) of IPE. In the remaining of this section, we make use
of the following observation which characterizes the optimal solutions of LPE:

8

Observation 4 If ξ̂ is an optimal solution of LPE, then constraints (4c) are satisfied by ξ̂
at equality for every v ∈ V .

The relationship between the lower bounds provided by the linear relaxation of IPC and
IPE is established by the following proposition.

Proposition 3 The lower bound provided by LPE is at least as strong as the lower bound
provided by LPC, i.e., Z(LPE) ≥ Z(LPC) and there are instances in which the inequality is
tight, i.e., Z(LPE) > Z(LPC).

Proof. Given an optimal solution ξ̂ of LPE, we construct the following vector x̂:

x̂iv =
∑
S∈S v

G

ξ̂iS, v ∈ V, i ∈ [k].

We first prove that x̂ is a feasible solution for LPC . By Proposition 4, constraints (4c) are
satisfied at equality by ξ̂, thus implying that each x̂iv ∈ [0, 1]. For each edge uv ∈ E and
each color i ∈ [k], we have

x̂iu + x̂iv =
∑
S∈S u

G

ξ̂iS +
∑
S∈S v

G

ξ̂iS ≤
∑
S∈SG

ξ̂iS ≤ 1,

and the last inequality is given by constraints (4b). Accordingly, x̂ satisfies constraints (1b).
For each vertex v ∈ V , we have ∑

i∈[k]

x̂iv =
∑
i∈[k]

∑
S∈S v

G

ξ̂iS = 1,

since constraints (4c) are satisfied by equality by ξ̂. Accordingly, x̂ also satisfies constraints
(1c). Therefore, by construction x̂ is a feasible solution for LPC . Finally, as far as the
objective function is concerned, we have

Z(LPC) ≤
∑
i∈[k]

∑
v∈V

i · x̂iv =
∑
i∈[k]

∑
v∈V

i · ∑
S∈S v

G

ξ̂iS

 =
∑
i∈[k]

∑
S∈SG

ciS · ξ̂iS = Z(LPE).

To conclude the proof, we show an instance where Z(LPC) < Z(LPE). Consider a cycle of
size 5 where vertices are labeled consecutively through the cycle: v1, v2, v3, v4 and v5. By
Proposition 1, we have that Z(LPC) ≤ 7.5. For this cycle the optimal solution value Z(LPE)
is equal to 9. An optimal LPE solution of value 9 is ξ̂1

{v1,v3} = ξ̂2
{v2,v4} = ξ̂3

{v5} = 1 and all the
other variables are set to 0. �

Although (potentially) providing a tighter lower bound than the linear relaxation of LPC ,
the optimal solution of LPE can be fractional. An example is given by LPE for the graph
of Figure 2. This instance has a chromatic sum Σ(G) equal to 18 which can be obtained
with the coloring C2 presented in the right part of the figure. An optimal integer solution

9

ξ̂ of IPE is ξ̂1
{v2,v4,v7,v9} = ξ̂2

{v1,v3,v6,v8} = ξ̂3
{v5,v10} = 1. However, LPE has an optimal solution

value Z(LPE) = 52
3

= 17.3̄, which can be obtained with the following fractional solution ξ̂:

stable sets for color 1: ξ̂1
{v2,v4,v7,v9} = ξ̂1

{v1,v3,v6,v8} = ξ̂1
{v6,v7,v8,v9,v10} =

1

3
,

stable sets for color 2: ξ̂2
{v2,v5,v7,v10} = ξ̂2

{v1,v4,v6,v9} = ξ̂2
{v3,v5,v8,v10} =

1

3
,

stable sets for color 3: ξ̂3
{v2,v5} = ξ3

{v1,v4} = ξ̂3
{v2,v4} = ξ̂3

{v3,v5} = ξ̂3
{v1,v3} =

1

6
.

4.1 Solving the linear relaxation of IPE

Since IPE has exponentially many variables, column generation (CG) techniques are needed
to solve its linear relaxation LPE. The CG procedure starts with a restricted master problem
(RMP), i.e., LPE initialized with a subset of variables containing a feasible solution. Then,
iteratively, new additional variables are generated until optimality can be proved.

At each CG iteration we are given an optimal primal-dual solution of the RMP, and the
pricing problem (PP) is solved to check if new variables with negative reduced costs have
to be added to the RMP, which is then re-optimized. The procedure is iterated until no
reduced cost variable can be added, implying that the current primal solution is optimal for
LPE. We refer the interested reader to [4] for further details on CG.

We describe in what follows how the PP associated to LPE is derived by reasoning on
the separation of the dual constraints. The dual constraints of LPE are:∑

v∈S

µv + πi ≤ ciS S ∈ SG, i ∈ [k], (5)

where π and µ are the dual variables associated with primal constraints (4b) and (4c),
respectively. Since the RMP contains a subset of the variables, its dual contains a subset of
the constraints. A primal variable with a negative reduced cost is associated to a violated
dual constraint (5). A dual constraint is violated if a stable set S ∈ SG and a color i ∈ [k]
exist such that

0 > ciS −

(∑
v∈S

µv + πi

)
= i · |S| −

∑
v∈S

µv − πi.

Accordingly, for a given color i ∈ [k], it is necessary to determine if a stable set S ∈ SG

exists such that ∑
v∈S

µv − i · |S| =
∑
v∈S

(µv − i) > −πi.

Summarizing, the PP corresponds to the series of Maximum Weight Stable Set (MWSS)
problems one for each color k ∈ [k]. The weight of a vertex v ∈ V is defined as µv − i. A
negative reduced cost variable is found whenever the total weight

∑
v∈S(µv − i) of a stable

set S is greater than −πi. Note that when µv − i ≤ 0, the corresponding vertex v can be
discarded.

Since the weight of the vertices depends on the color i ∈ [k], up to k pricing problems
may have to be solved at each CG iteration. The following result allows us to reduce their
number, thus (potentially) speeding up the computational convergence.

10

Proposition 4 Let ξ̂ be an optimal solution of the RMP. Let ī be the largest color for which
a variable in ξ̂ has strictly positive value

ī = max
i∈[k]
{i | ∃S ∈ SG, ξ̂

i
S > 0}.

If no negative reduced cost variable exists for a color j > ī, no negative reduced cost variable
exists for all colors r > j.

Proof. By complementary slackness, the dual solution associated with ξ̂ has πj = 0, for
every j ∈ {̄i + 1, . . . , k}. If no negative reduced cost variable exists for a color j > ī, then∑

v∈S(µv − j) ≤ −πj = 0 for every S ∈ SG. Therefore,
∑

v∈S(µv − r) < 0 for every r > j,
since the weights of the vertices decrease increasing the value of the color. �

Thanks to Proposition 4, the MWSS problems can be solved in order of colors from 1
to k, stopping each iteration of the CG procedure as soon as the condition of Proposition 4
is met. In our implementation, we resort to the combinatorial branch-and-bound algorithm
for MWSS problem proposed by Held, Cook and Sewell [12]. This algorithm is one the best
performing algorithm for the MWSS problem which has been designed to solve the pricing
problems for a branch-and-price algorithm to solve the classical vertex coloring problem. We
refer to [12] for further details on this algorithm.

4.2 A robust branching rule for IPE

We embed the CG procedure within a branching scheme, thus obtaining a branch-and-price
algorithm. The branching step should be handled with care as the addition of arbitrary
branching constraints can destroy the structure of the PP. A robust branching rule is a rule
that preserves the PP, which is the MWSS problem for IPE. In order to obtain a robust
branching, we branch by means of the rule originally proposed by [35], which was used by
[23] for the VCP, and can be extended to other variants of the VCP as well, as discussed in
[8]. We first introduce a Lemma which will be helpful in the remaining of this section.

Lemma 1 Let ξ̂ be an optimal fractional solution of LPE. If
∑

i∈[k] ξ̂
i
S ∈ {0, 1} for every

S ∈ SG \ {∅}, then:

i) there exists an integer solution ξ̄ of LPE with the same cost;

ii) ξ̂ is not an extreme point of the polyhedron associated with LPE.

Proof.
i) When a vertex v belongs to a stable set S for which

∑
i∈[k] ξ̂

i
S = 1, then v cannot belong

to any other stable set (by Observation 4). Then, the collection T := {S ∈ SG |
∑

i∈[k] ξ̂
i
S =

1} defines a partition of V into stable sets. Note that

|T | =
∑
S∈SG

∑
i∈[k]

ξ̂iS ≤ k,

11

where the inequality is given by the sum of constraints (4b) over every color i ∈ [k]. Also note
that ξ̂ uses and saturates, by optimality, colors from 1 to |T |. Let S1, . . . , S|T | be a total order-
ing of T by non-increasing cardinality, i.e., |Si| ≥ |Si+1| for every i ∈ {1, . . . , |T | − 1}. From
this ordering, we define the integer solution ξ̄ by setting ξ̄iSi

= 1 for every i ∈ {1, . . . , |T |}.
We claim that ξ̄ has the same cost as ξ̂, hence being an equivalent optimal solution for LPE.
Indeed, ξ̄ uses the stable sets of ξ̂ with an optimal ordering, according to Observation 2.

ii) We have seen ξ̂ uses and saturates, by optimality, colors from 1 to |T |. By hypothesis,
each stable set S not saturating a single color takes at least two distinct colors. Similarly,
each color i that is not assigned entirely to a single stable set S, is used for at least two
distinct stable sets. Hence, we can define a sequence of pairs (S1, i1), (S2, i1), (S2, i2), . . . ,
(Sl, il), (Sl+1, il), (Sl+1, il+1), . . . , (St, it), (St+1, it), with t ≤ T , such that: St+1 = S1,
0 < ξ̂ilSl

< 1, l = 1, . . . , t, and each stable set Sl and each color il appears twice in the
sequence, so the sequence contains an even number of pairs. With this sequence we can
define two feasible solutions ξ̇ and ξ̈ as:

• ξ̇ := ξ̂; ξ̇ilSl
:= ξ̂ilSl

+ ε, l = 1, . . . , t, l odd; ξ̇ilSl
:= ξ̂ilSl

− ε, l = 1, . . . , t, l even;

• ξ̈ := ξ̂; ξ̈ilSl
:= ξ̂ilSl

− ε, l = 1, . . . , t, l odd; ξ̈ilSl
:= ξ̂ilSl

+ ε, l = 1, . . . , t, l even;

and we have ξ̂ = 1
2
ξ̇ + 1

2
ξ̈. �

The branching rule we propose is based on the following Proposition, in which the no-
tation S14S2 represents the symmetric difference (S1 ∪ S2) \ (S1 ∩ S2) between two sets S1

and S2.

Proposition 5 Let ξ̂ be an optimal fractional solution for LPE. Either an optimal integer
solution can be constructed from ξ̂, or there exist two non-adjacent vertices u and v and two
stable sets S1 and S2, with u ∈ S1 ∩ S2 and v ∈ S14S2, such that 0 <

∑
i∈[k] ξ̂

i
S1
< 1 and

0 <
∑

i∈[k] ξ̂
i
S2
< 1.

Proof. Assume the conditions of Lemma 1 do not apply. Hence, there is a stable set S1

such that 0 <
∑

i∈[k] ξ̂
i
S1
< 1. Consider a vertex u ∈ S1. In any optimal solution, constraint

(4c) is satisfied by equality for u, hence there must be a stable set S2 with u ∈ S2 and
0 <

∑
i∈[k] ξ̂

i
S2
< 1. Since S1 6= S2, we have S14S2 6= ∅. �

Consider a fractional optimal solution ξ̂ and two vertices u and v identified with the
characteristics of Proposition 5. Two branching nodes can be created as follows:

• In the first child node, vertices u and v are forced to be assigned to the same color.
To this end, all variables ξ̂iS such that v ∈ S, u /∈ S or v /∈ S, u ∈ S, are set to 0 for all
i ∈ [k]. When solving the PP, vertices u and v are merged, i.e., they are removed from
G and a new vertex w is added to G with neighbourhood NG(w) = NG(u) ∪ NG(v).
The weight of vertex w in the MWSS problems is defined as the sum of the weights of
u and v.

12

• In the second child node, vertices u and v are forced to be assigned to different colors.
To this end, all variables ξ̂iS such that v ∈ S, u ∈ S are set to 0 for all i ∈ [k]. In the
PP, we then add an edge uv to graph.

Whenever the optimal solution of the RMP is fractional, Proposition 5 together with
Lemma 1 ensure that either an equivalent integer solution can be recovered from it or a pair
of vertices for branching exists, thus the proposed branching scheme is complete.

In line with the procedure proposed in [23], we find a specific pair of vertices for branching
in the following way. Let ξ̂ be the current fractional solution of the RMP. We select a stable
set S1 such that 0 < φ(S1) =

∑
i∈[k] ξ̂

i
S1
< 1 and having the φ(S1) value closest to 0.5. For

each vertex u ∈ S1, there exists another stable set S2 containing u and having a fractional
value φ(S2). We select as u the first vertex in S1. We then select as S2 the stable set
containing u and having value φ(S2) value closest to 0.5 (randomly breaking ties). Finally,
we select the first vertex v ∈ S14S2, thus defining the pair of vertices u and v for branching.

We show an example of the branching operation cutting a fractional optimal solution of
the RMP. We consider the graph of Figure 2 and the fractional LPE solution presented in
Section 4. We select as S1 the stable set {v1, v3, v6, v8} (with φ(S1) = 1

3
). We then select its

first vertex v1 and we determine the second stable set S2 = {v1, v4, v6, v9} (containing vertex
v1 and with φ(S2) = 1

3
). Finally we select vertex v3, thus defining {v1, v3} as branching pair.

In Figure 3, we depict the two subproblem graphs obtained after branching on the vertices v1

and v3 (represented in the figure by vertices u and v). In the left part of the figure, the new
edge uv (dashed line) prevents these vertices from taking the same color. In the right part
of the figure instead, the two vertices are merged into a new vertex w which is connected
to all the neighbours of u and v (dashed edges). This forces the two vertices to receive the
same color.

u

v w

Figure 3: The two subproblem graphs obtained after branching.

As a final remark, we note that Lemma 1 shows that optimal fractional solutions satisfy-
ing the lemma hypothesis are not basic solutions of LPE (i.e., they are convex combinations
of other equivalent solutions). Therefore, they do not appear within the CG process if the so-
lution of the RMP is performed by the Simplex algorithm. Indeed, given a subset of columns

13

in the RMP, the Simplex algorithm would return an extreme point of the associated poly-
tope. In case a newly generated column enters the basis, this can be at value 0 (degenerate
solution) or strictly larger than 0. In both cases, this is the result of a pivot move in the
Simplex, thus producing a new extreme point in the updated RMP. Nevertheless, we also
remark that an implementation not using the Simplex algorithm is also possible; if such a
solution is found within the process, Lemma 1 allows to obtain an equivalent integer solution
(as in the proof of the lemma). In our implementation of the branch-and-price algorithm,
we solve the RMP by the primal Simplex method, so we are not required to deal with this
issue.

5. Computational results

In this section, we asses the computational performance of the three compact IP formulations
presented in Sections 2 and 3, i.e., IPC , IPO and IPR, in terms of computational time and
number of solved instances. Moreover, we discuss the characteristics of the different compact
formulations having a greater impact on the performance. Then, we compare the branch-
and-price algorithm based on formulation IPE, which is denoted as BP in the remainder
of this section, against the direct use of state-of-the-art IP solvers on the best compact
formulation. The goal of these experiments is also to evaluate the size of the instances
that can be solved to proven optimality by the considered methods, and to measure the
influence of the edge density on the computational effort. Finally, we are interested in the
computational evaluation of the dual bounds provided by the four different formulations
presented in this manuscript, beyond the theoretical dominance discussed in the previous
sections. In our experiments, we use IBM CPLEX 12.8 (denoted for brevity as CPLEX) and
SCIP 6.0.1 with CPLEX as linear programming solver (denoted as SCIP).

The remainder of this section is organized as follows. In Section 5.1, we describe the gen-
eral settings of the experiments and the classes of tested instances, i.e., synthetic and DIMACS

graphs. In Section 5.2, we present a computational comparison of the compact formulations
on the DIMACS graphs followed by a discussion of the impact of the main features of CPLEX
on the number of solved instances. In Section 5.3, we discuss the implementation details of
BP , i.e., the newly developed exact algorithm. In Section 5.4, we computationally compare
BP against the best compact formulation, using the synthetic class of graphs. Finally, in
Section 5.5, we discuss the quality of the LP relaxation of the different IP formulations on
the DIMACS graphs and we compare BP against the best compact formulation, always on the
DIMACS graphs.

5.1 Experimental settings and instances

Our experimental environment is a desktop PC running Linux with an Intel Core i7-3770
processor at 3.40GHz and 8GB RAM. For all formulations, the upper bound on the strength
of the graph is set to k = ∆(G) + 1.

The BP algorithm was implemented in C++ by using the API provided by SCIP to manage
the main branch-and-price components, and using CPLEX to solve the linear relaxations. We
resort to several dedicated data structures to efficiently handle different elements of the

14

algorithm. In particular, we implemented a dedicated data structure, which we call Merged
Graph, to handle the branching decisions (i.e., the merging of the vertices and addition of the
edges to perform the branching operations). This structure allows us to extract the modified
graph on each node of the branching tree while keeping track of the mapping between the
vertices of the original and the merged one.

We consider two sets of instances; namely, the classical DIMACS instances commonly
used to test the performance of coloring algorithms (see [31]) and the Erdös-Rényi graphs
defined according to a specified edge probability. For the DIMACS instances, we restrict
our computational experimentation to the instances from [31] with up to 200 vertices (52
graphs in total). The random instances test set is composed by Erdös-Rényi graphs of
n = |V | vertices, with n ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}, and edge densities δ ∈
{10%, 30%, 50%, 70%, 90%}. For each combination of n and δ, we generated 5 instances, for
a total test-bed of 225 instances.

5.2 Performance of the three IP compact formulations on the
DIMACS instances

In this section, we discuss the computational performance of the IP compact formulation
IPC presented in Section 2 and the two additional IP compact formulations IPO and IPR,
presented in Section 3. We use for these tests the 52 DIMACS instances. The formulations
are solved by using CPLEX with default parameters and we set a time limit of 1800 seconds
for each of the tests. Since the three formulations are solved by CPLEX, we call them IP cpx

C ,
IP cpx

O and IP cpx
R , in the reminder of this section.

The results of these tests are reported in Table 1. The first column reports the name
of the instance and the second column corresponds either to the chromatic sum Σ(G) or, if
none of the three formulations is able to solve an instance, we report the best upper bound
from the literature (see [20]). These best upper bounds are marked in column ub∗ with an ∗
next to the values. For each formulation, we report the number of variables (columns “vars”)
and the time taken by CPLEX to solve the corresponding formulation (columns “time”). In
case the time limit is reached, we report “t.l.” in the table.

Table 1 shows then three gaps which further characterize the performance of the three
formulations. The first one (column “gap”) is the exit gap computed as 100 (ub − lb)/lb,
where ub and lb are the upper and lower bounds computed by CPLEX for the corresponding
formulation within the time limit (0 for the instances solved to proven optimality). The
second one (column “gap`”) is the LP gap computed as 100 (ub∗−Z(LP))/ub∗, where ub∗ is
the chromatic sum Σ(G) of the instance (or the best upper bound from the literature) and
Z(LP) is the value of the LP relaxation of the corresponding formulation. The third one
(column “gapr”) is the root node gap, computed as 100 (ub∗− lbr)/ub∗, where lbr corresponds
to the lower bound computed by CPLEX at the end of the root node of the branching tree.
The lower bound lbr corresponds to the value of the LP relaxation after the addition of
several rounds of generic cuts generated by the CPLEX and the preprocessing phase of the IP
solver. The formulation IPR is characterized by a very high number of variables since these
DIMACS graphs are relatively sparse. For this reason, CPLEX produces an out-of-memory error
for 11 instances. In these cases, we report “out of memory” in Table 1. In addition, always
for IP cpx

R , CPLEX is not able to compute any lower bound for two instances, i.e., DSJC125.5

15

and queen 12 12. For this reason, we report “*” in Table 1 for the exit and the root node
gaps. CPLEX is instead able to compute the value of the LP relaxations and, for this reason,
the table reports the LP gap for these two instances.

Formulation IP cpx
C is the best performing one for this set of instances since it is able to

solve to proven optimality 40 out of the 52 DIMACS instances. The second best formulation
is IP cpx

R which solves 27 instances. Formulation IP cpx
O is able to solve only 13 instances.

It is important to notice that IP cpx
R is characterized by the largest number of variables, in

some instances the number of variables is 100 times larger than the number of variables of
the other two formulations. On the other hand, IP cpx

O has the smallest number of variables.
Considering the entire test bed, IP cpx

C has ≈ 8, 000 variables on average, IP cpx
O ≈ 2, 000 on

average, and IP cpx
R ≈ 400, 000 on average. Not only IP cpx

C is able to solve the largest number
of instances but also it generally produces the smallest exit gaps. Most of the exits gaps of
this formulation are below 20% and the largest one is 112.17%, for the instance DSJC125.5.
The exit gaps of IP cpx

O and IP cpx
R are substantially larger. For IP cpx

O , in most of the instances
the exit gaps are above 20% and the largest one is 616.67%, for the instance DSJC125.9.
The exit gaps of IP cpx

R are smaller compared to the ones of IPO but, as mentioned before,
this formulation incurs in out-of-memory errors for 11 instances. It is worth noticing that
in one instance, i.e, DSJC125.9, the exit gap of IP cpx

R is the smallest one and it is equal to
0.14%. For this instance, IP cpx

C has an exit gap equal to 67.56% and IP cpx
O has an exit gap

equal to 616.67%.
As far as the LP gaps are concerned, formulation IP cpx

C has an average LP gap of 49.6%,
IP cpx

O of 66.3% and IP cpx
R of 31.5% (for IP cpx

R we just consider the 41 instances where the
exit gap can be computed). These results show that IP cpx

R has the strongest LP relaxation
among the three formulations but the high number of variables (and constraints) makes
this formulation not computationally competitive. Also the computational time necessary
to solve the LP relaxation of IP cpx

R is considerably larger than the time necessary to solve
the LP relaxation of IP cpx

O and IP cpx
C , which is in most of the cases negligible. The average

time to solve the LP relaxation for IP cpx
C is 0.30 seconds and the maximum ≈ 3 seconds, for

IP cpx
O the average is 0.01 seconds and the maximum ≈ 0.05 seconds, for IP cpx

R the average
is ≈ 35 seconds and the maximum is over 300 seconds. Formulation IP cpx

O has the weakest
LP relaxation and its LP gaps are often larger than 50% and, for some cases, even larger
than 90%. Also the LP gaps of IP cpx

C are relatively large but smaller than those of IP cpx
O ,

but in several instances the LP gaps IP cpx
C are smaller than 20%. Also for IP cpx

C there are
instances on which the LP gap is over 90%.

As far as the root node gaps are concerned, the most important thing to notice is that
the root node gaps of IP cpx

C are very small. This fact shows that CPLEX is very effective in
reducing the LP gaps for this formulation. The tests showed that very good quality upper
and lower bound are computed by CPLEX for IP cpx

C , in particular, 14 instances can be solved
at the root node. CPLEX is also very effective in computing good root node gaps for IP cpx

O ,
but this gaps are considerably larger than those of IP cpx

C . The root nodes gaps of IP cpx
R are

also small but the computing time is large. In all the 27 instances solved to optimality by
IP cpx

R , CPLEX solves them at the root node. Nevertheless, IP cpx
C is characterized by the best

compromise between the strength of the LP relaxation and the time necessary to solve the
instances to prove optimality.

CPLEX is one of the most powerful general-purpose IP solvers which implements state-

16

IP cpx
C IP cpx

O IP cpx
R

Instance ub∗ vars time gap gap` gapr vars time gap gap` gapr vars time gap gap` gapr time`

1-FullIns 3 54 360 0.0 0.00 16.7 0.0 130 0.2 0.00 44.4 12.0 4,380 0.2 0.00 8.3 0.0 0.0

1-FullIns 4 166 3,069 3.0 0.00 16.0 4.7 686 t.l. 8.63 44.0 13.9 124,674 131.4 0.00 9.6 0.0 9.5

1-Insertions 4 119 1,541 2.7 0.00 15.5 8.4 299 t.l. 3.45 43.7 14.7 47,058 58.0 0.00 6.7 0.0 2.3

2-FullIns 3 93 832 0.2 0.00 16.1 1.1 253 0.9 0.00 44.1 8.6 18,832 3.0 0.00 11.3 0.0 0.4

2-Insertions 3 62 370 0.2 0.00 10.5 6.4 109 0.4 0.00 40.3 9.7 6,310 1.3 0.00 3.2 0.0 0.1

2-Insertions 4 249 5,662 9.9 0.00 10.2 6.1 690 t.l. 9.48 40.2 10.2 404,092 t.l. 5.46 6.0 4.4 191.7

3-FullIns 3 145 1,600 0.5 0.00 17.2 1.0 426 31.3 0.00 44.8 7.2 57,880 37.1 0.00 14.1 0.0 2.2

3-Insertions 3 92 672 0.2 0.00 8.7 6.4 166 4.4 0.00 39.1 8.7 17,832 6.3 0.00 3.8 0.0 0.6

4-FullIns 3 205 2,736 0.4 0.00 16.6 0.5 655 182.9 0.00 44.4 5.2 144,336 130.5 0.00 14.4 0.0 12.6

4-Insertions 3 127 1,106 0.4 0.00 6.7 4.6 235 8.1 0.00 37.8 6.3 42,056 51.5 0.00 3.1 0.0 2.8

5-FullIns 3 280 4,312 1.6 0.00 17.5 1.0 946 t.l. 1.45 45.0 5.2 312,004 1054.1 0.00 15.9 0.0 36.8

anna 276 19,734 0.4 0.00 27.9 0.0 1,124 8.8 0.00 50.0 5.6 1,301,014 219.8 0.00 27.2 0.0 316.0

david 237 14,355 0.3 0.00 46.6 0.0 899 t.l. 14.38 63.3 25.1 564,630 53.8 0.00 42.3 0.0 40.7

DSJC125.1 326 * 3,000 t.l. 20.39 42.5 20.6 861 t.l. 55.76 61.7 30.3 171,336 t.l. 56.10 38.4 19.0 85.6

DSJC125.5 1012 * 9,500 t.l. 112.17 81.5 43.6 4,016 t.l. 507.86 87.6 70.9 302,784 t.l. * 67.1 * 535.8

DSJC125.9 2503 * 15,125 t.l. 67.56 92.5 31.0 7,086 t.l. 616.67 95.0 75.8 110,594 t.l. 0.14 52.0 0.1 190.7

games120 443 3,240 0.6 0.00 59.4 0.2 1,396 t.l. 5.66 72.9 5.4 178,794 t.l. 1.22 56.3 0.5 60.1

huck 243 7,918 0.1 0.00 54.3 0.0 676 t.l. 11.04 69.5 19.8 264,718 19.5 0.00 50.4 0.0 13.1

jean 217 5,840 0.1 0.00 47.2 0.0 588 13.6 0.00 63.1 3.7 217,978 16.9 0.00 46.3 0.0 6.1

miles1000 1666 22,144 124.4 0.00 88.5 0.6 6,560 t.l. 21.00 92.3 9.3 871,920 ——– out of memory ——–

miles1500 3354 27,264 73.1 0.00 94.3 3.1 10,524 t.l. 22.70 96.2 10.3 651,354 ——– out of memory ——–

miles250 325 4,224 0.4 0.00 41.7 0.3 902 t.l. 3.77 60.6 4.6 259,677 412.3 0.00 40.6 0.0 17.0

miles500 705 9,856 24.9 0.00 72.8 0.7 2,468 t.l. 23.04 81.8 14.5 545,622 t.l. 11.37 71.3 1.5 181.8

miles750 1173 16,512 65.5 0.00 83.6 1.7 4,354 t.l. 25.46 89.1 7.6 792,447 ——– out of memory ——–

mug100 1 202 500 1.0 0.00 25.7 3.2 266 t.l. 3.01 50.5 6.4 24,420 346.9 0.00 23.5 0.0 1.1

mug100 25 202 500 1.8 0.00 25.7 3.1 266 t.l. 4.66 50.5 7.4 24,420 t.l. 0.58 23.5 0.6 1.3

mug88 1 178 440 1.3 0.00 25.8 2.7 234 t.l. 2.89 50.6 6.2 18,850 103.3 0.00 23.3 0.0 0.7

mug88 25 178 440 1.0 0.00 25.8 3.1 234 t.l. 3.75 50.6 8.2 18,850 68.6 0.00 23.2 0.0 0.9

mulsol.i.1 1957 24,034 1.6 0.00 86.4 0.0 4,122 t.l. 23.63 89.9 11.9 1,900,516 ——– out of memory ——–

mulsol.i.2 1191 29,516 2.3 0.00 77.0 0.0 4,073 t.l. 23.14 84.2 19.8 2,179,317 ——– out of memory ——–

mulsol.i.3 1187 29,072 2.4 0.00 77.2 0.0 4,100 t.l. 23.07 84.5 20.3 2,070,432 ——– out of memory ——–

mulsol.i.4 1189 29,415 2.4 0.00 77.1 0.0 4,131 t.l. 23.32 84.4 19.9 2,108,181 ——– out of memory ——–

mulsol.i.5 1160 29,760 2.5 0.00 76.4 0.0 4,159 t.l. 24.09 84.0 20.7 2,146,880 ——– out of memory ——–

myciel3 21 66 0.0 0.00 21.4 9.1 31 0.0 0.00 47.6 19.0 276 0.0 0.00 4.8 0.0 0.0

myciel4 45 276 0.2 0.00 23.3 10.2 94 1.3 0.00 48.9 21.0 2,460 0.6 0.00 5.9 0.0 0.0

myciel5 93 1,128 1.4 0.00 24.2 13.3 283 t.l. 5.51 49.5 23.7 21,408 9.1 0.00 8.2 0.0 0.4

myciel6 189 4,560 15.0 0.00 24.6 15.5 850 t.l. 21.35 49.7 24.3 182,640 t.l. 5.00 10.4 3.3 16.1

myciel7 381 * 18,336 t.l. 6.98 24.8 16.7 2,551 t.l. 53.78 49.9 24.7 1,533,696 ——– out of memory ——–

queen10 10 553 * 3,600 t.l. 1.64 72.9 0.5 1,570 t.l. 33.73 81.9 14.0 128,880 t.l. 32.18 60.8 0.5 132.7

queen11 11 733 * 4,961 t.l. 4.41 75.2 1.0 2,101 t.l. 36.90 83.5 14.2 221,441 t.l. 27.82 64.4 1.0 413.8

queen12 12 943 * 6,336 t.l. 6.30 77.1 0.7 2,740 t.l. 34.54 84.7 12.9 345,136 t.l. * 67.2 * 1395.4

queen13 13 1191 * 8,281 t.l. 5.92 78.7 0.7 3,497 t.l. 42.28 85.8 12.4 540,813 ——– out of memory ——–

queen14 14 1482 * 10,192 t.l. 5.44 80.2 0.8 4,382 t.l. 52.21 86.8 11.8 786,240 ——– out of memory ——–

queen5 5 75 825 0.0 0.00 50.0 0.0 345 221.9 0.00 66.7 20.0 5,445 0.2 0.00 19.7 0.0 0.1

queen6 6 138 1,404 293.5 0.00 60.9 8.7 616 t.l. 16.62 73.9 23.2 14,664 121.9 0.00 40.2 0.0 0.6

queen7 7 196 2,401 0.6 0.00 62.5 0.0 1,001 t.l. 30.21 75.0 17.9 36,701 21.2 0.00 43.9 0.0 3.7

queen8 12 624 6,240 3.7 0.00 76.9 0.0 2,832 t.l. 180.02 84.6 62.1 213,720 1111.3 0.00 63.9 0.0 129.6

queen8 8 291 * 1,792 t.l. 1.04 67.0 1.0 792 t.l. 32.00 78.0 15.5 37,856 t.l. 2.08 51.4 1.0 9.3

queen9 9 409 * 2,673 t.l. 0.99 70.3 1.0 1,137 t.l. 40.16 80.2 15.4 74,745 t.l. 3.70 56.7 1.0 36.7

r125.1 257 1,125 0.0 0.00 27.6 0.0 334 0.9 0.00 51.4 1.9 68,994 9.0 0.00 26.2 0.0 6.5

r125.1c 2184 15,625 628.6 0.00 91.4 0.2 7,626 t.l. 534.74 94.3 55.9 46,750 3.0 0.00 1.4 0.0 2.3

R125.5 1853 * 12,500 t.l. 5.13 89.9 5.1 3,963 t.l. 40.77 93.3 17.6 403,700 t.l. 25.94 85.4 3.8 168.5

Table 1: Computational comparison between the compact formulations IP cpx
C , IP cpx

O and
IP cpx

R .

17

CPLEX configuration Instances solved

Default parameters 40

No cutting planes → CPX PARAM CUTPASS 37

No presolving → CPX PARAM PREPASS 41

No presolving nor other reductions → CPX PARAM PREIND 37

No probing before branching → CPX PARAM PROBE 41

No cutting planes, presolving, other reductions nor probing 16

Table 2: Effect on the performance of CPLEX in solving IP cpx
C of removing four of its main

features.

of-the-art techniques to tackle IP formulations. In this section, we analyze which are the
main components of the solver which affect the most its performance in solving IP cpx

C . In
particular, we performed 4 additional rounds of tests, on the 52 DIMACS instances, disabling
some of the main features of CPLEX: (i) we set the parameter CPX PARAM CUTPASS = -1 to
disable the generation of cutting planes; (ii) we set the parameter CPX PARAM PREPASS =

0 to remove the presolve phase of CPLEX; (iii) we set the parameter CPX PARAM PREIND =

0 to remove the presolve phase and the reductions of CPLEX; (iv) we set the parameter
CPX PARAM PROBE = -1 to disable the probing phase of CPLEX. Finally, we performed a fifth
round of tests disabling altogether these features.

The results of these tests are reported in Table 2, in which we show the number of
instances solved to optimality by each of the CPLEX configuration. The table shows that
these parameters have an impact on the performance of the solver. Removing the cutting
planes results in solving 3 instances less, the same as removing the presolving together with
the reductions. Surprisingly, removing only the presolving or the probing, one additional
instance can be solved. The most important message of this table, is that by removing
altogether these techniques, CPLEX is only able to solve 16 instances. This means that these
techniques have a complementary effect, so removing them separately is not enough to reduce
drastically the performance, but once all of them are removed altogether, the performance of
the solver is substantially deteriorated. Even if 1 more instance can be solved by removing
only the presolving or the probing, we decide to keep the standard configuration for the
tests reported in the next sections. This allows us to avoid the overfitting of the parameter
calibration.

Summarizing, these tests show that IP cpx
C is computationally superior to IP cpx

O and IP cpx
R

for these test bed of instances. For this reason we use this formulation as a term of comparison
in Section 5.4 and Section 5.5, where we discuss the performance of the newly developed
branch-and-price algorithm.

5.3 Branch-and-price implementation details

The initial set of variables of the RMP must contain a feasible solution in order to start
the CG procedure, see Section 4.1. The basic initialization defining a stable set for each
vertex and each color might not be enough to guarantee a feasible solution since the number
k of colors can be smaller than the number n of vertices. In order to overcome this issue,

18

we include an additional dummy variable ξ∞V which covers all the vertices of the graph at
a cost c∞V = +∞. In addition, this variable is not present in any of the constraints (4b).
Clearly, ξ∞V is not active in any LPE optimal solution, while it makes any RMP feasible.
Nevertheless, it is usually preferable to start the CG process with an initial set of variables
containing a proper solution. To this end, we apply a greedy heuristic to search for such a
set of variables. The greedy algorithm we propose starts by searching for a maximum stable
set to be colored with the first color, it removes the vertices from the graph and it repeats
this procedure for the next colors. The loop stops when all vertices are colored or k stables
set are generated and the corresponding variables are added to the RMP.

In the following paragraph, we discuss how to determine the the number of columns to be
added at each column generation (CG) iteration. We recall that up to k different pricing sub-
problems can be solved, potentially generating one column for each color. However, for the
convergence of the CG procedure, it is enough to add a single negative reduced cost column
at each iteration. With the aim of (empirically) finding the best configuration between these
two extremes, we conducted a computational experimentation where we solve the pricing
subproblems for increasing colors (starting from color 1), and varying the maximum number
of columns that are generated before re-optimizing the restricted master problem (RMP).
Namely, we consider to add up to 1, 3, 5, 7 and 9 columns per iteration (obtaining in this
way 5 different configurations of the BP algorithm). To illustrate the relative performance
of these configurations, we compare them by means of a performance profile analysis [5].
For each instance and for each configuration, we compute a normalized time ratio τ as the
ratio between the computing time of the considered configuration over the minimum com-
puting time for solving the instance to optimality. The instances which cannot be solved by
any configuration are considered as “time limit” and accordingly they have an infinite value
of τ . In Figure 4, each configuration is represented by a curve denoted by the maximum
number of added columns in the legend. The vertical axis reports, for each value of τ , the
percentage of the instances for which the corresponding configuration spent at most τ times
the computing time of the fastest one. The curves start from the percentage of instances in
which the corresponding configuration is the fastest one and, at the right end of the chart,
we can read the percentage of instances solved by a specific configuration (within the time
limit of 1800 seconds). Computing times below 0.5 seconds are considered as ties. The best
performance is graphically represented by the curves in the upper part the figure.

As Figure 4 depicts for the test-bed of 225 random instances, using one column per
pricing step does not yield good results; it is profitable to add columns for several colors at
each step. However, our tests also show that adding too many columns may also worsen the
performance of the algorithm. The best performance is given by the configuration which adds
up to 7 columns per iteration; accordingly, we adopt this BP configuration in all subsequent
experiments.

5.4 Performance of the branch-and-price algorithm for the ran-
dom instances

In this section, we compare the performance of the newly developed branch-and-price algo-
rithm against IPC which is the best IP formulation for the MSCP as discussed in Section 5.2.

19

 0

 20

 40

 60

 80

 100

 1 10 100

%
 o

f
in

s
ta

n
c
e
s

�

1 col
3 cols
5 cols
7 cols
9 cols

Figure 4: Performance profile of the different configurations of the BP algorithm.

We consider in the reminder of this section the 225 random instances described in Section
5.1. For these tests we set a time limit of 1800 seconds. Since the branch-and-price algorithm
is implemented in SCIP we also report the results of this solver to tackle IPC and we call
this configuration IP scp

C .
Figure 5 summarizes the number of instances solved to optimality by the three exact

methods considered, i.e., BP , IP cpx
C and IP scp

C , for the complete set of random instances.
Grouping the instances by graph size, the vertical bars represent the number of solved
instances by the corresponding method. For each value of n, we have a total of 25 instances.
Figure 5 shows that for n = 20, BP and IP cpx

C are able to solve all the instances within the
time limit of 1800 seconds, while IP scp

C solves only 20. Increasing the number of vertices
has a strong effect on the performance of IP scp

C , which is able to solve 5 instances for each
value n ∈ {50, 60, 70}, only 1 instance for n = 80 and none of the bigger ones. As far as
the performance of IP cpx

C is concerned, this method is able to solve all the instances with
n ∈ {20, 30}. Its performance starts to decrease with n = 40, as for this group of instances
IP cpx

C is able to solve 19 of them. Figure 5 shows that IP cpx
C computationally outperforms

IP scp
C on this set of instances, since IP cpx

C is able to solve 93 out of the 225 instances while
IP scp

C only solves 60. Moreover, IP cpx
C solves 4 instances with n = 80 and 1 instance with

n = 90, while IP scp
C solves none of them. However, IP cpx

C does not solve any instance with
n = 100. The BP method is able to solve in total 161 instances and it consistently solves all
instances with n ∈ {20, 30, 40, 50}. For bigger instances, its performance starts decreasing
but the method is able to solve 22 instances with n = 60, 16 with n = 70, 10 with n = 80,
8 with n = 90 and 5 with n = 100. Summarizing, Figure 5 computationally proves that
BP has an overall better performance than both IP cpx

C and IP scp
C on the considered random

Erdös-Rényi graphs.
Detailed computational results are reported in Table 3 for graphs with 20, 50, 80 and

100 vertices and different edge densities. Each line of the table reports average results for
5 instances with the similar characteristics. The first two columns of the table report the
number n of vertices of the graph and the percentage edge density δ. The table is divided

20

 0

 5

 10

 15

 20

 25

 20 40 60 80 100

so
lv

e
d
 i
n
st

a
n
ce

s

vertices

IPC
scp

IPC
cpx

BP

Figure 5: Number of instances solved to optimality by IP cpx
C , IP scp

C and BP for random
Erdös-Rényi graphs with |V | ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}.

in three parts which report the results of the three considered methods, i.e, BP , IP cpx
C

and IP scp
C . For each of these methods, the table reports the number of instances solved

(column solved), the average computing time (column Time), the average exit gap (column
Gap) and the average number of nodes explored in the branching tree (column nodes). For
the BP method, the table also report the average number of generated columns during
the branch-and-price algorithm (column cols). The exit gap is computed as the percentage
difference between the best upper and lower bounds divided by the lower bound when the
time limit is reached, an average gap of 0 means that all the instances are solved by the
corresponding method. In line with the results showed in Figure 5, Table 3 clearly shows
that IP cpx

C outperforms IP scp
C for this tests bed of instances. The method IP cpx

C is able to
solve many more instances to proven optimality and on average explores a much smaller
number of nodes. In addition, for the instances which cannot be solved within the time limit
of 1800 seconds, IP cpx

C guarantees much smaller exit gaps compared to the ones of IP scp
C .

The large difference in the computational behavior can be explained by the different and
more sophisticated branch-and-cut algorithm implemented by CPLEX with respect to the one
implemented by SCIP. Part of this performance difference is also explained by the better
dual bounds computed at the root node by CPLEX with respect to the one computed by
SCIP (see Table 4 for further details on this point). As far as the edge density impact on the
performance of IP cpx

C and IP scp
C is concerned, the table points out that both methods tend to

suffer when the density increases. For instance, IP scp
C is not able to solve any instance with

n = 20 and δ = 90%. The performance of IP cpx
C is also heavily affected by high edge densities.

For instance, IP cpx
C is only able to solve 4 out of 5 instances with n = 80 and δ = 10% while

none of the instances with higher edge densities. As far as the comparison between IP cpx
C

and BP is concerned, the table clearly shows that BP substantially outperforms IP cpx
C for

this test bed of instances. The BP method consistently solves also the instances with up to
50 vertices while IP cpx

C already struggles with instances with n = 50 and high edge densities.

21

I
P

s
c
p

C
I
P

c
p
x

C
B
P

n
δ

so
lv

ed
ti

m
e

g
a
p

n
o
d

es
so

lv
ed

ti
m

e
g
a
p

n
o
d

es
so

lv
ed

ti
m

e
g
a
p

n
o
d

es
co

ls

2
0

1
0

5
0
.0

0
0
.0

0
1
.0

0
5

0
.0

1
0
.0

0
0
.0

0
5

0
.2

0
0
.0

0
1
.8

0
1
9
1
.2

0

3
0

5
1
.8

0
0
.0

0
1
6
.4

0
5

0
.0

4
0
.0

0
3
.8

0
5

0
.0

0
0
.0

0
1
.2

0
1
6
3
.0

0

5
0

5
1
4
.0

0
0
.0

0
8
2
6
.2

0
5

0
.2

2
0
.0

0
1
3
.6

0
5

0
.2

0
0
.0

0
1
.6

0
1
6
1
.6

0

7
0

5
1
5
1
.2

0
0
.0

0
1
2
3
7
3
.2

0
5

0
.1

5
0
.0

0
0
.0

0
5

0
.0

0
0
.0

0
1
.0

0
1
6
2
.6

0

9
0

0
1
8
0
0
.0

0
4
4
.9

4
1
3
2
8
2
3
.2

0
5

0
.0

2
0
.0

0
0
.0

0
5

0
.2

0
0
.0

0
1
.0

0
1
3
5
.8

0

5
0

1
0

5
5
.0

0
0
.0

0
1
0
2
.8

0
5

0
.4

4
0
.0

0
3
3
.2

0
5

8
.8

0
0
.0

0
1
2
.6

0
2
0
4
2
.8

0

3
0

0
1
8
0
0
.0

0
1
8
.7

9
6
0
9
9
0
.6

0
4

6
1
1
.9

8
0
.4

0
1
2
3
7
7
0
.0

0
5

1
1
8
.8

0
0
.0

0
1
4
5
.8

0
8
7
8
8
.8

0

5
0

0
1
8
0
0
.0

0
9
2
.1

5
4
4
1
6
.0

0
0

1
8
0
0
.0

0
2
9
.7

6
1
1
7
5
3
6
.0

0
5

4
7
.0

0
0
.0

0
9
6
.0

0
6
3
8
1
.6

0

7
0

0
1
8
0
0
.0

0
1
8
2
.0

5
2
9
0
6
.0

0
0

1
8
0
0
.0

0
1
5
.5

4
4
8
0
7
8
.2

0
5

5
.6

0
0
.0

0
2
5
.8

0
1
9
8
9
.8

0

9
0

0
1
8
0
0
.0

0
3
3
6
.6

5
1
9
1
4
.8

0
0

1
8
0
0
.0

0
4
.2

6
5
6
8
3
0
.4

0
5

1
.4

0
0
.0

0
3
.8

0
8
9
9
.2

0

8
0

1
0

1
1
7
1
2
.4

0
5
.0

6
5
0
4
7
7
.2

0
4

6
6
9
.4

2
0
.4

0
1
6
8
3
3
9
.4

0
0

1
8
0
0
.0

0
5
.3

9
1
7
1
.4

0
3
0
3
5
4
.8

0

3
0

0
1
8
0
0
.0

0
1
1
2
.2

8
9
9
2
.8

0
0

1
8
0
0
.0

0
3
7
.6

5
3
1
4
0
6
.8

0
0

1
8
0
0
.0

0
5
.8

4
2
3
7
.2

0
4
1
9
9
8
.6

0

5
0

0
1
8
0
0
.0

0
2
6
4
.2

4
1
9
7
.8

0
0

1
8
0
0
.0

0
4
8
.7

0
2
1
2
6
6
.8

0
0

1
8
0
0
.0

0
3
.4

6
3
4
2
.0

0
5
4
3
9
1
.2

0

7
0

0
1
8
0
0
.0

0
1
0
6
3
.6

5
2
2
.2

0
0

1
8
0
0
.0

0
4
1
.3

6
1
4
0
5
0
.8

0
5

3
1
0
.0

0
0
.0

0
2
2
6
.4

0
1
8
4
3
1
.4

0

9
0

0
1
8
0
0
.0

0
1
5
2
6
.9

0
1
.0

0
0

1
8
0
0
.0

0
2
2
.5

8
9
1
3
3
.0

0
5

2
0
.0

0
0
.0

0
2
2
.6

0
3
9
1
9
.6

0

1
0
0

1
0

0
1
8
0
0
.0

0
2
1
.6

3
1
8
7
6
7
.0

0
0

1
8
0
0
.0

0
1
0
.0

0
1
9
0
6
2
9
.8

0
0

1
8
0
0
.0

0
7
.6

7
1
2
.6

0
4
1
1
2
.4

0

3
0

0
1
8
0
0
.0

0
1
7
2
.5

6
3
2
7
.4

0
0

1
8
0
0
.0

0
5
5
.8

0
1
4
7
9
0
.4

0
0

1
8
0
0
.0

0
8
.3

5
6
3
.6

0
1
6
5
4
3
.4

0

5
0

0
1
8
0
0
.0

0
8
3
6
.6

1
7
.2

0
0

1
8
0
0
.0

0
8
1
.2

8
4
9
2
8
.0

0
0

1
8
0
0
.0

0
6
.9

9
1
8
0
.0

0
4
3
3
2
1
.8

0

7
0

0
1
8
0
0
.0

0
1
4
3
0
.9

8
1
.0

0
0

1
8
0
0
.0

0
7
5
.1

1
2
0
3
8
.0

0
0

1
8
0
0
.0

0
1
.5

6
3
6
1
.2

0
5
8
4
6
3
.6

0

9
0

0
1
8
0
0
.0

0
2
1
2
6
.3

0
1
.0

0
0

1
8
0
0
.0

0
4
1
.5

6
1
3
6
6
.2

0
5

5
9
.2

0
0
.0

0
5
2
.8

0
6
2
1
1
.2

0

T
ab

le
3:

C
om

p
u
ta

ti
on

al
re

su
lt

s
of
I
P
sc
p

C
,
I
P
cp
x

C
an

d
B
P

on
ra

n
d
om

E
rd

ös
-R

én
y
i

gr
ap

h
s

w
it

h
|V
|
∈
{2

0,
50
,8

0,
10

0}
an

d
δ
∈
{1

0%
,3

0%
,5

0%
,7

0%
,9

0%
}.

22

Also for the unsolved instances, the exit gaps guaranteed by BP are much smalled than
those of IP cpx

C .
Table 3 points out a completely different impact of the edge density on BP with respect

to the impact on IP cpx
C . The BP method is able to solve all the instances with δ = 90% and

all different values of n. On the other hand, BP tends to struggle when the edge density is
smaller, fact which is also evident by looking at the number of explored nodes. By comparing
the average number of nodes explored by BP and IP cpx

C for the instances solved to proven
optimality, one can see that BP explores on average a much smaller number of nodes. This
behavior can be explained by the better quality of the dual bound provided by LPE compared
to the one provided by LPC . As far as the number of generated columns is concerned, the
table shows that BP generates on average hundreds of columns for n = 20 and thousands of
columns with n = 50 and the number of columns drastically increases for larger instances.
The edge density has an impact on the number of generated columns, since instances with
high edge density can be solved with a much smaller number of columns on average.

Detailed computational results on the lower and upper bounds provided by BP , IP cpx
C

and IP scp
C are shown in Table 4 (considering the same set of instances as in Table 3). This

table reports three columns for each method, the average upper bound (column UB), the
average lower bound (column LB) and the average lower bound computed at the root node
of the branching tree (column LBr). Clearly, for the instances solved to proven optimality
the columns UB and LB coincide, otherwise the bounds are the one obtained by the corre-
sponding method in case of time limit. The column LBr reports for IP cpx

C and IP scp
C the dual

bound computed at the root node, i.e., the value of the linear relaxation of IPC strengthened
by the general purpose valid inequalities generated by the solvers. On the other hand, for
the BP method the column LBr simply reports the bound provided by LPE.

As far as the comparison between IP cpx
C and IP scp

C is concerned, Table 4 clearly shows
that IP cpx

C is able to compute better lower and upper bounds with respect to IP scp
C . The

column LBr partially explains the difference in the computational behavior between IP cpx
C

and IP scp
C . By looking at these two columns one can see that much stronger dual bounds

are computed by CPLEX than those computed by SCIP. By comparing instead the root dual
bounds provided by BP with those of IP cpx

C , one can see that the linear relaxation bound of
LPE is much stronger than the dual bound provided by CPLEX at the root node even after
the addition of several families of general purpose valid inequalities. The strength of the
root node bound of BP plays a crucial rule on its computational performance and it is the
main reason why BP outperforms both IP cpx

C and IP scp
C on this set of randomly generated

Erdös-Rényi graphs.

23

IP scp
C IP cpx

C BP

|V | δ UB LB LBr UB LB LBr UB LB LBr

20 10 29.80 29.80 29.80 29.80 29.80 29.69 29.80 29.80 29.80

30 41.60 41.60 39.96 41.60 41.60 40.89 41.60 41.60 41.60

50 57.00 57.00 43.24 57.00 57.00 54.52 57.00 57.00 56.75

70 73.60 73.60 43.85 73.60 73.60 71.98 73.60 73.60 73.60

90 117.80 81.29 45.82 117.80 117.80 117.80 117.80 117.80 117.80

50 10 93.40 93.40 88.20 93.40 93.40 90.70 93.40 93.40 92.85

30 157.40 132.54 101.22 156.00 155.35 130.14 156.00 156.00 152.64

50 254.60 132.72 103.71 231.80 186.71 179.30 227.00 227.00 223.86

70 354.00 125.56 105.09 319.60 276.54 262.03 317.00 317.00 314.66

90 566.20 130.50 105.76 524.20 503.11 484.53 524.20 524.20 523.20

80 10 180.80 172.14 147.18 181.00 180.27 157.31 186.40 176.87 175.26

30 377.40 177.77 162.06 341.80 248.29 229.96 331.20 312.77 309.38

50 610.20 167.57 165.42 518.00 348.21 328.24 491.80 475.34 470.59

70 1927.00 165.90 165.55 713.20 504.61 484.52 686.80 686.80 680.64

90 2714.00 166.85 166.85 1152.00 940.31 930.82 1125.40 1125.40 1124.70

100 10 255.40 209.97 186.33 249.00 226.37 202.82 255.60 237.41 237.07

30 565.20 207.41 203.64 495.60 318.07 299.59 475.40 438.77 436.47

50 1916.80 204.65 204.65 803.00 442.98 430.88 722.60 675.37 670.45

70 3095.00 202.20 202.20 1137.60 649.73 643.59 1011.00 995.46 989.15

90 4216.40 189.43 189.43 1815.20 1282.33 1273.19 1676.80 1676.80 1672.17

Table 4: Computational results of IP scp
C , IP cpx

C and BP on random Erdös-Rényi graphs with
|V | ∈ {20, 50, 80, 100} and δ ∈ {10%, 30%, 50%, 70%, 90%}.

5.5 Performance of the branch-and-price algorithm for the DIMACS

instances

In this section we analyze the performance of BP on the 52 DIMACS instances. Firstly, we
compare the bounds provided by the LP relaxation of the three IP compact formulations
with the LP relaxation of the extended formulation IPE.

In Table 5 we report the instance name, the number of vertices and edges (columns |V |
and |E|) and the best lower bound known in the literature [20] (column LBb). Then the
table reports the optimal value of the LP relaxation of IPC , IPO, IPR and IPE, rounded
up to the closest integer value. Additionally, for IPE we also report the computational time
needed to calculate this value or “t.l.” if the time limit of 7200 seconds was reached. We
report in boldface text the best lower bound for each instance (ties are reported in boldface
text as well). The table reports the symbol “-” in case the lower bound cannot be computed
within the time limit (i.e., 7200 seconds). Specifically, the bound could not be computed for
10 instances when using formulation IPR, and for 3 instances, i.e., queen12 12, queen13 13

and queen14 14 when using IPE. The table shows that the strongest linear relaxation is by
far the one of IPE, which however requires a column generation approach to be solved (see
Section 4.1). For all 52 instances, Z(LPE) is significantly larger than Z(LPC), Z(LPR) and
Z(LPO), in some cases, by more than one order of magnitude. These very strong bounds are
often stronger than the best known bounds in the literature. Specifically, Z(LPE) is strictly
larger than every other bound in 25 instances, while LBb only in 8 cases. The time necessary

24

to compute Z(LPE) can be high, indeed, in 8 cases the computational time is larger than
1800 seconds. But, on the other hand, in 23 cases this bound could be computed in less than
30 seconds.

We discuss now the results of BP used to solve the DIMACS instances to proven optimality.
Even if DIMACS instances are very challenging for the classical vertex coloring problem, some
of these instances may not be such for the MSCP. In Section 5.2, we showed that IP cpx

C

is able to solve 33 out of the 52 DIMACS instances in less than 10 seconds, thus implying
that these instances are not very challenging for MSCP. For this reason, we drop these 33
instances from the following analysis and we focus on the remaining 19 instances which can
be classified as the “hard” instances. As far as the performance of BP is concerned on the 33
“easy” instances, it is worth mentioning that IP cpx

C outperforms BP , since it is on average
faster and can solve all of them. Nevertheless, BP is able to solve all but 2 of these instances,
namely 2-Insertions 4 and games120, with an average computing time of of 1123 seconds.
For the two unsolved instances the exit gaps are smaller than 1%.

Tables 6 shows the results on the remaining 19 “hard” DIMACS instances with an extended
time-limit of 7200 seconds. The structure of the table is the same as for Table 3. A hyphen
on the gap column means either that the formulation could not find a lower bound (i.e., the
linear relaxation was not solved within the time-limit) or an upper bound (i.e., no integer
solution was found.). IP cpx

C is able to solve 7 of these 19 “hard” instances, while BP solves
8 instances. In 3 of the 11 instances not solved by BP , this formulation could not solve the
root node, but on the other 8 instances it achieves an average exit gap of 4.98%. On the
other hand, the average exit gap achieved by IP cpx

C on the 12 unsolved instances is 16.24%
(some of the instances showing gaps of above 50%).

6. Conclusions

The Minimum Sum Coloring problem is a computationally challenging graph problem with
several peculiarities which make it different from other generalizations of the Vertex Coloring
problem. The problem has recently attracted much interest in the literature on heuristic
and methaheuristic approaches, but, to the best of our knowledge, little attention has been
given to exact solution methods. In this paper we have adapted to the Minimum Sum
Coloring some compact formulations proposed in the literature for the Vertex Coloring,
and we have first identified which compact formulation performs better than the others.
Then, we have proposed the first branch-and-price algorithm to solve an exponential-size
formulation of the problem, which is the main contribution of this paper. The performance
of the developed models and algorithms have been assessed on a large set of instances,
both randomly generated and DIMACS instances (standard benchmarks in the literature for
coloring problems). Our computational results showed the superior performance of the newly
developed algorithm, in particular for the solution of randomly generated graphs.

All the tests presented in this paper are performed in single-thread mode. This clean
setting allows a fair comparison between the different IP formulations, removing the impact
of the parallelization on the performance. As a future line of research, we mention that
a parallel version of our branch-and-price algorithm could potentially results in a further

25

Linear relaxation lower bounds

Instance |V | |E| LBb dZ(LPC)e dZ(LPR)e dZ(LPO)e dZ(LPE)e time

1-FullIns 3 30 100 53 45 50 30 54 0.1
1-FullIns 4 93 593 161 140 150 93 166 21.1
1-Insertions 4 67 232 117 101 111 67 116 1.8
2-FullIns 3 52 201 91 78 83 52 93 1.3
2-Insertions 3 37 72 62 56 60 37 62 0.1
2-Insertions 4 149 541 243 224 234 149 246 1851.7
3-FullIns 3 80 346 141 120 125 80 145 12.2
3-Insertions 3 56 110 92 84 89 56 92 2.4
4-FullIns 3 114 541 198 171 176 114 205 67.9
4-Insertions 3 79 156 126 119 123 79 127 11.1
5-FullIns 3 154 792 269 231 236 154 280 2099.8
anna 138 493 273 199 201 138 276 521.3
david 87 406 234 127 137 87 237 12.0
DSJC125.1 125 736 303 188 201 125 314 1953.3
DSJC125.5 125 3891 924 188 333 125 978 254.7
DSJC125.9 125 6961 2124 188 1202 125 2500 18.0
games120 120 638 442 180 194 120 443 5482.4
huck 74 301 243 111 121 74 243 1.6
jean 80 254 216 115 117 80 217 4.7
miles1000 128 3216 1623 192 - 128 1666 59.2
miles1500 128 5198 3239 192 - 128 3354 15.1
miles250 128 387 318 190 193 128 325 1116.0
miles500 128 1170 686 192 202 128 705 379.0
miles750 128 2113 1145 192 - 128 1173 88.3
mug100 1 100 166 202 150 155 100 202 3310.2
mug100 25 100 166 202 150 155 100 202 1850.1
mug88 1 88 146 178 132 137 88 178 180.8
mug88 25 88 146 178 132 137 88 178 156.9
mulsol.i.1 197 3925 1957 266 - 197 1957 87.0
mulsol.i.2 188 3885 1191 275 - 188 1191 1595.0
mulsol.i.3 184 3916 1187 271 - 184 1187 1547.2
mulsol.i.4 185 3946 1189 273 - 185 1189 1312.3
mulsol.i.5 186 3973 1160 274 - 186 1160 1392.8
myciel3 11 20 21 17 20 11 21 0.1
myciel4 23 71 44 35 43 23 44 0.1
myciel5 47 236 89 71 86 47 88 0.3
myciel6 95 755 177 143 170 95 176 3.8
myciel7 191 2360 350 287 - 191 349 212.0
queen10 10 100 1470 551 150 217 100 550 188.0
queen11 11 121 1980 726 182 261 121 726 1907.3
queen12 12 144 2596 936 216 309 144 - t.l.
queen13 13 169 3328 1183 254 - 169 - t.l.
queen14 14 196 4186 1470 294 - 196 - t.l.
queen5 5 25 160 75 38 61 25 75 0.3
queen6 6 36 290 127 54 83 36 138 0.1
queen7 7 49 476 196 74 110 49 196 1.0
queen8 12 96 1368 624 144 226 96 624 161.0
queen8 8 64 728 289 96 142 64 291 3.7
queen9 9 81 1056 406 122 177 81 405 24.0
r125.1 125 209 257 186 190 125 257 2078.4
r125.1c 125 7501 6597 188 2154 125 2184 6.8
R125.5 125 3838 2175 188 270 125 1820 59.0

Table 5: Comparison of the lower bounds provided by the linear relaxations of the four
IP models considered, i.e., IPC , IPR, IPO and IPE against the best lower bound from the
literature [20], i.e., LBb. We report in boldface the best lower bound for each instance.

26

IP cpx
C BP

Instance |V | |E| δ time gap nodes time gap nodes cols

DSJC125.1 125 736 9 t.l. 17.49 190914 t.l. 11.46 25 9136
DSJC125.5 125 3891 50 t.l. 97.29 8376 t.l. 7.24 530 11000
DSJC125.9 125 6961 90 t.l. 53.46 2181 25 0.00 29 6281
miles1000 128 3216 40 125 0.00 504 56 0.00 8 7481
miles1500 128 5198 64 73 0.00 530 8 0.00 1 3508
miles500 128 1170 14 25 0.00 1089 667 0.00 22 27798
miles750 128 2113 26 66 0.00 984 268 0.00 47 24130
myciel6 95 755 17 15 0.00 1125 t.l. 4.85 589 87803
myciel7 191 2360 13 t.l. 5.52 28920 t.l. 8.33 148 98797
queen10 10 100 1470 30 t.l. 1.64 275223 t.l. 2.55 711 15000
queen11 11 121 1980 27 t.l. 1.93 137796 t.l. 4.27 128 37989
queen12 12 144 2596 25 t.l. 3.85 128289 t.l. - 1 13210
queen13 13 169 3328 23 t.l. 2.11 103190 t.l. - 1 12165
queen14 14 196 4186 22 t.l. 5.31 59147 t.l. - 1 20025
queen6 6 36 290 46 294 0.00 101801 0 0.00 4 736
queen8 8 64 728 36 t.l. 0.69 482695 3 0.00 4 2206
queen9 9 81 1056 33 t.l. 0.99 369164 t.l. 0.87 1478 87223
r125.1c 125 7501 97 645 0.00 1 6 0.00 1 4118
R125.5 125 3838 50 t.l. 4.56 9710 t.l. 0.25 1391 184299

Table 6: Execution times, achieved exit gaps and nodes in the branching tree for IP cpx
C and

BP on hard DIMACS instances, with an extended time limit of 7200.

improvements of its performance.

Acknowledgments

The authors are grateful to Ian-Christopher Ternier and Sébastien Martin for preliminary discussions and
computational experiments, and to two anonymous referees for their comments that helped to significantly
improve the quality of the paper. Diego Delle Donne was partially supported by the MathSTIC Research
Federation and most of this work was carried out while this author was affiliated to LIPN. Fabio Furini was
partially supported by Google. Enrico Malaguti was supported by the Air Force Office of Scientific Research
under award FA8655-20-1-7019.

References

[1] Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami Tamir. On
chromatic sums and distributed resource allocation. Information and Computation, 140(2):183
– 202, 1998.

[2] Ralf Borndörfer, Andreas Eisenblätter, Martin Grötschel, and Alexander Martin. The orien-
tation model for frequency assignment problems. Technical Report TR-98-01, ZIB, Takustr.
7, 14195 Berlin, 1998.

[3] Manoel B. Campêlo, Victor A. Campos, and Ricardo C. Corrêa. On the asymmetric representa-
tives formulation for the vertex coloring problem. Discrete Applied Mathematics, 156(7):1097–
1111, 2008.

[4] Jacques Desrosiers and Marco E. Lübbecke. Column Generation, chapter A Primer in Column
Generation. Springer US, Boston, MA, 2005.

27

[5] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

[6] Fabio Furini, Enrico Malaguti, Sébastien Martin, and Ian-Christopher Ternier. ILP models
and column generation for the minimum sum coloring problem. Electronic Notes in Discrete
Mathematics, 64:215 – 224, 2018.

[7] Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via con-
straint programming and column generation. INFORMS Journal on Computing, 24(1):81–100,
2012.

[8] Stefano Gualandi and Federico Malucelli. A simple branching scheme for vertex coloring
problems. Discrete Applied Mathematics, 160(1):192 – 196, 2012.

[9] Hossein Hajiabolhassan, Medhi Mehrabadi, and Ruzbeh Tusserkani. Minimal coloring and
strength of graphs. Discrete Mathematics, 215(1):265 – 270, 2000.

[10] Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Sum coloring interval and k-claw
free graphs with application to scheduling dependent jobs. Algorithmica, 37(3):187–209, Nov
2003.

[11] Pierre Hansen, Martine Labbé, and David Schindl. Set covering and packing formulations of
graph coloring: Algorithms and first polyhedral results. Discrete Optimization, 6(2):135–147,
2009.

[12] Stephan Held, William J. Cook, and Edward C. Sewell. Maximum-weight stable sets and safe
lower bounds for graph coloring. Math. Program. Comput., 4(4):363–381, 2012.

[13] Anders Helmar and Marco Chiarandini. A local search heuristic for chromatic sum. In Pro-
ceedings of the 9th metaheuristics international conference, volume 1101, pages 161–170, 2011.

[14] Yan Jin, Jean-Philippe Hamiez, and Jin-Kao Hao. Algorithms for the minimum sum coloring
problem: a review. Artificial Intelligence Review, 47(3):367–394, 2017.

[15] Yan Jin and Jin-Kao Hao. Hybrid evolutionary search for the minimum sum coloring problem
of graphs. Information Sciences, 352:15–34, 2016.

[16] Yan Jin, Jin-Kao Hao, and Jean-Philippe Hamiez. A memetic algorithm for the minimum sum
coloring problem. Computers & Operations Research, 43:318–327, 2014.

[17] Leo G. Kroon, Arunabha Sen, Haiyong Deng, and Asim Roy. The optimal cost chromatic
partition problem for trees and interval graphs. In Fabrizio d’Amore, Paolo Giulio Franciosa,
and Alberto Marchetti-Spaccamela, editors, Graph-Theoretic Concepts in Computer Science,
pages 279–292, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[18] Ewa Kubicka and Allen J. Schwenk. An introduction to chromatic sums. In Computer Trends
in the 1990s - Proceedings of the 1989 ACM 17th Annual Computer Science Conference,
Louisville, Kentucky, USA, February 21-23, 1989, pages 39–45, 1989.

[19] Yu Li, Corinne Lucet, Aziz Moukrim, and Kaoutar Sghiouer. Greedy Algorithms for the
Minimum Sum Coloring Problem. In Logistique et transports, pages LT–027, Sousse, Tunisia,
March 2009.

28

[20] Weibo Lin, Mingyu Xiao, Yi Zhou, and Zhenyu Guo. Computing lower bounds for mini-
mum sum coloring and optimum cost chromatic partition. Computers & Operations Research,
109:263 – 272, 2019.

[21] Enrico Malaguti, Michele Monaci, and Paolo Toth. An exact approach for the vertex coloring
problem. Discrete Optimization, 8(2):174–190, 2011.

[22] Enrico Malaguti and Paolo Toth. A survey on vertex coloring problems. ITOR, 17(1):1–34,
2010.

[23] Anuj Mehrotra and Michael A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996.

[24] Isabel Méndez-Dı́az and Paula Zabala. A polyhedral approach for graph coloring1. Electronic
Notes in Discrete Mathematics, 7:178–181, 2001.

[25] John Mitchem and Patrick Morriss. On the cost-chromatic number of graphs. Discrete Math-
ematics, 171(1-3):201–211, 1997.

[26] Aziz Moukrim, Kaoutar Sghiouer, Corinne Lucet, and Yu Li. Lower bounds for the minimal
sum coloring problem. Electronic Notes in Discrete Mathematics, 36:663 – 670, 2010. ISCO
2010 - International Symposium on Combinatorial Optimization.

[27] Stefania Pan, Roberto Wolfler Calvo, Mahuna Akplogan, Lucas Létocart, and Nora Touati. A
dual ascent heuristic for obtaining a lower bound of the generalized set partitioning problem
with convexity constraints. Discrete Optimization, 33:146 – 168, 2019.

[28] Mohammad R. Salavatipour. On sum coloring of graphs. Discrete Applied Mathematics,
127(3):477–488, 2003.

[29] Arunabha Sen, Haiyong Deng, and Sumanta Guha. On a graph partition problem with appli-
cation to VLSI layout. Inf. Process. Lett., 43(2):87–94, 1992.

[30] Carsten Thomassen, Paul Erdös, Yousef Alavi, Paresh J. Malde, and Allen J. Schwenk. Tight
bounds on the chromatic sum of a connected graph. Journal of Graph Theory, 13(3):353–357,
1989.

[31] Michael Trick. Operations research page - vertex coloring instances. https://mat.tepper.

cmu.edu/COLOR/instances.html. Accessed: June 2019.

[32] François Vanderbeck. On Dantzig-Wolfe Decomposition in Integer Programming and ways
to Perform Branching in a Branch-and-Price Algorithm. Operations Research, 48(1):111–128,
2000.

[33] Qinghua Wu and Jin-Kao Hao. An effective heuristic algorithm for sum coloring of graphs.
Computers & Operations Research, 39(7):1593–1600, 2012.

[34] Qinghua Wu and Jin-Kao Hao. Improved lower bounds for sum coloring via clique decompo-
sition. arXiv preprint arXiv:1303.6761, 2013.

[35] Alexander Aleksandrovich Zykov. On some properties of linear complexes. Matematicheskii
sbornik, 66(2):163–188, 1949.

29

https://mat.tepper.cmu.edu/COLOR/instances.html
https://mat.tepper.cmu.edu/COLOR/instances.html

	Introduction
	Literature review
	Paper contribution

	A natural compact IP formulation
	 Additional compact formulations
	 Orientation formulation
	 The asymmetric representatives formulation

	An exponential-size IP formulation
	Solving the linear relaxation of IPE
	A robust branching rule for IPE

	Computational results
	Experimental settings and instances
	Performance of the three IP compact formulations on the DIMACS instances
	Branch-and-price implementation details
	Performance of the branch-and-price algorithm for the random instances
	Performance of the branch-and-price algorithm for the DIMACS instances

	Conclusions

