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Abstract—Structural Health Monitoring (SHM) systems are in-
creasingly employed in many civil structures such as buildings,
tunnels and viaducts. Typical installations consist of sensors that
gather information and send it to a central computing unit, which
then periodically analyzes the incoming data and produces an
assessment of the structure conditions. To avoid the transmission
of a huge amount of raw data and reduce latency in the detection
of structural anomalies, recent works focus on moving computation
on the sensor nodes. This work shows that a small autoencoder,
which fits the tiny 2 MB memory of a typical microcontroller
used for SHM sensor nodes can achieve very competitive accuracy
in detecting structural anomalies as well as vehicle passage on
bridges by leveraging adversarial training based on generative
adversarial networks (GANs). We improve accuracy over state-of-
the-art algorithms in two use-cases on real-standing buildings: i)
predicting anomalies on a bridge (+7.4%) and ii) detecting vehicles
on a viaduct (2.30×).

I. INTRODUCTION & RELATED WORKS

The significant expansion of cities, highways and local roads
has raised the importance of monitoring crucial road infrastructure
such as bridges, viaducts, or tunnels, whose failure is potentially
life-threatening for drivers. Structural Health Monitoring (SHM)
focuses on collecting data to track with fine-grained spatial
resolution the health status of civil structures, leveraging new
technologies such as low-cost sensors and machine learning
algorithms for sensor data analysis. A recent trend in SHM is
the transition from periodic inspections to continuous monitoring.
Streaming and analyzing data continuously is the new frontier to
identify damages with low latency and with high precision. The
ultimate goal of continuous SHM is thus the accurate and low-
latency identification [1], [2], localization, and characterization
of damage and deterioration, through installed sensors, such as
accelerometers [3], ultrasonic sensors [4], or cameras [5].

Continuous SHM on extensive structures monitored by large
arrays of sensors introduces a new ”data deluge” challenge,
i.e., performing anomaly detection on the enormous amount of
gathered data. This challenge can be tackled by moving data
analysis to the edge, i.e. detecting anomalies directly at the
sensors. For instance, the authors of [2] use a simple principal
component analysis (PCA) to identify anomalies for structural
damage detection on an oil extraction platform. Similarly, in
[6], the authors use fiber optic sensors and PCA coupled with a
trained threshold on the reconstruction error to detect anomalies.
In [7], a PCA, a fully-connected autoencoder, and a convolutional
autoencoder are compared to predict the anomalies on an aged
bridge.

All these edge detection methods suffer from very scarce
data on real anomalies (which obviously are rare), that is the
main limiting factor in achieving high accuracy. We propose

employing generative adversarial networks (GANs) in the SHM
field to tackle this problem. In [8], the authors have demonstrated
that GANs can improve the generalization of autoencoders for
anomaly detection without any increment in computing effort.
We present the following contributions:
• We demonstrate that adversarial training1 improves the perfor-

mance of an autoencoder for two different benchmarks of struc-
tural health monitoring; noteworthy, accuracy boost compared
to the baseline autoencoder comes without any additional cost
for inference;

• We present two different real use-cases: the first consists
of distinguishing between two different bridge states before
and after a maintenance intervention, considered as aged and
healthy states of the bridge (anomaly detection – AD). The
second is the traffic estimation on a two-lanes viaduct (vehicle
detection – VD).

We compare the results of an autoencoder trained via adversarial
training with a classically trained autoencoder and state-of-the-art
results published on these two use-cases. On the VD benchmark
[9], we improve the unsupervised state-of-the-art results, reducing
the mean absolute error (MAE) of real traffic prediction from
4.40 vehicles to 1.86 vehicles. We improve the state-of-the-art
accuracy of a tuned PCA on the AD benchmark from 98.2% to
98.8%. Compared to three autoencoders trained without adversar-
ial learning, we improved the accuracy of 48.3%, 7.4%, and 3.1%.
Noteworthy, the proposed autoencoder fits the tiny memory of a
microcontroller (MCU) such as the STM32H7 (2 MB FLASH),
thus being suitable for processing directly on the sensor nodes of
the SHM network.

II. BACKGROUND & REAL SCENARIO

A. Benchmarks: Civil structures

1) SS335 Viaduct: The AD benchmark, first introduced in [7],
is built from data of an aged bridge located on the state highway
SS335 in northern Italy. This viaduct underwent a maintenance
intervention to strengthen the structure of a single section of the
viaduct. The availability of continuous monitoring data before
and after the intervention is a quite rare occurrence, and creates
a unique opportunity to assess the capability of algorithms for
continuous SHM to detect structural changes in presence of a
clear positive ground truth. Figure 1.a) gives a high-level overview
of the viaduct with its monitoring system.

1With adversarial training, we refer to the training based on a min-max game
between a generator and a discriminator. We do not refer to the training with
adversarial examples.



Fig. 1. a) Structure of the AD benchmark, with a single monitored section with 5 sensors. b) The Viaduct for the VD benchmark with 90 sensors installed.

2) Roccaprebalza Viaduct: This viaduct is located on a high-
way in the centre of Italy. It is a composite box girder with pre-
stressed tendons used to strengthen the bridge. Given that the
structural safety of the bridge is strongly dependent on the status
of the tendons, monitoring their condition is a key feature for
monitoring the bridge status. After experiencing the failure of
one tendon, a continuous monitoring system was installed. Since
20 September 2017, the complete system has been continuously
operational and gathers acceleration data from the viaduct, which
are then stored in the cloud for subsequent analysis. Sub-figure b)
of Fig. 1 depicts the structure of the viaduct and of its monitoring
system. We use the data from the SHM installation to detect
the passage of vehicles. In this use-case the focus is not on
structural degradation anomalies, but on measuring the traffic on
the bridge, which needs to be carefully tracked given the presence
of a damaged tendon. The ground truth is provided by video data
collected (and manually labeled) during a short term (30 minutes)
expedition.

B. SHM Framework

Both the viaducts are equipped with similar chains of sensors.
The SS335 viaduct is equipped with a chain of 5 sensors
connected to a unique gateway for data streaming to the cloud
and basic analysis. All the sensors are installed on the section
which underwent the maintenance intervention. The Roccapre-
balza viaduct has a chain of 90 nodes spread throughout the
whole length of the viaduct in ten different sections, each with ∼
9 sensors installed. The two gateways collect the data from half
of the sensors each and send them to the cloud.

The sensors are produced specifically for viaduct monitoring,
with three main key components: a LIS344ALH analog tri-axial
accelerometer2, a HTS221 temperature, and humidity sensor, and
a STM32L476VGTx microcontroller (MCU).

C. Autoencoders and GANs

Autoencoders are neural networks whose scope is to reconstruct
input data after compressing and unpacking them, i.e., not through
trivial identity mapping. In an autoencoder, we can distinguish the
encoder (E), which compresses the input data, and the decoder
(D), whose aim is to reconstruct the input data starting from the
output of E. Noteworthy, these models are trained to maximize
the similarity of input x and output x̄ without employing data
labels, learning the optimal hidden space (output of E) that
preserves the key features of the input data. During training,
the loss function is constructed to reward a similarity metric
between the original and the reconstructed signal. Autoencoders
are exploited for either signal compression or anomaly detection.
For the latter use case, reconstructed signals, similar to those

2STM, LIS344ALH, https://www.st.com/resource/en/datasheet/lis344alh.pdf

encountered during training, lead to low reconstruction error.
Conversely, receiving signals with different characteristics than
those used for training will result in an imperfect reconstruction
and are identified as anomalies if they surpass a threshold in the
reconstruction error.

Generative adversarial networks (GANs) [10] are composed
of two networks, the generator (G) and the discriminator (D).
The scope of the generator is to generate new unseen synthetic
data, similar to the training ones, starting from random noise
z ∈ Rr. Simultaneously, the discriminator is trained to distinguish
real training data from synthetic generated ones. These two
networks are trained with a min-max game. We maximize the
similarity between generated synthetic data and training data
while minimizing the loss in distinguishing the two classes.

The key idea in our work is to leverage the GAN to improve the
autoencoder anomaly detection capability by generating adversar-
ial (hard to detect) data and training the autoencoder to detect it
correctly in a min-max game.

III. MATERIAL AND METHODS

A. Adversarial Training of the Autoencoder

Fig. 2 shows the four blocks of which the algorithm is com-
posed. The first two blocks, the Encoder (E) and the Generator
(G) are the ones that are learned during training and re-used in
the inference step. The other two blocks, the Discriminator 1
(D1) and the Discriminator 2 (D2) are used for the adversarial
training, and thus to improve the performance of E and G. In a
nutshell, E and G blocks collaborate first to compress and then
reconstruct the input signal. D1 is trained to distinguish between
random noise and the output of E, while D2 can distinguish if the
reconstructed signals are generated from real or synthetic data.

To train these blocks, we simultaneously minimize three losses
associated with the output of G, D1, and D2:

• LR, the reconstruction loss associated with G. As in normal
training of autoencoders, we minimize the mean square
error (MSE) between the input and the reconstructed signal,
resulting in the optimization of E and G weights.

• LH, the loss associated to D1. In this case, a min-max loss is
optimized: first, we want to maximize the similarity between
the output distribution of the encoder and the distribution of
a random variable z, forcing E to learn a good compressed
representation of input signals; second, we want to optimize
D1 to distinguish the two distributions. In particular, we
optimize the Wasserstein loss [11] as specified in [8]

min max Ez∼Pz[D1(z)]− Ex∼Px[D1(E(x))]

Where Ez∼Pz point to the distribution of the random variable
z. In this way, the two players, E and D1, try to fool each
other: D1 maximizes the distinction of the two distributions,



Fig. 2. High-level diagram of our GAN architecture. The first two blocks, the encoder and the generator, are the ones used also during the inference step. The other
two, the discriminators 1 and 2, are only needed during the training to improve the quality of the results of the encoder and the generator, respectively.

E tries to generate similar distributions to the one of z that
can not be distinguished.

• LD, the loss associated with D2, again formulated as a
Wasserstein adversarial loss. LD is used for the min-max
game between G and D2. Similar to the previous loss, D2

learns to distinguish reconstructed signals generated from
synthetic or real data, while G tries to generate signals as
similar as possible to either the random noise or the encoded
signal. The formulation is the following

min max Ex∼Px[D2(x)]− Ez∼Pz[D2(G(z))].

LR, LH serves E to generate better-compressed signals,
whereas LR, and LD aid G to generate better reconstruction.
Noteworthy, the two additional losses and the two additional
Discriminators are used only during training, while the inference
is identical. After the training, the autoencoder (E + G) learned
to reconstruct input signals from the training set optimally.

B. Task adaptation of the Autoencoder

1) AD benchmark: The goal is to differentiate the two different
states of the bridge, the healthy one and the aged one. During
inference, we feed 5 seconds windows from the healthy state
to teach the autoencoder to reconstruct this data type well. The
two types of signals are distinguished based on a threshold
applied on the MSE between input and reconstructed signals:
the autoencoder indeed badly reconstructs (high MSE) anomalous
signals that have not been seen during training. We set the
threshold to the mean MSE achieved by the GAN on the windows
of normal data of the validation set.

2) VD benchmark: In the second benchmark, the goal is
the identification of the vehicles moving on the viaduct and
the estimation of the traffic. The autoencoder is employed to
clean 1 second input windows of the signal, therefore removing
interfering noise to improve the distinction of very close peaks
from nearby vehicles. Then, a trivial peak counting algorithm
can be used to compare our cleaning strategy to the state-of-the-
art [9]. We use the area-under-peak to distinguish between heavy
and light vehicles.

C. Networks structure

E consists of a single LSTM layer with 100 units and a
fully connected layer with 20 neurons in our work. G first
decompresses the signal with a fully connected layer with 50
neurons and then applies two LSTM layers with 64 units and an
up-sampling layer interposed between them. D1 and D2 are 1D
convolutional networks. D1 is composed of four identical blocks
with a 1D convolutional layer with 64 filters of dimension 5× 1,

a LeakyRelu with α = 0.2 as activation, and a Dropout of 0.25.
A final fully-connected layer performs the classification random
vs encoded signal. D2 has two dense layers with 100 neurons
each and a final one with a single neuron for classification. As
in D1, the LeakyRelu and the Dropout are used after each layer
with the same parameters of D1.

We use 800-epochs training with a batch size of 512, Adam
optimizer a lr of 0.001 and the Wasserstein loss to train our
network. The deployed network for inference, i.e., E and G, only
occupies 805 kB, fitting the small 2MB memory of a typical MCU
used in SHM networks, such as an STM32H7.

As a baseline, we also trained the autoencoder (E + G) without
adversarial training. In this case, we used the same parameters and
only LR as network loss.

IV. EXPERIMENTAL RESULTS
A. Datasets

1) SS335 Dataset: The first dataset is composed of 25 days
of continuously streamed data from 5 sensors placed on a single
section of the SS335 viaduct, as described in Sec. II-A. Five
days out of 25 of data are recorded before the maintenance
intervention. They are labelled as anomalies (i.e., aged bridge),
while 20 days are recorded after the maintenance and labelled
as normal data. We select five days from both anomalies and
normal data to have a balanced test set. Noteworthy, no anomalies
are included in our training set. They are only used during the
testing phase to compute the accuracy. The remaining 20 days
are divided into 15 days of training and 5 of validation.

2) Roccaprebalza Dataset: The second dataset consists of the
sensors’ acceleration data in section 10 of the viaduct described
above. For labelling each passing vehicle, and to benchmark all
the algorithms, we recorded a video of section 10 of the viaduct
synchronized with the acceleration data to build the ground truth
of the light vehicles (with 4 wheels) and heavy vehicles (with > 4
wheels) crossing it. We used 31 minutes of video recorded at high
traffic, thus representing a challenge for traffic load estimation.
The final dataset comprises 100×1860s rows with 21 features (7
sensors with 3 accel. axis) and 1 label. The signal is windowed in
windows of 1 second, with 10 ms of stride, to generate as much
data as possible for the networks’ training.

B. AD benchmark
Table I summarizes the results compared with the state-of-the-

art algorithms in terms of accuracy, specificity and sensitivity
on the ss335 dataset. Notice that the PCA model of [7] still
reaches the best accuracy when compared with classically trained
autoencoders. Nevertheless, our new autoencoder (C) outperforms
the other two by a large margin of +4.3% accuracy. Furthermore,



TABLE I
PERFORMANCE COMPARISON FOR THE AD USE CASE.

Algorithm Data type Accuracy Specificity Sensitivity

PCA [7] Time 98.2% 100% 96.0%
Frequency 93.2% 84.9% 100%

Autoencoder A [7] Time 91.5% 94.4% 89.1%
Frequency 82.7% 60.7% 99.4%

Autoencoder B [7] Time 50.6% 67.2% 37.1%
Frequency 43.5% 38.2% 47.6%

Our Work
Autoencoder C Time 95.8% 100% 92.2%
AT Autoencoder C Time 98.9% 100% 97.7%

Fig. 3. Reconstruction of the AT autoencoder of normal and anomalous signals.

the adversarial trained (AT) autoencoder C surpasses all the other
algorithms in terms of specificity and overall accuracy, reaching
100% specificity and 98.9% accuracy, improving the performance
also over the baseline autoencoder (C) with a +3.1%.

Fig. 3 shows how our adversarial trained autoencoder recon-
structs normal and anomalous signals. The algorithm learned to
reconstruct the normal windows, while it does not recognize
the peaks in the anomalous windows. Therefore, by computing
the difference between input and reconstructed signal is easy to
distinguish the two classes based on the autoencoder output.

C. VD benchmark

We compare the AT autoencoder, the baseline autoencoder,
and the state-of-the-art cleaning strategy. We use a simple peak
detector to compute the final traffic statistics. In [9], the authors
employ a series of filtering steps (i.e., an L2 normalization of
the 3 acceleration axis, a 4th order Butterworth filtering and an
exponential smoothing filter) before the detector.

Table II shows the comparison of the three solutions while
computing the traffic on not overlapping windows of 20 seconds:
our network trained with adversarial learning reaches the lowest
mean absolute error (MAE, lower is better) of 1.86 V. on all
vehicles.

TABLE II
PERFORMANCE COMPARISON FOR THE VD USE CASE.

High Traffic [MAE]
Heavy Vehicles Light Vehicles All Vehicles

[9] 2.14 V. 4.60 V. 4.40 V.

Our Work
Autoencoder 0.53 V. 2.16 V. 2.46 V.

AT Autoencoder 0.93 V. 1.25 V. 1.86 V.

Fig. 4. MAE of the proposed approaches on the VD benchmark while predicting
bot heavy and light vehicles. Both the variation of the window dimension and the
window shift have been analyzed.

We also test the autoencoders trained with or without the
adversarial training while changing both the input window size
and the window shift of the data given to the network to
estimate traffic. Interestingly, we find that the adversarially trained
autoencoder consistently outperform the baseline one on all the
different hyper-parameters variation. These results are shown in
Fig. 4, where we sweep the window dimension for the TLE and
its shift between 20s and 40s, and 5s to 60s, respectively.

V. CONCLUSIONS

Continuous structural health monitoring of transportation in-
frastructures is becoming increasingly important for people safety.
Therefore, new algorithms to improve the analysis of the signifi-
cant amount of structural data gathered from many different build-
ings are demanded. We introduce a new recurrent autoencoder
trained using adversarial learning that fits the 2MB memory of a
state-of-the-art MCU such as the STM32H7. It outperforms state-
of-the-art algorithms on two real-world SHM benchmarks, an
anomaly detection benchmark [7] and a traffic load estimation one
[9]. On the AD benchmark, we outperform PCA-based methods
by 0.7% and autoencoders by 7.4%. On the VD benchmark,
we improve previous work results in detecting heavy and light
vehicles by 2.30× and 2.36×.
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