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We study the out-of-equilibrium dynamics of the quantum cellular automaton known as “Rule 54.” For a
class of low-entangled initial states, we provide an analytic description of the effect of the global evolution
on finite subsystems in terms of simple quantum channels, which gives access to the full thermalization
dynamics at the microscopic level. As an example, we provide analytic formulas for the evolution of local
observables and Rényi entropies. We show that, in contrast to other known examples of exactly solvable
quantum circuits, Rule 54 does not behave as a simple Markovian bath on its own parts, and displays
typical nonequilibrium features of interacting integrable many-body quantum systems such as finite
relaxation rate and interaction-induced dressing effects. Our study provides a rare example where the full
thermalization dynamics can be solved exactly at the microscopic level.
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When a generic isolated quantum many-body system
is driven out of equilibrium, its local properties are
eventually described by the thermal ensemble. This
picture can be intuitively explained by saying that, in
the thermodynamic limit, the system acts as a bath for its
own local subsystems [1–5]. In light of the undeniable
success of this paradigm, it is perhaps surprising that for
interacting systems most of the evidence in its support
comes from numerical computations in relatively small
systems. The reason is that computing the full many-
body relaxation dynamics in the presence of interactions
poses formidable challenges that are difficult to over-
come even in “exactly solvable” systems like quantum
integrable models [5–7].
Recently, a useful arena to construct tractable models of

many-body physics out of equilibrium has been identified
in quantum circuits. In the simplest setting, one considers a
one-dimensional (1D) set of qudits evolved by a “brick-
work” circuit, where a given initial state is updated by
sequences of local unitary gates (cf. Fig. 1). While in
general quantum circuits offer no simplification with
respect to local-Hamiltonian dynamics [8], the discreteness
of the evolution makes it possible to construct nontrivial
solvable models, with notable examples given by random
[10–13] and dual-unitary circuits [14]. These systems
proved to be useful minimal models for the quantum
chaotic dynamics, enabling the analysis of aspects
that are notoriously hard to tackle in traditional systems
[10–38]. However, when seen as models for thermalization,
they are not typical: for instance, in dual-unitary circuits the
action of the global evolution on any subsystem is purely
Markovian, even in the absence of noise [15,20,39].

In this Letter, we present an exact solution for the
thermalization dynamics in a quantum circuit that provably
exhibits typical features of interacting many-body systems:
the quantum version of the “Rule 54” cellular automaton
[40]. The latter can be regarded as the simplest interacting
integrable system and over the last years has been shown to
provide an ideal ground for studying interacting many-
body dynamics [41–54].
Our approach is based on a general tensor network (TN)

algorithm introduced in Refs. [55,56] (see also [57]) to
describe the evolution of any subsystem in the thermo-
dynamic limit. Specifically, we identify a set of algebraic
relations obeyed by the tensors of Rule 54 that enable us to
follow such an algorithm analytically. We use this to derive
exact formulas for the evolution of local observables,
two-point correlation functions, and Rényi entropies, pro-
viding a rare example where the full microscopic dynamics
can be solved exactly, beyond noninteracting models and
the perfectly Markovian regime.

FIG. 1. Quantum circuit representation of the Rule 54 quantum
cellular automaton. The dynamics can be equivalently given in
terms of three-site gates (left) and as an MPO (right).
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Rule 54 is defined by a 1D lattice of qubits where
the time evolution is discrete and generated by the
unitary operator U ¼ UeUo, with Ue ¼

Q
j U2j−1;2j;2jþ1,

Uo ¼
Q

j U2j;2jþ1;2jþ2. In the local computational basis
fjsjijgsj¼0;1, the matrix elements of the three-site unitary
gate Uj−1;j;jþ1 read

U
s0
1
s0
2
s0
3

s1s2s3 ¼ δs1;s01δχðs1;s2;s3Þ;s02δs3;s03 ; ð1Þ

where χðs1; s2; s3Þ≡ ðs1 þ s2 þ s3 þ s1s3Þ mod 2. Note
that this update rule causes a nonzero scattering shift
for quasiparticles [40]. The operators Uj−1;j;jþ1 and
Ujþ1;jþ2;jþ3 commute, which allows us to write U in the
form of a brickwork quantum circuit (Fig. 1). We consider
periodic chains of length 2L, eventually taking L → ∞.
We study a quench protocol [58,59] where the

system is initialized in a low-entangled state, which
we take to be a matrix product state (MPS) [60,61]
jΨ0i ¼

P
i1;…;i2L¼0;1 trðAi1

1 ;…; Ai2L
2LÞji1;…; i2Li, where Aj

are D-dimensional matrices (D is called the bond
dimension).
It is straightforward to see that Ue, Uo can be represented

as two-site shift invariant matrix product operators (MPO)
with D ¼ 2 [62], so that the evolution can be computed by
applying a sequence of MPOs to jΨð0Þi. Note that this
representation is completely general, since any quantum
cellular automaton can be expressed exactly as an MPO
with finite bond dimension [63–65].
The expectation value of a local observable

hΨðtÞjOxjΨðtÞi evolving via MPOs is naturally represented
by the TN depicted in Fig. 2. In fact, it is convenient to
think of such an object in the so-called folded representa-
tion [55], where the original TN is bent in half so that each
tensor associated with U† ends up lying on top of the

corresponding tensor ofU. This procedure yields a new TN
generated by a folded transfer matrix W, where the
dimensions of local and auxiliary degrees of freedom are
squared. These steps are depicted in Fig. 2, where

, represents the folded identity operator
and the dynamics are defined by the folded tensors

ð2Þ

At this point, following Refs. [55,56], it is instructive to
look at the expectation value in the t channel. Namely, to
view the diagram in Fig. 2 as the TN formed by the product
of 2LMPOs acting on the lattice in time and propagating in
space (a similar t-channel description has found
useful applications also in the study of spectral properties
[66–69]). Specifically, we have

hΨðtÞjOxjΨðtÞi ¼ tr½W̃L−1W̃½Ox��: ð3Þ

Here, we denoted by W̃ the MPO encoding the evolution
along the “space direction,” while W̃½Ox� corresponds to
the transfer matrix associated with the application of the
single-site operator Ox, cf. Fig. 2. It is straightforward to
show that W̃ has a unique largest eigenvalue λ̄ ¼ 1 [62].
Exploiting this fact, we can evaluate Eq. (3) in the
thermodynamic limit, obtaining

lim
L→∞

hΨðtÞjOxjΨðtÞi ¼ hLjW̃½Ox�jRi; ð4Þ

where hLj and jRi denote, respectively, the left and right
fixed points of W̃ (i.e., eigenvectors associated with λ̄). The
above reasoning can be repeated for local operators of any
finite support and implies that the fixed points encode the
action of the whole system on all finite subsystems, playing
the role of an effective reservoir, and hence contain all
information about local relaxation. In general, however, hLj
and jRi can only be obtained numerically, with a computa-
tional cost that increases exponentially with time [55,56].
Here, we show that, in Rule 54, hLj and jRi can be obtained
analytically for all times.
Before proceeding, it is important to note that hLj and jRi

generally bear a strong dependence on the initial state. Our
goal is to identify initial MPSs that thermalize, i.e., whose
local properties at large times approach those of an infinite-
temperature state. One therefore expects the fixed points of
W̃ to be similar to those of the transfer matrix W̃∞,
corresponding to the infinite-temperature state. [Note that
the correlation functions on the infinite-temperature state are
given by the TN analogous to the one in Fig. 2, with the

FIG. 2. Operator evolution in the MPO form starting from an
MPS and the folding procedure. Time evolution of operators can
be efficiently represented by combining the tensors and their
complex conjugate into a supertensor acting on the doubled
space.
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initial state replaced by the (appropriately normalized)
identity operator.] Thus, we begin by analyzing the latter.
As our first main result, we show that the fixed points of

W̃∞ can be computed analytically: this allows us to
compute efficiently all infinite-temperature multipoint
correlation functions supported on a finite interval, in a
sense that will be made precise later [cf. Eq. (13) and
subsequent discussions]. This result generalizes the find-
ings of Ref. [47] to the quantum case. Specifically, we find
that the leading left and right eigenvectors can be expressed
in terms of the 3 × 3 local tensors Asr, Bsr and the boundary
vector jbi (the explicit expressions are reported in the
Supplemental Material [62])

ð5Þ

that fulfill the following set of local relations, which we
term “zipping conditions”

ð6aÞ

ð6bÞ

Here, we introduced the “classical”maximum entropy state
and the additional two-site tensor

ð7Þ

In terms of these local tensors, the fixed point condition for
the left eigenvector has a simple diagrammatic formulation.
For example, for t ¼ 2 we have

ð8Þ

The prefactor 1=4 in the diagrammatic expression of W̃∞
comes from the normalization of the infinite-temperature
state. To prove the fixed-point condition (8), we first apply
the first relation of (6a), which replaces the bottommost

tensor A with B, and introduces the two-site tensor C in the
second and third leg. The tensorC is then repeatedly moved
up using the third relation in (6b), until it is absorbed at the
top by applying the leftmost relation in (6b). This gives the
MPS with the exchanged roles of A and B. The procedure is
then repeated, by using the rightmost relation in (6a) and
the second identity in (6b), to complete the proof of (8). The
form of the right leading vector jR∞i is analogous, with the
only difference that the roles of A and B are exchanged and
the diagram is reflected (flipped from left to right).
Besides giving access to all infinite-temperature corre-

lations, the expressions of hL∞j and jR∞i provide a natural
basis to infer the structure of the fixed points hLj and jRi
corresponding to thermalizing initial states. Specifically,
we search for fixed points taking the same form up to the
boundary vector jbi [cf. (5)]. This is because, at large times
after the quench, the action of the system on its own parts
has to be indistinguishable from an infinite-temperature
reservoir.
To complete the ansatz, we then just have to specify a

boundary vector for hLj. This is done as follows. First,
given the two-site shift invariance of the problem, we
consider initial MPSs with this symmetry. Second, we
observe that Eqs. (6) define a fixed point of W̃ (with the
graphical representation given in Fig. 2), provided that the
following boundary identities are fulfilled

ð9Þ

where , , ν ∈ f1;…;Dg, are
tensors to be determined. This gives

ð10Þ

Equations (9) should be seen as a consistency condition for
the bulk tensors defining the initial MPS, and the boundary
vectors jvνi, jwνi. A priori, it is not obvious that a
solution exists, but we find that this is indeed the case.
In particular, considering the simplest case of initial
product states (D¼1), given by a pair of one-site
states, jΨ0i ¼ ⊗L

j¼1 ðjψ1i ⊗ jψ2iÞ, ,
, the solution of Eq. (9) exists for the

one-parameter family of states

jψ1i ¼
1
ffiffiffi
2

p ðj0i þ eiφj1iÞ; jψ2i ¼ j0i: ð11Þ
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The tensors jv1i, jw1i are then uniquely determined [62].
This is our second main result: we have written the fixed
points corresponding to the initial states (11) as MPSs with
bond dimension three. Note that the fact that hLj and jRi are
not product states implies that the dynamics is not purely
Markovian, in contrast to the case of dual-unitary circuits
[15,20]. Accordingly, the evolution of a given subsystem
does not only depend on its state, and the quench protocol
displays typical features of interacting many-body quantum
systems.
In order to illustrate the power of our analytic solution,

let us consider limL→∞hΨðtÞjO1;2xjΨðtÞi, where O1;2x is a
local operator spanning 2x sites. Making use of (4)
and representing the right-hand side diagrammatically
[cf. (10)], we find that the expectation value can be
expressed in terms of a time-independent map (matrix) C2x

hΨðtÞjO1;2xjΨðtÞi ¼ hΦ½O1;2x�jCt2xjΦ2xi; ð12Þ

where the matrix C2x and vectors hΦ½O1;2x�j, jΦ2xi are
defined graphically as

ð13Þ

From Eqs. (12) and (13), we see that the time evolution of
operators supported on a finite number of sites can be
computed either analytically or in a numerically exact
fashion, by diagonalizing the matrix C2x. Indeed, since the
computational cost of this operation does not depend on
time, once this is done the dynamics can be followed for
arbitrarily large times. We note, however, that since the
matrix has dimensions 9 × 22x, this procedure becomes
exponentially costly as x grows. Nevertheless, Eq. (12) can
always be used to show that the late-time behavior of any
operator with finite support is exponentially decaying, and
to compute exactly the corresponding characteristic time τ.
To see this, we use the identity

ð14Þ

which can be proven graphically using Eqs. (6) and (9).
Equation (14) implies that for any fixed x the asymptotics
of the expectation value is governed by the matrix C0
[cf. (13)], independent of x. It is easy to show [62] that the
spectrum of C0 is f1; λ; λ�; 0g, with λ ¼ ð−3þ i

ffiffiffi
7

p Þ=8,
while the only eigenvector associated with eigenvalue one
is jbi ⊗ jbi. This is the state that one would find at the
bottom of the diagram on the left-hand side of (14) when
computing the expectation value of O1;2x in the infinite-
temperature state. This means that the local observable
approaches exponentially its infinite-temperature stationary
value

hΨðtÞjO1∶2xjΨðtÞi − tr½O1;2xρ∞;2x� ∼ e−t=τ; ð15Þ

where ρ∞;x ¼ 1=2x is the infinite-temperature state on x
sites and τ−1 ¼ −2 log jλj ¼ 2 log 2. Thus, as anticipated
before, all local observables relax exponentially. This fact
reflects the simple structure of our fixed points, and it is in
contrast with the power-law relaxation displayed by some
observables in more general integrable models [70].
Equation (12) can also be used to study (equal-time) two-

point functions of generic local observables ax and by (in
this case one has to choose Ox;y ¼ axby) and explicitly
identify a maximal and a minimal velocity of correlation
spreading. Indeed, the brickwork structure imposes a
maximal speed vmax ¼ 2 (in our units), therefore for
t < x=2 connected correlations are strictly zero.
Additionally, Eq. (14) implies that, for t > 3x=2, correla-
tions are exponentially suppressed. Namely, there exist a
minimal speed vmin ¼ 2=3. Note that, accordingly, vmin and
vmax are, respectively, the maximal and minimal value that
the dressed velocity of quasiparticle excitations can take
upon sampling all possible reference states [52].
As a last physical application, we show that our solution

allows us to compute explicitly the full time evolution of
the Rényi entropies after the quench. This is especially
relevant in light of their accessibility in recent state-of-the-
art quantum simulation experiments [71–75]. By repeating
the reasoning that led to Eq. (4) in the case of 2n copies (or
“replicas”) of the time-evolution operator [n copies of Ut

and n copies of ðU†Þt] [62] we find that hLj and jRi give
access to the full time evolution of the entanglement
entropies of a semi-infinite interval in the thermodynamic
limit [76]. This is formalized by

SnðtÞ ¼
logðtr½ρnHðtÞ�Þ

1 − n
¼ log½hLj⊗nS2nðjRi�Þ⊗n�

1 − n
; ð16Þ

where ρHðtÞ is the density matrix reduced to one of the
halves, S2n is the operator performing a periodic shift by
one copy in the 2n-replica space [62], and ð·Þ� denotes
complex conjugation.
Equation (16) can again be written as the matrix

element of the tth power of a finite-dimensional matrix.
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In particular, in this case the matrix is 3n × 3n and we
denote it by T n [62]. This means that for small n we can
compute SnðtÞ for arbitrarily large times: see, e.g., Fig. 3,
where we report numerical data for n ¼ 2, 3, 4. As expected
for interacting integrable systems [77–81], after an initial
transient, we see a clear ballistic growth with an asymptotic
rate given by sn ≡ limt→∞ SnðtÞ=t ¼ ðlog λ̄nÞ=ð1 − nÞ,
where λ̄n denotes the leading eigenvalue of T n.
Remarkably, λ̄n can be determined exactly for arbitrary
n: we find that λ̄n is the only real solution of the equation

4nx3 − ðxþ 1Þ2 ¼ 0: ð17Þ

The proof of this statement is nontrivial, and will be
reported elsewhere [82]. To the best of our knowledge,
this result provides the first exact predictions for the
asymptotic growth of Rényi entropies in an interacting
(non-dual-unitary) system. Furthermore, it also allows us to
perform an analytic continuation and obtain predictions for
arbitrary (noninteger) values of n. In particular, taking the
limit n → 1, we obtain the asymptotic growth rate for the
von Neumann entanglement entropy s1 ¼ log 2. This result
is particularly significant, since it represents the first exact
confirmation of the quasiparticle picture for the entangle-
ment spreading in the presence of interactions [77,83].
Namely, it proves that the growth of von Neumann
entanglement entropy can be understood in terms of pairs
of correlated quasiparticles created (at each point) by the
quench and moving with opposite (dressed) velocities.
In summary, in this Letter we presented an exact

description of the finite-time nonequilibrium dynamics
generated by a quantum quench in an interacting integrable
model: the quantum cellular automaton Rule 54. The
fundamental ingredient for our derivations are a set of
tensor network identities, the zipping conditions (5), that
enabled us to characterize exactly the action of the system
on its own parts. It would be interesting to understand
whether this approach can be extended to families of initial
states relaxing to nontrivial generalized Gibbs ensembles,

rather than to the infinite-temperature state, which would
enable the investigation of richer relaxation dynamics and
more general dressing effects. For instance, this would
provide new exact results for the spreading of entangle-
ment, allowing us to perform a more extensive test of the
quasiparticle picture for the dynamics of the von Neumann
entropy and to derive analogous formulas for general Rényi
entropies. Moreover, this would also enable an exact
description of inhomogeneous quenches, paving the way
for an ab initio derivation of Generalized Hydrodynamics
[84,85]. Another fascinating direction is to look for addi-
tional solutions of the zipping conditions. These would
correspond to new exactly solvable (and possibly non-
integrable) models for the discrete unitary dynamics
beyond the dual-unitary case.
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