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On a general model system related to affine stochastic
differential equations

Enrico Bernardi∗ Vinayak Chuni† Alberto Lanconelli‡

December 30, 2019

Abstract

We link a general method for modeling random phenomena using systems of
stochastic differential equations to the class of affine stochastic differential equa-
tions. This general construction emphasises the central role of the Duffie-Kan
system [5] as a model for first order approximations of a wide class of nonlinear
systems perturbed by noise. We also specialise to a two dimensional framework and
propose a direct proof of the Duffie-Kan theorem which does not passes through
the comparison with an auxiliary process. Our proof produces a scheme to obtain
an explicit representation of the solution once the one dimensional square root
process is assigned.

Key words and phrases: stochastic differential equations, square root process, Feller
condition

AMS 2000 classification: 60H10, 60H30

1 Introduction

Stochastic differential equations (SDEs, for short) with Hölder-continuous coefficients
appear in the modeling of several evolutionary systems perturbed by noise. The most
important instance is probably the so-called square root process defined to be the unique
strong solution of the following one dimensional SDE

dXt = (aXt + b)dt+ σ
√
XtdWt, X0 = x (1.1)
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where a, b ∈ R, σ, x ∈]0,+∞[ and {Wt}t≥0 denotes a standard one dimensional Brownian
motion. This equation is very popular in interest rate modeling due to the properties
of its solution. We refer the reader to the book Cairns [4] for a detailed analysis of this
topic (see also Mao [12]). SDEs with Hölder-continuous coefficients appear in the de-
scription of certain epidemic models as well: in this case the solution process represents
the number of susceptible individuals in a given population. We mention the papers
Greenhalgh et al. [7] and Bernardi et al. [2] which consider models described by SDEs
with random and Hölder-continuous coefficients.

From a mathematical point of view the analysis of existence and uniqueness for
strong solutions of SDEs with Hölder-continuous coefficients is quite challenging. In the
one dimensional case, resorting to the famous Yamada-Watanabe principle (i.e. weak
existence plus pathwise uniqueness implies strong existence) one can prove the existence
of a unique strong solution for SDEs where the drift coefficient is locally Lipshiptz-
continuous while the diffusion coefficient is of the type σ(x) = |x|α for α ∈ [1/2, 1].
The hard part of this proof is the pathwise uniqueness which heavily relies on an ad
hoc technique introduced by Yamada and Watanabe [15] (see also the books Ikeda and
Watanabe [8] and Karatzas and Shreve [9] for comparison theorems obtained with a
similar approach). When we move to systems of SDEs with Hölder-continuous coeffi-
cients, then only few particular cases can be found in the literature; in fact, the lack of a
multidimensional version of the Yamada-Watanabe technique to prove pathwise unique-
ness forced the authors of those papers to consider equations that can be investigated
with a slight modification of the one dimensional approach. The most important paper
in this stream of results is certainly Duffie and Kan [5] where the authors, motivated
by financial applications, consider a multidimensional version of the square root process
(1.1). They prove existence, uniqueness and positivity for the strong solution of an SDE
where the components of the drift vector are affine functions of the solution and the
diffusion matrix is a constant matrix times a diagonal matrix with entries being square
roots of affine functions of the solution. Their proof is based on a suitable applica-
tion of the comparison theorem mentioned above, which we recall is based on the one
dimensional Yamada-Watanabe technique. We now mention a series of results where
the Yamada-Watanabe approach has been utilised in some multidimensional problems:
Graczyk and J. Malecki [6] and Kumar [10] consider SDEs where for i ∈ {1, ...,m} the
i-th row of the diffusion matrix depends only on the i-th component of the solution;
Luo [11] investigates a nested system of SDEs where the i-th row of the diffusion matrix
depends only on the first i components of the solution; Wand and Zhang [14] introduce
an integrability condition involving the determinant of the diffusion matrix and an aux-
iliary function fulfilling certain requirements.

The aim of the present paper is to link the general method presented in the book
Allen [1] for modeling random phenomena using SDEs to the multidimensional system
studied in Duffie and Kan [5]. More precisely, in Allen [1] pages 138-139 it is shown how,
assigning probabilities to the possible changes of a general two dimensional system, one
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can deduce a Fokker-Planck partial differential equation for the candidate density of
the system and from that a suitable SDE describing the random motion of the system.
Following this procedure we consider an m-dimensional system with some prescribed
admissible (i.e. with positive probability) changes and we deduce after some simplifying
assumptions an m-dimensional SDE with Hölder continuous coefficients. Then, Taylor-
expanding up to the first order the coefficients of the SDE around the initial condition,
we end up with the multidimensional SDE investigated in Duffie-Kan [5] for which the
existence of a unique strong solution is guaranteed under proper restrictions (we also
present a detailed proof of this result, elaborating some technical aspects missing in the
original proof). Therefore, this general construction emphasises the central role of the
Duffie-Kan SDE as a model for first order approximations of a wide class of nonlinear
systems perturbed by noise. We also remark that the positivity property guaranteed by
the Duffie-Kan theorem entails the consistency of our procedure: in fact, such property
will ensure the positivity of the probabilities originally assigned to the m-dimensional
system according to the Allen’s method. We then specialise to the two dimensional case
and we suggest a direct proof of the Duffie-Kan theorem which does not passes through
the comparison with an auxiliary process. Our proof is based on the sole properties
of the one dimensional square root process (1.1) and produces a scheme to obtain an
explicit solution of the two dimensional system once the process in (1.1) is assigned.

The paper is organised as follows: in Section 2 we adapt the Allen’s procedure to an
m-dimensional system assigning probabilities of admissible changes and making some
simplifying assumptions; Section 3 contains the description of the first order approx-
imation, link to the Duffie-Kan SDE, statement and detailed proof of the Duffie-Kan
theorem; lastly, in Section 4 we specialise to the two dimensional framework and propose
a constructive alternative proof of the Duffie-Kan theorem.

2 A general m-dimensional system

Let us consider a model system with m ∈ N different states evolving in time according
to some probabilistic rules specified below. We write

St = (S1
t , S

2
t , ..., S

m
t )T , t ≥ 0

to represent the values of the m states of the system at time t.
It is assumed that in a small time interval [t, t + ∆t] every state can change by −∆x,
0 or +∆x where ∆x is a small positive constant. This produces a total of 3m possible
different changes (the number of vectors of length m with components taking values in
the set {−∆x, 0,∆x}). We let ∆St := St+∆t − St be the global change of the system
in the time interval [t, t+ ∆t]; for instance, ∆St = (−∆x, 0,∆x, 0, ..., 0)T means that in
the time interval [t, t + ∆t] state S1 has decreased of ∆x, state S3 has increased of ∆x
while all the other states remained unchanged. As illustrated in Figure 1, we denote

rj(t, x) := P(∆St = −∆xej + ∆xej+1|St = x)/∆t, j ∈ {1, ...,m− 1} (2.1)
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Figure 1: An m-state dynamical process

lj(t, x) := P(∆St = −∆xej + ∆xej−1|St = x)/∆t, j ∈ {2, ...,m} (2.2)

dj(t, x) := P(∆St = −∆xej|St = x)/∆t, j ∈ {1, ...,m} (2.3)

uj(t, x) := P(∆St = ∆xej|St = x)/∆t, j ∈ {1, ...,m} (2.4)

p0(t, x) := 1−∆t ·
m∑
j=1

(rj(t, x) + lj(t, x) + dj(t, x) + uj(t, x)) (2.5)

where {e1, ..., em} denotes the canonical base of Rm and rm(t, x) = l1(t, x) ≡ 0. We
remark that the probabilities associated to those changes not specified by (2.1)-(2.5) are
identically zero. We also observe that p0(t, x) represents the probability of no changes
during the interval [t, t+ ∆t] given that St = x. According to Figure 1, the evolution of
the states of the system is determined by interactions between neighboring states (rj’s
and lj’s) and exchanges with the outside world (uj’s and dj’s).
Given the probabilities (2.1)-(2.5) one can introduce, following Allen [1] pages 137-139,
a Fokker-Planck equation solved by the density p(t, x) := P(St = x) of the system which
in turn is related to the stochastic differential equation{

dSt = µ(t, St)dt+B(t, St)dWt

S0 = s,
(2.6)

where {Wt}t≥0 is an m-dimensional standard Brownian motion,

µ(t, x) := E [∆St|St = x] /∆t

is the mean vector and B(t, x) denotes the symmetric square root of the covariance
matrix

V (t, x) := E
[
(∆St)(∆St)

T |St = x
]
/∆t.

According to equations (2.1)-(2.4) we can write

µ(t, x) = (−r1(t, x) + l2(t, x) + u1(t, x)− d1(t, x)) e1

+
m−1∑
j=2

(rj−1(t, x)− rj(t, x) + lj+1(t, x)− lj(t, x) + uj(t, x)− dj(t, x)) ej

+ (rm−1(t, x)− lm(t, x) + um(t, x)− dm(t, x)) em (2.7)
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and

V (t, x) =
m∑
j=1

(uj(t, x) + dj(t, x))ej ⊗ ej +
m−1∑
j=1

(rj(t, x) + lj+1(t, x))Mj, (2.8)

where for j ∈ {1, ...,m− 1} we set Mj := (ej − ej+1)⊗ (ej − ej+1). We remark that the
previous general system has been proposed in Bernardi et al. [3] as a model to study
risks aggregation in a Bonus-Malus migration system. To proceed in the analysis of the
SDE (2.6) we need to find the symmetric square root of the matrix V (t, x). To this aim
we assume the following.

Assumption 2.1 For any i, j ∈ {1, ...,m} we have

ui(t, x) + di(t, x) = uj(t, x) + dj(t, x) =: γ(t, x)

and for any i, j ∈ {1, ...,m− 1} we have

ri(t, x) + li+1(t, x) = rj(t, x) + lj+1(t, x) =: θ(t, x).

Assumption 2.1 introduces some symmetries in the evolution of our system. More pre-
cisely, the first condition implies that each state has the same probability of an exchange
with the outside, while the second condition means that the probability of exchanges
between neighboring states does not depend on the specific states considered. As a result
we can now rewrite equation (2.8) in the simplified form

V (t, x) = γ(t, x)I + θ(t, x)M, (2.9)

where I is the m×m identity matrix while M is the m×m matrix defined as

M =



1 −1 0 0 0 · · · 0

−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0

0 0 −1 2 −1 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · −1 1


According to Theorem 4 page 73 in Yueh [16] (with a = c = −1, α = β =

√
ac = 1 and

b = 2) the matrix M has m distinct eigenvalues of the form

λk = 2 + 2 cos(kπ/m), k = 1, ...,m (2.10)

and hence there exists an orthogonal matrix Σ such that

M = ΣMΣT with M = diag [λ1, . . . , λm] .
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Therefore, setting y(t, x) := θ(t, x)/γ(t, x) from equation (2.9) we deduce that

V (t, x) = γ(t, x) · (I + y(t, x)M)

= γ(t, x) · (I + y(t, x)ΣMΣT )

= γ(t, x) · Σ(I + y(t, x)M)ΣT .

Since

(I + y(t, x)M)1/2 = diag
[√

1 + y(t, x)λ1, ...,
√

1 + y(t, x)λm

]
we conclude that

B(t, x) =
√
V (t, x)

=
√
γ(t, x) · Σ diag

[√
1 + y(t, x)λ1, ...,

√
1 + y(t, x)λm

]
ΣT

= Σ diag
[√

γ(t, s) + θ(t, x)λ1, ...,
√
γ(t, x) + θ(t, x)λm

]
ΣT . (2.11)

To sum up, given the probabilities (2.1)-(2.5) together with Assumption 2.1 our model
system evolves according to the stochastic differential equation

dSt = µ(t, St)dt

+Σ diag
[√

γ(t, St) + θ(t, St)λ1, ...,
√
γ(t, St) + θ(t, St)λm

]
ΣTdWt

S0 = s,

or equivalently
dSt = µ(t, St)dt

+Σ diag
[√

γ(t, St) + θ(t, St)λ1, ...,
√
γ(t, St) + θ(t, St)λm

]
dW̃t

S0 = s,

(2.12)

where W̃t := ΣTWt is a new m-dimensional standard Brownian motion (recall that by
construction ΣT is orthogonal) while µ(t, St) and the λj’s are defined in (2.7) and (2.10),
respectively.

3 First order approximation and the Duffie-Kan’s theorem

The aim of the present section is to prove the existence of a unique strong solution for
an SDE of the type (2.12) under suitable regularity assumptions on the coefficients of
the equation. First of all we observe that according to equation (2.7) and Assumption
2.1 the components of the drift coefficient µ and the scalar functions γ and β are linear
combinations of the functions rj’s, lj’s, uj’s and dj’s defined in (2.1)-(2.4).
If we assume for simplicity that the functions rj’s, lj’s, uj’s and dj’s are time independent
and we expand each of them into its first order Taylor polynomial around the point s
(which is the initial condition of the SDE (2.12)), then we obtain a corresponding family
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of affine functions on Rm. Linear combinations of these affine functions will result in
new affine functions representing the components of the drift coefficient µ and the scalar
functions γ and θ. More precisely, introducing the notation f ? to denote the first order
Taylor polynomial around s of the smooth function f : Rm → R, i.e

f ? : Rm → R
x 7→ f ?(x) := f(s) + 〈∇f(s), x− s〉,

we approximate the functions rj’s, lj’s, uj’s and dj’s with r?j ’s, l
?
j ’s, u

?
j ’s and d?j ’s, respec-

tively. This results in the first order approximation of µ, γ and θ transforming equation
(2.12) into

dSt = µ?(St)dt

+Σ diag
[√

γ?(St) + θ?(St)λ1, ...,
√
γ?(St) + θ?(St)λm

]
dW̃t

S0 = s.

(3.1)

The SDE (3.1) now falls into the class of affine stochastic differential equations which
is a class of equations having a relevant role in the theory of interest rate models (see
for instance Cairns [4]). Existence, uniqueness and positivity for affine SDEs have been
investigated in the remarkable paper Duffie and Kan [5]. Here we recall their main
theorem together with a detailed proof.

Theorem 3.1 (Duffie and Kan [5]) Consider the m-dimensional stochastic differen-
tial equation

dSt = (aSt + b)dt+ Σ diag
(√

v1(St),
√
v2(St), ...,

√
vm(St)

)
dWt, (3.2)

where a,Σ ∈Mm×m, b ∈ Rm and vi(x) := αi+〈βi, x〉 with α1, ..., αm ∈ R and β1, ..., βm ∈
Rm. Assume that

1. If x ∈ Rm is such that vi(x) = 0, then

〈βi, ax+ b〉 > |ΣTβi|2/2.

2. For all j ∈ {1, ...,m} if (ΣTβi)j 6= 0, then vi(x) = vj(x) for all x ∈ Rm.

Then, for any initial condition S0 = s ∈ Rm belonging to

D := {x ∈ Rm : vi(x) > 0 for all i ∈ {1, ...,m}}

the SDE (3.2) admits a unique global strong solution. Moreover, such solution satisfies
for all i ∈ {1, ...,m} and t ≥ 0

vi(St) > 0 almost surely.

7



Proof. We first consider the case in which

vi(x) = v(x) = α + 〈β, x〉 for all i ∈ {1, ...,m}

making the second assumption trivially satisfied. In this case equation (3.2) reduces to

dSt = (aSt + b)dt+
√
v(St)ΣdWt. (3.3)

Let {εn}n≥1 be a positive strictly decreasing sequence of numbers converging to zero.

For each n ≥ 1, let {S(n)
t }t≥0 be the unique strong solution of the stochastic differential

equation defined by (3.3) for t ≤ τn := inf{r ≥ 0 : v(S
(n)
r ) = εn} and by S

(n)
t = S

(n)
τn

for t ≥ τn. This is the process satisfying (3.3) that is absorbed at the boundary {x ∈
Rm : v(x) = εn}. Since the coefficient functions defining (3.3) are uniformly Lipschitz on

the domain {x ∈ Rm : v(x) ≥ εn}, the process {S(n)
t }t≥0 is well defined and is a strong

Markov process by standard SDE results.
With τ0 = 0 we can now define a unique process {St}t≥0 on the closed time interval

[0,+∞] by St = S
(n)
t for τn−1 ≤ t ≤ τn and by St = s for t ≥ τ := limn→+∞ τn. If

τ = +∞ almost surely, then {St}t≥0 uniquely solves (3.3) on [0,+∞[, as desired, and
is strong Markov. To prove that τ = +∞ almost surely we will construct an auxiliary
positive process that lower bounds v(St). We begin by considering the scalar process

Vt := v(St) = α + 〈β, St〉, t ≥ 0,

which clearly satisfies

dVt = 〈β, aSt + b〉dt+
√
Vt · 〈β,ΣdWt〉. (3.4)

If we set

Ŵt := 〈ΣTβ,Wt〉/|ΣTβ|, t ≥ 0

we see that {Ŵt}t≥0 is a one dimensional Brownian motion and equation (3.4) can be
rewritten as

dVt = 〈β, aSt + b〉dt+ |ΣTβ|
√
VtdŴt. (3.5)

According to the first assumption the inequality

〈βi, ax+ b〉 − |ΣTβ|2/2 > 0

holds on the hyper-plane v(x) = 0. Therefore, by continuity there exists ε > 0 such that
the previous inequality is valid on the strip {x ∈ Rm : 0 ≤ v(x) ≤ ε}. We can assume
without loss of generality that such ε coincides with ε1. In particular, we can find a
δ > 0 such that

〈βi, ax+ b〉 − |ΣTβ|2/2 > δ (3.6)
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holds for all x belonging to the aforementioned strip. Denoting by η̄ := |ΣTβ|2/2 + δ we
have that

〈βi, ax+ b〉 > η̄ > |ΣTβ|2/2 (3.7)

on the set {x ∈ Rm : 0 ≤ v(x) ≤ ε1}. We can also assume that V0 > ε1.
We now introduce the excursions of the process V from ε2 to ε1. We set T ?(0) = 0 and
for k ≥ 1 we define

T (k) := inf {t ≥ T ?(k − 1) : Vt = ε2} and T ?(k) := inf {t ≥ T (k) : Vt = ε1} .

These stopping times realize a partition of [0,+∞[:

0 = T ?(0) < T (1) < T ?(1) < T (2) < T ?(2) < · · ·.

In addition, we consider the auxiliary process {V̂t}t≥0 defined as follows:

V̂t = ε2 +

∫ T

T (k)

η̄ds+

∫ T

T (k)

|ΣTβ|
√
V̂sdŴs, if t ∈ [T (k), T ?(k)]

V̂t = Vt, if t ∈ ]T ?(k), T (k + 1)[.

The process {V̂t}t≥0 satisfies

0 < V̂t ≤ Vt for all t ∈ [0,+∞[. (3.8)

In fact, when t ∈]T ?(k), T (k)[ then V̂t = Vt and by the construction of the stopping
times Vt ≥ ε2 > 0 on that time interval. On the other hand, when t ∈ [T (k), T ?(k)] then
V̂t is a one dimensional square root process satisfying the Feller condition η̄ > |ΣTβ|2/2
(compare with the second inequality in (3.7)). This gives the positivity of V̂t. Moreover,
recalling the dynamic of the process {Vt}t≥0 in (3.5), the first inequality in (3.7) together

with Theorem 1.1 page 437 in Ikeda and Watanabe [8] implies V̂t ≤ Vt.
We now consider the general case: let {εn}n≥1 be a positive strictly decreasing sequence

of numbers converging to zero and define as before for each n ≥ 1 the process {S(n)
t }t≥0

to be the solution of the stochastic differential equation defined by (3.2) for t ≤ τn :=

inf
{
r ≥ 0 : mini∈{1,...,d} vi(S

(n)
r ) = εn

}
and by S

(n)
t = S

(n)
τn for t ≥ τn. This is the pro-

cess satisfying (3.2) that is absorbed at the boundary
{
x ∈ Rm : mini∈{1,...,d} vi(x) = εn

}
.

Since the coefficient functions defining (3.2) are uniformly Lipschitz on the domain{
x ∈ Rm : mini∈{1,...,d} vi(x) ≥ εn

}
, the process {S(n)

t }t≥0 is uniquely well defined and is
a strong Markov process by standard SDE results.
With τ0 = 0 we can now define a unique process {St}t≥0 on the closed time interval

[0,+∞] by St = S
(n)
t for τn−1 ≤ t ≤ τn and by St = s for t ≥ τ := limn→+∞ τn. If

τ = +∞ almost surely, then {St}t≥0 uniquely solves (3.2) on [0,+∞[. For i ∈ {1, ...,m}
let

V i
t := vi(St) = αi + 〈βi, St〉, t ≥ 0,
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which clearly satisfies

dV i
t = 〈βi, aSt + b〉dt+

〈
βi,Σ diag

(√
V 1
t ,
√
V 2
t , ...,

√
V d
t

)
dWt

〉
= 〈βi, aSt + b〉dt+

〈
ΣTβi, diag

(√
V 1
t ,
√
V 2
t , ...,

√
V d
t

)
dWt

〉
= 〈βi, aSt + b〉dt+

m∑
j=1

(ΣTβi)j ·
√
V j
t dW

j
t

= 〈βi, aSt + b〉dt+
∑
j∈Ci

(ΣTβi)j ·
√
V j
t dW

j
t ,

where

Ci :=
{
j ∈ {1, ...,m} : (ΣTβi)j 6= 0

}
.

According to the second assumption of the theorem, we have that V j
t = V i

t for all j ∈ Ci
and t ≥ 0. Therefore,

dV i
t = 〈βi, aSt + b〉dt+

∑
j∈Ci

(ΣTβi)j ·
√
V j
t dW

j
t

= 〈βi, aSt + b〉dt+
√
V i
t

∑
j∈Ci

(ΣTβi)jdW
j
t

= 〈βi, aSt + b〉dt+
√
V i
t dŴ

i
t ,

with

Ŵ i
t :=

∑
j∈Ci

(ΣTβi)jW
j
t /|ΣTβi|

being a one dimensional Brownian motion (observe that |ΣTβi|2 =
∑

j∈Ci(Σ
Tβi)

2
j by the

definition of Ci). One can now proceed as before introducing m auxiliary process V̂ i

which satisfy 0 < V̂ i
t ≤ V i

t for all i ∈ {1, ...,m} and t ≥ 0. This completes the proof.

By means of the previous theorem we can now set concrete assumptions on the proba-
bilities (2.1)-(2.4) for the existence of a unique strong solution for the SDE (3.1). These
assumptions will also guarantee the non negativity of the probabilities in our original
model system making the whole construction consistent. Before stating the result we
recall that by Assumption 2.1 we have

γ(x) = uj(x) + dj(x) for all j ∈ 1, ...,m.

Corollary 3.2 If θ? ≡ 0, γ(s) > 0 and the inequality

〈∇γ(s), µ?(x)〉 > |∇γ(s)|2/2 holds true on the set {x ∈ Rm : γ(x) = 0}, (3.9)

then equation (3.1) admits a unique strong solution {St}t≥0 such that γ?(St) > 0 almost
surely for all t ≥ 0.
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Proof. We have simply to verify that our assumptions imply those of Theorem 3.1.
First of all, θ? ≡ 0 is by Assumptions 2.1 equivalent to r?j + l?j ≡ 0 for all j ∈ {1, ...,m}
and hence r?j = l?j ≡ 0. With θ? ≡ 0 the system (3.1) reduces to{

dSt = µ?(St)dt+
√
γ?(St)dWt

S0 = s.
(3.10)

Observe that ΣW̃t = Wt by definition of W̃t and orthogonality of Σ. Equation (3.10)
trivially satisfies the second assumption of Theorem 3.1 since, in the notation of that
theorem, v1(x) = · · · = vm(x). We are left with the verification of the first assumption
in Theorem 3.1. We note that

γ?(x) = γ(s) + 〈∇γ(s), x− s〉 = α + 〈β, x〉

if β := ∇γ(s) and α := γ(s) − 〈∇γ(s), s〉. Since µ?(x) corresponds to ax + b using the
orthogonality of Σ we get that (3.9) is equivalent to the first assumption of Theorem
3.1.

We observe that from the previous corollary we get the positivity of

γ?(St) = u?j(St) + d?j(St), j ∈ {1, ...,m},

which is the aggregated probability of an increase and a decrease for each single state.

4 Two dimensional system

We now focus our attention on the two dimensional version of the general model system
presented above. For the sake of clarity we schematise in Figure 2 below the dynamic
investigated in the present section

S1
t S2

t

d1 u1 d2 u2

r

l

Figure 2: Two dimensional system

and we set

r(t, x) := P(∆St = (−∆x,∆x)|St = x)/∆t (4.1)

l(t, x) := P(∆St = (∆x,−∆x)|St = x)/∆t (4.2)

d1(t, x) := P(∆St = (−∆x, 0)|St = x)/∆t (4.3)

u1(t, x) := P(∆St = (∆x, 0)|St = x)/∆t (4.4)
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d2(t, x) := P(∆St = (0,−∆x)|St = x)/∆t (4.5)

u2(t, x) := P(∆St = (0,∆x)|St = x)/∆t. (4.6)

In addition, we denote

p0(t, x) := P(∆St = (0, 0)|St = x)

= 1−∆t · (r(t, x) + l(t, x) + d1(t, x) + u1(t, x) + d2(t, x) + u2(t, x))

implying that

P(∆St = (−∆x,−∆x)|St = x) = P(∆St = (∆x,∆x)|St = x) = 0.

According to the scheme presented in the previous sections, if we employ the first order
Taylor approximation of the functions defined above (which are assumed to be time
independent), then the stochastic differential equation under investigation takes now
the form

dSt = µ?(St)dt+B?(St)dWt

= (aSt + b)dt+ Σ

[√
v1(St) 0

0
√
v2(St)

]
ΣTdWt

= (aSt + b)dt+ Σ

[√
α1 + 〈β1, St〉 0

0
√
α2 + 〈β2, St〉

]
dW̃t, (4.7)

where for suitable choices of a ∈M2×2, b, β1, β2 ∈ R2 and α1, α2 ∈ R we find that

(aSt + b)1 = u?1(St)− d?1(St)− r?(St) + l?(St)

(aSt + b)2 = u?2(St)− d?2(St) + r?(St)− l?(St)

(this follows from equation (2.7)) and

α1 + 〈β1, St〉 = d?1(St) + u?1(St) + 2(r?(St) + l?(St)) (4.8)

α2 + 〈β2, St〉 = d?1(St) + u?1(St) (4.9)

(which follows from equation (2.11)). We remark that in the present case

λ1 = 2, λ2 = 0, γ?(x) = d?1(x) + u?1(x) and θ?(x) = r?(x) + l?(x)

and Assumption 2.1 reduces to

d?1(x) + u?1(x) = d?2(x) + u?2(x).

Moreover, we have

Σ =
1√
2

[
1 1
1 −1

]
.
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If we look through the proof of Theorem 3.1, we see that the second assumption in the
statement of the theorem, namely

for all j ∈ {1, ...,m} if (ΣTβi)j 6= 0, then vi(x) = vj(x) for all x ∈ Rm (4.10)

serves to reduce the diffusion matrix

diag
(√

v1(St),
√
v2(St), ...,

√
vm(St)

)
to one of the form

√
vi(St)I where I stands for m×m identity matrix. Therefore, there

is no loss of generality in considering only the case

v1(x) = v2(x) = · · · = vm(x).

The next result is the two dimensional version of Theorem 3.1 for the case

v1(x) = v2(x) = α + 〈β, x〉. (4.11)

The proof is, however, different: it is based on a direct approach rather than the Yamada-
Watanabe comparison method utilised in the proof of Theorem 3.1. This direct approach
has the advantage of providing an explicit representation of the solution. Let us also
point out that condition (4.11) together with (4.8) and (4.9) implies

r(x) = l(x) = 0.

With reference to Figure 2 this means that the interactions between the two states of
the system take place in the probabilities u1, u2, d1 and d2 rather than from direct
exchanges.

Theorem 4.1 Consider the two dimensional stochastic differential equation

dSt = (aSt + b)dt+
√
α + 〈β, St〉dWt, S0 = s ∈ R2, (4.12)

where a ∈M2×2, b, β ∈ R2 and α ∈ R. If the inequality

〈β, ax+ b〉 ≥ |β|2/2 holds true on the set {x ∈ R2 : α + 〈β, x〉 = 0}, (4.13)

then for any initial condition s satisfying α+ 〈β, s〉 > 0 the SDE (4.12) admits a unique
strong solution {St}t≥0 with the property that α+ 〈β, St〉 > 0 almost surely for all t ≥ 0.

Proof. The idea of the proof is to reduce via an orthogonal transformation the
system (4.12) to a system where the equation describing the first component is indepen-
dent of the second. The first component will turn out to be a one dimensional square
root process while the equation for the second component will be explicitly solvable once
the first is known.
We may assume without loss of generality that β 6= 0 (if β = 0 then equation (4.12)
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admits a unique strong solution for any α ≥ 0). Let K ∈M2×2 be the unique orthogonal
matrix such that Kβ = |β|e1 and define the stochastic process Yt := KSt, t ≥ 0. Then,
by the linearity of the Itô differential we can write

dYt = (KaSt +Kb)dt+
√
α + 〈β, St〉dKWt

= (KaK−1KSt +Kb)dt+
√
α + 〈β,K−1KSt〉dW̃t

= (ãYt + b̃)dt+
√
α + 〈Kβ, Yt〉dW̃t

= (ãYt + b̃)dt+
√
α + |β|Y 1

t dW̃t, (4.14)

where ã := KaK−1, b̃ := Kb and W̃t := KWt being a new two-dimensional standard
Brownian motion. The initial condition is Y0 = KS0 = Ks =: s̃. We observe that
condition (4.13) corresponds to

ã11y1 + ã12y2 + b̃1 > |β|/2 holds true on the set {y ∈ R2 : α + |β|y1 = 0}. (4.15)

Indeed,

α + 〈β, x〉 = α + 〈β,K−1Kx〉
= α + 〈Kβ,Kx〉
= α + |β|y1 (4.16)

and

〈β, ax+ b〉 = 〈KTKβ, ax+ b〉
= |β|〈e1, Kax+Kb〉
= |β|〈e1, KaK

−1y + b̃〉
= |β|〈e1, ãy + b̃〉

= |β|
(
ã11y1 + ã12y2 + b̃1

)
.

Since the set {y ∈ R2 : α + |β|y1 = 0} in (4.15) coincides with {y ∈ R2 : y1 = −α/|β|},
a substitution of the last condition in the inequality of (4.15) gives

ã12y2 + b̃1 > |β|/2 + (αã11)/|β|.

The last inequality has to be true for all y2 ∈ R; hence, we get that ã12 = 0 and

b̃1 > |β|/2 + (αã11)/|β|. (4.17)

Therefore, we can write equation (4.14) as{
dY 1

t = (ã11Y
1
t + b̃1)dt+

√
α + |β|Y 1

t dW̃
1
t , Y 1

0 = s̃1

dY 2
t = (ã21Y

1
t + ã22Y

2
t + b̃2)dt+

√
α + |β|Y 1

t dW̃
2
t Y 2

0 = s̃2.
(4.18)
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Let us study the first equation in (4.18). Setting Yt := |β|Y 1
t + α and applying the Itô

formula we get

dYt =
(
ã11Yt + b̃1|β| − αã11

)
dt+ |β|

√
YtdW̃ 1

t , Y0 = |β|s̃1 + α.

The previous SDE has a unique positive solution (see e.g. Cairns [4]) if

b̃1|β| − αã11 ≥ |β|2/2,

which corresponds to (4.17). The positivity of Yt is equivalent to the positivity of

|β|Y (1)
t +α which in turn is equivalent by (4.16) to the positivity of α+ 〈St, β〉. We can

now solve the equation for Y 2
t in (4.18), namely

dY 2
t =

(
ã21Y

1
t + ã22Y

2
t + b̃2

)
dt+

√
α + |β|Y 1

t dW̃
2
t

= ã22Y
2
t dt+

[(
ã21Y

1
t + b̃2

)
dt+

√
α + |β|Y 1

t dW̃
2
t

]
.

Its solution is given by the formula

Y 2
t = eã22ts̃2 +

∫ T

0

eã22(t−s)
[(
ã21Y

1
s + b̃2

)
ds+

√
α + |β|Y 1

s dW̃
2
s

]
.

Setting St = K−1Yt we obtain the solution of the original system completing the proof.

We now summarize the construction of the solution of the system (4.12) suggested in
the previous proof:

• define the orthogonal matrix K imposing that Kβ = |β|e1 and set ã := KaK−1,
b̃ := Kb, s̃ := Ks and W̃t := KWt;

• let {Yt}t≥0 to be unique positive strong solution of the (one dimensional) square
root SDE

dYt =
(
ã11Yt + b̃1|β| − αã11

)
dt+ |β|

√
YtdW̃ 1

t , Y0 = |β|s̃1 + α

(note that the driving noise is W̃ 1
t );

• set Y 1
t := (Yt − α)/|β| and

Y 2
t := eã22ts̃2 +

∫ t

0

eã22(t−s)
[(
ã21Y

1
s + b̃2

)
ds+

√
α + |β|Y 1

s dW̃
2
s

]
(note that the driving noise is W̃ 2

t );

• the process St := K−1Yt solves (4.12).
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In the following example we show that Theorem 3.1 without its second assumption no
longer holds in general.

Example 4.2 We consider the system{
dX1

t = 2
√
X2
t − 1dW 1

t , X1
0 = x1

dX2
t = 3dt+ 2

√
X2
t dW

2
t , X2

0 = x2.
(4.19)

In the notation of Theorem 3.1 it corresponds to

m = 2 a = 0 b = (0, 3)T Σ = 2I α = (−1, 0)T β1 = (0, 1)T β2 = (0, 1)T .

Recalling that vi(x) = αi + 〈βi, x〉 for i = 1, 2 we get

v1(x) = −1 + x2 and v2(x) = x2.

Since the second component of β1 is not zero and v1 6= v2, the second condition of
Theorem 3.1 does not hold. However, since a = 0 the first condition reduces to

〈βi, b〉 > |βi|2/2, i = 1, 2,

which is clearly true. The positivity region D is now given by D = {x ∈ R2 : x2 > 1}. If
the result of Theorem 3.1 were true we should be able to get a unique strong solution of
(4.19) lying in D for all t ≥ 0 almost surely.
We observe that the process X2 in (4.19) falls in the class of the squared Bessel processes,
i.e. processes that are strong solutions of SDEs of the form

Zt = z + 2

∫ t

0

√
ZsdBs + δt,

where z, δ ≥ 0 (see Revuz and Yor [13] for a deep analysis of this family of processes).
The parameters δ and ν := δ

2
− 1 are called dimension and index of Z, respectively. It

is well known that the transition density of Z is given by the formula

f δt (z, y) =
1

2t

(y
z

) ν
2
e−

z+y
2t Iν

(√
zy

t

)
1{y>0},

where Iν(z) stands for the modified Bessel function of the first kind of order ν, i.e.

Iν(z) =
∞∑
n=0

( z
2
)ν+2n

n!Γ(n+ ν + 1)
, ν, z ∈ C.

From this we see that P(0 < X2
t < 1) > 0, even starting with x2 > 1. For instance,

taking x2 = 2 and t = 1 we have

P(0 < X2
1 < 1) =

∫ 1

0

f 3
1 (2, y)dy ≈ 0.08.

This violates the positivity condition defined by D = {x ∈ R2 : x2 > 1} which ensures√
X2
t − 1 to be well defined.

16



References
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