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Hierarchical Management Algorithms
for Highly Reliable Communication

in 6G Industrial Environments
Davide Borsatti, Gianluca Davoli, Federico Tonini, Walter Cerroni, Carla Raffaelli,

Wint Yi Poe, Riccardo Trivisonno

Abstract—This work explores the challenges of reliable com-
munication in industrial applications, where human and robot
collaboration requires highly reliable communication channels.
We propose a hierarchical and distributed approach for solving
the dynamic selection of resources. We assign distributed entities
to portions of the managed working environment and investigate
how to deal with users at their borders, proposing a mechanism
to balance performance and resource efficiency. We support
our analysis with numerical results obtained by simulation. By
properly tuning the algorithm parameters, we can reduce energy
consumption while satisfying the same reliability requirements.

Index Terms—6G, adaptive reliability, low latency

I. INTRODUCTION

Future mobile networks are expected to support services
with extreme capacity, reliability, and latency requirements,
well beyond the capabilities offered by the current 5G deploy-
ments [1]. This is particularly true in the case of advanced
industrial environments, where moving robots can share the
same working space as human operators, with the consequent
critical risks in terms of safety in the working environment.
To avoid collisions in these situations, the relative positions of
humans and robots must be constantly monitored and, in case
of potential impact, specific actions must be put in place within
strict latency constraints. In a previous study, we discussed
the specific challenges that this kind of use cases pose to the
mobile network infrastructure, showing that the requirements
in terms of communication reliability cannot be satisfied with
the current features offered by 5G standards [2]. Not even the
Dual Connectivity proposed for Ultra-Reliable Low-Latency
Communication (URLLC) services seems to be sufficient [3].

From another perspective, increasing the number of redun-
dant communication channels to achieve the target reliabil-
ity levels requires additional resource deployment and, as a
consequence, a higher overall network energy consumption.
In addition, keeping multiple redundant connections active all

This work has been funded by the Huawei-CNIT Joint Innovation Center
(JIC).

Davide Borsatti, Gianluca Davoli, Walter Cerroni, and Carla Raffaelli are
with the University of Bologna, Department of Electrical, Electronic and
Information Engineering “Guglielmo Marconi,” and with the National Inter-
University Consortium for Telecommunications (CNIT), National Laboratory
of Wireless Communications (WiLab), Bologna, Italy.

Federico Tonini is with the National Inter-University Consortium for
Telecommunications (CNIT), National Laboratory of Wireless Communica-
tions (WiLab), Bologna, Italy.

Wint Yi Poe and Riccardo Trivisonno are with Huawei Technologies,
Munich, Germany.

the time could reduce the number of different devices that
can be served by a given cell. Approaches based on dynamic
resource allocation have been proposed in other fields, e.g.
security [4]. The idea is to dynamically provision only the
resources that are actually needed, improving the resource and
energy consumption. In line with this approach, we developed
the idea of dynamic reliability, i.e., an adaptive approach such
that the network control plane is able to differentiate between
critical and non-critical operating conditions and enforce the
stringent reliability requirements only when needed [2].

To be effective in terms of guaranteed safety, such an
adaptive management of redundant communications requires
fast reaction times. The identification of a critical condition
when a human operator is getting close to a moving robot, as
well as the decision on the amount of redundant resources
that must be deployed to satisfy the prescribed reliability
requirements, must happen in a very short time frame. This
could pose additional scalability challenges when the number
of Access Nodes (ANs) that provide connectivity and the
number of devices to be connected increase. In fact, this has
an impact on the complexity of the problem to solve, with a
consequent expected increase in the time needed to manage
the adaptive channel assignment. Therefore, we explored the
possibility to distribute the algorithms for critical situations
detection and redundant channel selection, resulting in reduced
execution times [5]. The main idea is to apply the adaptive
approach to a hierarchical and distributed framework, splitting
the area of the factory floor into sub-areas. Each sub-area is
assigned to a distinct distributed computation element, which
sees a reduced problem space and can then make decisions
within a decreased execution time.

However, any approach that aims at distributing control
plane functions introduces the issue of maintaining consistent
information to make optimal decisions. In the use case we are
considering here, this is reflected by the problem of managing
users located at the boundaries of the factory floor sub-areas,
where the distributed control element in charge of a given sub-
area is not aware of whether there are moving robots in an
adjacent sub-area that are critically close to the boundary. Ex-
isting work deals with the problem of improving performance
for users located at the border by handling clusters of cells
with distributed elements (e.g., [6] and references therein).
Even though the existing solutions exhibit good performance
gains, they focus on minimizing the interference for users
rather than imposing a (stringent) target on reliability. In
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Fig. 1. Hierarchical framework composed of Distributed and Centralized
Control Elements, with reference points.

our previous study, we adopted a conservative approach, i.e.,
to provide always the highest possible reliability to users
located at the sub-area boundaries [5]. However, this leads
to excessive resource consumption and sub-optimal redundant
channel allocation.

In this paper, we extend the work in [5] by proposing
a strategy to reduce resource consumption at the sub-area
borders with a distributed control architecture supporting
dynamic reliability. The strategy relies on a probability of
activating link redundancy for users at the borders for each
distributed element, while a centralized component tunes these
probabilities based on the current crowding of the different
sub-areas. We support our proposal with numerical data gained
through simulation. We demonstrate in detail how, by fine-
tuning the algorithm parameters, we may decrease resource
overprovisioning while preserving the service reliability re-
quirements.

II. HIERARCHICAL MANAGEMENT OF DYNAMIC
RELIABILITY

We consider an industrial environment, represented by a
large factory floor, where moving robots operate alongside
humans. Each robot and each human carries User Equipment
(UE) and is free to move around the working area, covered
by a set of ANs. When a robot gets too close to a human
or to another robot, the network should provide its UE with a
highly reliable connection in order to control the machine more
accurately or stop it, if necessary. This proximity situation is
identified when the detected distance between two UE devices
is below a given value r called critical distance.

Providing high communication reliability requires to dy-
namically assign multiple bearers to UEs. This can be done
in a distributed fashion, reducing the execution time [5].
However, the current 5G architecture is not designed to support
such a distributed scenario. More flexible architectures for
6G networks supporting verticals with extreme requirements
are under investigation [7], [8], while studies on network
requirements for stable operations of service robots are on-
going [9]. In this work, we adopt the two-level hierarchical
control framework depicted in Fig. 1. In the figure, the system
block represents a generic functional element of the network
architecture under control. The control logic is split into two
levels: a distributed element performs fast and system-specific
actions, while a centralized one has a broader scope/view and
is in charge of defining/refining the policies for the distributed
element behavior. The interconnections from an internal block

Fig. 2. Representation of a factory floor split into four sub-areas (dashed
black lines), each associated with an index {0, 1, 2, 3}. Each sub-area has its
own “Distributed Control Element”, all controlled by the “Centralized Control
Element”. The area within distance r from the borders is highlighted in red.

to an external one (denoted with 1, 2, 3) are introduced to
implement data analytics and allow the control logic to gather
the necessary information to produce appropriate actions to
be enforced. All interconnections in the opposite direction
(4 and 5) represent the enforcement of such actions. Such a
hierarchical framework is applicable to a distributed scenario,
where the overall system is divided into multiple parallel
subsystems, each controlled by one distributed element, all
connected to the same centralized element.

Figure 2 shows an example of a factory floor divided
into four sub-areas, where each distributed control element
performs control actions on the UEs moving in the related
sub-area. More specifically, it identifies a suitable combination
of radio bearers to be established with each UE in its sub-area
that is in critical distance conditions. The set of redundant
radio bearers Bu

c to be established with device ueu, for each
ueu in critical conditions, must ensure that the combined loss
probability:

ℓu =

|Bu
c |∏

b=1

ℓub , (1)

is such that ℓu ≤ ℓd, where |Bu
c | is the number of bearers in

the candidate set for ueu, ℓub is the loss probability offered to
ueu by bearer b in the candidate set Bu

c , and ℓd is the target
loss probability determined by the required level of reliability.

The objective of the algorithm is to minimize the number of
radio resources employed while satisfying the constraint on the
loss rate. While the solution to this problem is a task for each
distributed component, the centralized element may decide
how many sub-areas the whole scenario should be divided into,
the reliability level required in a given sub-area, and the set of
border policies to be enforced in the sub-areas. Splitting the
factory floor into sub-areas, each assigned to an independent
distributed component, introduces the problem of managing
UEs that are close to the sub-area borders, i.e., within the red
bands shown in Fig. 2. Each distributed component is only
aware of UEs inside its assigned area, so a UE that finds
itself in the proximity of a sub-area border might be within
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critical distance from another UE in a neighboring area, with
the respective distributed entities being unaware of it.

For this reason, the centralized component may enforce a
policy to manage these situations, by associating each border
between sub-areas i and j to the probability γi,j of activating
link redundancy for UEs that are within critical distance to that
border. Setting γi,j = 1 means that the distributed components
always try to enforce high reliability for UEs located on the
border between sub-areas i and j, regardless of the presence of
other UEs in the neighboring area. Conversely, with γi,j = 0
the distributed component never associates redundant paths to
UEs close to that border, unless the UE is also close to another
one in the same sub-area. The former is the conservative policy
assumed in [5], resulting in excessive resource consumption
due to redundant radio links established also when the UEs
do not actually need them. On the other hand, enforcing
the latter policy might result in reduced operation reliability,
as UEs that would require redundancy are not considered
in critical conditions. The centralized entity could then tune
these probabilities at runtime for each sub-area border of
each distributed component, based on information such as
the number of UEs in a neighboring sub-area, their expected
mobility, or other metrics.

Given the methodology considered, a UE located near the
border of a sub-area can either be within critical distance of an-
other UE in a neighboring sub-area or not, and it can either be
provided with a reliable connection through redundancy or not.
Given Ns

bor as the total number of UEs on sub-area s borders,
we have Ns

bor = Nr
c +Nnr

c +Nr
nc+Nnr

nc , with N representing
a number of UEs, the subscripts c and nc representing the
fact that the UE is within or not within critical distance of
another UE in a different sub-area, and the superscripts r
and nr representing the fact that the UE has been or has
not been assigned redundant connection paths. In particular,
two of these terms are relevant to assess the performance of
the distributed algorithm: Nnr

c , which counts the number of
UEs that would need a higher reliability level but that did not
obtain it from the resource allocation mechanism, and Nr

nc,
which counts the number of UEs that have been assigned more
resources than needed. By normalizing these terms over Ns

bor,
we obtain percentages that represent an underprovisioning and
an overprovisioning rate of the algorithm, respectively.

Ideally, the centralized component should choose the right
set of border probabilities Γ = {γi,j} such that the following
quantity is minimized:

min
Γ

αNnr
c + (1− α)Nr

nc (2)

As the underprovisioning and overprovisioning rates are in-
herently in opposition, the centralized component should aim
at balancing the contribution of the two terms to the total
sum of UEs. This design freedom in the management of the
system is represented by the parameter α, that might be tuned
at runtime. Intuitively, with α = 1 the centralized component
targets a complete reduction of the underprovisioning rate,
neglecting the resources wasted by overprovisioning some
UEs. Conversely, with lower values of α, the centralized
control element tries to lower the overprovisioning rate while
keeping bounded the underprovisioning one.

Algorithm 1: Dynamic bearer allocation in sub-area s

Input : critical distance r; acceptable loss probability ℓd;
set of UEs and ANs in the sub-area
U = {ueu | u = 1, . . . , Ns

U} and
A = {ana | a = 1, . . . , Ns

A}, limits on the number
of radio bearers that can be associated to a single
UE N

u
b and AN N

a
b , ∀ueu ∈ U , ∀ ana ∈ A.

# Identify UEs in critical distance conditions
1 C, Cb ← ComputeCriticalSets(U)

# Compute the required bearer set for each UE
2 [Bu

c ]← ComputeBearerAllocation(C,Cb)

Algorithm 2: ComputeCriticalSets(U)

# Build set P of UE pairs
1 P = {(uex, uey) | ∀ uex, uey ∈ U, uex ̸= uey}

# Initialize set C of UE in critical distance conditions
2 C ← ∅
3 foreach UE pair (uex, uey) ∈ P do
4 if UE pair is Human-Robot or Robot-Robot then

# Compute distance between UEs
5 d(t)← dist(uex, uey) # Euclidean distance
6 if d(t) ≤ r then
7 if uex /∈ C then
8 Add uex to C and remove it from U

9 if uey /∈ C then
10 Add uey to C and remove it from U

# Initialize set Cb of UEs near the border that will have a higher
reliability level

11 Cb ← ∅
12 foreach ueu ∈ U do

# Iterate over other sub-areas
13 forall n ∈ {0, . . . , Nsa − 1} | n ̸= s do
14 if γs,n > 0 then

# Compute distance from the border with sub-area n
15 dn(t)← dist(ueu, bordern)
16 if dn(t) ≤ r then

# Sample from uniform distribution in [0, 1)

17 if random(0, 1) ≤ γs,x then
# Add ueu to Cb

18 Cb ← Cb ∪ {ueu}
19 break

III. DISTRIBUTED REDUNDANT PATH ASSIGNMENT

The distributed component in charge of sub-area s, with
s = 0, . . . , Nsa − 1 and Nsa being the number of sub-
areas, tackles the problem described in the previous section by
running Algorithm 1 on the set of UEs located in sub-area s.
The algorithm consists of two main parts: the former analyzes
the current situation and determines which UEs require highly
reliable connectivity, while the latter tries to achieve it by
looking for a suitable radio bearer set for each of those UEs.

Algorithm 2 details how we build the set of UEs in
critical distance conditions (C). UEs are paired, considering all
possible combinations once, and those whose distance is lower
than the threshold r are individually added to the critical set C
and removed from U . Afterward, the algorithm checks whether
some of the remaining UEs in U are at a distance smaller
than or equal to r from the sub-area border. If the condition
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Algorithm 3: ComputeBearerAllocation(C,Cb)

1 Randomize item order in C and in Cb

2 foreach ueu ∈ C ∪ Cb do
# Initialize bearer allocation set for ueu

3 Bc ← ∅
4 Estimate loss rate ℓj with just one bearer bj toward each

Access Node ana whose number of used bearers is
Na

b < N
a
b , ∀a ∈ A

5 Construct ordered set BO of bearers sorted by loss rate
from best bearer b1 associated to the lowest loss rate ℓ1
to worst bearer bNs

A
associated to the highest loss rate

ℓNs
A

6 k ← 1
7 while Bc = ∅ and k ≤ N

u
b do

8 Build Bk
c ← {b1, . . . , bk} of cardinality k including

the first k elements of BO

9 Compute estimated combined loss rate ℓk yielded by
candidate set Bk

c

10 ℓk ←
∏k

j=1 ℓj
11 if ℓk ≤ ℓd then
12 Bc ← Bk

c

13 break
14 else
15 k ← k + 1

16 if Bc ← ∅ then
17 Report failure to centralized component
18 else
19 Store bearer allocation set Bc for UE ueu at

simulated time t and update the number of
used bearers Na

b for relevant Access Nodes

is verified, then the UE is added to the critical border set Cb

with a given probability γ, depending on the current border
policy configuration. UEs in sets C and Cb are provided with
highly reliable connectivity.

Algorithm 3 shows how we try to identify the smallest set
of radio bearers such that the combined estimated loss rate
ℓu perceived by each UE in critical conditions stands below
a certain desired level ℓd. To achieve this goal, the algorithm
considers one UE in critical conditions at a time, builds a list
of available bearers, sorts them by provided loss rate (best to
worst), then picks the first best one(s) until the desired level of
overall loss rate is met, or no suitable combination is available.
In this way, considering the definition of combined loss rate
given in Eq. (1), if the algorithm succeeds, we are guaranteed
to have found the smallest possible set of bearers that satisfies
the constraints.

IV. CASE STUDY AND NUMERICAL EVALUATION

To validate the algorithm and to show how tuning the Γ
probabilities can impact the performance of the system, we
developed a software simulator, written in Python, based on the
one employed in [5]. We ran it on a Ubuntu 20.04 virtual ma-
chine with 8 vCPUs and 8 GB of RAM. The simulator allows
to reproduce a variety of operating conditions. Specifically,
we consider a square factory floor like the one represented
in Fig. 2, with sides of 100m, NA =

∑Nsa−1
s=0 Ns

A = 100

ANs deployed across it, and a total of NU =
∑Nsa−1

s=0 Ns
U ∈

{70, 100} UEs moving on it. For the estimation of the Block
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Fig. 3. Control algorithm execution time as a function of the amount of sub-
areas, with ℓd = 10−5. A 95% confidence interval is shown in grey around
the black line.
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Fig. 4. Overprovisioning (solid line) and underprovisioning (dashed line)
rate as a functions of the probability of applying redundancy to UEs near the
border, when UEs are distributed evenly and the same probability γ is applied
on every border.

Error Rate (BLER), we follow the guidelines given by 3GPP
in TR 38.901 V17.0.0 [10] for radio channels between 0.5
GHz to 100 GHz as explained in [2]. The estimation would
benefit from the use of more refined radio models, but this is
not in the scope of this paper. We considered a desired loss
rate level of ℓd = 10−5, as an intermediate value between
different relevant use cases considered in [11].

First of all, we show that by splitting the scenario into sub-
areas we can achieve a substantial improvement in terms of
the execution time of the control algorithm, which decreases
sharply with the increase of the number of sub-areas, as shown
in Fig. 3, proving the benefits of the architectural choice. This
improvement is due to the reduced combinations UEs-ANs
among which the distributed elements need to search.

After fixing the number of sub-areas to Nsa = 4, we
distribute the UEs and ANs evenly across them, i.e., Ns

U =
Ns

A = 25, s = {0, 1, 2, 3}, and we investigate the perfor-
mance in terms of underprovisioning and overprovisioning,
as previously defined, over the scenario depicted in Fig. 2,
for a range of values of probability γ, applied such that
γi,j = γ ∀i, j. Figure 4 shows that the underprovisioning
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Fig. 5. Performance when UEs are distributed unevenly and the probability of
applying redundancy at the border between most crowded sub-areas if fixed
to γH = 1, varying γL.
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Fig. 6. Performance when UEs are distributed unevenly and the probability
of applying redundancy at the border between less crowded sub-areas if fixed
to γL = 0, varying γH .

and overprovisioning of resources to UEs at the border are
in opposition, as expected. In fact, the best performance in
terms of underprovisioning (i.e., all UEs are provided with a
reliable connection via redundancy) correspond to the worst
performance in terms of overprovisioning (i.e., most UEs that
are provided with a reliable connection do not actually need
it), and vice versa.

Next, we redistribute the UEs over the sub-areas depicted in
Fig. 2 to create an imbalance, i.e., N0

U = 5, N1
U = 25, N2

U =
0, N3

U = 40, and we examine the performance resulting from
applying different probabilities γ on different borders, based
on the number of UEs present in each of the sub-areas. We
define the probability of applying redundancy to UEs at the
border between the two most crowded sub-areas (s = 1 and
s = 3) as γ1,3 = γ3,1 = γH , and the probability at the border
between less crowded areas (s = 0 and s = 1) as γ0,1 =
γ1,0 = γL. We set all other probabilities to γ = 0, including
those towards the area with no UEs in it.

In Fig. 5 we can observe how γL has almost no impact
on the underprovisioning rate, therefore keeping γL low helps
reduce the overprovisioning of resources without significant
performance degradation. This behavior is in line with the
expectations, as it is not necessary to provide highly reliable

connections to UEs that are unlikely to be close to those on
the other side of the border if the neighboring sub-area is
scarcely crowded. In Fig. 6, we can observe that γH has a
substantial impact on the overprovisioning rate, but it also
affects the underprovisioning rate, as with low values of γH
many UEs are not provided with redundant access even though
they would require it. Likewise, this behavior was expected
since the two adjacent sub-areas have a high user density.
Overall, the centralized component should tune γH and γL to
obtain the lowest possible underprovisioning rate while also
keeping the amount of overprovisioned users limited.

V. CONCLUSION

In this paper, we showed how a general hierarchical ap-
proach that we foresee for future mobile networks could enable
the support of dynamic reliability levels, depending on the
changing application needs. Simulation results established the
gains of this approach in terms of execution time. Furthermore,
they showed how the centralized element could change the
performance of the system by varying a few parameters,
enforcing stricter reliability in dense areas while decreasing
resource waste in uncrowded areas. In future work, we would
like to extend this approach by adding AI to the proposed
framework to improve the performance of the algorithms.
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