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Abstract: During the last years, huge efforts have been conducted to reduce the Information and
Communication Technology (ICT) sector energy consumption due to its impact on the carbon
footprint, in particular, the one coming from networking equipment. Although the irruption of
programmable and softwarized networks has opened new perspectives to improve the energy-
efficient solutions already defined for traditional IP networks, the centralized control of the Software-
Defined Networking (SDN) paradigm entails an increase in the time required to compute a change in
the network configuration and the corresponding actions to be carried out (e.g., installing/removing
rules, putting links to sleep, etc.). In this paper, a Machine Learning solution based on Logistic
Regression is proposed to predict energy-efficient network configurations in SDN. This solution does
not require executing optimal or heuristic solutions at the SDN controller, which otherwise would
result in higher computation times. Experimental results over a realistic network topology show that
our solution is able to predict network configurations with a high feasibility (>95%), hence improving
the energy savings achieved by a benchmark heuristic based on Genetic Algorithms. Moreover, the
time required for computation is reduced by a factor of more than 500,000 times.

Keywords: SDN; machine learning; logistic regression; energy efficiency

1. Introduction

The energy consumption problem in communication networks was one of the most
studied problems in the networking area during the 2010–2020 decade due to its negative
impact on the environment. The implications of the power consumption generated by the
Information and Communication Technology (ICT) sector, and especially by the networking
equipment, led researchers in the area to prioritize their efforts to reduce the carbon
footprint [1,2].

In recent years, sustainability has gained importance worldwide. Several studies have
been published showing the positive impact that ICT solutions may have on sustainabil-
ity [3,4]. In addition, during the COVID-19 pandemic, it has been demonstrated that ICT
solutions, such as remote working, video meetings, etc., have been instrumental in keeping
businesses and societies going, thereby proving these solutions for real. Moreover, with
the advent of 5G and 6G technologies, in which the goal is to pursue a fully connected
intelligent world, efforts must be made to keep alleviating the impact of the emissions
generated by the telco sector.

Focusing on the networking area, a first concern is related to the inefficiency of
network devices: (i) they are always active regardless of their use and (ii) their power
consumption is independent from their traffic load. Moreover, networks are usually
designed to avoid congestion during peak traffic periods. In order to reduce the network
power consumption, green networking [2] aims at making the network consumption load-
dependent. Different techniques have been developed in recent years: (i) the use of
re-engineering approaches with more energy-efficient technologies such as Energy Efficient
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Ethernet—IEEE 802.3az [5]; (ii) the exploitation of dynamic adaptation approaches, in
which the modulation of capacities is considered according to traffic load [6]; and (iii) the
use of sleeping methods, in which the goal is to use the least number of active devices
(links, routers) so that the highest power savings are experienced [7].

The increasing interest in the application of Artificial Intelligence (AI) and Machine
Learning (ML) techniques to the networking area [8,9] opens a new niche that accounts for
the improvement of the energy efficiency of communication networks. If the traditional
energy efficient approaches [1,10,11] are combined with the use of AI/ML techniques, a
step further in the improvement of energy efficiency in communication networks will be
achieved. Moreover, the central vision, flexibility and programmability of the Software-
Defined Networking (SDN) paradigm enable this combination of techniques to re-think and
build highly energy-efficient programmable networks [12–14]. Through the implementation
of ML algorithms to be run at the SDN controller, control actions in the network may be
sped up to modify the network configuration according to the traffic load with the final
goal of minimizing the network power consumption [15].

In this work, we investigate how to use ML to target the H Consumption Problem
(PCP) in the context of computer networks. The main goal of the PCP is to find a feasible
network configuration for a given Traffic Matrix (TM) where the number of active network
devices is minimal to save the highest amount of energy. In small or medium-sized network
topologies, PCP is formulated and solved using Integer Linear Programming (ILP), which
outputs an optimal network configuration in terms of energy consumption [16]. However,
the PCP is known to be NP-hard, and it is not tractable to find an optimal solution for
large networks [16]. In this way, heuristic algorithms are required to obtain (near) optimal
solutions in a short period of time. Specifically, we transform the PCP problem into an
ML-based classification problem. To that end, the solution to the PCP is provided by a
classifier in response to a given TM passed as input.

A Logistic Regression-based Energy Efficient (LR-EE) algorithm is proposed and
trained with historical data from a big dataset of TMs. Then, the classifier is able to provide
a (near) optimal network configuration for a new (and probably unseen) TM without the
need for running the ILP or a heuristic, thus speeding up the process in an online manner.
Traffic load thresholds exploited by the SDN controller are considered to run the LR-based
ML algorithm in order to potentially change the network configuration for an increase in
the energy that is saved.

The main contributions of this work are:

• The definition of a novel algorithm to predict energy-efficient network configurations
based on Logistic Regression (LR).

• The evaluation of the proposed LR-based algorithm over a realistic network topology.
• The comparison of the obtained results with energy-efficient ad hoc solutions.

The rest of the paper is organized as follows. Section 2 introduces some related work.
A review on the PCP and the heuristic considered to solve it are described in Section 3.
Section 4 describes the system model. Section 5 includes the description of the proposed ML
algorithm. Experimental results are reported and analyzed in Section 6. Finally, Section 7
draws some conclusions and future works.

2. Research Gap

Over the last few years, extensive work has been conducted on power consumption
management to improve the energy efficiency of communication networks. For instance,
some works, such as [17–20], focus on reducing the energy consumption of satellite and
terrestrial networks while trying to maximize the quality of service. Recent works also focus
on SDN networks. The flexibility that these networks provide, such as the separation of the
data plane from the control plane and its consequent advantages, creates new opportunities
to define more dynamic and energy-aware networks.

Recent works in this area have focused on ILP-based approaches [21,22]. These works
allow researchers to identify the optimal network configuration, but they cannot be used
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for large networks due to the complexity of the problem to address. Since the power
consumption problem in SDN can be modeled as a Multi-Commodity Network Flow
problem, which is known to be NP-hard, other works focused on applying heuristics,
such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO), among others [11,22]. Nevertheless, compared to the dynamicity
that SDN networks (time scale of the order of milliseconds) require, these techniques take
longer to identify an appropriate network configuration.

In order to reduce the re-configuration time, ML is used to improve network perfor-
mance. For example, in the field of Traffic Engineering (TE), several works exploit the
use of Reinforcement Learning to adapt the network configuration to the current traffic
load and minimize the Maximum Link Utilization (MLU) [23,24]. In order to save energy,
Ref. [25] proposes an algorithm based on DRL to predict traffic in order to optimize the
energy efficiency and perform real-time load balancing. To the best of our knowledge, this
is the closest solution to the problem we aim to tackle. In this paper, we focus on using
Logistic Regression with the aim of reducing the complexity of the problem addressed.
This technique is used to identify the subset of links to be turned off depending the network
traffic load.

In the following section, the power consumption problem is studied in order to achieve
the goal of this article, bearing in mind the previous works that have just been presented.

3. A Review on the Power Consumption Problem

In this section, a review on the power consumption problem in computer networks is
provided. Both the classical ON-OFF model [26] and the one based on the Adaptive Link
Rate technique [6,11] are analyzed. Then, a heuristic-based solution is proposed to solve the
PCP in tractable time. This heuristic will be used to generate data to feed the proposed ML
algorithm for the classification of TMs and the assessment of their corresponding network
configuration.

3.1. The Power Consumption Problem (PCP)

PCP is typically modeled as a Multi-Commodity Flow (MCF) problem [16] in which
the network is represented by a network graph G = (V , E), with V as the set of nodes
and E as the set of unidirectional links connecting them. Each link li,j ∈ E has a specific
capacity of Ci,j units to accommodate traffic flows and a power consumption of pi,j Watts if
they are active and the classical ON-OFF power consumption model is adopted [26]. In
case the Adaptive Link Rate (ALR) approach is considered [6,11], a link li,j ∈ E operating
at rate k has a power consumption of pk

i,j Watts; pi,j = 0 in case the link is powered off
(sleeping). The MCF-PCP requires a traffic matrix T as input, with the description of the
volume of traffic per source-destination flow fi,j, represented by di,j ∈ T . Considering the
network features described above, the PCP aims at finding a network configuration G ′ ⊆ G
with the minimum power consumption that respects: (i) link capacity constraints, i.e., the
traffic load of each link must be Ci,j ≤ 100%; and (ii) flow conservation constraints, i.e., the
amount of traffic reaching a node must be equal to the volume of traffic leaving such node,
excluding the traffic inserted/terminated at that node.

More formally, the Integer Linear Programming (ILP) formulation intended to solve
the PCP requires a set of variables that are described as follows (The problem described
refers to the classical link switch off problem. In case ALR is adopted, variable xk

i,j must be
considered, along with an additional constraint to limit the maximum number of rates, k,
per link.):
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• xi,j is a binary variable whose value is equal to 1 if the link li,j is active; 0 if the link is
powered off.

• f s,d
i,j is a binary variable whose value is equal to 1 if the traffic demand of volume ds,d

derived by flow fs,d is routed on the link li,j; 0 otherwise.

After defining the required variables, the PCP formulation is described by Equations (1)–(3):

min ∑
li,j∈E

xi,j pi,j (1)

subject to:

∑
j∈V−i

f s,d
i,j − ∑

j∈V+i

f s,d
j,i =


1 if i = s
−1 if i = d
0 if i 6= s, d

∀i ∈ V , di,j ∈ T (2)

∑
ds,d∈T

f s,d
i,j · ds,d ≤ xi,j · Ci,j ∀li,j ∈ E (3)

Equation (1) aims at minimizing the network power consumption by finding a suitable
network configuration that minimizes the number of active links subject to the constraints
defined in Equations (2) and (3). Equation (2) describes the classical flow conservation
constraints. It imposes that the volume of traffic that reaches a node must be equal to
the amount of traffic that passes through it toward the next hop, unless the node is a
source or a destination node. Equation (3) represents the link capacity constraint, where
the amount of traffic on the link must be, at most, the capacity of the proper link, Ci,j. Since
the ILP formulation falls into the category of MCF problems, which are known as NP-hard
problems [16], heuristic solutions are required to validate their benefits over topologies of
large size, and in tractable times. In this paper, the Genetic Algorithm (GA)-based solution
proposed in [22] is used to find (near) optimal network configurations in terms of power
consumption. Then, the output of the GA will be the inputs for our proposed LR-based
ML algorithm.

3.2. GA-Based Heuristic for Power Consumption Minimization

In order to find a network configuration that minimizes the network power consump-
tion and satisfies a given TM respecting flow conservation and link capacity constraints,
we rely on the use of our GA-based solution [22]. This solution outputs a network con-
figuration close to the optimal in terms of energy savings. In the following, we review
the main aspects of the considered approach detailing the definition of the individuals
that compose the population, the fitness function, and the considered biological operators
(selection, crossover and mutation).

3.2.1. Chromosome Definition

GAs require a population of individuals, namely chromosomes, that represent po-
tential solutions to the PCP. In our case, a chromosome c ∈ P represents a potential
network configuration as a succession of L genes, where the k-th gene, gk ∈ c, describes the
operational mode xi,j of link k = li,j ∈ E :

c = {g1,2; g1,3; . . . ; gi,j; . . . ; gN,N−1} (4)

Thus, for the classical ON-OFF power consumption model, binary variables are con-
sidered, i.e., gi,j = 1 in case link li,j is active; gi,j = 0 otherwise. If the ALR model is adopted,
then K values are considered for each link configuration, i.e., gi,j = s, s ∈ [0, K− 1].
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3.2.2. Fitness Function

A fitness function is also required by GAs to evaluate the goodness of each chromo-
some (solution) of the population. Related to the objective function defined in Equation (1),
Equation (5) is applied to each individual in the population. Function P(c) assesses the
aggregated power consumption of the network configuration represented by the potential
solution c, according to the current operational mode pk of each link k in the network. The
resulting value of the sum is multiplied by θ, which is set to 1 if the network configuration
mapped by c is feasible, i.e., the TM can be correctly routed according to the shortest path
rule without violating any of the constraints reported in Equations (2) and (3). Other-
wise, θ takes a value high enough to penalize the corresponding fitness value to such an
unfeasible chromosome.

P(c) =

(
∑

gk∈c
gk · pk

)
θ, ∀k ∈ E (5)

3.2.3. Biological Operators

In order to perform the evolution procedure, GAs apply biologically inspired operators
(selection, crossover, mutation) to the individuals in the population. The set of individuals
that survive and form part of the next generation in the GA is selected by applying the
classical roulette wheel criterion. Moreover, the combination of individuals to generate
offspring is performed by means of the single-point cross-over function. Regarding the
mutation process, a two-step uniform mutation function is applied. First, a fraction of each
individual is selected for mutation. Every gene in this fraction has a probability rate of
being mutated. The second step is to replace each selected gene by another valid value. The
application of selection, crossover and mutation operators is repeated in each generation of
the GA-based algorithm.

4. System Model

As introduced in Section 1, the main goal of this work is to define a model that is
able to add energy efficiency features to SDN networks by putting unneeded links to sleep
depending on the current traffic load. To achieve this goal, a Logistic Regression-based ML
algorithm has been used.

The proposed algorithm is implemented in SDN networks, which are composed of
SDN switches that represent the data plane of the network. Moreover, there is a centralized
element that has a global view of the network and is in charge of determining the routing
logic. This centralized element is the SDN controller and has a global view of the network,
composing the control plane. The SDN controller is able to monitor the network elements
by exchanging messages with them. These messages are defined by the OpenFlow proto-
col [27]. They allow the SDN controller to assess the traffic load as well as network statistics
to obtain network metrics such as MLU, average delay or packet loss.

Figure 1 represents the whole process that is carried out for the proposed ML algorithm
to work in an SDN environment. As can be seen, a 6-node network with 10 links is
represented. First 1©, the SDN controller estimates a TM based on average data from
historical measurements, as in [28]. After having the TM calculated, the ML algorithm
(which is installed as an application inside the controller) is executed by passing the TM
as input. The ML algorithm, depending on the learning process of its model, will assign a
specific configuration to the network, which implies turning off specific links and keeping
the rest active. In the case of Figure 1, it can be seen in 2© that the output of the ML
algorithm application determines whether to turn off 4 out of the 10 links, thus saving 40%
energy and still being able to satisfy the estimated traffic demand.
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Figure 1. System model overview.

The flow table of each SDN switch stores rules with routing information to carry
packets from their source to their destinations. The dynamicity of the network traffic
implies that such rules are constantly changing. The routing information will be modified
depending on the packets being routed at any given time and the network configuration
with the set of active and powered off links. If a flow table does not store the rules that
allow a packet intended to be sent to reach its destination, the SDN switch will inform the
controller of this situation by sending a PACKET_IN message, as can be seen in 3©. With
this message, the node is requesting the controller to add, modify or delete a rule in order
to route the incoming packet. Thus, the controller replies with a FLOW_MODE message.
After each execution of the ML algorithm, the network configuration may change, so new
rules must be added, removed or modified, to re-route the packets.

Therefore, since the network configuration is applied after the execution of the ML
algorithm, the traffic load of each link may change. Thus, the controller asks the switches
about the load of their links from time to time by means of the OFPIT_STAT_TRIGGER
message [27]. In our model, it is defined that if the traffic load of a link differs by 5% since
the previous configuration was applied, the switches that are connected by the link will
notify back to the SDN controller. As can be seen in 4©, the load of the red link passed
from 50% to 57%, thus triggering the process to notify the controller. At this point, as the
controller knows the network traffic load, it is able to assess a new TM, going back to 2©,
where the ML algorithm is called again with the new TM. Indeed, the ML algorithm will
determine the new configuration that fits the new network situation and the process is
iteratively repeated.
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5. Logistic Regression-Based Energy Efficient Algorithm

In this section, the algorithm that is proposed to predict energy-efficient network
configurations based on Logistic Regression (LR-EE) is described. Thus, a methodology
to adapt the PCP into a supervised classification problem is provided. The aim is to apply a
solution based on LR to predict the network configuration associated to a TM and save
energy. However, before applying the supervised ML algorithm based on LR, a method for
the reduction of the number of classes must be considered. In this sense, a non-supervised
ML algorithm is first considered for such a reduction.

5.1. Clustering Process for Network Configurations Reduction

As described in Section 3, each TM is taken as input by the GA results in an associated
network configuration. These network configurations indicate which links are active and
which ones are put to sleep to save energy, along with a suitable routing for the given TM.
In the worst-case scenario, the application of the GA over a set of different TMs may report
a set of network configurations that are all different. In the case of thousands of different
TMs, thousands of network configurations can be assessed, with an upper bound of 2E due
to the binary values of the genes. On the other hand, it may happen that the same network
configuration can be applied to a subset of TMs.

Since the main goal of the ML algorithm proposed in this work is to perform a
classification of TMs and assign them a valid network configuration able to route the traffic
and save energy, a big dataset is required for the training process. However, a first problem
related to the number of classes must be tackled. If there are many different network
configurations for the prediction, the ML algorithm may not learn correctly due to the ratio
between traffic matrices and configurations to be classified. Therefore, its performance may
be low.

In order to reduce the number of classes, a non-supervised ML algorithm based on the
concept of K-means [29] is first applied to group the set of input TMs to φ different clusters.
The process followed by the algorithm is as follows: each TM belonging to the data set is
mapped to one of the φ network configurations representing the different clusters. For each
cluster, there is only a single network configuration that is valid for all the TMs belonging
to the cluster. In this way, a dimensionality reduction is performed:

• If none of the original configurations are valid for all the TMs belonging to that cluster,
the configuration with the highest number of active links is selected, and links are
iteratively switched on until a valid configuration for all TMs is found.

• If there is an original configuration that is valid for all the TMs in that cluster, it
is selected.

• If there is more than one original configuration that is valid for all the TMs in that
cluster, the one with the highest number of links off is selected (highest energy savings).

With this approach, we assume a potential gap in terms of energy savings. However,
a reduced number of classes will lead to a better classification with the application of the
proposed LR-based ML algorithm described next.

5.2. Turning the PCP into a Supervised Classification Problem

In the following, a description of the methodology followed to convert the PCP into a
supervised classification problem is provided.

Let us denote di,j ∈ T as the volume of traffic to be sent from node i ∈ V to node
j ∈ V , with i 6= j. The GA-based solution reports as output a (near) optimal network
configuration CT = (ST ,RT ) with the status of each link in the network (active or powered
off), ST = {pi,j}, ∀li,j ∈ E , and the routing configuration RT for each source-destination
flow. As an example, let us consider the topology shown in Figure 2a, which is composed
of six nodes connected by eight links. One potential solution of the GA is the one depicted
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by Figure 2b, in which the optimal configuration to route a specific TM T1 saving the most
amount of energy is CT1 = (ST1 ,RT1). Link configuration is given by Equation (6):

ST1 = {s1,2; s1,3; s2,4; s2,5; s3,4; s3,5; s4,6; s5,6}
= {0; 1; 1; 0; 1; 1; 1; 0}

(6)

where five links are active (s1,3; s2,4; s3,4; s3,5; s4,6) and three links are powered to save energy
(s1,2; s2,5; s5,6). This leads to 37.5% power savings. The associated routing configuration for
all the flows originated by node 1 is shown in Figure 2c. As it can be seen, each flow avoids
using the powered off links, which can result in an increase of the traffic volume on specific
links such as, e.g., l3,4. Thus, the routing configuration is given by Equation (7):

d1,2 −→ (l1,3, l3,4, l4,2)

d1,3 −→ (l1,3)

d1,4 −→ (l1,3, l3,4)

d1,5 −→ (l1,3, l3,5)

d1,6 −→ (l1,3, l3,4, l4,6)

...

di,j −→ hi,j

...

d6,5 −→ (l4,6, l3,4, l3,5)

(7)

where the path for traffic demand di,j ∈ T1 according to routing configuration RT1 is
hi,j. For instance, the flow originated at node one destined to node six must traverse
links l1,3, l3,4 and l4,6. Thus, the supervised classification problem receives as input the
serialized TM T1 with the set of demands to be routed and provides as output a near optimal
network configuration CT1 . Generally, the execution of the GA outputs a specific network
configuration. In the worst-case scenario, this can result in a situation in which each TM is
associated with a different network configuration. However, in practical scenarios, many
of the configurations can be applied to a set of the considered TMs (and not only to one
TM), thus reducing the space of configurations under consideration. Therefore, if the
number of network configurations to classify the TMs with is reduced, the complexity of
the classification problem is lower.

In order to turn the PCP into a supervised classification problem, we consider the
input variables as the elements of a serialized TM, with a tuple tk of type:

tk = {d1,2, d1,3, ..., di,j, ..., dN,N−1}, ∀i, j ∈ V (8)

and the output labels are the associated network configurations CT to such tuple tk (TM)
obtained by the GA. This dataset can then be used to train a classical supervised ML
algorithm based on Logistic Regression. With a big enough number of tuples (tk, CT ),
the trained ML algorithm would be able to predict a network configuration for a given
TM without the need of executing the GA-based solution. Moreover, for a new TM not
considered in the training set, the ML model should be able to generalize and produce a
valid network configuration able to save as much energy as possible close to the one that
would be obtained by the GA.

Then, in order to classify new and potentially unseen TMs, the RL-based ML algorithm
is invoked and returns a specific network configuration that is expected to (i) be valid, and
(ii) able to save energy. With the application of such an algorithm by the SDN controller,
the GA is no longer needed and the computation time will be reduced.
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(a) Network topology (b) GA output. Links configuration

(c) GA output. Routing configuration

Figure 2. Example of GA output on a 6-node topology. (a) Network topology. (b) GA output. Links
configuration. (c) GA output. Routing configuration.

6. Experimental Results

In this section, an experimental evaluation of the proposed solution is provided. At
first, the simulation environment is described. Next, a performance evaluation of the
proposed solution in terms of ML and network metrics is carried out to analyze its benefits
and potential drawbacks, along with the energy savings achieved.

6.1. Simulation Set-Up

In order to evaluate the effectiveness of the proposed ML solution, Abilene topology
(12 nodes and 30 links) is considered. A set of 3871 TMs retrieved from [30] are taken as
input, with a time granularity of 5 minutes. Link capacities are set as follows. First, we
select the peak TM in the dataset and route it over a set of shortest paths derived after
the application of the Dijkstra algorithm on the network graph. After this step, each link
li,j is carrying an amount of traffic ti,j. Then, we assume that the capacity of each link
can be upgraded by installing a set of line cards. A line card has a capacity of ∆C equal
to 0.5 max

li,j
(ti,j), i.e., the half of the traffic carried by the link with highest link utilization.

Finally, we consider installing the minimum number of line cards needed by each link to
make their utilization not greater than 100%, i.e., MLU = 1.

Regarding the power consumption model that is considered, we assume that links can
be either powered off (sleeping) or powered on (active). All the links in the network have
the same power consumption when they are active (pi,j = 1). It is worth remarking that,
although this assumption is unrealistic (there can be different types of links with different
values of power consumption [11]), it is a classical approach followed in a big set of works
tackling the power consumption problem in computer networks [7,26,31].
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6.2. Performance Evaluation

As previously introduced, the GA-based solution outputs a (near) optimal network
configuration for each TM passed as input. Then, in case Abilene topology is considered,
3871 network configurations are assessed, one per TM. In order to find a suitable number
of clusters to group all the TMs, a prior analysis has been carried out. Figure 3 shows
the score after the application of the K-means algorithm as a function of the number of
clusters. The score is the average of the inverses of the distances of each configuration
from its centroid configuration. Clearly, the score is reduced with the number of clusters,
following a logarithmic pattern. In particular, a sharp increase is experienced in the range
φ = [1, 50], and the line is stabilized with a large number of clusters. In order to evaluate
the impact of the cluster size on the effectiveness of the proposed solution, four values of φ
are considered in the following performance analyses: φ = {10, 50, 100, 200}. Furthermore,
in order to carry out the training and testing of LR-EE, the set of TMs has been divided
into two subsets. One for training (66% of the data), and the other for evaluating the
performance of the algorithm (33% of the data).

0 50 100 150 200

Number of clusters ( )

-2

-1.5

-1

-0.5

0

S
c
o

re

10
20

Abilene Elbow Curve

Figure 3. Score of K-means vs. number of clusters (φ).

Tables 1 and 2 report the results obtained by LR-EE for the different values of φ for
comparison with the GA-based solution. Two different types of metrics are shown: (i)
ML metrics, with precision, recall and F1-score for each model (Table 1); and (ii) network
metrics such as the average link load, MLU, average number of hops per flow, maximum
number of hops per flow, average energy saving gap (which is assessed as the energy
savings of the original configuration outputted by the GA minus the energy savings of
the network configuration of the cluster) and the feasibility, which is the percentage of
predictions that, whether or not they are correctly predicted, are valid for the associated
TM (Table 2).

Table 1. Machine Learning metrics for LR-EE and GA.

ML Metrics Computation Time

Precision Recall F1-Score Train. T Exec. T

LR-EE φ = 10 0.84 0.84 0.84 7.67 s 1.5 µs
LR-EE φ = 50 0.76 0.76 0.75 3.10 s 1.9 µs
LR-EE φ = 100 0.75 0.74 0.73 3.20 s 2.2 µs
LR-EE φ = 200 0.74 0.72 0.71 5.41 s 4.2 µs
GA - - - - 2.21 s
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Table 2. Network metrics for LR-EE and GA.

Network Metrics

max_LL avg_LL avg_hops max_hops avg_gap Feasibility

LR-EE φ = 10 0.26 0.99 3.60 10 11.25% 97.25%
LR-EE φ = 50 0.42 1 4.50 11 −3.90% 97.80%
LR-EE φ = 100 0.45 1 4.65 11 −5.96% 97.10%
LR-EE φ = 200 0.47 1 4.76 11 −6.95% 95.53%
GA [22] 0.45 1 4.14 11 - 100%

Results show that as the number of clusters (φ) increases, the ML metrics perform
worse. This is due to the fact that if there is a high number of classes to associate the
TMs with, it will be more difficult for the LR algorithm to determine to which class a
TM belongs. This is partly because there are classes that have very few associated TMs,
while other classes have hundreds of associated matrices. However, this is not reflected
in the network metrics. The higher the number of clusters, the better the average energy
saving gap is. This is because the configuration associated with each cluster can be more
specific to the associated TMs, resulting in a higher number of powered off links. As a
result, links are more loaded and flows require a higher number of hops to reach their
destination. In fact, for φ = 10, ML prediction is 10% better compared to the case of
φ = 200. However, worse outcomes in the energy savings are obtained for a small number
of clusters, e.g., φ = 10, where an average gap of 11.25% compared to the GA is obtained.
On the contrary, significantly better results are obtained for the case of φ = 200, where
6.59% of energy is saved, on average, when it is compared with the GA. Moreover, the
feasibility remains stable above 95% for all tests. It is therefore appropriate to select the
option that saves the highest amount of energy, i.e., φ = 200. Finally, it can be seen that
the reduction in execution time of the ML-based solution compared to GA is notable.
The LR-EE configuration prediction time has an acceleration factor between 526,190 and
1,473,333 times higher than the time needed by GA to generate a new configuration.

Figure 4 reports the power savings achieved by the GA (Figure 4a) and by LR-EE
(Figure 4b–e) for different values of φ as a function of the TM Id. Note that TMs are sorted
according to their traffic load in ascending order. Clearly, it can be seen that higher power
savings are achieved when the number of clusters is high (compare φ = 10 clusters of
Figure 4b with φ = 200 clusters of Figure 4e). As soon as we increase the number of clusters,
the density of the bars in the figures is higher, meaning that the power savings are increased
for most of the TMs.

Finally, Figure 5 reports the gap of the GA compared with LR-EE and 200 clusters. It
can be seen that LR-EE outperforms the GA in terms of power savings (negative values)
for the majority of the TMs. As a summary, the LR-EE proposed solution is able to obtain
better power saving outcomes with respect to the GA for a number of clusters above 10
(see avg_gap column of Table 1), with the corresponding reduction in the computation time.
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Figure 4. Power savings as a function of the TM Id for GA and LR-EE (TMs are sorted according to
their traffic load in ascending order). (a) GA [22], (b) LR-EE φ = 10 , (c) LR-EE φ = 50, (d) LR-EE
φ = 100, (e) LR-EE φ = 200.
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Figure 5. Power saving GAP of GA vs. LR-EE with φ = 200.

7. Conclusions and Future Work

In this paper, an ML solution based on LR has been proposed to predict energy-efficient
network configurations in SDN, avoiding the execution of optimal or heuristic algorithms at
the SDN controller. Thus, a reduction in the computation time derived by the non-execution
of these algorithms at the controller is set as objective, along with the improvement in energy
savings. Experimental results over a realistic network topology show that, by applying
the combination of unsupervised and supervised learning techniques, a notable reduction
of power consumption can be achieved by our proposed LR-EE solution compared to the
results obtained by energy-efficient ad hoc solutions, with the corresponding significant
reduction in the computation time.

Regarding possible future research activities, we work on testing different ML methods
to compare them and select the one that provides the best results in terms of power savings
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and computation time. We also work on defining a framework that can select the ML
technique to use depending on the network topology and other characteristics. In this
sense, we are working on using different cluster configuration depending on the network
behavior. Finally, we are evaluating the proposed algorithm with larger networks to
evaluate the scalability of the solution and how it behaves in emulated environments.
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