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ABSTRACT

We present a new method for predicting the line-of-sight column density (NH) values of active galactic nuclei (AGN) based on mid-
infrared (MIR), soft X-ray, and hard X-ray data. We developed a multiple linear regression machine learning algorithm trained with
WISE colors, Swift-BAT count rates, soft X-ray hardness ratios, and an MIR–soft X-ray flux ratio. Our algorithm was trained off
451 AGN from the Swift-BAT sample with known NH and has the ability to accurately predict NH values for AGN of all levels of
obscuration, as evidenced by its Spearman correlation coefficient value of 0.86 and its 75% classification accuracy. This is significant
as few other methods can be reliably applied to AGN with Log(NH < 22.5). It was determined that the two soft X-ray hardness
ratios and the MIR–soft X-ray flux ratio were the largest contributors toward accurate NH determinations. We applied the algorithm
to 487 AGN from the BAT 150 Month catalog with no previously measured NH values. This algorithm will continue to contribute
significantly to finding Compton-thick (CT) AGN (NH ≥ 1024 cm−2), thus enabling us to determine the true intrinsic fraction of
CT-AGN in the local Universe and their contribution to the cosmic X-ray background.

Key words. infrared: galaxies – galaxies: active – galaxies: nuclei – X-rays: galaxies – X-rays: diffuse background –
methods: data analysis

1. Introduction

Active galactic nuclei (AGN) are supermassive black holes
(SMBHs) that reside in the center of nearly all massive galax-
ies and accrete nearby material. They are one of the most pow-
erful source classes in the Universe, and they emit over the
entire electromagnetic spectrum. It has been shown that the
masses of SMBHs correlate with those of the host galaxy bulge,
velocity dispersion, and luminosity (Magorrian et al. 1998;
Richstone et al. 1998; Gebhardt et al. 2000; Merritt & Ferrarese
2001; Ferrarese & Ford 2005; Kormendy & Ho 2013). This
trend indicates that SMBHs may determine star formation rates,
due to molecular and ionized outflows (Ferrarese & Merritt
2000; Gebhardt et al. 2000; Di Matteo et al. 2005; Merloni et al.
2010; Fiore et al. 2017; Martín-Navarro et al. 2018). If true, then
the cosmic evolution of SMBHs and their host galaxies are
inextricably linked. Therefore, being able to study the proper-
ties of SMBHs, including the gas and dust that surrounds them,
becomes crucial.

One of the best ways to study AGN through cosmic time
is via the cosmic X-ray background (CXB), that is, the diffuse
X-ray emission from 1 to 200−300 keV (e.g., Alexander et al.
2003; Gilli et al. 2007; Treister et al. 2009; Ueda et al. 2014;
Brandt & Yang 2022). Models have shown that a significant frac-
tion (15−20%; Gilli et al. 2007; Ananna et al. 2019) of the peak

? A table of data of the 451 sources used to train and test
the algorithm is only available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/675/A65

of the CXB (∼30 keV; Ajello et al. 2008) is generated by a pop-
ulation of AGN with large obscuring column densities, NH,los ≥

1024 cm−2, categorized as Compton-thick (CT) AGN. Addition-
ally, population synthesis models designed to accurately describe
the origins of the CXB estimate that between 20% (Ueda et al.
2014) and 50% (Ananna et al. 2019) of all AGN are CT. Nonethe-
less, the current fraction of observed CT-AGN is only between 5%
and 10% (Burlon et al. 2011; Ricci et al. 2015), although samples
limited to very small volumes (z < 0.01) have reached up to 20%
(Torres-Albà et al. 2021).

Discovering CT-AGN is challenging because the majority
of their emission, from the optical through the soft X-rays,
is obscured by the surrounding dust and gas (i.e., the torus;
Urry & Padovani 1995). However, the hard X-rays (>10 keV)
and the mid-infrared (MIR; 3−30 µm) are able to pierce through
the torus up to high column densities, making them the least
biased bands for the detection of heavily obscured AGN
(Treister et al. 2004; Stern et al. 2005; Alexander et al. 2008).
Hard X-ray emission is created when UV light from the accre-
tion disk interacts with hot electrons in the corona above the
disk, thus Compton up-scattering into the hard X-ray band
(Haardt & Maraschi 1993). Additionally, the same UV radiation
is absorbed by the dust, which in turn emits thermally in the
infrared (Almeida & Ricci 2017; Hönig 2019). Because of this,
the emission in these two bands is expected to correlate signif-
icantly in AGN. Therefore, targeting X-rays and the MIR is the
ideal way to discover new CT-AGN.

Observing and analyzing spectra of AGN in X-rays and
the infrared to identify strong CT candidates is a time- and
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resource-intensive endeavor (see, e.g., Marchesi et al. 2017;
Andonie et al. 2022; Silver et al. 2022). The Burst Alert Tele-
scope (BAT) on board Swift (Gehrels et al. 2004) detected 1390
sources which are listed in its 150 Month catalog1, almost 500
more than its predecessor, the 100 Month catalog. With the addi-
tion of hundreds of sources in every catalog release, an efficient
and accurate method for identifying potential heavily obscured
AGN is necessary. For this reason, our team has developed a new
multiple linear regression machine learning algorithm to predict
the line-of-sight column density of AGN. We constructed a large
sample of AGN with known NH values and trained the algorithm
using MIR data from the Wide-field Infrared Survey Explorer
(WISE, Wright et al. 2010), soft X-ray data from the Swift-X-
ray Telescope (XRT), and hard X-ray data from Swift-BAT to
accurately predict the column density of newly identified AGN.

The remainder of this article is organized as follows: Sect. 2
discusses the creation of our sample, and Sect. 3 describes how
the NH values were determined. Section 4 details the algorithm
implemented and the input parameters included. Section 5 dis-
cusses the results of our algorithm and compares our predictive
capabilities to other recent methods that are based on linear data
modeling, rather than on multi-parameter machine learning algo-
rithms such as the one presented in this paper.

2. Sample selection

Our sample is taken from the 1390 sources detected in the
BAT 150 Month Catalog2 (Imam et al., in prep.). Of these
1390 sources, 568 are AGN with reliable3 NH determinations
(see Sect. 3 for details). Asmus et al. (2015) show that the ratio
of the MIR and X-ray flux can be a strong predictor of col-
umn density. Therefore, our machine learning algorithm (see
Sect. 4.2) includes data from XRT and WISE, and we thus
cross-matched (using the BAT counterpart coordinates) with the
2SXPS (Evans et al. 2020) and AllWISE (Cutri et al. 2013) with
5′′ and 10′′, respectively. For the 2SXPS and AllWISE, we found
an average separation of ∼1.7′′ and ∼1.8′′, and a standard devia-
tion of ∼1.1′′ and ∼1.5′′, respectively. This left us with a sample
of 451 sources to train and test our machine learning algorithm
(see Sect. 4).

3. Data analysis

The majority of the sources (361) in our sample of 451 are in the
BAT 70-month catalog (Ricci et al. 2017), which provides NH
values based on spectral analysis of soft X-ray (ASCA, Chandra,
Suzaku, Swift-XRT, and XMM-Newton) and BAT spectra. For the
remaining 90 sources4, we modeled their soft X-ray jointly with
their Swift-BAT spectra. XMM-Newton data were available for
18 sources, while Chandra data were available for an additional
24. For the remaining 48 sources, the soft X-ray data were pro-
vided by Swift-XRT. As the greater part of the sources in the
sample were unobscured (Log(NH) < 22) or mildly obscured
(22<Log(NH) < 23), they were sufficiently modeled with the

1 https://science.clemson.edu/ctagn/bat-150-month-
catalog/
2 The online version of the catalog can be found at: https://
science.clemson.edu/ctagn/bat-150-month-catalog/
3 i.e., where the uncertainties at a 90% confidence level are smaller
than the NH measurement.
4 These sources can be found in the BAT 105-month catalog (Oh et al.
2018).

following absorbed powerlaw:

Model1 = constant1 ∗ phabs ∗ (zphabs ∗ zpowerlw). (1)

However, Compton-thin (23<Log(NH) < 24) sources required a
more complex model to account for the Fe Kα emission and the
fraction of intrinsic emission that leaks through the torus rather
than being absorbed by the obscuring material. These sources
were modeled as follows:

Model2 = constant1 ∗ phabs ∗ (zphabs ∗ zpowerlw
+ zgauss + constant2 ∗ zpowerlw), (2)

where constant1 accounts for cross-normalization differences
between the soft X-ray instrument and Swift-BAT, phabs mod-
els the galactic absorption, zphabs ∗ zpowerlw is the absorbed
power-law modeling the intrinsic emission, zgauss models the
Fe Kα emission line, and constant2 ∗ zpowerlw represents the
scattered emission that leaks through the torus.

When sources approach or surpass the CT limit, they
require even more sophisticated modeling. These sources were
modeled with physically motivated models such as MYTorus
(Murphy & Yaqoob 2009) and borus02 (Baloković et al. 2018),
which have been described in detail in for example, Zhao et al.
(2019a,b), Torres-Albà et al. (2021), Silver et al. (2022). These
models are used for heavily obscured AGN because they account
for the photons that interact with the dust and gas surrounding
the SMBH and are reflected into the observer line of sight.

4. Machine learning

4.1. Multiple linear regression

Linear regression is one of the most commonly used machine
learning techniques (see, e.g., Chen et al. 2021; Mizukoshi et al.
2022). Simply put, linear regression models the linear relation-
ship between an explanatory variable (input parameter) and the
response variable (output parameter). Since few quantities can be
accurately modeled using only one explanatory variable, using
numerous can improve the predictive capability of an algorithm.
This is referred to as multiple linear regression, or just multiple
regression for short, and is modeled as:

yi = β0 + β1x1 + β2x2 + . . . βnxn, (3)

where yi is the response variable for every source in the sam-
ple, xn are the explanatory variables, β0 is the y-intercept (if
necessary), and βn are the slope coefficients corresponding to
each explanatory variable. Using a large sample of sources with
data for every explanatory variable and a known value for the
response variable, the algorithm trains itself according to the
ordinary least squares method. This method iterates through
many combinations of βn to find that which minimizes the sum
of squared errors as:

i=m∑
i=1

= (wX − yi)2, (4)

where m is the number of sources in the training sample, w is
the vector of slope coefficients, X is the matrix of explanatory
variables, and yi is the known response variable for each source.

Out of our sample of 451 sources, 80% were randomly
selected to be used in our training sample, thus leaving 20% (91
sources) left for our test sample. We determined this was the
optimal ratio as it used enough sources to accurately train the
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algorithm while simultaneously leaving a statistically significant
sample to verify this accuracy5. We performed Kolmogorov–
Smirnov tests (K–S tests; Karson 1968) for every parameter used
in the training and test set and find that, to a 95% confidence
level, they originate from the same sample. Thus, our training
set is representative of the testing sample.

4.2. Parameters used

The algorithm will only be as accurate as however strong the
relationship is between the chosen input parameters and the
desired output parameter. We selected WISE colors, BAT count
rates, soft X-ray hardness ratios (HRs), and an MIR–soft X-ray
flux ratio as all have been previously shown to correlate with NH.
These parameters are described below. Their relationship with
NH is illustrated for the sources in this sample in Appendix A.

4.2.1. MIR colors

Roughly half of the intrinsic emission from the AGN is absorbed
by the dusty torus (see, e.g., Almeida & Ricci 2017; Hönig
2019). As a consequence, the dust present in the torus is heated
to temperatures of several hundred Kelvin, and thus radiates ther-
mally. This emission peaks in the MIR (∼3−30 µm) and is much
less prone to absorption than the optical and UV, making it a cru-
cial tool to study obscured AGN. With the launch of WISE, we
have an all-sky instrument with superb resolution (∼6′′) capable
of studying these obscured sources. WISE observes the entire
sky in four bands, 3.4, 4.6, 12, and 22 µm (W1, W2, W3, and
W4, respectively), and to date has detected nearly 750 million
sources and reached flux limits of 7.1× 10−14 erg cm−2 s−1. The
differences between these bands have been proven to be a good
predictor for different levels of obscuration. Kilerci Eser et al.
(2020) used a sample of AGN from the BAT 105 Month catalog
(Oh et al. 2018) to create new CT-AGN selection criteria based
on MIR colors. They find that the median values for different col-
ors have an increasing trend with NH (see Fig. 9 of their paper).
Therefore, our algorithm includes six WISE colors: W1 − W2,
W1 −W3, W1 −W4, W2 −W3, W2 −W4, and W3 −W4.

4.2.2. MIR–X-ray flux ratio

As the X-ray and MIR emission are both reprocessed from the
same material, it is expected that a correlation exists between
them. Asmus et al. (2015) show the trend between the observed
12 µm flux and the 2−10 keV flux (see Fig. 1). Moreover, a shift
is evident in the trend based on obscuration. As source obscura-
tion increases, the observed 2−10 keV flux decreases, thus caus-
ing the source to fall to the left of the predicted trend. This
is evidenced in the figure by Seyfert 2 galaxies (red squares)
falling to the left of traditionally unobscured Seyfert 1 galaxies
(blue circles). Moreover, the confirmed CT-AGN (black stars)
fall well to the left of even Seyfert 2 galaxies, suggesting an
extremely suppressed observed X-ray flux. As a result of this
trend, Asmus et al. (2015) used the log ratio of the 12 µm flux
density and the 2−10 keV flux to predict the column density of

5 We note that neural networks are another commonly used machine
learning algorithm (see, e.g., Finke et al. 2021; Chainakun et al. 2022;
Zubovas et al. 2022). We applied this technique to our data set and after
finding the optimal configuration, yielded very similar results to those
generated by our linear regression model. For this reason, we optioned
to present the results from the comparatively simpler linear regression
model in this paper.

an AGN. We included this parameter in our algorithm, using the
12 µm flux density measurement from WISE and the 2−10 kev
flux from Swift-XRT.

4.2.3. Soft X-ray hardness ratios

Soft X-rays (0.3−10 keV) are very susceptible to changes in col-
umn density, as evidenced in Fig. 2. It can be seen that the
0.3−10 keV emission is far more suppressed in a source with
Log(NH) = 24 compared to a source with Log(NH) = 23. There-
fore, the ratio between the counts in different energy bands, or
HRs, covering this energy band are highly dependent on column
density. For this reason, we included two HRs from the latest
Swift-XRT point source catalog, the 2SXPS (Evans et al. 2020);
(M − S )/(M + S ) and (H − M)/(H + M) where S , M, and H
correspond to the 0.3−1, 1−2, and 2−10 keV bands.

4.2.4. Hard X-ray count rates

While significantly less affected than soft X-rays, hard X-rays
do display an increased curvature with higher column densities.
Koss et al. (2016) analyzed sources with Swift-BAT data and
found a correlation between the spectral curvature and column
density. Using simulated data of CT-AGN, they generated the
following equation:

SCBAT =
−3.42 × A − 0.82 × B + 1.65 ×C + 3.58 × D

Total Rate
, (5)

where A, B, C, and D refer to the 14−20 keV, 20−24 keV,
24−35 keV, and 35−50 keV bands, while the total rate is the
14−50 keV band. As plotted in Fig. 3, an increase in this value
(calculated via Eq. (5)) was linked to an increase in line-of-
sight column density. Two different models that calculate NH are
plotted and all agree that the spectral curvature value increases
with NH. However, we note that this method is only valid up to
NH = 4 × 1024 cm−2.

We used this principle to improve our algorithm. Whereas
Koss et al. (2016) only included data up to 50 keV, we found our
algorithm performed better when including data up to 150 keV.
Because of this, we included BAT count rates for nine dif-
ferent energy bands in our algorithm: 14−20 keV, 20−24 keV,
24−34 keV, 34−45 keV, 45−60 keV, 60−85 keV, 85−110 keV,
110−150 keV, and 14−150 keV. Including each band as a param-
eter accounts for both the curvature in the spectrum while also
serving as a proxy for the BAT flux. For this reason, we elected
to include every band instead of just the SC value.

4.3. Missing data

A significant problem in machine learning applications is how
to deal with sources that do not possess all the required data.
For our training set, we followed the procedure of other works
and did not include any sources with missing data (Chang et al.
2021; Dainotti et al. 2021; Narendra et al. 2022). However, valu-
able predictions can still be made on sources with missing data
(see Sect. 6). We artificially replaced data in our training sample
according to three different methods to see which would pro-
vide the most accurate results. First, we replaced data entries
with the mean and median values of the sample (see Luo et al.
2020; Joffre et al. 2022). Second, we used the “large negative
value” technique (as described in Farrell et al. 2015; Yang et al.
2022). Lastly, we followed Wenzl et al. (2021) and replaced the
missing values with a flux upper limit equal to the limit of the
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Fig. 1. Relationship between the observed 12 µm flux and the observed 2−10 keV flux, adapted from Fig. 1 of Asmus et al. (2015). The closed
shapes represent unobscured AGN (LogNH < 22) while open shapes represent obscured AGN (LogNH > 22). The blue circles are Seyfert (Sy)
1−1.5 galaxies; green triangles are Sy 1.8−1.9 galaxies; and red squares are Sy 2 galaxies. The black stars represent confirmed CT-AGN. The
obscured sources fall to the left of the trend, signifying that the ratio between these two quantities can be a tracer of obscuration.

Fig. 2. Simulated X-ray spectra of an AGN with line-of-sight column density Log(NH) = 23 (solid black line) and Log(NH) = 24 (dotted red line).
The vertical regions denoted by S (blue), M (orange), and H (green) represent the different bands used in our two HRs and they correspond to the
0.3−1, 1−2, and 2−10 keV bands, respectively. The two spectra show extreme differences in the soft X-rays, particularly in the 2−10 keV band.
Thus, HRs targeting this band are helpful in determining the column density of AGN.

instrument. We found this last method to be the most accurate.
Indeed, if sources are not detected by all-sky instruments such
as WISE or BAT, it is because they are below the flux limit and
thus replacing them with median values of the sample will not
be indicative of their intrinsic properties. Therefore, we treated
each case as such:

– If a source is missing BAT data, one should use the count
rates of the source (4PBC J1022.1+5123) in the sample of
451 with the lowest total count rate in the 14−150 keV band.

– If a source is missing WISE data, one should use the median
colors of the 10 dimmest sources in our sample, all with
W1 > 14 (1.064, 4.2725, 6.7995, 3.1725, 5.825, 2.6835).
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Fig. 3. Spectral curvature value based on different column densities, displaying some of the configurations adapted from Fig. 3 of Koss et al.
(2016). Each curve represents how the SC value changes with NH based on different input parameters used in the MYTorus model simulations.
The red circles show the curve when the SC equation is calibrated to Swift-BAT data, while the blue triangles show the different SC equation when
calibrated to NuSTAR data. The dashed gray line indicates the cutoff for CT-AGN determined by Koss et al. (2016). Both lines illustrate how the
increased curvature of the hard X-rays of AGN is related to an increase in column density.

– If a source is missing XRT data, one should search for coun-
terparts detected by either Chandra or XMM-Newton. Use
the 2−10 keV fluxes and listed HRs that most closely over-
lap with the bands used by XRT6. It should be noted that
these replacements can produce a reasonable prediction for
NH; however, it is less accurate than what is possible with
XRT data as that is what was used to train the algorithm7. If
neither Chandra nor XMM-Newton are available, then reli-
able NH measurements cannot be found as the soft X-rays
were found to be the most valuable parameter (see Sect. 5).

This procedure was applied to missing data in the sample
described in Sect. 6.

5. Results

Figure 4 shows the X-ray-confirmed NH values for the 91 sources
plotted against the predictions by our algorithm (blue circles).
We used the Spearman rank correlation coefficient to measure
the strength of the correlation between the two sets of NH val-
ues. Our algorithm yielded a Spearman coefficient of 0.86, sig-
nifying that it performs very well in recreating the true NH
values of these sources. Moreover, of the 31 heavily obscured
(Log(NH)≥ 23) sources in our test sample, our algorithm cor-
rectly predicted 25 of them (80%) with Log(NH)> 23 and 30
(97%) with Log(NH)> 22.80. We note that we are currently
unable to distinguish this obscuration as being caused by the
nuclei or the host galaxy, particularly for edge-on galaxies.

In order to determine which input parameters were most
impactfull in training our algorithm, we used the percent dif-
6 We performed simulations to convert the HRs from Chandra and
XMM-Newton to the equivalent value expected in the XRT bands and
found no improvement in the results.
7 We plan to calibrate this algorithm to Chandra and XMM-Newton
data in the future to improve our algorithm’s predictive capabilities.

ference of the Spearman correlation coefficient when all param-
eters were used (0.86) and the coefficient when only the param-
eter listed was excluded. The larger this difference, the worse
our algorithm performed without including said input parame-
ter. Since removing one WISE color or BAT count rate had lit-
tle effect, we grouped the parameters as follows: all six WISE
colors; WISE colors + the MIR-X-ray flux ratio (MIR); the MIR-
X-ray flux ratio; the two XRT HRs; the two HRs + the MIR-
X-ray flux ratio (Soft X-ray); and the BAT count rates. Since
the MIR-X-ray flux ratio includes both information from the
infrared and the X-rays, we included separate categories with-
out it to determine which wavelength influenced our algorithm
the most. Figure 5 shows that the three parameters using soft
X-ray data (the two XRT HRs and the MIR-X-ray flux ratio)
were the largest contributors toward our algorithm producing
accurate results. We note that while the BAT count rates appear
to have a negligible impact on the entire sample, removing the
BAT information results in much lower accuracy at the highly-
obscured and CT ranges.

5.1. Comparison with previous methods

5.1.1. Asmus et al. (2015)

Utilizing MIR data alongside soft X-ray data of a sample of 152
AGN, Asmus et al. (2015) determined a relation to predict line-
of-sight column densities. The relation is as follows:

log
( NH

cm−2

)
= (14.37 ± 0.11) + (0.67 ± 0.11)

× log
(

Fnuc(12 µm)
Fobs(2−10 keV)

erg s−1 cm−2

mJy

)
· (6)

Using the WISE 12 µm and XRT 2−10 keV fluxes, we plotted the
NH values predicted by the Asmus relation for our test sample of

A65, page 5 of 11



Silver, R., et al.: A&A 675, A65 (2023)

Fig. 4. ML vs. previous methods. The x-axis shows the “true” line-of-sight Log(NH) values, as determined by spectral fitting. The y-axis shows the
Log(NH) values predicted by our machine learning algorithm (blue circles) and those predicted by the Asmus et al. (2015) equation (orange stars).
Our algorithm shows superior predictive capabilities, particularly for lower levels of obscuration (Log(NH) < 23), where our algorithm does not
incorrectly classify unobscured sources as heavily obscured as displayed by the dash-dotted gray line. The dotted black line represents the one-to-
one ratio between the true and predicted NH values. The uncertainties were calculated statistically based on the different classifications listed in
Table 1. We determine the error that needs to be added or subtracted to the predicted NH values in order to achieve a 90% classification accuracy in
each bin. Thus, each of the four classification bins have different uncertainties. No errors are included on the orange points for readability purposes.

91 sources in Fig. 4. While these results show a good trend for
heavily obscured sources, below Log(NH) = 23, our machine
learning algorithm performs far better. This is quantified by the
lower Spearman correlation coefficient of 0.65 for the Asmus
predictions and the real NH values. The lack of predictive capa-
bility below 1023 cm−2 affects the whole range of possible NH
values. This is because, a priori, one does not know the “true”
NH of the source, and if choosing a source with Log(NH) < 23,
the relation will confidently place it as being heavily obscured.
Therefore, sources with Log(NH) < 23 can actually have any
value of true Log(NH) between 20 and 23.

5.1.2. Pfeifle et al. (2022)

Pfeifle et al. (2022) improved upon the work of Asmus et al.
(2015) by creating a new relationship based on the ratio of the
2−10 keV and 12 µm luminosities. Using 456 AGN detected in
the 70-month BAT catalog (Ricci et al. 2017) that also possess
infrared data, their team determined the following relation:

log
( NH

cm−2

)
= 20 +

(
1.61+0.33

−0.31

)
× log


∣∣∣∣∣ log

(
LX,Obs.

L12 µm

)
+ (0.34+0.06

−0.06)(
−0.003+0.002

−0.005

) ∣∣∣∣∣
 . (7)

With this relation, we predicted the NH values for our sample
of 91 test sources as seen as the magenta triangles in Fig. 6.
Pfeifle et al. (2022) claims that their method is most accurate
when applied to sources with Log(NH) > 22.5, which is con-
firmed here. While their method is accurate for heavily obscured

sources, it is far less predictive than our algorithm for AGN with
Log(NH) < 22.5. Just as with the Asmus relation, this repre-
sents a significant drawback when selecting sources as we do
not know whether or not the true Log(NH) > 22.5. In total, it has
a Spearman correlation coefficient of 0.27.

We note, however, that the Asmus and Pfeifle relations and
the one presented here have different advantages and disadvan-
tages, which make them extremely complementary. While our
algorithm performs better overall, particularly in differentiat-
ing between obscured and unobscured sources, the Asmus et al.
(2015) and Pfeifle et al. (2022) relations have an advantage in
that they only require one parameter each. This inherently makes
them more applicable to a larger sample of sources.

5.1.3. Koss et al. (2016)

Koss et al. (2016) developed a method for identifying new CT-
AGN using weighted averages of different Swift-BAT bands. It
was determined that an SCBAT > 0.40 would identify a CT-AGN
candidate. We applied this formula to our 91 test sources and
found 14 that would be considered CT. These sources are plotted
as red squares in Fig. 7, overlapped on our machine learning pre-
dictions. We note that this method does show promise, as 8 of the
14 sources are heavily obscured, with Log(NH) > 23. However, 6
sources (43%) predicted as CT have true Log(NH) < 23, includ-
ing two that are unobscured (Log(NH) < 22). Additionally, of the
14 predicted as CT, only 2 (14%) truly are. Our machine learn-
ing algorithm does not misclassify any unobscured sources as
CT and performs more accurately throughout all column density
ranges. Moreover, both sources predicted as CT by our algorithm
are truly CT.
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Fig. 5. Percent difference between the Spearman correlation coefficient including all parameters and the coefficient when the listed parameter
is excluded. The larger the difference, the worse the fit without that parameter (i.e. the higher the importance of that parameter). Therefore, the
soft X-ray-related parameters are the highest contributors to the predictive capability of the algorithm. “MIR” refers to the WISE colors and the
MIR-X-ray flux ratio. “HR” represents the two X-ray HRs. “Soft XR” refers to the two X-ray HRs and the MIR-X-ray flux ratio.

Fig. 6. ML vs. previous methods. As in Fig. 4, the x-axis shows the true line-of-sight Log(NH) values determined by spectral fitting while the y-axis
shows the Log(NH) values predicted by our machine learning algorithm (blue circles) and by the Pfeifle et al. (2022) relation (magenta triangles).
The errors from our algorithm were calculated statistically as described in the caption of Fig. 4. No errors are included on the magenta points for
readability purposes.

5.2. NH classifications

Table 1 displays how many of the 91 test sources fall into each
of these four categories: CT (Log(NH) > 24), Compton-thin
(23<Log(NH) < 24), obscured (22<Log(NH) < 23), and

unobscured (Log(NH) < 22). As can be seen, our machine
learning algorithm performs the best overall, correctly classify-
ing∼75% of the sources. This is particularly true for sources with
Log(NH) < 23, for which our algorithm has a 73% accuracy, while
the other two applicable methods are both only 18% accurate.

A65, page 7 of 11



Silver, R., et al.: A&A 675, A65 (2023)

Fig. 7. ML vs. previous methods. As in Fig. 4, the x-axis shows the true line-of-sight Log(NH) values determined via spectral fitting while the
y-axis shows the Log(NH) values predicted by our machine learning algorithm (blue circles). The red squares represent the 14 sources that were
predicted to be CT based on the SC method introduced in Koss et al. (2016). Two of these sources (14%) have true NH values <1022 cm−2. Our
algorithm does not misclassify any unobscured sources as Compton-thin, let alone CT. The errors from our algorithm were calculated statistically
as described in the caption of Fig. 4.

Table 1. Classification of the test sources.

Classification Real number This work Asmus et al. (2015) Pfeifle et al. (2022) Koss et al. (2016)

Compton-thick 3 2 2 3 2
Compton-thin 28 22 25 13 . . .
Obscured 24 16 8 7 . . .
Unobscured 36 28 3 4 . . .
Total 91 68 (75%) 38 (42%) 27 (30%) . . .

Notes. We have split the 91 test sources into four classifications based on their X-ray-measured column densities: CT (Log(NH) > 24), Compton-
thin (23<Log(NH) < 24), obscured (22<Log(NH) < 23), and unobscured (Log(NH) < 22). The numbers of sources correctly classified for each
of the four methods mentioned in this paper are shown below.

6. Application of the method

The BAT 150 Month catalog has 1390 sources, while only 451
were used to train and test the algorithm. This leaves our algo-
rithm the potential to predict NH for 939 sources depending on
the availability of their data. We found 276 sources with WISE,
XRT, and BAT data, and without a confirmed NH measurement.
The histogram of the predicted NH values is shown in the left
panel of Fig. 8. All 6 of the potential CT-AGN have already been
accepted for observations by Chandra (Proposal ID 23700077,
PI: Silver) and NuSTAR (Proposal ID 9093, PI: Silver). Addition-
ally, we found 211 sources that lacked only one data set between
XRT or WISE. These missing data were handled according to
the procedure laid out in Sect. 4.3. The resulting NH predictions
can be seen in the right panel of Fig. 8. We are currently in an
ongoing campaign to obtain soft X-ray data for the remaining
452 AGN from the BAT 150 Month catalog.

7. Conclusions

In this work, we present a new machine learning algorithm that
predicts the line-of-sight column density of AGN, thus enabling
us to discover new CT-AGN candidates. Using MIR data from
WISE, soft X-ray data from Swift-XRT and hard X-ray data from
Swift-BAT, our machine learning algorithm has proven its ability
to accurately reproduce the NH values of our 91-source test sam-
ple, correctly classifying 75% of sources based on their obscu-
ration. Moreover, our algorithm has shown a superior ability to
predict the column density of AGN with Log(NH)< 22.5 when
compared with previously published methods. In the future, this
algorithm will be used to: (1) identify promising CT-AGN can-
didates and (2) efficiently determine NH values of large samples
of sources (such as the Chandra and XMM-Newton source cata-
logs) in an effort to determine the obscuration distribution of the
entire AGN population across cosmic time.
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Fig. 8. Left: NH predictions for the 276 sources in the BAT 150 Month catalog that possess all the necessary WISE, XRT, and BAT data. Right:
NH predictions for the 211 sources in the BAT 150 Month catalog that are missing either WISE or XRT data.
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Baloković, M., Brightman, M., Harrison, F. A., et al. 2018, ApJ, 854, 42
Brandt, W. N., & Yang, G. 2022, Handbook of X-ray and Gamma-ray

Astrophysics, eds. C. Bambi &amp; A. Santangelo (Springer Living
Reference Work), 78

Burlon, D., Ajello, M., Greiner, J., et al. 2011, ApJ, 728, 58
Chainakun, P., Fongkaew, I., Hancock, S., & Young, A. J. 2022, MNRAS, 513,

648
Chang, Y.-Y., Hsieh, B.-C., Wang, W.-H., et al. 2021, ApJ, 920, 68
Chen, Y., Gu, Q., Fan, J., et al. 2021, ApJ, 913, 93
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, VizieR Online Data Catalog:

II/328
Dainotti, M. G., Bogdan, M., Narendra, A., et al. 2021, ApJ, 920, 118
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604
Evans, P. A., Page, K. L., Osborne, J. P., et al. 2020, ApJS, 247, 54
Farrell, S. A., Murphy, T., & Lo, K. K. 2015, ApJ, 813, 28
Ferrarese, L., & Ford, H. 2005, Space Sci. Rev., 116, 523
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Finke, T., Krämer, M., & Manconi, S. 2021, MNRAS, 507, 4061
Fiore, F., Feruglio, C., Shankar, F., et al. 2017, A&A, 601, A143
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005
Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79

Haardt, F., & Maraschi, L. 1993, ApJ, 413, 507
Hönig, S. F. 2019, ApJ, 884, 171
Joffre, S., Silver, R., Rajagopal, M., et al. 2022, ApJ, 940, 139
Karson, M. 1968, J. Am. Stat. Assoc., 63, 1047
Kilerci Eser, E., Goto, T., Güver, T., Tuncer, A., & Ataş, O. H. 2020, MNRAS,
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Appendix A: Input parameter trends with NH

This section showcases the capability of each of the chosen input
parameters to successfully predict line-of-sight column density.
Each plot shows a parameter space between two input param-
eters with a color gradient representing the known NH, for the

451 AGN in our sample. Here, blue represents higher NH val-
ues while red represents unobscured AGN. We note that we only
include a plot for one of the BAT count rates (14–20 keV) as
every other count rate shows a similar trend when plotted against
HR2.

Fig. A.1. WISE color parameter spaces, showing the ability to predict NH. Blue points represent heavily obscured (and CT) AGN while red points
represent unobscured AGN. Top left: W1-W3 vs W1-W2. Top right: W1-W4 vs W1-W3. Bottom left: W2-W4 vs W2-W3. Bottom right: W3-W4
vs W2-W4.
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Fig. A.2. Parameter spaces between different input parameters, displaying how they can be used to predict column density. Top left: W2-W3
plotted against the MIR and X-ray flux ratio. Right: HR2 vs the 14–20 keV BAT count rate. Bottom left: HR2 vs HR1.
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