Check for updates

GUIDO ASCARI JACOPO BONCHI

(Dis)Solving the Zero Lower Bound Equilibrium through Income Policy

We investigate the possibility to reflate an economy experiencing a longlasting zero lower bound episode with subdued or negative inflation by imposing a minimum level of wage inflation. The income policy under investigation is formalized as a downward nominal wage *growth* rigidity, such that wage inflation cannot be lower than a fraction of the inflation target. This policy allows dissolving the zero lower bound steady-state equilibrium in an Overlapping Generations (OLG) model featuring "secular stagnation" and in an infinite-life model, where this equilibrium emerges due to deflationary expectations.

JEL codes: E31, E52, E64 Keywords: inflation expectations, wage indexation, zero lower bound

BUT WHAT ONE CAN MAKE today - what central banks, what economists can make - is an indisputable case for the benefits of having higher wage growth. Mario Draghi, President of the ECB, Q&A Press Conference, 8 September 2016.

Given the persistence of binding zero lower bound (ZLB) and subdued inflation in the pre-COVID 19 era, some economists made a case for income policies to reflate

We thank the editor, Kenneth D. West, and two anonymous referees for their comments on previous versions of the paper. We are also thankful to Klaus Adam, Carlos Carvalho, Giovanni Crea, Takushi Kurozumi, Eric Leeper, Neil Mehrotra, and Martín Uribe. Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank.

[Correction added on 09 May 2022, after first online publication: CRUI-CARE funding information has been added.]

GUIDO ASCARI Professor of Economics at the Department of Economics and Business, University of Pavia and Head of Monetary Policy Research at the De Nederlandsche Bank (E-mail: guido.ascari@unipv.it). JACOPO BONCHI is a PostDoc Fellow at the Department of Economics and Finance and School of European Political Economy, LUISS Guido Carli (E-mail: jbonchi@luiss.it).

Received November 6, 2020; and accepted in revised form October 20, 2021.

Journal of Money, Credit and Banking, Vol. 54, Nos. 2–3 (March–April 2022) © 2021 The Authors. *Journal of Money, Credit and Banking* published by Wiley Periodicals LLC on behalf of Ohio State University

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

the economy. We study the theoretical underpinnings of this proposal by defining an income policy imposing minimum wage inflation, that is, minimum wage growth.

The problem at the ZLB is to stop the downward inertia in inflation. Low inflation resulting from binding ZLB feeds into wages, possibly through formal or informal backward-looking indexation practices, and then into prices again, creating inertia in the inflation dynamics.¹ To break the *downward* wage-price spiral, a possible solution is to "reindex" the economy by imposing a floor on wage inflation. We study a "reflationary" income policy based on a downward nominal wage growth rigidity (DNWGR) such that wage inflation cannot be lower than a fraction of the inflation target.

We show how this income policy works in two different frameworks: the OLG model of Eggertsson, Mehrotra, and Robbins (2019) (EMR, henceforth), in which a ZLB equilibrium arises when the natural interest rate is negative, and the infinite-life model of Schmitt-Grohé and Uribe (2017) (SGU, henceforth), in which a ZLB equilibrium originates from deflationary expectations, as in Benhabib, Schmitt-Grohé, and Uribe (2001).

Both papers also feature a downward nominal wage rigidity (DNWR), that we replace by a DNWGR, which can also be seen as a form of income policy based on wage indexation to the inflation target. This reflationary income policy eliminates the ZLB equilibrium in both theoretical frameworks, provided that the inflation target is sufficiently high. If wage inflation is high enough, agents cannot coordinate on a deflationary or a secular stagnation equilibrium because expectations of deflation/low inflation and ZLB are not consistent with rational expectations. In equilibrium, the DNWGR constraint does not bind; hence, it is not the case that it is mechanically imposed. Moreover, both price and wage inflation is equal to the intended target, and there is full employment in the unique equilibrium that survives. The income policy acts as a coordination device that destroys the ZLB equilibrium.

Our paper relates to the debate regarding the implementation of income policy to reflate an economy in ZLB. Arbatli et al. (2016) advocate such a policy as a "fourth arrow" to the "Abenomics." However, they simulate the IMF Flexible System of Global Models (FSGM) without formalizing a proper income policy but adding shocks to price and wage inflation expectations. Instead, da Silva and Mojon (2019) propose an increase in the nominal unit labor costs consistent with the 2% inflation target. Still, they do not investigate the effectiveness of this proposal explicitly.

This paper is also linked to the ZLB literature. Specifically, Mertens and Ravn (2014) and Bilbiie (forthcoming) study the effects of several policies depending on whether the liquidity trap is fundamental or expectation-driven, and find that the policies beneficial in the former are detrimental in the latter and vice versa. Instead, the reflationary income policy is "robust" because it can address the ZLB problem

^{1.} As Mario Draghi explains:

A prolonged period of low inflation is always likely to be exacerbated by backward-lookingness in wage and price formation that occurs due to institutional factors, such as wage indexation. This has plainly happened in the euro area. (Draghi 2017, p. 4)

independently of its source. Cuba-Borda and Singh (2019) find a similar result for minimum wage policy by considering a unified framework accommodating the secular stagnation hypothesis and the expectation-driven liquidity trap. However, the minimum wage policies can only *mitigate* the secular stagnation equilibrium, imposing a floor on the nominal wage *level*. By contrast, the income policy *eliminates* both the expectations trap and the secular stagnation equilibrium, imposing a floor on the *growth rate* of nominal wage. Moreover, in Cuba-Borda and Singh, as in EMR and SGU, increasing the inflation target cannot eliminate any of the two bad equilibria. Instead, it does so in our framework, and thus, there is no issue of credibility of the target due to multiple steady states.

The paper proceeds as follows. Sections 1 and 2 present how the income policy works, respectively, in the EMR and SGU model. Section 3 concludes.

1. REFLATION IN THE EMR OLG MODEL

We study a three-period OLG economy. Young households borrow up to the debt limit D_t through a one-period riskless bond sold to the middle-aged ones. The middle generation earns a positive income, $Y_t = (W_t/P_t)L_t + (Z_t/P_t)$, by supplying inelastically its labor endowment \overline{L} for a wage W_t and running a firm, whose nominal profits are Z_t . Old agents consume their wealth. The household's problem is

$$\max_{C_{t+1}^{m}, C_{t+2}^{o}} E_{t} \{ \ln C_{t}^{y} + \beta \ln C_{t+1}^{m} + \beta^{2} \ln C_{t+2}^{o} \}$$

s.t.

$$C_t^y = B_t^y = \frac{D_t}{(1+r_t)},$$
 (1)

$$C_{t+1}^{m} = Y_{t+1} - (1+r_t)B_t^{y} - B_{t+1}^{m},$$
(2)

$$C_{t+2}^o = (1 + r_{t+1})B_{t+1}^m.$$
(3)

 β is the subjective discount factor. C_t and B_t denote, respectively, the real consumption of the generations and the real value of bonds where the superscripts y, m, o stand for young, middle-aged, and old, respectively. In equation (1), the young-age consumption is constrained by the debt limit, which binds because EMR assume $D_{t-1} < Y_t/[1 + (1 + \beta)\beta]$. The optimality condition for the problem is the Euler equation

$$\frac{1}{C_t^m} = \beta (1+r_t) E_t \frac{1}{C_{t+1}^o},$$
(4)

where the real return on bonds, r_t , is linked to the nominal interest rate, i_t , and (expected) future inflation, $\Pi_{t+1} = P_{t+1}/P_t$, via the Fisher equation: $1 + r_t = (1 + i_t)E_t \Pi_{t+1}^{-1}$.

The financial market clears when the total demand of loans from young households equals the supply from middle-aged ones: $(1 + g_t)B_t^v = B_t^m$, where g_t is the population growth rate. We can denote the loan demand with L_t^d and express it as

$$L_t^d = \left(\frac{1+g_t}{1+r_t}\right) D_t \tag{5}$$

by using (1). Combining (1)–(4) yields the loan supply L_t^s :

$$L_t^s = B_t^m = \frac{\beta}{1+\beta} (Y_t - D_{t-1}).$$
 (6)

The market clearing real interest rate that equates (5) and (6) is

$$(1+r_t) = \frac{(1+g_t)(1+\beta)D_t}{\beta(Y_t - D_{t-1})}.$$
(7)

At the potential level of output, $Y_t = Y^f$, (7) defines the natural interest rate r_t^f .

Each middle-aged household runs a firm that is active for only one period in a perfectly competitive market. The production technology of firms exhibits decreasing returns to labor, $Y_t = L_t^{\alpha}$ with $0 < \alpha < 1$. Profits, $Z_t = P_t Y_t - W_t L_t$, are maximized when labor is remunerated at its marginal productivity, $W_t/P_t = \alpha L_t^{\alpha-1}$.

Finally, there are two key frictions in the model: the DNWR in the labor market and the ZLB in the monetary policy rule. We focus on the steady state of the EMR model, conveniently depicted in Figure 1, using an aggregate supply (AS) and aggregate demand (AD) diagram. Note that the DNWR frictions determine the features of the AS curve, and the ZLB the features of the AD curve.

DNWR and *AS* **curve**. The labor market is perfectly competitive, but workers are unwilling to supply labor for a nominal wage lower than a minimum level:

$$W_t = \max\left\{W_t^*, W_t^{flex}\right\}.$$
(8)

 $W_t^{flex} \equiv P_t \alpha \bar{L}^{\alpha-1}$ is the "flexible" wage compatible with full employment \bar{L} , and W_t^* is the minimum wage that is proportional to that in the previous period (Schmitt-Grohé and Uribe 2016):

$$W_t^* = \gamma W_{t-1},\tag{9}$$

where $0 < \gamma \le 1$. The labor market does not necessarily clear due to the DNWR (8). If market clearing requires a wage larger than γW_{t-1} , $W_t = W_t^{flex}$ and the labor market clears, $L_t = \bar{L}$. The *AS* curve is accordingly vertical at the potential output, $Y^f = \bar{L}^{\alpha}$, for $\Pi^W = \Pi \ge \gamma$. Instead, if labor supply exceeds labor demand at $W_t = \gamma W_{t-1} > \gamma$

GUIDO ASCARI AND JACOPO BONCHI : 523

Fig 1. Steady-State Equilibria in the EMR Model.

 W_t^{flex} , the wage cannot decrease further, so that involuntary unemployment arises, $L_t < \bar{L}$. In this case, the *AS* is thus flat at the wage/price inflation $\Pi^W = \Pi = \gamma$ for $\forall L \leq \bar{L}$, with the level of employment/output that is demand-determined along the AS^{WR} .

ZLB and AD curve. The central bank follows a standard Taylor rule:

$$1 + i_t = \max\left[1, \left(1 + r_t^f\right)\Pi^*\left(\frac{\Pi_t}{\Pi^*}\right)^{\phi_\pi}\right],\tag{10}$$

which responds only to inflation and where $\phi_{\pi} > 1$ and Π^* is the gross inflation target. Whether or not the ZLB constraint (10) is binding defines two regimes for the *AD* curve. When the ZLB does not bind, 1 + i > 1, we can combine (7), (10) and the Fisher equation to derive the *AD* curve in steady state as:

$$Y_{AD}^{TR} = D + \left(\frac{1+\beta}{\beta}\right) \left(\frac{1+g}{1+r^f}\right) \left(\frac{\Pi^*}{\Pi}\right)^{\phi_{\pi}-1} D.$$
 (11)

Equation (11) defines a negative relationship between inflation and output, represented by the downward-sloping curve AD^{TR} in Figure 1. By contrast, the ZLB, 1 + i = 1, implies a positive relationship between inflation and output:

$$Y_{AD}^{ZLB} = D + \left(\frac{1+\beta}{\beta}\right)(1+g)\Pi D,$$
(12)

shown by the upward-sloping AD^{ZLB} curve in Figure 1.²We denote Π^{kink} the inflation rate at which AD^{TR} and AD^{ZLB} cross. It determines when the ZLB becomes binding and can be computed from the two arguments in (10):

$$\Pi^{kink} = \left[\frac{1}{(1+r^f)}\right]^{\frac{1}{\phi_{\pi}}} \Pi^{*\frac{\phi_{\pi}-1}{\phi_{\pi}}}.$$
(13)

To prepare the ground for our main result, Figure 1 shows that the *AD* curve shifts from $AD^{TR,0}$ to $AD^{TR,1}$ when the inflation target, Π^* , increases. The higher the inflation target, the lower the risk of hitting the ZLB for a given natural interest rate r^f in (10). Therefore, a higher Π^* shifts out the kink in the *AD* curve, and thus, the downward-sloping *AD* curve, but it does not affect the upward-sloping one.

Steady state.

The crossing between the *AS* and the *AD* curves identifies the steady state in Figure 1. A "secular stagnation" equilibrium arises for $r^f < 0$, but there can be two different cases depending on the inflation target. First, there is a unique steady state at point A, given by the intersection between AD^{ZLB} and AS^{WR} (see the dashed line $AD^{TR,0}$). It is a demand-determined and stagnant steady state because ZLB and DNWR are both binding. Second, there are three different steady states (see the solid line $AD^{TR,1}$): (i) the *ZLB-U* equilibrium just described featuring ZLB, inflation below the target and unemployment: i = 0, $\Pi = \gamma < \Pi^*, Y < Y^f$; (ii) a *ZLB-FE* equilibrium that occurs at the intersection of the AD^{ZLB} and the AS^{FE} , and it features ZLB, inflation below the target and full employment: $i = 0, 1 < \Pi = 1/(1 + r^f) < \Pi^*, Y = Y^f$; (iii) a *TR-FE* equilibrium that occurs at the intersection of the atthe intersection of the AD^{TR} and the target, and full employment: i > 0, $\Pi = \Pi^*, Y = Y^f$. The equilibria *ZLB-U* and *TR-FE* are determinate, while the equilibrium *ZLB-FE* is an indeterminate, but not deflationary, steady state \hat{a} la Benhabib, Schmitt-Grohé, and Uribe (2001).³

As explained above, an increase in the inflation target moves AD^{TR} , but moves neither the AD^{ZLB} nor the AS. Hence, if the natural real interest rate is negative, a ZLB-U equilibrium always exists no matter what the inflation target is.⁴

2. As EMR, we depict AD^{TR} as linear in Figure 1 for clarity, despite it being nonlinear. We will do the same for AD^{TR} in the SGU model. None of the results obviously depends on this.

3. Although EMR show it for a different DNWR specification, these results still hold, and a proof is available upon request. For $\gamma = 1$, the DNWR coincides with the minimum wage policy of Cuba-Borda and Singh (2019), and it cannot eliminate, as well as the secular stagnation equilibrium, the *ZLB-FE* one. Hence, that policy seems ineffective if the equilibrium á la Benhabib, Schmitt-Grohé, and Uribe (2001) features positive, below the target inflation as in the EMR model.

4. While there is always a minimum level of public debt that makes $r^f > 0$, this value might be not necessarily sustainable/achievable, as shown by EMR in their quantitative exercise. We refer to the Online Appendix for an analysis of the complementarity between income and fiscal policies.

GUIDO ASCARI AND JACOPO BONCHI : 525

Fig 2. Unique Steady-State Equilibrium in the EMR Model with DNWGR.

1.1 Dissolving the ZLB Equilibrium

We now present an income policy capable of avoiding a secular stagnation even if $r^{f} < 0$. The secular stagnation equilibrium *ZLB-U* vanishes with this policy, which is a simple modification of equation (9) that defines W_{t}^{*} in equation (8) to

$$W_t^* = \delta \Pi^* W_{t-1},\tag{14}$$

where $0 < \delta \le 1$. From an economic point of view, (14) implies that wage inflation cannot be lower than a certain fraction δ of the inflation target. Hence, it puts a *floor* on wage deflation to break the *downward* wage-price spiral, and it links wage growth to targeted inflation to reanchor inflation expectations. Although this modification might seem minimal, it underlies a substantial change. Equation (9) establishes a lower bound on the nominal wage *level*, with γ measuring how much, if anything, the wage can be cut downward. By contrast, (14) imposes a lower bound to the nominal wage *growth rate*, where δ can be interpreted as the degree of wage indexation to the inflation target. Therefore, the reflationary income policy implementation requires a switch from DNWR to DNWGR.

From an analytical point of view, comparing Figure 2 with Figure 1 reveals how this modification changes the results in the previous section. The main point is that (14) *makes the AS curve to shift with the inflation target*, because the AS^{WR} curve is now equal to $\delta\Pi^*$, rather than γ , as in the EMR case. Hence, an increase in the inflation target shifts the AS^{WR} curve upward. As the AD curve is unchanged with respect to the previous section, raising the inflation target shifts out AD^{TR} , as in Figure 1. We are now in the position to state our main result.⁵

5. A formal proof of Proposition 1 is given in the Online Appendix.

Fig 3. Steady-State Equilibria in the EMR Model with DNWGR.

PROPOSITION 1. Assume $r^f < 0$ and $\delta \le 1$. Then, if $\Pi^* > 1/[\delta(1 + r^f)]$, there exists a unique, locally determinate, TR - FE equilibrium, where the ZLB is not binding, inflation is at the target and output is at full employment, i > 0, $\Pi = \Pi^*$, $Y = Y^f$.

There always exists a sufficiently high level of the inflation target, such that the unique and locally determinate equilibrium features full employment and inflation at the target without binding ZLB. Figure 3 displays the intuition very clearly. As the inflation target increases, the economy moves from Panel A to Panel E. The key thing to note is that the *AD* curve moves as described in the previous section, but now the AS^{WR} shifts upward too. For an enough high Π^* , the economy reaches the situation in Panel E, where the ZLB - U equilibrium disappears for $\Pi^* > 1/[\delta(1 + r^f)] > 1/(1 + r^f)$ because the level of output on the AD^{ZLB} corresponding to $\Pi = \delta \Pi^*$ is greater than Y^f , so that the AD^{ZLB} never crosses the AS^{WR} . This condition guarantees the uniqueness of the TR - FE equilibrium, which, instead, emerges for $\Pi^* > 1/(1 + r^f)$.⁶

Contrary to EMR where it is powerless, now monetary policy can wipe out the ZLB equilibrium by choosing an adequate inflation target. However, the degree of wage indexation, δ , also plays a crucial role: the higher this parameter, the lower the inflation target necessary to prevent binding ZLB. Finally, the next proposition

^{6.} Figure 3 refers to the case $\delta < 1$, that guarantees that AD^{TR} does not intersect AS^{WR} (which instead happens for values of $\delta > 1$). When $\delta = 1$, the unique TR - FE equilibrium still lies on the AD^{TR} , but now it corresponds to the kink point of the AS in which AS^{FE} and AS^{WR} cross.

presents another important implication of the reflationary income policy with respect to EMR.

PROPOSITION 2. Assume $r^f < 0$, $\delta \le 1$, and that the economy is trapped in a secular stagnation equilibrium, ZLB - U (Panel A). Then, an increase in the inflation target is always beneficial because steady-state output and inflation increase, irrespective of this increase being sufficient or not to escape from the secular stagnation.

Any, however small, increase in the target shifts the AS^{WR} upward, and thus, it moves the secular stagnation equilibrium along the AD^{ZLB} increasing the level of output and inflation. This is depicted in Figure 3, where the ZLB - U equilibrium A in Panel A moves up in Panels B, C, and D. This does not happen in the EMR model. In Figure 1, both AD^{ZLB} and AS^{WR} curves do not change with the inflation target. As a result, a mild increase in the target does not affect the secular stagnation equilibrium ZLB - U at point A, capturing Krugman's (Krugman 2014) idea of "timidity trap." Only sufficiently large changes in the target make the TR - FE equilibrium to appear. Our model has a similar flavor but has a quite different implication: while it is still true that the policy is subject to a "timidity trap" to escape from the secular stagnation, in the sense that the inflation target should be sufficiently high to avoid it, an increase in the target is always beneficial.⁷

2. REFLATION IN THE SGU INFINITE-LIFE MODEL

We turn to a different model, where the source of binding ZLB is a negative shock to inflation expectations. SGU employ a flexible-price, infinite-life representative agent model to study the dynamics leading to a liquidity trap and a jobless recovery.⁸ Unless otherwise mentioned, the notation is identical to that of the EMR model. The representative household maximizes the utility function $U_t = E_0 \sum_{t=0}^{\infty} \beta^t \ln C_t$, subject to the budget constraint $P_t C_t + B_t = W_t L_t + Z_t + (1 + i_{t-1})B_{t-1}$ and the no-Ponzigame condition $\lim_{j\to\infty} E_t [\prod_{s=0}^{j} (1 + i_{t+s})^{-1}]B_{t+j+1} \ge 0$, where C_t denotes the real consumption expenditure, and B_t is the value of risk-free bonds in nominal terms. The optimality conditions for the household's problem are the Euler equation

$$C_t^{-1} = \beta(1+i_t)E_t\left(\frac{C_{t+1}^{-1}}{\Pi_{t+1}}\right),$$
(15)

7. EMR originally assume $W_t^* = \gamma W_{t-1} + (1 - \gamma) W_t^{flex}$, whereby only a fraction γ of workers is subject to DNWR, while the remaining fraction has flexible wages. Our modification does not alter the model but allows for better comparability with the reflationary income policy and the DNWR in SGU. In the Online Appendix, we show that Propositions 1 and 2 hold in the EMR model even if we assume an encompassing constraint defined as $W_t = \max\{\gamma^{WL}W_{t-1} + \gamma^{WG}\Pi^*W_{t-1} + (1 - \gamma^{WL} - \gamma^{WG})W_t^{flex}, W_t^{flex}\}$.

8. Compared to the original model in SGU, we abstract from growth and fiscal policy, and we assume a logarithmic utility function instead of a more general CRRA specification. Our results are unaffected by these modifications.

where $1 + r_t = (1 + i_t)E_t \Pi_{t+1}^{-1}$, and the no-Ponzi-game condition holding with equality. The problem of the firm is the same as illustrated in the EMR model. As before, we explain the steady-state equilibria using an *AS-AD* diagram, where the DNWR shapes the *AS* curve, and the monetary policy shapes the *AD* curve.

DNWR and *AS* **curve**. With respect to the EMR model in the previous section, SGU employ a different specification of the DNWR constraint:

$$W_t \ge \gamma_0 (1 - u_t)^{\gamma_1} W_{t-1} = \gamma_0 \left(\frac{L_t}{\bar{L}}\right)^{\gamma_1} W_{t-1}.$$
 (16)

The DNWR implies that the lower bound on the nominal wage depends on the level of unemployment, $u_t = (\bar{L} - L_t)/\bar{L}$, or on the employment ratio L_t/\bar{L} . When $L_t =$ 0, that is, $u_t = 1$, the lower bound is zero, then it increases with employment with elasticity γ_1 . At full employment, nominal wages cannot be lower than $\gamma_0 W_{t-1}$ as in (9). However, SGU impose the following important assumption on γ_0 : $\beta < \gamma_0 \le \Pi^*$. For simplicity, we assume $\gamma_0 = \Pi^*$, as SGU do in their quantitative calibration. The DNWR (16) implies the following complementary slackness condition:

$$\left(\bar{L} - L_t\right) \left[W_t - \gamma_0 (1 - u_t)^{\gamma_1} W_{t-1} \right] = 0, \tag{17}$$

which ties down quite strictly the type of equilibrium under unemployment. If $L_t < \bar{L}$, then in steady state, it follows $W_t/W_{t-1} \equiv \Pi^W = \Pi = \gamma_0(1-u_t)^{\gamma_1} < \gamma_0 = \Pi^*$. Hence, steady-state inflation is below the target whenever there is positive unemployment. Similar to the previous model, there are accordingly two regimes characterizing the *AS* in steady state. First, for $\Pi \ge \gamma_0 = \Pi^*$, the *AS* is still vertical at the potential output $Y^f = \bar{L}^{\alpha}$. Second, for $\Pi < \gamma_0 = \Pi^*$, the *AS*^{WR} is upward-sloping in the presence of unemployment due to the binding DNWR constraint. Using (16), (17), and the production function, $Y_t = L_t^{\alpha}$, yields:

$$Y_{AS}^{WR} = \left(\frac{\Pi}{\gamma_0}\right)^{\frac{\alpha}{\gamma_1}} Y^f.$$
(18)

The two branches of the AS schedule meet at the kink $\Pi = \gamma_0 = \Pi^*$.

ZLB and AD curve. The demand side is shaped by the monetary policy rule:

$$1 + i_t = \max\left\{1, 1 + i^* + \alpha_\pi \left(\Pi_t - \Pi^*\right) + \alpha_y \ln\left(\frac{Y_t}{Y^f}\right)\right\},\tag{19}$$

where $1 + i^* = \Pi^* / \beta > 1$. For 1 + i > 1, we can compute *AD* from (19) by substituting 1 + i for its steady-state value Π / β :

$$\ln Y_{AD}^{TR} = \ln Y^f - \frac{\beta \alpha_{\pi} - 1}{\beta \alpha_{y}} (\Pi - \Pi^*).$$
⁽²⁰⁾

This equation expresses a negative steady-state relationship between output and inflation if monetary policy is active ($\beta \alpha_{\pi} > 1$), as in the EMR model. The main

GUIDO ASCARI AND JACOPO BONCHI : 529

Fig 4. Steady-State Equilibria in the SGU Model.

difference between the EMR and SGU models lies in the steady-state determination of the equilibrium/natural real interest rate. Given the Euler equation, the inverse of β pins down the natural real interest rate in an infinite-life model, so the latter does not depend on the supply and demand of assets as in an OLG model. This implies that, while the AD^{TR} is downward-sloping as in the EMR model, the AD^{ZLB} is now horizontal in this model, rather than upward-sloping. If the ZLB is binding (i = 0) and given $1 + r = 1/\beta$, the steady-state inflation rate must equal β due to the Fisher equation, whatever the level of steady-state output. AD is therefore flat at $\Pi = \beta$, and the AS determines the steady-state output for that inflation level.

Steady state. Figure 4 shows the *AS-AD* diagram for the SGU model. The assumption in SGU $\beta < \gamma_0 \le \Pi^*$ guarantees that there does not exist either an intersection between AS^{FE} and AD^{ZLB} or an intersection between AD^{TR} and $AS^{WR,9}$ Given these assumptions, there are always two equilibria.¹⁰ Point A is a ZLB - U type of equilibrium, where both the ZLB and the DNWR constraints are binding, and point C is a TR - FE one, where none of the two constraints is binding, the economy is at full employment and inflation at target. However, the ZLB - U equilibrium in the SGU model does not reflect the idea of secular stagnation as described in Summers (2015) that entails $r^f < 0$. By contrast, it is an (indeterminate) expectation-driven deflationary equilibrium á la Benhabib, Schmitt-Grohé, and Uribe (2001). Therefore,

9. $\beta < \gamma_0$ implies that the floor on wage inflation corresponding to u = 0 is higher than the minimum inflation so that AD^{ZLB} and AS^{FE} cannot cross. Instead, $\gamma_0 \leq \Pi^*$ implies that such a maximum floor is at most equal to the inflation target, preventing the crossing between AD^{TR} and AS^{WR} .

^{10.} There are no restrictions on γ_1 . Hence, we can distinguish three cases: if $\gamma_1 > \alpha$, the AS^{WR} is convex (Figure 4); it is concave for $\gamma_1 < \alpha$, and it is a straight line when $\gamma_1 = \alpha$. Whether the AS^{WR} is convex, concave, or a straight line does not affect our results qualitatively.

Fig 5. Steady-State Equilibria in the SGU Model with DNWGR.

we define it as a *deflationary* equilibrium, because $\Pi = \beta < 1$, rather than a *secular* stagnation one.

2.1 Dissolving the ZLB Equilibrium

We now apply the reflationary income policy to the SGU model by replacing the DNWR (16) with the DNWGR given by (8) and (14). Recall that the idea is to reflate the economy by using the DNWGR constraint to impose *a floor to the growth rate of nominal wages that depends on the inflation target*. Equation (16) does not do that because wage inflation is bounded by zero when employment is zero. Figure 5 plots the *AS-AD* diagram for the SGU model with the DNWGR. In this case, instead of being upward sloping, the AS^{WR} is flat at the wage/price inflation $\Pi = \delta \Pi^*$.

Figure 5 shows how the DNWGR yields similar implications as in Section 1. Two are the stark differences compared to the original SGU model. First, if the inflation target is not high enough, $\Pi^* < \beta/\delta$, the DNWGR makes a new equilibrium arise at point B (Panel A). This new equilibrium replaces the original deflationary one at point A, and thus, the economy runs at the potential level even when the ZLB is binding due to deflation. Indeed, though Π^* is not high enough to destroy the ZLB equilibrium, the DNWGR sets a minimum level of wage/price inflation, $\delta\Pi^*$, that is lower than actual inflation, β , allowing the real wage to fall and thus stimulating employment. The equilibrium B in Panel A of Figure 5, though deflationary because of $\Pi = \beta$, resembles the *ZLB* – *FE* one in Figure 1. Second, while in the original SGU model, two equilibria always exist, here instead, for a sufficiently high inflation target, $\Pi^* > \beta/\delta$, deflationary expectations cannot be supported in equilibrium so that the *ZLB* – *U* equilibrium A dissolves (Panel B). Intuitively, by forcing the increase in wage inflation above a certain threshold, no level of inflation/deflation supports the ZLB equilibrium. Our DNWGR constraint acts as a coordination device for agents on the now unique TR - FE equilibrium.¹¹ The two following propositions formalize these results.

PROPOSITION 3. Assume $\delta \leq 1$. Then, if $\Pi^* > \beta/\delta$, there exists a unique, locally determinate, TR - FE equilibrium, where the ZLB is not binding, inflation is at the target and output is at full employment, i > 0, $\Pi = \Pi^*$, $Y = Y^f$.

PROPOSITION 4. Assume $\delta \leq 1$, and that the economy is trapped in a deflationary ZLB - U equilibrium (point A). Then, the introduction of the DNWGR is always beneficial because steady-state output increases, irrespective of the economy escapes from deflation.

As a further extension, we assume that minimum wage inflation depends negatively on unemployment, combining the original DNWR constraint in SGU, (16), with the DNWGR in (14):

$$\frac{W_t}{W_{t-1}} \ge \delta \Pi^* + \gamma(u_t) = \delta \Pi^* + \gamma_0 (1 - u_t)^{\gamma_1}.$$
(21)

We also assume that $\beta < \delta \Pi^* + \gamma_0 \le \Pi^*$ (and thus $\delta < 1$), which is the equivalent assumption to $\beta < \gamma_0 \le \Pi^*$ in the SGU case. Accordingly, the *AS^{WR}* becomes

$$Y_{AS}^{WR} = \left(\frac{\Pi - \delta \Pi^*}{\gamma_0}\right)^{\frac{\alpha}{\gamma_1}} Y^f.$$
(22)

Figure 6 shows how the modification of the DNWGR affects the results in the SGU model. Panel A displays the two equilibria, ZLB - U and TR - FE, with our modified DNWGR, (21), along with the original deflationary equilibrium A in the SGU model. The other two panels show what happens when the inflation target increases. In Panel A, for $\Pi^* < \beta/\delta$, the introduction of the DNWGR no longer improves the deflationary equilibrium as in Figure 5 (Panel A) but rather worsens it reducing output for the same level of deflation, $\Pi = \beta$. On the other hand, Panel B shows that if the inflation target increases but is not sufficient to escape from the ZLB, the deflationary equilibrium implies a further reduction in output/employment. Only when the inflation target increases sufficiently, so that $\Pi^* > \beta/\delta$, the ZLB – U equilibrium A disappears, leaving as unique equilibrium the TR - FE one at point C. Putting differently, Krugman's (Krugman 2014) timidity trap is *enhanced* in the SGU model, when the minimum wage inflation imposed by the DNWGR depends negatively on unemployment.

PROPOSITION 5. (Enhanced timidity trap). Assume that the economy is trapped in a deflationary ZLB - U equilibrium (Point A). Then, the introduction of the DNWGR

^{11.} Unlike SGU, we do not prevent the intersection between the AD^{ZLB} and AS^{FE} because there is no economic reason to exclude $\delta\Pi^* < \beta$. On the other hand, the inflation target is the natural upper limit to the floor on wage inflation, implying $\delta \leq 1$. For this range of values, AD^{TR} intersects AS^{WR} only if $\delta = 1$. In this limiting case, the TR - FE equilibrium C occurs at the kink point of the AS curve.

Fig 6. Steady-State Equilibria in the SGU Model with Different DNWGR.

(21) is detrimental because steady-state output decreases in a ZLB equilibrium unless the DNWGR allows escaping from deflation. Furthermore, for $\Pi^* < \beta/\delta$, the output losses caused by the DNWGR are greater, the higher is the inflation target Π^* .

The last result not only contradicts Proposition 4, but it is also the opposite of Proposition 2, which is robust to the specification of the DNWGR. This stark difference between the EMR and SGU models relies on the demand side, not on the different DNWGR. AD^{ZLB} is upward-sloping and steeper than the AS^{WR} in an OLG model because any increase in inflation decreases the real interest rate, spurring demand at the ZLB. Instead, in an infinite-life economy, the real interest rate is given by $1/\beta$, and thus, inflation has to be $\Pi = \beta$ in a ZLB/deflationary equilibrium. The AD^{ZLB} is then flat and thus flatter than the upward-sloping AS^{WR} in Figure 6. As price/wage inflation is β , any attempt to increase the inflation target enlarges the inflation gap, Π/Π^* , and the binding DNWGR dictates higher unemployment in equilibrium. The increase in the inflation target is too timid; hence, unless agents change their expectations by moving to the other TR - FE equilibrium, the ZLB equilibrium survives and worsens.

Our theoretical exercise sheds light on the effect of income policies at the ZLB. Policymakers (see footnote 1) worry that a low inflation environment could unfold into a downward wage-price spiral by feeding into wage dynamics through expectations and formal or informal backward-looking indexation practices. The solution is to break this spiral by "indexing" wages to the target inflation rate, providing a floor to wage inflation.

One way of intuitively grasps the essence of this solution is simply to see it as the reversion of income policies used in the 1980s to "de-index" the economy by breaking the upward wage-price spiral underlying high inflation persistence. This type of income policy was popular at the time, and many cases show that it could be very efficient in disinflating the economy (da Silva and Mojon 2019). The disinflationary experience of Italy in the 1990s provides a clear example of this very same idea, but in opposite direction. While the source of the Italian inflation was the oil crisis(es) of the 1970s, its upward inertia in the following decade resulted from the automatic indexation to the past inflation mechanism, the so-called *scala mobile*. To bring down inflation, Italian institutions put in place a coordinated effort involving exchange rate policies (to enter again the European ERM), monetary restraint, and income policies. In particular, a key cornerstone of this policy mix was the Protocol signed by the employers and trade-union organizations on July 23, 1993. It marked the definite dismantling of the automatic indexation to the past inflation mechanism (scala mobile) replaced, exactly as in our theoretical model, by the targeted inflation by the government (tasso d'inflazione programmato) as a reference for the indexation of collective contracts.¹² Fabiani et al. (1998) showed that the wage moderation induced by the protocol was crucial to attain the disinflationary path (in the sense of gaining from 3% to 5 % less of inflation in 1997), in a period exhibiting two large exchange rate devaluations and where a further tightening of monetary policy would have been very costly and put in danger the process of fiscal consolidation (see also Sergio, Mastromatteo, and Verga 2005, and Casadio, Lamelas, and Rodano 2005).

Having said that, it should be clear that our theoretical solution could suffer of quite serious applicability and implementability issues as a policy proposal in actual economies. First, it requires centralized wage bargaining to impose wage indexation to target inflation, switching from DNWR to DNWGR. This limits the policy's applicability to a small set of countries with such an institutional framework, excluding those where firm-level wage negotiations prevail (low δ). Second, even if wage bargaining is centralized, our analysis is confined to steady state, while we do not say anything about the possible cost of the transition, which to be modeled realistically

^{12.} This protocol implemented the original Ezio Tarantelli's idea for which the young Italian economist was killed by Red Brigades in 1985. As Acocella and Leoni (2007) put it:

He thought that trade unions could play a positive role by agreeing to set wages on the basis of a target rate of inflation. Therefore, they would contribute to economic and social stability through influencing future price expectations, protecting real wages. (p. 1)

534 : MONEY, CREDIT AND BANKING

would require a much richer framework. Third, and related, credibility issues regarding the income policy could arise during the transition. Indeed, the DNWGR can cause lower output in an expectation-driven liquidity trap if it forces the wages to increase, but inflation expectations do not adjust upward, or they do slowly. Hence, if the economy can escape from the ZLB only gradually, as it could happen in a richer model (e.g., including price and wage stickiness), the short-run costs of the transition maybe be so high to undermine the credibility of the reflationary income policy or even to discourage its implementation altogether. Fourth, in an open economy context, wage increases may hurt the international competitiveness of firms, with consequent further employment/output losses and even weaker credibility of the income policy, or, alternatively, international competition might impede the transmission from wage inflation to price inflation, hurting firms' profit margins. Finally, the DNWGR could distort the allocation of labor input, generating misallocation of resources across lowand high-productivity sectors or firms.

ACKNOWLEDGMENTS

Open Access Funding provided by Universita degli Studi di Pavia within the CRUI-CARE Agreement.

LITERATURE CITED

- Acocella, Nicola, and Riccardo Leoni. (2007) Social Pacts, Employment and Growth. A Reappraisal of Ezio Tarantelli's Thought. Heidelberg: Physica-Verlag Heidelberg.
- Arbatli, Elif, Dennis Botman, Kevin Clinton, Pietro Cova, Vitor Gaspar, Zoltan Jakab, Douglas Laxton, Constant Lonkeng Ngouana, Joannes Mongardini, and Hou Wang. (2016) "Reflating Japan: Time to Get Unconventional?" IMF Working Papers 16/157.
- Benhabib, Jess, Stephanie Schmitt-Grohé, and Martin Uribe. (2001) "The Perils of Taylor Rules." *Journal of Economic Theory*, 96, 40–69.
- Bilbiie, Florin O. (forthcoming) "Neo-Fisherian Policies and Liquidity Traps." American Economic Journal: Macroeconomics. https://www.aeaweb.org/articles?id=10.1257/ mac.20200119
- Casadio, Piero, Maria Lamelas, and Giorgio Rodano. (2005) "Cambiamento Istituzionale, Salari e Flessibilitá: L'Esperienza della Concertazione in Italia." *Rivista Internazionale di Scienze Sociali*, 113, 185–214.
- Cuba-Borda, Pablo, and Sanjay R. Singh. (2019) "Understanding Persistent Stagnation." Working Papers 329, University of California, Davis, Department of Economics.
- da Silva, Luiz A. Pereira, and Benoît Mojon. (2019) "Exiting Low Inflation Traps by "Consensus": Nominal Wages and Price Stability." Speech based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, November 28–29, 2019. https://www.bis.org/ speeches/sp191219.htm.

- Draghi, Mario. (2017) "Accompanying the Economic Recovery." Introductory speech at the ECB Forum on Central Banking, Sintra, June 27. https://www.ecb.europa.eu/press/key/date/2017/html/ecb.sp170627.en.html.
- Eggertsson, Gauti, Neil Mehrotra, and Jacob Robbins. (2019) "A Model of Secular Stagnation: Theory and Quantitative Evaluation." *American Economic Journal: Macroeconomics*, 11, 1–48.
- Fabiani, Silvia, Alberto Locarno, Giampaolo Oneto, and Paolo Sestito. (1998) "Risultati e Problemi di un Quinquennio di Politica dei Redditi: una Prima Valutazione Quantitativa." Bank of Italy, Temi di Discussione, No. 329.
- Krugman, Paul. (2014) "The Timidity Trap." The New York Times, March 20. https://www. nytimes.com/2014/03/21/opinion/krugman-the-timidity-trap.html.
- Mertens, Karel, and Morten O. Ravn. (2014) "Fiscal Policy in an Expectations-Driven Liquidity Trap." Review of Economic Studies, 81, 1637–67.
- Schmitt-Grohé, Stephanie, and Martin Uribe. (2016) "Downward Nominal Wage Rigidity, Currency Pegs, and Involuntary Unemployment." Journal of Political Economy, 124, 1466–514.
- Schmitt-Grohé, Stephanie, and Martin Uribe. (2017) "Liquidity Traps and Jobless Recoveries." American Economic Journal: Macroeconomics, 9, 165–204.
- Sergio, Destefanis, Giuseppe Mastromatteo, and Giovanni Verga. (2005) "Wages and Monetary Policy in Italy Before and After the Wage Agreements." *Rivista Internazionale di Scienze Sociali*, 113, 289–318.
- Summers, Lawrence H. (2015) "Demand Side Secular Stagnation." American Economic Review, 105, 60–5.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.