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Abstract. We characterize a class of option pricing models by their algebraic

structure. Option prices are monoids, that is operators endowed with the
commutativity and associativity property and an identity element. If the price

of the underlying asset is bounded, the operator corresponds to the concept

of t-conorm, while if it is defined on the positive real line the operator is a
pseudo-addition. These operators have the same no-arbitrage properties as

the classical option pricing models, but are also associative. Each model in

this class is characterized by a univariate increasing function that is defined
the generator of the model. The generator encodes a synthetic representation

of the probability structure of the underlying asset. We provide no arbitrage

conditions for the generators and practical guidelines to construct them.

1. Introduction. In a recent paper Carr and Torricelli (2021) propose a new
strategy for the evaluation of options. The focus is shifted on a product paying
max(ST ,K), where ST is the price of the underlying asset at maturity time T and
K is the strike price. The product is called a “married put”, because it can be
attained by holding the underlying asset and a put option, or, by put-call parity,
holding a call option and a bond with face value equal to the strike.

The goal is to define a function

EQ(max(S0,K)|Fτ ) = mτ (Sτ ,K) (1)

where EQ(., |Fτ ) denotes the conditional expectation given the information avail-
able τ periods before maturity under the risk neutral measure Q. Note that
our notation substitutes the standard setting EQ(max(ST ,K)|Ft). Then, by put-
call parity the function mτ (Sτ ,K) can be used to price a call option, setting
f(Sτ , τ ;K) = mτ (Sτ ,K)−BτK, where Bτ is the risk-free discount factor for term
τ . The put option is obtained computing p(Sτ .τ ;K) = mτ (Sτ ,K) − SτDτ , where
Dτ is the discounted value of the dividend yield.

Clearly, the price of the married put must abide by specific conditions, the
most important being the requirement that at maturity τ = 0 it must be worth
max(S0,K). Other requirements were first introduced by Merton (1973) who gave
necessary no arbitrage conditions in his theory of rational option pricing. Necessary
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and sufficient conditions were analyzed in Carr and Madan (2005) and Davis and
Hobson (2007).

Here we take an algebraic approach to analyze the features that may be possessed
by the pricing function mτ (S,K). Starting with the standard Black and Scholes
model with zero interest rates and dividend yield, one can show that the price of
the married put is constrained by

max(S,K) ≤ mτ (S,K) ≤ S +K

In this case the bounds are standard aggregation operators, that is the standard
sum and the max(S,K) operator. One is tempted to show under which conditions
the functions mτ (S,K) can be considered pseudo-additions. A pseudo-addition
denotes a general aggregation operator which is increasing in both the arguments
and endowed with the commutative and associative properties. Together with the
definition of an identity element, this denotes a monoid. Formally, a monoid is
defined as (S,⊕), where S denotes a set and ⊕ an operation, with an element e ∈ S
such that x⊕ e = x, ∀x ∈ S.

One can easily show that mτ (x, y) in the Black and Scholes formula is not a
pseudo-addition because it fails to satisfy the associative property. Other models
may instead qualify for a pseudo-addition representation. One is the Dagum option
pricing model proposed by Carr and Torricelli (2021)

mτ (S,K) =
(
S1/bτ +K1/bτ

)bτ
with bτ strictly increasing with limits 0 and 1. It is easy to check that this option
pricing formula has the same properties as the one in the Black and Scholes model,
but is also endowed with the associativity property.

Here we propose a general representation for associative option pricing models.
The associativity property allows for a synthetic and elegant characterization of
each pricing model by an increasing univariate function that is called the generator
of the model. This generator completely encodes the probability structure of the
model.

The structure of the paper is as follows. In section 2 we introduce the topic by
analyzing the algebraic structure of the married put price in the Black and Scholes
model with zero dividends and interest rates. In section 3 we analyze the option
pricing problem in a setting with bounded price of the underlying asset, using t-
conorm operators. In section 4 we extend the analysis to underlying assets with
prices unbounded from above. Section 5 shows how the generator characterizes the
implied probability of the underlying asset. Section 6 gives guidelines and examples
about how to build no-arbitrage option pricing generators. In Section 7 we report
examples of smile functions obtained by several generators. Section 8 concludes.

2. Getting started: Black and Scholes. Here we start our analysis with the
most standard model, assuming no dividend payments and zero risk-free interest
rates. Dropping these assumptions would not materially affect our analysis. In this
setting, the price of the married put option in the Black and Scholes model is

mτ (S,K) = SΦ(dτ + 0.5σ
√
τ) +KΦ(−dτ + 0.5σ

√
τ)
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where S is the price of the underlying asset, K is the strike, τ the time to maturity,
σ is volatility, Φ(x) denotes the standard normal distribution and

dτ (S/K) =
log(S/K)

σ
√
τ

We then restrict our analysis to the algebraic properties of the function

µτ (x, y) = xΦ(dτ (x/y) + 0.5σ
√
τ) + yΦ(−dτ (x/y) + 0.5σ

√
τ)

It is easy to prove that:

Proposition 2.1. The married put price mτ (S,K) in the Black and Scholes model
is endowed with the following properties:

1. commutative: mτ (x, y) = mτ (y, x)
2. increasing in each place: x′ > x, y′ > y implies mτ (x′, y′) ≥ mτ (x, y)
3. 0 is the identity: mτ (x, 0) = x
4. limit at τ = 0: limτ→0mτ (x, y) = max(x, y)
5. limit at τ =∞: limτ→∞mτ (x, y) = x+ y

Proof. We have:

1. From dτ (x/y) = −dτ (y/x):

mτ (x, y) = xΦ(dτ (x/y) + 0.5σ
√
τ) + yΦ(−dτ (x/y) + 0.5σ

√
τ)

= yΦ(dτ (y/x) + 0.5σ
√
τ) + xΦ(−dτ (y/x) + 0.5σ

√
τ)

= mτ (y, x). (2)

2. Trivial.
3. From limy→0 dτ (x/y) = ∞ we get µτ = xΦ(∞) + yΦ(−∞) = x, the rest

follows from the commutativity property.
4. limτ→0 dτ (x/y) = ∞ if x > y, implying mτ (x, y) = x, while x < y leads to

limτ→0 dτ (x/y) = −∞, and mτ (x, y) = y.
5. Since limτ→∞ dτ (x/y) = limτ→∞−dτ (x/y) = 0 we have xΦ(∞) + yΦ(∞) =
x+ y.

Some of the properties above are recognized to be the conditions for rational option
pricing pointed out in Merton (1973). From f(S, τ ;K) = mτ (S,K) − K condi-
tion (3) yields: i) mτ (S, 0) = S = f(S, τ ; 0); ii) f(0, τ ;K) = mτ (0,K) − K = 0.
Moreover, condition (5) yields Theorem 3 in Merton (1973): the value of a per-
petual warrant is f(S,∞;K) = m∞(S,K) − K = S + K − K = S. However,
it is not difficult to find examples in which the perpetual warrant condition is
not required. Instead, the condition (4) is one of the no arbitrage conditions
imposed by Carr and Madan (2005): when the time to maturity tends to zero
the price must converge to the payoff. For call options we have f(S, 0;K) =
limτ→0mτ (S,K) − K = max(S,K) − K = max(S − K, 0). For put options,
p(S, 0;K) = limτ→0mτ (S,K)− S = max(S,K)− S = max(K − S, 0).

Carr and Madan (2005) and Davis and Hobson (2007) stated sufficient conditions
for no arbitrage. Namely, a pricing formula for a call (put) option is arbitrage free
if and only if: i) it is convex and decreasing (increasing) in the strike price with
derivative uniformly bounded below by −1 (above by +1) (no horizontal arbitrage);
ii) increasing with maturity (no vertical arbitrage); iii) the limit of the maturity
tending to 0 is the payoff. We collect all the no arbitrage requirements in the
proposition below:
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Proposition 2.2. In an economy with no dividends and zero interest rates, in order
to avoid arbitrage opportunities the function mτ (S,K) must satisfy the conditions:

1. grounded call and put prices: mτ (S, 0) = S,mτ (0,K) = K;
2. terminal condition: limτ→0mτ (S,K) = max(S,K);
3. avoiding horizontal arbitrage:

0 ≤ ∂mτ (S,K)

∂K
≤ 1; (3)

4. avoiding vertical arbitrage:

0 ≤ ∂mτ (S,K)

∂τ
. (4)

Proof. Condition 1) makes sure that the price of put options be zero when the strike
is zero: mτ (S, 0)−S = 0 and call options must be zero when the underlying is worth
zero: mτ (0,K) −K = 0. Condition 2) is evident. As for the horizontal arbitrage
condition, the price of put option must be increasing in the strike

∂p(S, τ ;K)

∂K
=
∂(mτ (S,K)− S)

∂K
≥ 0

and the price of a call option must be decreasing in the strike

∂f(S, τ ;K)

∂K
=
∂(mτ (S,K)−K)

∂K
=
∂mτ (S,K)

∂K
− 1 ≤ 0

The case of vertical arbitrage avoids calendar arbitrage opportunities.

3. Option pricing generators: Bounded underlying. We now extend
the analysis above to cases in which the hypothesis of the Black and Scholes model
about the dynamics of the underlying asset cannot be maintained. A straightfor-
ward example is when the price of the underlying asset is bounded both from below
and above. This is obviously the case when the underlying asset is a bond. However,
the hypothesis that the price is bounded has been also used in general asset pricing
models: it was made by Long (1990) in the analysis of the numeraire portfolio and
by Carr and Yu (2012) in their proof of the Ross recovery theorem.

If the price of the underlying asset is bounded, we can rescale it without loss
of generality to the unit interval. Keeping in mind Proposition 2.1 it is natural
to revisit the definition of t-conorm. The concepts of t-norm and t-conorm were
first proposed by Menger (1942) and developed by Schweitzer and Sklar (1961) in
their studies of statistical and probability metric spaces. In finance, this concept
has been typically used in the literature on non-additive decomposable capacities
(Chateauneuf, 1996, Cherubini, 1997, Cherubini and Mulinacci, 2020). We report
here the definition:

Definition 3.1. A function ⊥: [0, 1]×[0, 1]→ [0, 1] is called a t-conorm (or s-norm)
if

1. ⊥ (a, b) =⊥ (b, a) for all a, b ∈ [0, 1],
2. it is non-decreasing in each argument,
3. ⊥ (a, 0) = a for all a ∈ [0, 1],
4. ⊥ (⊥ (a, b), c) =⊥ (a,⊥ (b, c)) for all a, b, c ∈ [0, 1].

Moreover, if ⊥ (a, a) > a for all a ∈ (0, 1) then the t-conorm is called Archimedean
and if ⊥ (., .) is strictly increasing in (0, 1)× (0, 1) the t-conorm is called strict.
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Note that the points (1) through (3) of the definition are the same as in Proposi-
tion 2.1. Condition (4) is the associative property, and it is not a property satisfied
by the Black and Scholes algebra. It is then natural to merge them with Proposi-
tion 2.2 to provide an axiomatic characterization of a no-arbitrage option pricing
function.

Proposition 3.2. Assume an underlying asset price S ∈ [0, 1]. Take a function
mτ (x, y) endowed with the following properties

1. mτ (x, y) is an Archimedean t-conorm,
2. terminal condition at τ = 0: limτ→0mτ (x, y) = max(x, y)
3. no horizontal arbitrage:

0 ≤ ∂mτ (x, y)

∂y
≤ 1

4. no vertical arbitrage:

0 ≤ ∂mτ (x, y)

∂τ
Then, mτ (Sτ ,K) is the no-arbitrage price of a married put option.

While all the conditions have been already discussed, it is important to stress the
Archimedean requirement. This is a technical requirement that is quite natural to
impose in an option pricing application, since it amounts to assume that at-the-
money call and put option values must be positive. In fact, we have

f(S, τ ;S) = mτ (S, S)− S = p(S, τ ;S) > 0

for τ > 0 and S ∈ (0, 1). It is clear that if the Archimedean property fails Sτ has
to be a constant.

The Archimedean property, together with the associative property that we in-
cluded using the t-conorm definition, brings an important feature into the picture:
the option pricing generator.

Theorem 3.3. A function ⊥: [0, 1] × [0, 1] → [0, 1] is a continuous Archimedean
t-conorm if and only if there exists a strictly increasing function ψ : [0, 1]→ [0,+∞]
with ψ(0) = 0 such that

a ⊥ b = ψ[−1](ψ(a) + ψ(b))

where ψ[−1] is the pseudo-inverse of ψ defined as

ψ[−1](x) =

{
ψ−1(x), if x ≤ ψ(1)

1, if x > ψ(1)

Moreover, ψ is called the generator of ⊥ and ⊥ is strict if and only if ψ(1) = +∞.

This result is very well known, and was proved for t-norms and t-conorms by
Schweizer and Sklar (1961) and Ling (1965). In this model, all the information
content is contained in a univariate increasing function that we call the option
pricing generator. The generator allows then a characterization of the option pricing
function.

Theorem 3.4. The price of a married put option on a bounded underlying S ∈ [0, 1]
satisfying Proposition 3.2 may be written as:

mτ (S,K) = ψ[−1]
τ (ψτ (S) + ψτ (K))

where ψτ (·) is called the generator of the option pricing model.
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4. Option pricing generators: Underlying unbounded from above. We
now extend the analysis to the case in which the price of the underlying asset
is unbounded from above. Monoids of increasing, commutative and associative
operators defined on the positive real line are called pseudo-additions. The extension
was first proposed by Sugeno and Murofushi (1987). We start with the definition
of pseudo-addition:

Definition 4.1. Given a set S ⊆ [0,∞] a pseudo-addition is an operator ⊕ : S X
S → S which:

1. is commutative: x⊕ y = y ⊕ x
2. is non decreasing in each argument: x′ ≥ x, y′ ≥ y → x′ ⊕ y′ ≥ x⊕ y
3. has 0 as identity item: 0⊕ x = x⊕ 0 = x
4. is associative: x⊕ (y ⊕ z) = (x⊕ y)⊕ z
5. satisfies continuity: xn → x, yn → y implies xn ⊕ yn → x⊕ y.

We are clearly interested in the case S = [0,∞]. The strategy to get there is to
first partition the set [0,∞] into subsets, and on these to define sub-monoids with
respect to ([0,∞],⊕). Then, given further requirements on the operation ⊕ we will
look for a pseudo-addition defined on the whole monoid. We start with the formal
definition of these sub-monoids in Sugeno and Murofushi (1987).

Definition 4.2. Let {(αk, βk) : k ∈ K} be a family of disjoint open intervals in
[0,∞] indexed by a countable set K. For each k ∈ K, associate a continuous and
strictly increasing function

gk : [αk, βk]→ [0,∞].

We say that a binary operation ⊕ has a representation

{〈(αk, βk), gk〉 : k ∈ K}
if and only if

x⊕ y =

{
g
[−1]
k (gk(x) + gk(y)), if (x, y) ∈ [αk, βk]2

max(x, y), otherwise

where g
[−1]
k is the pseudo-inverse of gk defined by

g
[−1]
k (x) = g−1(min(x, gk(βk)))

So, a representation of pseudo-addition can be obtained for every sub-monoid,
along the same lines followed for the bounded case.

Theorem 4.3. A binary operation is a pseudo-addition if and only if it has a
representation {〈(αk, βk), gk〉 : k ∈ K}.

This is all that can be obtained if we stick to the conditions in definition 4.1. In
the general case, then, the best that can be done is to get a set of generators gk.
The representation is largely simplified if we add the Archimedean property. On
this we follow Mesiar and Ribáric (1993).

Definition 4.4. A pseudo-addition on S = [0,∞] satisfies the conditions

1. commutativity: x⊕ y = y ⊕ x
2. non decreasing in each argument: x′ ≥ x, y′ ≥ y → x′ ⊕ y′ ≥ x⊕ y
3. 0 as identity item: 0⊕ x = x⊕ 0 = x
4. associativity: x⊕ (y ⊕ z) = (x⊕ y)⊕ z
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5. continuity: xn → x, yn → y implies xn ⊕ yn → x⊕ y
6. Archimedean property: x⊕ x > x,∀x ∈ (0,∞)
7. finite sum of finite elements: if x <∞ and y <∞ then x⊕ y <∞.

We can now prove the result that we are going to use.

Theorem 4.5. A binary operation ⊕ on [0,∞] is a pseudo-addition if and only if
there exists a continuous and strictly increasing function

g : [0,∞]→ [0,∞]. g(0) = 0 g(∞) =∞
such that

x⊕ y = g−1(g(x) + g(y)) for every x, y ∈ [0,∞]

Proof. The proof is in Mesiar and Ribáric (1993), but we give here a sketch of it
because it clarifies what is going on.

1. By theorem 4.3 the solution must have the {〈(αk, βk), gk〉 : k ∈ K} rep-
resentation. Then, we must study the set K. If K = ∅, we have x ⊕
y = max(x, y),∀x, y, that violates the Archimedean property. Moreover, the
Archimedean property is also violated at all points αk, βk except α1 = 0
and β1 = ∞. Then, the set K is a singleton identifying a single function:
{〈(0,∞), g〉}. The function is of course unique up to multiplication by a pos-
itive constant.

2. By contradiction we prove that it cannot be: g(∞) = M < ∞. If this
is the case one may in fact find u such that 2g(u) > M . Then, u ⊕ u =
g[−1](2g(u)) =∞ violates condition (7) in Definition 4.4 which would require
instead u⊕ u <∞.

3. The direct part can be easily proved verifying that the function x⊕ y satisfies
all the conditions for a pseudo-addition.

Note that the Archimedean property allows to identify a single monoid ([0,∞],⊕)
associated to a single function g, unique up to multiplication by a positive constant.
Without the Archimedean property, then, we would remain with an arbitrary set
of sub-monoids. We remind that this is not at all a restriction in our application,
since the Archimedean property is a requirement to ensure positive at-the-money
option prices. We also note a difference with respect to the case in which the price
of the underlying is bounded. The pricing function is strictly increasing and the
generator is always strict.

We are now in a position to characterize the set of option prices.

Proposition 4.6. Assume an underlying asset price S ∈ [0,∞]. Take a function
mτ (x, y) endowed with the following properties:

1. mτ (x, y) is an Archimedean pseudo-addition;
2. boundary condition at τ = 0: limτ→0mτ (x, y) = max(x, y)
3. no horizontal arbitrage:

0 ≤ ∂mτ (x, y)

∂y
≤ 1;

4. no vertical arbitrage:

0 ≤ ∂mτ (x, y)

∂τ
.

Then, mτ (Sτ ,K) is the no arbitrage price of a married put.
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Finally, we can provide a general characterization for married put prices in this
set of models in terms of generators:

Theorem 4.7. The price of a married put option on an unbounded underlying S
in ∈ [0,∞] satisfying Proposition 4.6 is given by:

µτ (S,K) = g−1τ (gτ (S) + gτ (K))

where gτ (·) is called the generator of the option pricing model.

5. Generators and implied probabilities. If option prices can be uniquely rep-
resented by generators, they encode all the information about the model, that is
the probability distribution of the underlying asset. This can be easily extracted
using to the seminal paper by Breeden and Litzenberger (1978).

As it is well known, the probability distribution implied by a set of no-arbitrage
prices of options can be recovered as the limit of call and put spreads, corresponding
to the derivative of the option price with respect to the strike price. Coherently,
the density is recovered as the limit of butterfly spreads, that is the second deriv-
ative of option prices. In our setting, in which prices are completely determined
by generators, the probability distribution is also completely determined by them.
Moreover, writing the distribution in terms of generators would allow us to identify
the requirements needed for a monoid to be a consistent arbitrage free option price
and for the corresponding generator to be eligible as an option pricing generator.

Formally, let us assume that the price of a married put could be written as

mτ (Sτ ,K) = g−1τ (gτ (Sτ ) + gτ (K))

Then, the cumulative probability distribution (CPD) of the underlying asset S at
maturity can be recovered from

Qτ (S0 ≤ K) =
∂mτ (Sτ ,K)

∂K
=

g′τ (K)

g′τ (mτ (Sτ ,K))

where g′τ (·) denotes the first derivative of gτ (·). If we assume that the generator is
twice differentiable, the density is given by the second derivative of mτ (Sτ ,K) and
we compute:

∂2mτ (Sτ ,K)

∂K2
=

g′′(K)

g′τ (mτ (Sτ ,K))
− (g′τ (K))

2 g′′τ (mτ (Sτ ,K))

g′τ (mτ (Sτ ,K))3

=
g′τ (K)

g′τ (mτ (Sτ ,K))

(
g′′τ (K)

g′τ (K)
− g′τ (K)

g′τ (mτ (Sτ ,K))

g′′τ (mτ (Sτ ,K))

g′τ (mτ (Sτ ,K))

)
= Qτ (S0 ≤ K)

(
g′′τ (K)

g′τ (K)
−Qτ (S0 ≤ K)

g′′τ (mτ (Sτ ,K))

g′τ (mτ (Sτ ,K))

)
where g′′τ (·) denotes the second derivatives of gτ (·).

Having characterized the implied probability distribution of the underlying asset
we can gather all the results to ensure that the generator used in the pricing model
satisfies the no-arbitrage requirement. The conditions are reported in the theorem
below.

Theorem 5.1. A function gτ (x) satisfies the no arbitrage conditions in Theorem
8.1 if the following conditions hold:

1. gτ (x) is a smooth pseudo-addition generator;
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2. for any x < y

lim
τ→0

gτ (x)

gτ (y)
= 0 (5)

3. the function 1/g′τ (x) is convex
4. for τ1 > τ2 we have gτ1(x) > gτ2(x)

The proof is reported in Appendix. It is quite intuitive that condition 2) restricts
the choice of generators to make sure that the married put option converges to its
payoff at maturity. Moreover, the Breeden and Litzenberger approach suggests that
the smoothness requirement in condition 1) and the convexity condition 3) have to
do with implied probability. Finally, condition 4) is clearly linked to the vertical no
arbitrage condition.

6. How to build generators. Here we give practical guidelines and examples
of option pricing generators and models based on them. We have already made
clear that not all increasing functions are eligible as option pricing generators. For
example, G(x) = log(x) is a generator of the monoid ([0,∞], x× y). Of course, this
cannot work as a generator for a pseudo-sum. In fact, the range of the function
is the whole real line instead of the positive part of it (see Theorem (4.5)). The
question is whether and how this generator of a product can be turned into the
generator of a sum. A first suggestion comes from the observation that the identity
element of the product is e = 1 and that log(x + 1) qualifies as the generator of
a pseudo-sum. Moreover, it is clear that if a function qualifies as a generator of a
sum, its exponentiation to a proper exponent may maintain that property.

Here we give guidelines to transform a generator into an option pricing generator.
In practice, we introduce two operations on the generator to satisfy the no arbitrage
requirements:

1. shift the identity element of a generator: given a generator G(x) with G(e) = 0
we define a generator g(x) with g(0) = 0

2. power of a generator: given a generator G(x) we define g(x) = G(x)1/θ

We start defining the identity-shifting operation:

Proposition 6.1. Given an Archimedean monoid (S,⊕), S ⊆ [0,∞] with generator
G(x), and identity element e, the function g(x) = G(x+ e) generates a monoid with
identity element 0 and operation ⊕ defined as

x⊕ y = G−1(G(x+ e) + G(y + e))− e (6)

Proof. If y = 0, from G(e) = 0 we have G−1(G(x+ e))− e = x.

We now address the problem of exponentiation of the generator to make it consistent
with the boundary condition max(S,K).

Proposition 6.2. Assume an Archimedean monoid (S,⊕), S ⊆ [0,∞] with genera-
tor G(x), and identity element e, and a function 1/bτ , bτ ∈ (0, 1], strictly increasing
in τ and such that limτ→0 bτ = 0. Then

mτ = G−1
(
G(S + e)1/bτ + G(K + e)1/bτ

)bτ
− e (7)

is the no-arbitrage price of a European married put option.



OPTION PRICING GENERATORS 159

Proof. First, using proposition 6.1 it is clear that the identity element of the monoid
is 0. Then, we can assume e = 0 without loss of generality and prove:

lim
bτ→0

mτ (S,K) = max(S,K)

From

lim
bτ→0

(
G(S)1/bτ + G(K)1/bτ

)bτ
= max(G(S),G(K))

it follows

lim
bτ→0

mτ (S,K) = lim
bτ→0

G−1
(
G(S)1/bτ + G(K)1/bτ

)bτ
= G−1(max(G(S),G(K))

= max(S,K)

Note that the case G(x) = x gives the conjugate Dagum model used in Carr and
Torricelli (2021).

A technical point that needs to be addressed is when the exponentiation is ap-
plied to a generator that may take values in the negative region. This is hardly the
case in standard option pricing applications, when the price is defined over positive
values and the generator is shifted so that it cannot produce negative values (set-
ting G(x + e) in place of G(x)). Nevertheless, the problem may emerge in option
pricing applications in which the underlying can take negative values. Examples
are options on interest rates, that in the European market have taken on negative
values for quite a long time, or derivatives on correlation, that can take values in
[−1, 1]. And moreover, the problem of well-defined exponentiation of a monoid gen-
erator is an interesting and challenging task in itself. If the generator g(x) has a
symmetric structure for positive and negative values, a natural way to perform this
extension would be to make sure that the exponentiation distortion would preserve
such symmetry. We would call this operation: flipping of the generator. The oper-
ation would consist in pasting the value on the positive axis on the corresponding
value of the negative part.

Of course, it is clear that in order to define the flipping operation we should
first define how to map any point of the positive range of the generator on the
corresponding points in the negative region. This we do in the following definition
of symmetry of a generator.

Definition 6.3. A generator G(x), x ∈ S is symmetric if:

1. there exists e ∈ S such that G(e) = 0;
2. there exists a function f(x) such that: i) f(e) = e; ii) G(f(x)) = −G(x).

Based on this we can then extend the exponentiation operation over negative
values as follows:

Definition 6.4. Given a generator G(x), G(e) = 0, x, e ∈ S, symmetric around e
with function f(x) we define the Power Generator G(x)[1/b]as

G(x)[1/b] =

{
G(x)1/b, x ≥ e

−
(
G(f(x))1/bτ

)
, x < e

(8)
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6.1. Power of Lamperti transforms. As a first example of how to build an
option pricing generator, we resort to Lamperti transform. We first remind that the
Lamperti transform is the operator that applied to a Ito process reduces it to a unit
variance arithmetic Brownian motion.

Definition 6.5. Given a Ito process (xt)t with diffusion term given by the function
a(xt) the Lamperti transform is defined as

G(x) =

∫ x 1

a(u)
du (9)

so that the process G(xt) is an Ito process such that

dG(xt) = drift + dWt

where Wt is a Wiener process.

Note that the transformation changes the drift of the Ito process, but this is
not the focus of our analysis. Our goal here is to use the transform G(x) as an
option pricing generator, defining g(x) = G(x + e)1/bτ , bτ ∈ (0, 1]. Since Lamperti
transforms yield a Wiener process under a suitable change of measure, they are
clearly symmetric around a suitable function f(x), as the following examples show.

Example 6.6. Assume a(x) = x, x ∈ (0,∞) so that the Ito process is a geometric
Brownian motion. It is very well known that in this case the Lamperti transform
is G(x) = log(x). We then have e = 1 and f(x) is given by

f(x) = G−1(−G(x)) = exp(− log(x)) =
1

x

Example 6.7. Assume a(x) = x(1− x). Then, the Lamperti transform is

G(x) = log

(
x

1− x

)
and it is clear that e = 1/2. As for the function f(x), we compute

G−1(y) =
1

1 + exp(−y)

and

f(x) = G−1(−G(x)) =
1

1 + exp(log( x
1−x ))

= 1− x

6.2. Archimedean copula generators. Generators are used in copula theory in a
set of models called Archimedean copula functions (see Nelsen, 2006 and Cherubini
et al. 2004 for applications in finance). The structure of this class of copulas is in
fact given by

C(x, y) = φ−1(φ(x) + φ(y)) (10)

with x, y ∈ [0, 1]. It is well known that x, y represent uniform random variables and
the function C(x, y) is the corresponding joint distribution. The function φ(·) is
called the generator of the copula function. It is a decreasing convex function with
φ(0) = 1 and φ(∞) = 0. Clearly, from an algebraic point of view, an Archimedean
copula function is a commutative and associative operation with identity element
e = 1. We may then wonder whether these functions could be used as option pricing
generators. We first observe that the identity element e should be changed from 1 to
0. The other problem is that the maximum copula function is min(x, y) while we are
interested in a sequence of functions reaching max(x, y). For underlying bounded in
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[0, 1] there is a well known result that allows to achieve a suitable generator. This is
known as Generalized De Morgan Law, that gives a link between t-norms (of which
Archimedean copula functions are a special case) and t-conorms, that are option
pricing generators as discussed in section 3.

Theorem 6.8. Given a t-norm t(x, y), x, y ∈ [0, 1] the function

x⊕ y = 1− t(1− x, 1− y) (11)

is a t-conorm.

We remind that t-norms are defined just like t-conorms in definition 3.1, with the
difference that the identity element is 1 instead of 0. Moreover, it can be checked
that min(x, y) is a t-norm, and the dual t-conorm is max(x, y). So, the Generalized
De Morgan Law delivers all the changes needed to transform a t-norm, and a copula
function, into an option pricing generator. It is also possible to establish a link
between the generator of the t-norm (and the copula) and the t-conorm (and the
option pricing generator). More specifically, it is easy to check that if φ(x) is the
generator of the copula function, ψ(x) = φ(1− x) is the generator of the t-conorm.

Here we want to carry out a parallel analysis for the case in which the underlying
is unbounded from above. A casual observation of standard Archimedean copulas
reveals that the same link between copula and t-conorms can be extended to the
positive real line as follows

Proposition 6.9. Denote Cθ(u, v) an Archimedean copula function with generator
φ(x) indexed by a parameter θ such that limθ→θ∗ Cθ(x, y) = min(x, y). Assume
S,K ∈ [0,∞]. Then,

lim
θ→θ∗

S ⊕θ K = Cθ

(
1

S + 1
,

1

K + 1

)−1
− 1 (12)

with generator

g(x) = φ

(
1

x+ 1

)
(13)

is a pseudo-addition.

Proof. First note that with limθ→θ∗ Cθ(x, y) = min(x, y) we have

x⊕ y =
1

min
(

1
x+1 ,

1
y+1

) − 1

=
1
1

max(x+1,y+1)

− 1

= max(x+ 1, y + 1)− 1 = max(x, y)

As for the generator:

g(x) = φ

(
1

x+ 1

)
we have

g−1(s) =
1

φ−1(s)
− 1

We then compute

x⊕ y = g−1(g(x) + g(y))
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=
1

φ−1
(
φ
(

1
x+1

)
+ φ

(
1
y+1

)) − 1

= Cθ

(
1

x+ 1
,

1

y + 1

)−1
− 1.

It may be appropriate to give a clarification of the reason why we need to include
a limit with respect to the parameter θ requiring that the copula functions reaches
its maximum value min(x, y). The reason is that this limit is not defined for all
copula functions. For cases in which the maximum copula is not reached the pseudo-
sum generator cannot reach max(x, y) and one of the no arbitrage conditions is not
satisfied.

We give here examples of these generators using the most popular Archimedean
copula functions.

Example 6.10. Consider Gumbel-Hougaard copula with generator:

φ(x) = (− log x)
θ

with θ ∈ [1,∞). Then,

g(x) = (log(x+ 1))
θ

g−1(s) = exp
(
s1/θ

)
− 1.

We then have

x⊕ y = exp
((

(log(1 + x))θ + (log(1 + y))θ
)1/θ)− 1.

Note that setting b = 1/θ this gives

x⊕ y = exp

((
(log(1 + x))1/b + (log(1 + y))1/b

)b)
− 1

with b ∈ (0, 1] that is the same generator obtained by exponentiation of the Lamperti
transform of a Geometric Brownian Motion.

Example 6.11. The Clayton copula is characterized by the generator

φ(x) =
x−θ − 1

θ

with θ ∈ [−1,∞]. Then,

g(x) =
(x+ 1)θ − 1

θ
g−1(s) = (1 + θs)1/θ − 1.

Note that this generator may be also considered as the logarithm in Tsallis algebra
(Tsallis, 1988). For this reason we call this model Clayton-Tsallis. We then have:

x⊕ y =
(
(x+ 1)θ + (y + 1)θ − 1)

)1/θ − 1.

Table 1. Models
Generator Married Put Implied Probability

gτ mτ Qτ (S0 ≤ K)

x1/bτ
(
S1/bτ +K1/bτ

)bτ (
1 +

(
S
K

)−1/bτ)1−bτ
(log(x+ 1))1/bτ exp

((
(log(1 + S))1/bτ + (log(1 +K))1/bτ

)bτ)− 1
(

log(K+1)
log(mτ+1)

)1/bτ−1
mτ+1
K+1

(x+1)bτ−1
bτ

(
(S + 1)bτ + (K + 1)bτ − 1)

)1/bτ − 1
(
K+1
mτ+1

)bτ−1
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6.3. Hybrid models: Black-Scholes-Dagum. It is now time to compare the
associative option pricing models, for which an option pricing generator exists, and
the standard Black and Scholes model. Moreover, we can show that generators can
be applied to other models, including the Black ad Scholes one.

Associative married put option pricing models share the representation

mτ (S,K) = g−1τ (gτ (S) + gτ (K))

where g(·) is an increasing function (strictly increasing if the function is in [0,∞]).
Note that the common feature of these models is that there exists a transfor-

mation of the married put price mτ that yields a linear relationship to the same
transformation of the variables S and K. Formally,

gτ (mτ (S,K)) = gτ (S) + gτ (K)

Let us now compare this structure with the Black and Scholes formula:

mτ (S,K) = SΦ(dτ + 0.5σ
√
τ) +KΦ(−dτ + 0.5σ

√
τ)

with

dτ (S/K) =
log(S/K)

σ
√
τ

It is clear that this function cannot be directly re-conducted to an associative func-
tion in S and K in [0,∞]. However, a closer inspection at the pricing formula shows
that it can be seen as associative on a set of functions of S and K. In fact, defining
the function

Dτ (x) = xΦ
(
dτ (x/y) + 0.5σ

√
τ
)

we note that the Black and Scholes married put price can be written

mτ (S,K) = Dτ (S) +Dτ (K)

This derives from the function

µτ (y) = xΦ(dτ (x/y) + 0.5σ
√
τ) + yΦ(−dτ (x/y) + 0.5σ

√
τ)

and −d(x/y) = d(y/x). The financial meaning of the representation is very well
known: Dτ (S) is the price of an asset-or-nothing (AoN) digital option and Dτ (K)
is the price of a cash-or-nothing (CoN) digital option paying K dollars.

As for the algebraic properties of the married put function, we note that the
Black and Scholes function is commutative in Dτ (x). Moreover, it is clear that it
is additive in the digital prices with generator g(x) = x. It then makes sense to
conceive that the pseudo-addition version of the Black and Scholes formula could
be extended to other generators:

mτ (S,K) = g−1 (g(Dτ (S)) + g(Dτ (K)))

Note that this representation extends the linear no-arbitrage representation of
options in terms of AoN and CoN digital options. As a representative element of
this hybrid class of models, it is natural to nest the Black and Scholes model in the
Dagum one.

Proposition 6.12. The Black-Scholes-Dagum model is defined as

mτ =
(
Dτ (S)1/b(τ) +Dτ (K)1/b(τ)

)b(τ)
(14)

with

Dτ (x) = xΦ
(
dτ (x/y) + 0.5σ

√
τ
)
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Figure 1. Smiles: comparison of models. Short Term-Low Volatility

dτ (x/y) =
log(x/y)

σ
√
τ

with b(τ) increasing in [0, 1] and σ ∈ (0,∞). The Black and Scholes model is
obtained with b(τ) = 1,∀τ and the Dagum model is obtained as σ → 0 or σ →∞.

7. Three examples. Here we give three examples of models characterized by gen-
erators. Please consider that this is not meant to be a full-fledged empirical analysis
of these option pricing models, but just a first attempt to understand the possible
shapes of smile functions that can be generated. It is only for the sake of realism
that we calibrate the models on the at-the-money value of traded options in a trad-
ing day. The models were calibrated on the one year maturity option on the Italian
FTSE-MIB stock index. The first model considered is the Dagum model. The other
two are those proposed in the previous section: one is the logarithm exponentiated
in model 6.10 and the other is the logarithm in the Tsallis algebra, model 6.11.
Details of the models are reported in Table 1. The models are compared with the
Black and Scholes and all of them are calibrated to have the same value for the
at-the-money option.

The comparison of the models is reported in Figure (1) in terms of implied
volatilities. The parameter bτ generates a smile for all the models. The Dagum and
Tsallis-Clayton models produce results that are very similar, with a smile curve
that is steeper for the lower tail than for the upper tail. The smile of the power-log
model lies below the Dagum model in the lower tail, and above it in the upper tail.

An interesting question is how the shape of the smile would evolve with maturity.
Figure (2) reports the smiles for the Dagum and the power of log model for a value of
the parameters three times higher, corresponding to a value of integrated variance in
the Black and Scholes model equal to 0.581424. We note that while the shape of the
smile for the Dagum model remains about the same as that for the shorter maturity,
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that one of the power of log model is substantially different. More precisely, it is
shifted well below the Dagum smile for the out-of-the money part of the curve and
above the line for in-the-money options. In other words, the smile of power-log is
rotated while being shifted up, while the Dagum model is only shifted up. In this
sense, the Dagum model represents a natural extension of the Black and Scholes
model, with the difference that the smile is not flat.

8. Conclusions. In this paper we have characterized a class of option pricing mod-
els that are completely described by a one-place increasing function grounded at
zero, called the generator of the option pricing model. The analysis of this gener-
ator is made possible by focusing on the pricing function of a married put option,
that is a position consisting of the underlying and a protective put. The task is
then to find a set of functions that evolve towards the payoff function max(S,K)
at maturity.

Existence of the generator is granted if one assumes that this pricing function is
commutative, associative and Archimedean. The Archimedean assumption is par-
ticularly relevant in the option pricing application, because it amounts to requiring
that at-the-money options must have positive value. Violation of this assumption
would result in a degenerate distribution. So, under the assumption that the price
of the underlying is bounded, without loss of generality in [0, 1] the option pricing
formula is a t-conorm, while if the underlying is in [0,∞] the option pricing formula
is a pseudo-addition. In both cases, the pricing functions admit the existence of an
option pricing generator.

We showed how to select generators compliant with the no-arbitrage require-
ments. In particular, we showed that using exponentiation of some well known
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generators found in stochastic process theory (Lamperti transform), or in multivari-
ate distribution theory (Archimedean copula functions generators) can be suitably
adjusted to give possible candidates for an option price generator.

Once the option pricing generator, the information concerning the risk-adjusted
density of the underlying asset is completely encoded in the option pricing gen-
erator, and can be recovered using the standard Breeden and Litzenberger (1978)
machinery. Cumulative distribution and probability density functions are written
in terms of first and second derivatives of the option pricing generators.

We provide examples of option pricing generator comparing the power generator
using the power function, leading to the Dagum distribution, a generator using
exponentiation of the logarithm function, and one using the Tsallis definition of the
logarithm in the q-algebra. The difference between the Dagum and the power of
log models is getting larger for longer maturities. In particular, the Dagum model
preserves about the same smile shape for different maturities, while the power of
log model exhibits a twist.

Appendix. Here we give proof of Theorem (5.1). The theorem is proved by the
following lemmas. We give credit to Lin Yang for most of this proof, that we
embedded in our monoid generator analysis. We start writing the option pricing
function and the no-arbitrage requirements in terms of the generator.

Theorem 8.1. Let us define a monoid ([0,∞],⊕) where ⊕ is an Archimedean
pseudo-addition with generator gτ (x), continuous and twice differentiable. Then,
the function

mτ (Sτ ,K) ≡ Sτ ⊕K = g−1τ (gτ (S) + gτ (K)) (15)

denotes the arbitrage free value of a European married put option written on the
underlying S with strike price K and time to maturity τ if an only if it satisfies the
following:

1. terminal condition:

lim
τ→0

g−1τ (gτ (Sτ ) + gτ (K)) = max(S0,K) (16)

2. horizontal arbitrage condition:

∂mτ (Sτ ,K)

∂K
= Qτ (S0 ≤ K) =

g′τ (K)

g′τ (mτ (Sτ ,K))
≤ 1 (17)

∂2mτ (Sτ ,K)

∂K2
= Qτ (S0 ≤ K)

(
g′′τ (K)

g′τ (K)
−Qτ (S0 ≤ K)

g′′τ (mτ (Sτ ,K))

g′τ (mτ (Sτ ,K))

)
> 0

(18)

3. vertical arbitrage condition: gτ (·) must be such that for any τ1 > τ2 ≥ 0:

mτ1(S,K) > mτ2(S,K) (19)

Now we report a set of lemmas linking the requirements in Theorem (8.1) with the
conditions in Theorem (5.1).

Lemma 8.2. If gτ (x) is a smooth generator of a pseudo-addition (condition 1 and
condition 2 in Theorem (5.1)) holds, then

lim
τ→0

mτ (x, y) = max(x, y)
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Proof. First, remind that g(x) is positive and increasing, and g−1τ (x) is also increas-
ing, being the generator of a pseudo-addition (Theorem 4.5). Now, set δ > 0 and
y > x > 0. Condition 2) gives

lim
τ→0

gτ (y)

gτ (y + δ)
= 0

and

lim
τ→0

gτ (x)

gτ (y + δ)
= 0

from which

lim
τ→0

gτ (x) + gτ (y)

gτ (y + δ)
= 0

So, for all δ > 0, y > x > 0, and for any ε > 0 there exists τ0 such that for τ < τ0∣∣∣∣gτ (y) + gτ (x)

gτ (y + δ)

∣∣∣∣ < ε

Since g(x) is positive, we get, for ε = 1

gτ (x) + gτ (y) < gτ (y + δ)

and
gτ (y) < gτ (x) + gτ (y) < gτ (y + δ)

Since g−1τ (·) is increasing, we obtain

y < g−1τ (gτ (x) + gτ (y)) < y + δ

So, for all δ > 0 there exists τ < τ0 such that:∣∣g−1τ (g(x) + g(y))− y
∣∣ < δ

and we have proved
lim
τ→0

g−1τ (g(x) + g(y)) = y > x

Lemma 8.3. Condition 2) in Theorem (5.1) implies that g(x) is convex.

Proof. By contradiction, assume that, there exist y > x and t ∈ (0, 1) such that for
all τ > 0

gτ (tx+ (1− t)y) > tgτ (x) + (1− t)gτ (y)

Since gτ (x) is positive,

gτ (tx+ (1− t)y)

gτ (y)
>
tgτ (x) + (1− t)gτ (y)

gτ (y)

Applying condition 2, and reminding y > x we obtain

lim
τ→0

gτ (tx+ (1− t)y)

gτ (y)
= 0,

but the same condition yields

lim
τ→0

tgτ (x) + (1− t)gτ (y)

gτ (y)
= 1− t > 0,

a contradiction.

Lemma 8.4. If mτ (x, y) ≡ g−1τ (gτ (x)+gτ (y)), condition 2 in Theorem (5.1) implies

0 ≤ ∂mτ (x, y)

∂y
≤ 1 (20)
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Proof. First, we compute the derivative of inverse function

∂mτ (x, y)

∂y
=

g′τ (y)

g′τ (mτ (x, y))

and since g′τ (·) is positive we have

∂mτ (x, y)

∂y
≥ 0

Next, from Lemma 8.3 we have that g(·) is convex, so that g′(·) is increasing. So,
from mτ (x, y) ≥ y, we obtain

∂mτ (x, y)

∂y
=

g′τ (y)

g′τ (mτ (x, y))
≤ 1

Lemma 8.5. mτ (x, y) is convex in y if and only if 1/g′τ (·) is convex (condition 3
in Theorem 5.1).

Proof. From

∂mτ

∂y
=

g′τ (y)

g′τ (mτ )

we compute

∂2mτ (x, y)

∂y2
=
g′′τ (y)g′τ (mτ )− g′τ (y)(∂g′τ (mτ )/∂y)

[g′τ (mτ )]2
.

The condition for convexity then is

g′′τ (y)g′τ (mτ )− g′τ (y)
∂g′τ (mτ )

∂y
≥ 0

This can be written a

g′′τ (y)g′τ (mτ )− g′τ (y)g′′τ (mτ )
∂mτ

∂y
≥ 0

from which

g′′τ (y)g′τ (mτ )− g′τ (y)g′′τ (mτ )
g′τ (y)

g′τ (mτ )
≥ 0.

This yields the condition:

g′′τ (y)

[g′τ (y)]2
≥ g′′τ (mτ )

[g′τ (mτ )]2
.

Since mτ ≥ y this implies that the function

g′′τ (z)

[g′τ (z)]2

must be decreasing. But since we have

∂(1/g′τ (z))

∂z
= − g′′τ (z)

[g′τ (z)]2

the function 1/g′τ (z) must be convex. The same proof can be run backward.

Lemma 8.6. If τ1 > τ2, mτ1 > mτ2 iff gτ1(z) > gτ2(z),∀z.
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Proof. First note that gτ1(·) Q gτ2(·) implies

gτ1
(
g−1τ2 (z)

)
Q gτ2

(
g−1τ2 (z)

)
= z

Now if mτ1(x, y) > mτ2(x, y) for τ1 > τ1 we have

gτ1(mτ1(x, y)) = gτ1(x) + gτ1(y)

> gτ1 (mτ2(x, y))

= gτ1
(
g−1τ2 (gτ2(x) + gτ2(y))

)
> gτ2(x) + gτ2(y)

which implies gτ1(·) > gτ2(·).
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