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Abstract. In this paper, after a review of the most common financial strategies and
products that insurance companies use to hedge catastrophic risks, we study an option
pricing model based on processes with jumps where the catastrophic event is captured by
a compound Poisson process with negative jumps. Given the importance that catastrophe
equity put options (CatEPuts) have in this context, we introduce a pricing approach that
provides not only a theoretical contribution whose applicability remains confined to purely
numerical examples and experiments, but which can be implemented starting from real
data and applied to the evaluation of real CatEPuts. We propose a calibration framework
based on historical log-returns, market capitalization and option implied volatilities. The
calibrated parameters are then considered to price CatEPuts written on the stock of the
main Italian insurance company over the high volatile period from January to April 2020.
We show that the ratio between plain-vanilla put options and CatEPuts strictly depends
on the shape of the implied volatility smile and it varies over time.

Keywords: catastrophe equity put options, variance gamma, compound Poisson, double-
calibration.

1



1 Introduction

Natural disasters are extreme events with concentrated impact, in space and time, greatly 
exceeding human expectations in terms of magnitude and frequency and having profound 
consequences on the socio-economic system (Turner [1976]). Because of the extent of this 
damage, natural disasters are associated with catastrophic risks. Numerous statistics 
show the greater frequency of natural disasters. The recent increase would seem to be 
caused mainly by two factors: (i) climate change and (ii) an increase in the level of 
urbanization of the population (Charpentier [2008] and Kunreuther and Kerjan [2013]). 
As a direct consequence, individuals become aware that they are more likely to face 
catastrophic risks and, for this reason, there is a growing need for financial instruments to 
cover the damages associated with these natural disasters.

Financial instruments for the management of disaster risk have been widely discussed 
in the literature (see Linnerooth-Bayer and Hochrainer-Stigler [2015]). Freeman et al.
[2003] and Cardenas et al. [2007] studied how developing countries can transfer part of 
their public-sector natural catastrophe risk to the international reinsurance and capital 
markets. Jongman et al. [2014] presented a model to assess the flood risk and they 
discussed the feasibility of flood risk management policies in the European Union.

In 2017, the economic damage associated with natural disasters worldwide exceeded 
300 billion dollars, of which almost 90% related only to climate events. In the same year, 
the incidence of insurance coverage, on a global scale, expressed as the ratio between the 
share of the insured damage and total declared damage, however, rose slightly more than 
40%.

In many countries the management of catastrophic risks has always been entrusted 
exclusively to the State, which acts as an ex-post guarantor of last resort and therefore 
willing to take responsibility for remedying the damage. In any case, the demand for 
precautionary measures against natural risks requested from the State by individuals is 
marked by a moral hazard problem that induces subjects to request public intervention 
ex-post rather than adopting ex-ante prevention measures. This behavior is, in fact, what 
has led to a low diffusion of insurance coverage in the past.

The diffusion of insurance policies covering catastrophic events, in addition to being 
infrequent, is also characterized by a problem of adverse selection of policyholders. Indeed, 
only those most exposed to the risk of natural disasters have requested these forms 
of protection (Bantwal and Kunreuther [2000]). This inevitably leads to a significant 
increase in insurance premiums and, as a consequence, in the costs of insurance coverage. 
It should, therefore, come as no surprise that the end result has been, in fact, the creation 
of a vicious circle of excessively high insurance premiums and low demand for individual 
coverage and thus, in other words, an insurance market failure in this particular sector 
(Akerlof [1970]).

In order to break this vicious circle, several authors (Hudson et al. [2014] and Mysiak 
and Pérez-Blanco [2016]) have also proposed public intervention that will take on a con-
siderable part of the insurance premiums (e.g., through tax relief and subsidized loans) to 
reduce the individual cost of insurance coverage. In particular, Mysiak and Pérez-Blanco 
[2016] proposed a classification of the different forms of partnership between the State 
and insurance companies on the basis of three aspects: (1) robust or poor regulation of 
the insurance market by the public operator; (2) mandatory nature of insurance coverage;
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(3) possibility that policyholders cover part of the risk (mutuality) inversely related to 
the amount of insurance premiums.

At the moment, (a) countries like France, Switzerland, Spain, Chile and New Zealand 
are characterized by massive state intervention, by compulsory insurance coverage with 
premiums set by law and strong mutuality, (b) countries like Japan and Turkey see a 
lower incidence of aspects 2 and 3 and (c) countries like the United Kingdom and the 
United States are characterized by a weaker presence of the State in the sector, and by the 
non-mandatory nature of insurance coverage with premiums that are no longer constant, 
but calculated from time to time according to the level of risk to be managed.

The reasons for this differentiation in the diffusion of insurance risk management tools 
to protect against natural disasters are varied and complex. Among these, regulation, the 
presence–absence of insurance systems that provide for the participation of the State, the 
nature of the catastrophic risks to be insured, and the culture in the field of prevention 
must certainly be included. The current ex-post method of state intervention in the 
management of catastrophic risk is in any case increasingly unsustainable as well as 
economically inconvenient.

In the face of these shortcomings, the need for proper risk management practices in 
the field of natural disasters is bound to emerge to reduce the degree of exposure of 
families and businesses to these risks (OECD [2010]).

In this context, the aforementioned awareness of individuals in facing catastrophic 
risks is greater, as is their need to pay something to protect themselves from the resulting 
harmful repercussions. Hence, the timid, constant public demand for insurance products 
aimed at covering the risks in question has increased, especially in some countries of the 
world. The transfer of catastrophic risk to the insurance industry is now a widespread 
practice in certain countries particularly vulnerable to natural risks such as Japan, New 
Zealand, California, Turkey, Israel, Mexico, Chile and, among European countries, in 
France, Spain, Belgium, Greece, Switzerland, Germany, Netherlands, Austria and Poland, 
although with different methods, timings and technical formulas. It is still a limited 
phenomenon in Italy, considering the substantial increase in natural disasters that have 
occurred in recent years.

The greater availability of data and mathematical models capable of more realistically 
estimating expected damages is strengthening the supply of such products marketed by 
insurance intermediaries, due to the possibility of being able to identify more appropriate 
risk mitigation strategies underlying new insurance policies for catastrophic risks offered 
to meet this growing demand from the public.

Insurance coverage certainly plays an important role from a macroeconomic point of 
view, as it can lead to a decrease in the negative effects of natural disasters on public 
spending and GDP growth (OECD [2017]). The benefits would derive from the manage-
ment of technical and financial risks adopted by insurance companies which, as is known, 
calibrate their exposure to overall risk by insuring themselves, in turn, against those risks 
- already suitably diversified in advance - that they have taken on by transferring part 
of the risk, both through the use of more traditional reinsurance practices and of new 
hedging instruments.

In any case, the economic damage caused by catastrophic events requires such con-
siderable compensation that not even the insurance market can efficiently fulfill. It is, 
therefore, necessary to transfer the management of catastrophic risks to the only market
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with dimensions greater than insurance: the financial market.
In response to the evolution of the risk landscape, insurance companies have in fact 

developed a variety of new tools and techniques that broaden the limits of insurability 
through so-called alternative risk transfer (ART) solutions and through the financial 
market, within which they proceed with the issue of insurance linked securities (ILS)
(Munich Re [2001]). All these instruments are accompanied by high flexibility and risk 
diversification prices, in some cases, also in terms of payment timing.

One of these financial instruments that is receiving a particularly increased attention in 
recent years is the catastrophe equity put option (CatEPut), i.e. a financial option that 
gives an insurance company the right to sell a stock of its share capital to private investors 
at a predetermined price when a catastrophic event occurs. For this reason, the aim of this 
paper is to introduce a pricing approach that provides not only a theoretical contribution 
whose applicability remains confined to purely numerical examples and experiments, but 
which can be implemented starting with real data and applied to the evaluation of real 
CatEPuts. Specifically, the contribution of the method is twofold.

From a theoretical perspective, we extend the jump-diffusion framework used in the 
literature of CatEPut, by modeling the underlying stock price dynamics as a more general 
exponential Lévy process with a diffusive component, an infinite activity jump part, and a 
finite activity jump term, correlated to the catastrophic loss process. This modeling 
assumption introduces dependence between the occurrence of major disasters and the 
stock price.

From a practical perspective, we extend the literature on this subject by developing 
a calibration procedure based on real data, which make use of (1) time-series of stock 
log-returns, (2) the capitalization of the insurance company in search of protection from 
catastrophic losses, and (3) risk-neutral information extracted from quoted European 
options on the stock. In the empirical analysis we selected Assicurazioni Generali mainly 
because it is among the main insurance companies in Europe. This insurance company is 
listed on a major stock exchange and there is an active derivatives market to calibrate the 
parameters of our model. The study is conducted during the high volatile period from 
January to April 2020. From the end of February the smile of Assicurazioni Generali 
became a smirk and, in March, the implied volatility of in-the-money call options was high 
(i.e. well above 100), indicating that the probability of the occurrence of a catastrophic 
event was also high. We assess whether our model is able to explain such observed pattern. 
Although in the empirical study we analyzed only Assicurazioni Generali, similar implied 
volatility dynamics were observed among other insurance companies across Europe.

The paper is structured as follows. In Section 2, we review the most common financial 
strategies that insurance companies use to hedge the catastrophic risks that they have 
taken on. In Section 3, we describe a catastrophe equity put option pricing model ana-
lyzing both the real-world and risk-neutral dynamics of the underlying asset. Section 4 is 
devoted to empirical analysis and provides more information on the data, the calibration 
approach and the simulation method implemented, together with the results. Section 5 
concludes.
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2 Hedging catastrophic risk
This Section contains a review of the most common financial strategies that insurance 
companies use to hedge the catastrophic risks that they have taken on.

The intensification of the frequency of catastrophic events and public awareness of 
the need to provide ex-ante coverage of the risk deriving from them, also considering 
the general inadequacy of the response that a State can provide ex-post as a solution to 
the problems, has led to an ever growing demand from the public for policies to cover 
catastrophic risks. This has stimulated - and continues to stimulate - insurance companies 
looking for alternative strategies to traditional reinsurance aimed at covering the risks 
underlying the policies in question. Among these, insurance securitization, catastrophic 
bonds (Cat-Bonds) and CatEPuts must be mentioned.

In this section, we provide a description of these less traditional financial products 
that insurance companies are generally using to hedge catastrophic risk. We will also 
present a literature review of the main papers that, to the best of our knowledge, have 
analyzed CatEPuts pricing models and in Section 3 we suggest a possible approach to 
deal with these options.

Insurance securitization is a financial instrument that allows the transfer of the risk 
taken on by insurance companies to the capital market. By resorting to this instrument, 
insurance companies include part or all of the risk of catastrophic events within bonds 
subsequently sold to investors. Therefore, the possible default of these securities, as-
sociated with the occurrence of natural events, can no longer damage the other assets 
and liabilities of the insurance company, i.e. the originating party that constitutes the 
financial support to guarantee the issue of securities placed on the capitals market, rep-
resentative of these activities. In particular, the insurance securitization process consists 
of the following two elements: (i) the transformation of the underwriting cash flows into 
financial securities exchanged on the market and (ii) the transfer of the underwriting 
risks to the capital markets through the exchange of those securities. In the face of a 
certain catastrophe risk, a specialized reinsurance company (Special Purpose Vehicle -
SPV) is set up. The SPV issues debt securities so that the financial resources obtained 
are invested by the same company in highly rated securities. Persons who acquire risk 
protection from the SPV pay a premium that, added to the interest of the securities in 
which the financial resources are invested, is paid as interest to the holders of securities. 
If the catastrophic event does not occur, at the end of the period, the SPV reimburses 
the principal portion of the securities. If it does, the holders of the securities suffer the 
relative damage and, consequently, risk the partial or integral loss of the principal portion 
of the bonds.

Typically, there are two main reasons for resorting to the securitization of insurance 
risks: (i) a greater coverage–absorption capacity - typical of the financial market - of 
any financial damage caused by natural disasters (as opposed to insurance companies) 
and (ii) the opportunity to make additional investments that allow greater diversification 
of the portfolio. The latter consideration is linked to the fact that exposure to natural 
disasters is not necessarly related to the dynamics of financial markets. The insurance 
securitization technique of catastrophic risk also produces effects at a macroeconomic level 
that increase its attractiveness. On the one hand, in a market in which the securities 
are widespread, the securitization and placement of the related bonds redistributes the
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risk of catastrophe in individual geographical areas or sectors of activity, diluting their
negative effects on the entire market. On the other hand, it redistributes the economic
and social cost of the catastrophic event over time.

Bouriaux and MacMinn [2009] discussed the developments of insurance securitization
and assessed the potential for growth in the insurance-linked securities (ILS) market and
in insurance-linked derivatives. In particular, the authors analyzed the motivations of
security sponsors and investors to participate in catastrophe linked capital market, and
identified the key components of growth and its impediments. They also discussed the
technical and regulatory issues that could be crucial to market growth. In this context,
they recommended new private and public initiatives aimed at boosting the use and
efficiency of catastrophe linked securities and derivatives.

Cat-Bonds are securities that include a clause relating to the risk of a natural disaster.
This alternative instrument to the reinsurance contract can take two forms, depending on
whether the compensation clause concerns a natural event on which an insurance contract
was previously entered into, or the clause concerns an aggregate index that measures the
damage possibly caused by a specific source of default risk.

When this form is adopted, we are talking about indexed Cat-Bonds. Like rein-
surances, insurance companies transfer part of the risks to the underwriters through
Cat-Bonds; indeed, the clause provides that, upon the occurrence of an event or upon
reaching a certain value of the reference index, the creditor loses the right to receive, in
whole or in part, the lent capital and (or) the agreed interest.

Another possibility that favors the acquisition of this instrument by insurance compa-
nies is the delay in payment of the capital and interest due following the occurrence of the
unfavorable natural event. The advantage of Cat-Bonds for issuers is that, in the face of
the catastrophic event, they undertake to pay higher interest rates than those related to
a traditional loan without clause. This is because, in the event of a catastrophic event, a
write-down of the security occurs. Therefore, it is expected that a return higher than the
market one will be achieved with a certain probability. Thanks to the transfer of part of
the risk associated with catastrophic events to the financial market, insurance companies
have managed to solve their solvency problems by reducing the cost of supply services to
protect against natural risks.

To allow the transfer of a risk taken on through a bond of this type, the insurance
company enters into a reinsurance contract with a SPV from which it will purchase a
contract that will allow it to partially or totally transfer the risk taken on.

This risk is the same as for catastrophic bonds and the type of hedge reflects the
participation of the underwriters in the losses. In detail, this transfer will involve three
parties: the insurance company, the SPV and the private investor in the capital market.
In other words, the company purchases a financial reinsurance contract from the SPV
“written” (or covered by) a specific bond (the Cat-Bond), while the investor will purchase
this security at a price set by a special organization (Applied Insurance Research, AIR)
composed of professional actuaries, engineers, physicists, meteorologists and financial
analysts. If the event does not occur in the geographical area and in the time period
indicated in the Cat-Bond contract, the private investor will receive the expected coupons
plus the return of the capital (nominal value of the bond corresponding to the maximum
loss suffered associated with the damage). Otherwise, the investor will have to give up
the invested capital, which will be used to cover the damage caused by the catastrophe.
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In the evaluation of Cat-Bonds, the significance and measurability of catastrophic risk
are taken into account, in addition to the evaluation parameters used for corporate issues.
In recent years, Cat-Bonds have met with favorable reception from the market, due to
a strong demand from investors for asset class alternatives unrelated to traditional ones,
which allow the risk-return trade-off to be improved in asset allocation decisions.

CatEPuts represent another financial product that insurance companies can use to
transfer catastrophic risk to the capital market. Unlike Cat-Bonds, which have a quite
recent history, the first issue of CatEPuts dates back to 1996 on behalf of the RLI Cor-
poration. Through CatEPuts, insurance companies acquire the right to sell a stock of
their share capital to private investors at a predetermined price in the presence of a
catastrophic event. Therefore, a great advantage associated with this financial-insurance
instrument is the availability of contingent capital injections allowing the insurance com-
pany to see its solvency unaffected as a result of the significant economic damage caused
by a catastrophe. Thanks to CatEPuts, the price of shares in the portfolio of insurance
companies does not decrease and neither does the price of new issues. This equity fund
at a predetermined price represents a buffer that can be used by the insurance company
to recover its capital following the catastrophic event during the life of the option.

A disadvantage of CatEPuts is that they generate a sort of fragmentation of the
property of the insurance company following the catastrophic event; indeed, the available
equity will increase when the put option is exercised with a consequent reduction in the
capital owned by existing shareholders.

Given the widespread diffusion of CatEPuts in recent years, several contributions have
focused on their pricing. More details are provided for some of the most recent among
them, as it is thought this will facilitate understanding of the path that, starting in the
next section, will lead to our pricing proposal.

Some authors - including Cox and Schwebach [1992], Cummins and Geman [1995],
Chang et al. [1996] - have explored the possibility of structuring a derivatives market in
the insurance sector, concluding, however, that insurance futures actually represent an
alternative secondary market to the reinsurance market.

In particular, Cox and Schwebach [1992] have argued that a European call on an in-
surance future is the equivalent of a captive reinsurance or an insurance company owned
by a non-insurer (parent company), set up with the specific objective of insuring, exclu-
sively, in whole or in part, the exposure of the parent company and/or its affiliates to the
various risks with the stop loss clause. Thanks to insurance coverage, the parent company
will be able to protect its capital by limiting its exposure to catastrophic events up to a
predetermined and acceptable maximum amount. The stop loss coverage guarantees the
captive against losses that may occur in the aggregate, limiting the annual retention to
a predetermined amount. Insurance futures therefore represent an alternative secondary
market to the reinsurance market.

Chang et al. [1996] used the randomized operational time approach to transform a
compound Poisson process into a pure diffusion process (for its higher tractability) and
led to the pricing formula of catastrophe call options as a risk-neutral Poisson sum of
Black’s call prices in information-time. They also assumed that catastrophe futures price
changes flow subordinated processes with jumps in calendar-time.

Dassios and Jang [2003] used the Cox process (or a doubly stochastic Poisson process)
to model the claim arrival process for catastrophic events and to value stop-loss reinsur-
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ance contracts for catastrophic events and catastrophe insurance derivatives. Their main 
hypothesis is that there is an absence of arbitrage opportunities in the market to ob-
tain the gross premium for stop-loss reinsurance contracts and arbitrage-free prices for 
insurance derivatives (this condition can be obtained through an equivalent martingale 
probability measure in the pricing models). When pricing catastrophe linked financial 
options, it is prudent to develop a model that takes into account both the formation of 
value and any losses.

Cox et al. [2004] were the first to investigate such a model for pricing catastrophe 
linked financial options, in particular double trigger put option and a property insurance 
with a retention which is a function of a commodity price. The double trigger is associated 
with two main conditions: the underlying equity must be below the strike price and, in 
addition, a specified catastrophic event must have occurred affecting the insured firm. 
Jaimungal and Wang [2006] extended the work of Cox et al. [2004] by introducing a 
framework with stochastic interest rates and losses generated by a compound Poisson 
process. By modeling the stock price as a geometric jump-diffusion process correlated to 
the loss process, they obtained explicit formulas for the price of the CatEPut option and 
for its hedging parameters. A further extension allowing for floating strike prices was 
proposed by Wang [2020].

Subsequently, Chang and Hung [2009] analyzed the pricing of CatEPuts under the 
assumptions of both fixed and stochastic interest rates when the price of the underlying as-
set follows an exponential jump-diffusion process with negative exponentially distributed 
jumps.

Lin and Wang [2009] used the discounted expected penalty function, formalized for 
the first time as part of the studies on pricing models in the derivatives market by Gerber 
and Shiu [1998], for the pricing of American CatEPuts. It is their opinion that the use 
of this discounted penalty function can lead to a more precise evaluation of a CatEPut.

Chang et al. [2010], using no-arbitrage martingale pricing methodology, dealt with the 
pricing of Asian catastrophe options with the uncertainties regarding arrival times and 
related losses within a doubly binomial framework. They performed a stochastic time 
change from calendar time to claim time and obtained a more efficient estimate of the 
price of the catastrophe option as a binomial sum of claim time binomial Asian option 
prices managing to provide a better estimate of the probability of the catastrophic event 
occurring.

Braun [2011] proposed a two-stage contingent claims approach to price catastrophe 
swaps, which distinguishes between the main risk drivers ex-ante as well as during the loss 
re-estimation phase and additionally incorporates counterparty default risk. Catastrophe 
occurrence is modeled as a Cox process with mean-reverting Ornstein-Uhlenbeck intensity.

Jiang et al. [2013] introduced a catastrophe option pricing model that considers the 
risk of default of the counterparty that can only manifest itself when the option ex-
pires. The prices of the underlying assets are modeled through a jump-diffusion process 
related to the counterparty loss process and collateral assets. Their conclusion is that 
counterparty risk significantly affects the option price.

Wang [2016b] proposed a CatEPut assessment model where the counterparty default 
risk can occur at any time before the expiry date of the option. In particular, the 
underlying stock price dynamics is affected by catastrophic losses, generated by a Cox 
process with log-normal intensity, and the assets of the option issuer follow a geometric
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Brownian motion.
Wang [2016a] suggested a new class of CatEPuts, with payoff depending on the ratio 

between realized and target variance over the life of the option, where the target variance 
represents the insurance company expectation of the future realized variance. The author 
claimed that this kind of options could help insurance companies to raise more equity 
capital when a large number of catastrophic events occur during the life of the option.

Recently, Bi et al. [2019] proposed a model assuming that catastrophic events and non-
catastrophic events both follow Markov modulated Poisson processes and they defined a 
pricing formula for CatEPuts allowing for correlated jump risk and default risk.

3 Catastrophe put option pricing model

In this section we describe our pricing model. We assume that the underlying stock price 
dynamics is an exponential Lévy process with a diffusive component, an infinite activity 
jump part, and a finite activity jump term, correlated to the catastrophic loss process. This 
construction allows to make the stock price process sensitive to the occurrence of major 
disasters. We follow the framework originally proposed by Cox et al. [2004], Jaimungal and 
Wang [2006] and Chang and Hung [2009].

A catastrope equity put option with maturity T has payoff

P̆T = max [K − ST ; 0] 1LT >Υ, (3.1)

where ST is the stock price, LT is the total loss of the insureds due only to catastrophic 
events during the life of the option, and K is the strike at which the issuer has to buy the 
underlying stock if the total loss due to catastrophe is bigger than the level Υ.

3.1 Real-world dynamics

Let S = (St)t≥0 be the stock price process of the insurance company that wants to protect 
itself from cumulated losses caused by the occurrence of catastrophic events

St = S0 exp (Rt) , (3.2)

where R = (Rt)t≥0 is the log-return process under the real-world probability measure P .
Define the log-return process of the underlying asset R = (Rt)t≥0 as

Rt = µt+ J̃t

= µt+ [Jt − tψJ(−i)] ,
(3.3)

where J = (Jt)t≥0 is a P -Lévy process, ψJ(−i) is its characteristic exponent evaluated at
−i, and i is the imaginary unit.
Since

E [exp(Jt)] = exp [tψJ(−i)] ,
the process J̃ = (J̃t)t≥0 is a P -martingale, the P -expectation of the stock price can be
written as

E[St] = S0E [exp (Rt)]

= S0 exp (µt) .
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Then, we model the process J = (Jt)t≥0 under the measure P as

Jt = δWt +Xt − qLt, (3.4)

where

• W = (Wt)t≥0 is a standard Brownian motion;

• X = (Xt)t≥0 = (BGt)t≥0 is a pure jump Lévy process built by time changing a
generalized Brownian motion B = (Bt)t≥0:

Bt = θt+ σW̃t,

with an independent subordinator G = (Gt)t≥0 such that Gt ∼ Γ(αt, β), and where
W̃ = (W̃t)t≥0 is a standard Brownian motion independent from both W = (Wt)t≥0

and G = (Gt)t≥0; thus, the process X = (Xt)t≥0 can be represented as

Xt = BGt = θGt + σW̃Gt ;

• L = (Lt)t≥0 is a compound Poisson process

Lt =
Nt∑
j=1

Yj,

where N = (Nt)t≥0 is a Poisson process with jump intensity λ and Yj are indepen-dent 
and identically distributed Γ(γ, η) random variables representing the jumps size;

• W = (Wt)t≥0, X = (Xt)t≥0, and L = (Lt)t≥0 are mutually independent processes;

• q is a conversion factor that represents the percentage drop in the share value price
per unit of catastophic loss;

• δ, σ, α, β, λ, γ and η are positive constants, and θ ∈ R.

More precisely, the process X = (Xt)t≥0 is a variance gamma (VG) process (see Schoutens
[2003] and Bianchi et al. [2019] and reference therein).

By considering (3.3) and (3.4), the physical log-return process can be written as

(3.5)Rt = mP t + δWt + Xt − qLt,

with characteristic function (see the Appendix)

ψRt(u) = exp

{[
iumP − 1

2
δ2u2 + λ

((
1 +

iuq

η

)−γ
− 1

)]
t

}[
1− 1

β

(
iuθ − 1

2
u2σ2

)]−αt
,

(3.6)

where

mP = µ− 1

2
δ2 + α ln

[
1− 1

β

(
θ +

1

2
σ2

)]
− λ

[(
1 +

q

η

)−γ
− 1

]
.

Thus, the stock log-return process R = (Rt)t≥0 is decomposed into a linear combina-
tion of three independent Lévy processes:
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• a Lévy process with infinite variation and continuous trajectories, that is, the arith-

metic Brownian motion B̃ = (B̃t)t≥0: B̃t = mP t + δWt;

• a pure jump Lévy proces with finite variation and infinite activity (i.e. with in-
finitely jumps in every finite time interval), that is, the VG process X = (Xt)t≥0;

• a pure jump Lévy process with finite variation and finite activity, that is, the 
compound Poisson process L = (Lt)t≥0, which represents the total loss process due to 
catastrophic events. 

We refer to this model having a Brownian, a VG, and a compound Poisson component 
as BVG Poisson model.

Since every linear combination of Lévy processes is still a Lévy process, then the log-
return of the stock is a Lévy process. The component X = (Xt)t≥0 makes the dynamics 
of the stock price process more consistent with the empirical behavior of market prices 
compared to jump-diffusion models. In jump diffusion models used in the pricing of 
CatEPuts, the underlying asset price exhibits continuous trajectories characterized by 
rare points of discontinuity caused by negative jumps due to the occurrence of catastrophic 
events. Thus, a jump on the price occurs only in case of a loss due to a catastrophe. As 
a consequence, in this kind of models the stock log-return distribution shows always a 
negative asymmetry. Furthermore, the only source of fat tails is the risk of catastrophic 
losses. However, in the real-world market prices evolve in continuous time through many 
small jumps and a smaller number of big jumps. The occurrence of big jumps can have 
several sources not attributable to catastrophic events. Additionally, although rarer than 
negative, positive huge jumps can occur too. The addition of the component X = (Xt)t≥0 
in the log-return process allows to get a realistic asset price dynamics and a flexible 
infinitely divisible distribution able to capture different sources of asymmetries and fat 
tails characterizing the empirical log-return distribution.

3.2 Risk neutral dynamics

Assuming the existence of a riskless asset providing a continuously compounded rate of 
return, it is possible to show that a geometric Lévy model is arbitrage free and, there-
fore, that there exists an equivalent martingale measure. However, exponential Lévy 
option pricing models different from geometric Brownian motion are incomplete. Thus, 
the equivalent martingale measure is not unique. Since the real-world log-return process 
contains a Gaussian component, among the possible equivalent martingale measures, we 
can select the mean-correcting martingale one (see Schoutens [2003]), which is simply 
obtained by changing only the drift parameter mP to ensure that the discounted under-
lying price process is a martingale under the risk neutral measure Q, leaving all other 
parameters and processes not affected by the measure change. More precisely, to get the 
Q-dynamics of the log-return, mQ has to be chosen in such a way that

EQ[St] = S0 exp
(
mQt

)
EQ [exp(Jt)]

= S0 exp
[(
mQ + ψJ(−i)

)
t
]

= S0 exp [(r − d) t] ,

11



that is, it is enough to set
mQ = r − d− ψJ(−i). (3.7)

Equivalently, to emphasize the correction of the P -drift, it is possible to rewrite (3.7) as

mQ = mP + r − d− µ,

where r and d represent the continuos risk-free rate and the continuos dividend yield of
the stock, respectively. Thus, the risk neutral log-return process R = (Rt)t≥0 can written
as

Rt = [r − d− ψJ(−i)] t+ Jt,

and the Q-characteristic exponent as

Q
R(u) = iumQ − 1

2
δ2u2 + λ

[(
1 +

iuq

η

)−γ
− 1

]
− α ln

[
1− 1

β

(
iuθ − 1

2
u2σ2

)]
, (3.8)

from which it is immediate to get the Q-characteristic function as

φQRt
(u) = exp

[
tψQR(u)

]
. (3.9)

Equation (3.9) plays a crucial rule in the pricing of CatEPuts because it will be used
to calibrate risk neutral log-return parameters to European market option prices on the
underlying stock following the procedure described in Section 4.2. Then, these parameters
will be necessary to implement the CatEPuts pricing algorithm illustrated in Section 4.3.

4 Empirical analysis

4.1 Data

In this subsection we describe the data used in the empirical analysis. We considered the
main Italian insurance company, that is Assicurazioni Generali (ticker I:G). We obtained
from Thomson Reuters Datastream daily dividend-adjusted closing prices from January
2nd, 2019 to April 15, 2020 and market capitalization from January 2nd, 2020 to April
15, 2020. Furthermore, implied volatilities were extracted from European call and put
options written on the selected stock during the high volatility period from January 2nd,
2020 to April 15, 2020 with one month maturity and with moneyness between 80% and
120%. As risk-free interest rate we took the one-month Euribor rate for the calibration
and the interest rate swap with maturity one year for the simulation study. Since we
considered dividend adjusted closing prices, we assumed that d = 0. By an empirical
test it follows that under this assumption on dividends the put-call parity continues to
be fulfilled. We selected a single option maturity since as observed by Carr et al. [2007]
and Guillaume [2012], Lévy processes are suited to replicate option prices for one single
maturity, but are generally not able to reproduce quoted option prices for the whole set
of quoted maturities with sufficient precision, particularly during high volatility periods.

12
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Figure 1: On the left panel, we report the implied volatility calibration error (ARPE) computed accross
all moneyness, the estimated KS distance and the average between the two error measures. On the right
panel we report market and model at-the-money implied volatilities. The calibration was conducted for
each trading day between January 2, 2020 to April 15, 2020.

4.2 Calibration

To estimate risk neutral parameters we use both log-returns and European option prices
on the stock representing the undelying asset of the CatEPut. Looking at equation
(3.8) it is evident that it is impossible to estimate the parameters q and η separately.

Since Y ∼ Γ (γ, η), then qY ∼ Γ
(
γ, η

q

)
. Defining η̃ = η/q, the risk neutral log-return

characteristic function becomes

φQRt
(u) = exp

{[
iumQ − 1

2
δ2u2 + λ

((
1 +

iu

η̃

)−γ
− 1

)]
t

}[
1− 1

β

(
iuθ − 1

2
u2σ2

)]−αt
.

Then, we calibrate the set of risk neutral parameters

Θ̂Q = (δ, θ, σ, α, β, λ, η̃, γ) (4.1)

minimizing the distance between model and market implied volatilities (see Chapter 11 in
Bianchi et al. [2019]) and such that the real-world parameters minimize the Kolmogorov-
Smirnov distance of stock log-returns (see also Tassinari and Bianchi [2014] and Bianchi
and Tassinari [2020]). More precisely, on the catastrophe put option evaluation day, model
parameters are calibrated by minimizing the average relative percentage error (ARPE)
under Q and the Kolmogorov-Smirnov distance (KS) under P , that is

min
ΘQ

(
ARPE(ΘQ) +KS(ΘP )

)
, (4.2)

where

ARPE(ΘQ) =
1

number of observations

∑
Tn

∑
Km

|iV olmarketTnKm
− iV olmodelTnKm

(ΘQ)|
iV olmarketTnKm

, (4.3)

in which iV olmarketTnKm
(iV olmodelTnKm

) denotes the market (model) implied volatility of the option
with maturity Tn and strike Km, and ΘQ is the vector of the risk neutral parameters.
Furthermore, KS(ΘP ) in (4.2) indicates the KS distance given the set of parameters ΘP
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Figure 2: Calibration errors on January 2, 2020 and March 18, 2020.

derived from the risk-neutral parameters ΘQ by means of the mean-correcting martingale
measure. This calibration approach is more robust since at each step considers also
observed log-returns. The calibration conducted using only option implied data may be
problematic. Here the numerical errors are controlled by construction. The algorithm
is implemented by following the pricing method for standard vanilla options proposed in
Carr and Madan [1999] and the fast Fourier transform needed to find the KS distance
(see also Chapter 11 in Bianchi et al. [2019]).

In the left panel of Figure 1 we report the daily timeseries of the ARPE, the KS
distance and their average value of the calibration conducted between January 2, 2020
to April 15, 2020. In the right panel of Figure 1 the daily timeseries of the market and
model at-the-money implied volatility over the same observation period is represented.
The calibration error in fitting the one-month volatility smile is on average around 6%
and the KS test rejects the null hypothesis only in a few cases (the p-value is on average
almost 0.7). In Figure 2 we show the calibration errors at two different trading dates.
While the first date is selected during a calm period (January 2, 2020), the second is
selected during a stress period (March 18, 2020). The shapes of the implied volatilities
smile are different at the two calibration date: this is also reflected on the values of the
estimated risk-neutral parameters as shown in Figure 3 as well as in the simulated path
shown in Section 4.3.

In Figure 3 we show the timeseries of the estimated parameters. Note that the pa-
rameter λ represents the annual expected number of catastrophic events. To reduce the
number of parameters in the optimization problem, at each calibration date we assumed
δ equal to the monthly standard deviation estimated on the timeseries of last 250 ob-
served daily log-returns. The Gaussian part of the the process is kept fixed during the
calibration phase. Additionally, to mitigate the risk that big negative jumps due to the
occurrence of cathastrophes are captured by both the VG and the compound Poisson
component, we fix θ equal to zero, that is we consider a symmetric VG component and,
as shown in Section 3.1, the skewness of the price process is driven only by the compound
Poisson part. By following the results in Section 3.1, we set

mP = ω + λ
γ

η
,

where ω is the annualized empirical mean computed over the 250 last daily log-returns.
While the knowledge q is irrelevant and only the value of η̃ matters to evaluate Euro-
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Figure 3: Risk-neutral estimated parameters. The calibration was conducted on a daily basis for each
trading day between January 2, 2020 to April 15, 2020.

pean option, to price a catastrophic put option q is fundamental because it allows to infer
η from η̃. Following the approach proposed in Jaimungal and Wang [2006] and applied in
the related literature (see Chang and Hung [2009] and Burnecki et al. [2019]), the trigger
level of losses is assumed to be a multiple ν of the expected loss size conditional on the
occurrence of a catastrophic event, that is

Υ = νE [L] = ν
γ

η
. (4.4)

The parameter ν is the trigger ratio level, which represents the ratio of the trigger level
to the expected loss amount conditional on the occurrence of a catastrophic event.

In the application, we set ν = 1 and Υ as a portion p of the market value of the
company capital seeking protection on the day of issue of the catastrophe options, that
is

Υ = pCs, s ≤ 0, (4.5)

where Cs represents the market capitalization of the company at time s. In the application
without loss of generality we set s = 0. By considering equations (4.4) and (4.5) we can
write

η =
γ

pCs
, (4.6)

and, since

qE [L] =
γ

η̃
,

we obtain
q =

γ

η̃pCs
. (4.7)

In the empirical study in Section 4.3, we consider p equal to 0.25 and, on the basis of the
estimated parameters on the market capitalization Cs of the company at the valuation
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Figure 4: Simulated trajectories of the Gaussian, VG and compound Poisson component and the overall 
price process over a five-year horizon (1,250 trading days) based on the risk-neutral parameters estimated 
on January 2, 2020 and March 18, 2020.

date s, we compute the value of q. It should be noted that the choice of the parameter p 
influences the definition of catastrophic events.

4.3 Simulation

To price a CatEPut it is necessay to determine its discounted expected risk neutral payoff

P̆0 = exp(−rT )EQ [Max [K − ST ; 0] 1LT >Υ] .

To reach this task, we compute the option price by means of Monte Carlo simulation

P̆0 ' exp(−rT )

{
1

MC

MC∑
k=1

Max
[
K − Ŝ(k)

T ; 0
]

1
L̂
(k)
T >Υ

}
, (4.8)

where MC is the numbers of scenarios (50,000 in our empirical exercise), Ŝ
(k)
T and L̂

(k)
T

are the simulated values of the underlying stock and of the total catastrophic loss, re-
spectively, at the option maturity, in the k-th scenario, under the probability measure
Q.

In particular, to implement equation (4.8), repeat the following steps for k = 1, 2, ...,MC:

• sample a random number z(k) out of a standard normal random variable Z;

• sample a random number g(k) out of an independent gamma random variable GT ∼
Γ(αT, β);

• sample a random number z̃(k) out of a standard normal random variable Z̃, inde-
pendent from both Z and GT ;

• sample a random number n(k) out of an independent Poisson random variable NT ∼
Poiss(λT );
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Figure 5: Monte Carlo prices of at-the-money put and cat put options with one-year maturity between
January 2, 2020 to April 15, 2020.

• sample n(k) independent random numbers v
(k)
j out of an independent gamma ran-

dom variable V ∼ Γ(γ, η);

• compute

R̂
(k)
T = mQT + δz(k)

√
T + θg(k) + σ

√
g(k)z̃(k) − q

n(k)∑
j=0

v
(k)
j ,

Ŝ
(k)
T = exp

[
R̂

(k)
T

]
,

L̂
(k)
T =

n(k)∑
j=0

v
(k)
j ,

and
Max

[
K − Ŝ(k)

T ; 0
]

1
L̂
(k)
T >Υ

.

Then, compute P̆0 as the average value of the simulated option payoffs and discount it
using the risk-free rate.

In Figure 4 we report possible trajectories of the stock price process at two dates.
While the first date is selected during a calm period (January 2, 2020), the second is
selected during a stress period (March 18, 2020). It is evident the difference in terms of
jumps of the compound Poisson component.

On the basis of the risk-neutral parameters estimated in Section 4.2, on each trading
day between January 2, 2020 to April 15, 2020 we evaluate the price of put and CatEPut
options with maturity one year and moneyness between 0.25 to 3. In Figure 5 we report
for both types of option the timeseries between January 2, 2020 to April 15, 2020 of the
at-the-money prices. In Figure 6 we show the behavior on March 18, 2020 of the prices
of these two options for different moneyness levels. Additionally, we report the ratio of
their prices in order to show the differences among them.

It is interesting to note that the price of the CatEPut increases as the volatility
increases. This is a consequence of the trigger event probability that is bigger when
the volatility is higher. The ratio between at-the-money put and at-the-money CatEPut
sharply decreases from an average value around 5 in the first two months of 2020 to an
average value below 2 starting from the end of February, a period from which the smile
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Figure 6: Monte Carlo prices of put and cat put options with one-year maturity with moneyness 
between 0.25 to 3 on January 2, 2020 and March 18, 2020.

of Assicurazioni Generali became a smirk and the implied volatility of in-the-money call 
options was above 100 in March 2020. This means that the option market started quoting 
a stressed future stock behavior for both the insurance company and the Italian equity 
market as a whole.

In the third week of February, outbreaks of COVID-19 occured in Veneto and Lom-
bardy regions. In the same period it happened a drastic increase in the intensity of the 
catastrophic risk (see the behavior of λ in Figure 3) which produced a fairly sudden re-
duction in the gap between the prices of the put options and the corresponding CatEPuts 
(see Figure 5). A moderate difference between the prices of put options and CatEPuts 
emerged around mid-March, induced by a reduction in the intensity of the catastrophic 
risk, which remained high if compared with the average over the first month and half of 
the year. Probably, this effect was caused by the economic support packages announced 
by the Italian Government in that period. However, on March 20, the Prime Ministerial 
Decree was signed, containing new rules for the containment of the contagion through-
out the national territory, which provides for the closure of non-essential (non-strategic) 
production activities. On March 25, further economic activities - not included in the first 
Prime Ministerial Decree of March 20 - were suspended. Simultaneously, a progressive 
increase in the λ parameter was registered and the price of the CatEPut converged to that 
of the corresponding put. As already observed in Section 4, the choice of the param-eter p 
affects the CatEPuts price behavior, because it directly influences the definition of 
catastrophic events. Even if in the empirical study we analyzed only Assicurazioni 
Generali, by considering their implied volatility dynamics, similar results may hold for 
other insurance companies across Europe.
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5 Conclusions

The purpose of this work is twofold. First we provide a detailed description of strategies 
and products to manage catastrophic risks and review the literature on this topic. Second, 
we propose a CatEPut pricing model that considers information coming from both the 
stock and the option market.

From a theoretical perspective, the model extends the jump-diffusion framework used 
in the literature of CatEPuts, by modeling the underlying stock price dynamics as a more 
general Lévy process with a diffusive component, an infinite activity jump part, and a 
finite activity jump term, correlated to the catastrophic loss process. The model produces 
more realistic stock price patterns compared to jump-diffusion models. The log-return 
distribution is infinitely divisible and allows for asymmetries and heavy tails. The sources 
of non-normality are a process with infinitely many jumps (i.e. the variance gamma 
component) and a process with a finite number of large jumps (i.e. the compound Poisson 
component) in every finite time interval.

From a practical perspective, we extend the literature on this subject by developing 
a calibration procedure based on real data, which makes use of (1) time-series of stock 
log-returns, (2) the capitalization of the insurance company in search of protection from 
catastrophic losses, and (3) risk-neutral information extracted from quoted European 
options on the stock.

We conduct an empirical analysis on one of the major European insurance company 
(i.e. Assicurazioni Generali) from January to April 2020, a period in which the implied 
volatilities of in-the-money call options were high (i.e. well above 100), indicating that the 
probability of the occurrence of a catastrophic event was also high. The proposed model is 
flexible enough to be able to explain observed stock log-returns and one-month option 
implied volatilities in both calm and stressed periods. Finally, we show that the ratio 
between plain-vanilla put and CatEPuts strictly depends on the shape of the implied 
volatility smile and it varies over time.
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Appendix

In this Appendix, we show how to get the characteristic function (3.6) and we provide
the main cumulants of the log-return process.

Characteristic function

The stock log-return has been defined as

Rt = mP t+ δWt +Xt − qLt.

Since R = (Rt)t≥0 is a linear combination of three independent processes, its characteristic
function can be computed as

φRt(u) = exp
(
iumP t

)
φδWt(u)φXt(u)φ−qLt(u),

and, therefore as

φRt(u) = exp
(
iumP t

)
φWt(δu)φXt(u)φLt(−qu). (5.1)

Since W = (Wt)t≥0 is a standard Brownian motion then

φWt(δu) = exp

(
−1

2
u2δ2t

)
. (5.2)

The process X = (Xt)t≥0 is a VG process and since it has been defined by changing
the physical time with a gamma stochastic time (i.e. with a gamma subordinator), its
P -characteristic function can be derived as

φXt(u) = exp [tψX(u)] = exp [tlG(ψB(u))] , u ∈ R,

where lG(ψB(u)) denotes the composition of the Laplace exponent of the subordinator
G = (Gt)t≥0 with the characteristic exponent of the generalized Brownian motion B =
(Bt)t≥0. Since

lG(s) = −α ln

(
1− s

β

)
, s < β,

and

ψB(u) = iuθ − 1

2
u2σ2,

the characteristic function of the process X = (Xt)t≥0 is given by

φXt(u) =

[
1− 1

β

(
iuθ − 1

2
u2σ2

)]−αt
. (5.3)

Taking into account that

φLt(u) =
∞∑
j=0

(λt)j exp(−λt)
j!

[φY (u)]j ,

20



the characteristic function of a compoud Poisson process L = (Lt)t≥0 can be computed
as

φLt(u) = exp [λt(φY (u)− 1)] .

Since

φY (u) =

(
1− iu

η

)−γ
,

the P -characteristic function of the total loss process L = (Lt)t≥0 is

φLt(u) = exp

{
λ

[(
1− iu

η

)−γ
− 1

]
t

}
,

and, thus we obtain

φLt(−qu) = exp

{
λ

[(
1 +

iuq

η

)−γ
− 1

]
t

}
. (5.4)

Due to independence of the processes W = (Wt)t≥0, X = (Xt)t≥0, and L = (Lt)t≥0,
the characteristic exponent of J = (Jt)t≥0 can be written as

ψJ(u) = ψδW (u) + ψX(u) + ψ−qL(u),

and therefore computed as

ψJ(u) = ψW (δu) + ψX(u) + ψL(−qu). (5.5)

By considering (3.4) and (5.5), we get

mP = µ− ψJ(−i) = µ− ψW (−iδ)− ψX(−i)− ψL(iq), (5.6)

with

ψW (−iδ) =
1

2
δ2,

ψX(−i) = −α ln

[
1− 1

β

(
θ +

1

2
σ2

)]
,

and

ψL(iq) = λ

[(
1 +

q

η

)−γ
− 1

]
.

Substituting equations (5.2), (5.3), (5.4), and (5.6) into (5.1) we get the characteristic
function (3.6).
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Cumulants

From the cumulant characteristic function of Rt

ψRt(u) =

{
iumP − 1

2
δ2u2 + λ

[(
1 +

iuq

η

)−γ
− 1

]
− α ln

[
1− 1

β

(
iuθ − 1

2
u2σ2

)]}
t,

it is possible to derive the first four cumulants of the log-return distribution on time
intervals of lenght t:

c1 [Rt] = E [Rt] =

[
mP + θ

α

β
− λqγ

η

]
t,

c2 [Rt] = var [Rt] =

[
δ2 +

(
θ2 + βσ2

) α
β2

+ λq2γ (γ + 1)

η2

]
t,

c3 [Rt] = E [Rt − E [Rt]]
3 =

[
θ
(
2θ2 + 3βσ2

) α
β3
− λq3γ (γ + 1) (γ + 2)

η3

]
t.

c4 [Rt] = E [Rt − E [Rt]]
4 − 3var2 [Rt]

= 3

[(
2θ4 + 4βθ2σ2 + β2σ4

) α
β4

+ λq4γ (γ + 1) (γ + 2) (γ + 3)

η4

]
t.

The third and the fourth cumulants contain information about the asymmetry and the
heaviness of the tails of the log-return distribution. The skewness is generated by two
independent sources: the variance gamma process and the compound Poisson process.
The impact of the first source depends on the sign of the parameter θ. Specifically, the
contribution to the skewness of the log-return distribution is positive, negative, or null if
θ is positive, negative, or null, respectively. The impact of the second source is always
negative. This means that our model is able to generate a distribution negatively skewed
if θ ≤ 0 or if θ > 0 and θ (2θ2 + 3βσ2) α

β3 < λq3 γ(γ+1)(γ+2)
η3

, positively skewed if θ > 0 and

θ (2θ2 + 3βσ2) α
β3 > λq3 γ(γ+1)(γ+2)

η3
, symmetric if θ (2θ2 + 3βσ2) α

β3 = λq3 γ(γ+1)(γ+2)
η3

. The
fourth cumulant is strictly positive and heavy tails are generated by the joint effect of a
process with infinitely many jumps (i.e. the variance gamma process) and of a process
with a finite number of jumps (i.e. the compound Poisson process) in every finite time
interval.
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