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Abstract. Machine Learning (ML) models are very effective in many learning

tasks, due to the capability to extract meaningful information from large data sets.

Nevertheless, there are learning problems that cannot be easily solved relying

on pure data, e.g. scarce data or very complex functions to be approximated.

Fortunately, in many contexts domain knowledge is explicitly available and can

be used to train better ML models.

This paper studies the improvements that can be obtained by integrating prior

knowledge when dealing with a context-specific, non-trivial learning task, namely

precision tuning of transprecision computing applications. The domain informa-

tion is injected in the ML models in different ways: I) additional features, II)

ad-hoc graph-based network topology, III) regularization schemes. The results

clearly show that ML models exploiting problem-specific information outperform

the data-driven ones, with an average improvement around 38%.

Keywords: Machine Learning · Domain Knowledge · Transprecision Comput-

ing

1 Introduction

In recent years, ML approaches have been exhaustively proved to be successful with a

wide range of learning tasks. Typically, ML models are sub-symbolic, black-box tech-

niques capable of effectively exploiting the information contained in large amounts of

data. Part of their usefulness is their adaptability, that is the fact that ML models with the

same architecture and training algorithm can be applied in very different contexts with

good results. This happens because most ML approaches make very few assumptions

on the underlying data and the functions that they are trying to learn.

However, data-driven models can be not ideal if, for instance, the data is relatively

expensive to obtain and the function to be learned is very hard. At the same time, in

many areas domain-specific information is available (e.g. structured data, knowledge

about the data generation process, domain experts experience, etc) but not exploited. In

such cases, it makes sense to take advantage of this information to improve the perfor-

mance of the ML techniques, so they do not have to start from scratch while dealing

with difficult learning tasks. In other words, why learn again something that you already

know?.

In this paper we discuss a strategy to inject domain knowledge expressed as con-

straints in an ML model, namely a Neural Network (NN). We limit the experimental
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evaluation to a specific area, namely transprecision computing, a novel paradigm that

allows trade-offs between the energy required to perform the computation and the ac-

curacy of its outcome[8]. We consider different sources of prior information and adopt

suitable injection approaches for each of them: I) feature extraction, II) ad-hoc NN

structure, and III) data augmentation combined with a regularization strategy. The su-

pervised learning task is very hard, due to non-linearity, non-monotonicity and rela-

tively small data sets (a few thousands of samples). The experimental results clearly

show that exploiting prior information leads to remarkable gains. On average over all

benchmarks, the knowledge injection provides a 38% improvement in terms of predic-

tion error (error decrease). The rest of the paper is structured as follows: after the dis-

cussion about related works (Section 2), Section 3 introduces the injection approaches;

Sec. 4 details transprecision computing and the specific learning task, highlighting its

difficulty and the domain knowledge that can be extracted; Sec. 5 summarizes the ex-

perimental results; finally, Sec. 6 concludes the paper.

2 Related Works

The combination of sub-symbolic models with domain knowledge is an area explored

by previous research in many fields[12]. For instance, feature engineering[6] is a com-

mon method for improving the accuracy of data-driven ML models by selecting useful

features and/or transform the original ones to facilitate the learner’s task. In general, this

is not a trivial problem and requires much effort, both from system expert and ML prac-

titioners. In this paper, we use a different approach, as we employ domain knowledge

to create novel features that render explicit the information hidden in the raw data.

Another research direction aims at training NNs while forcing constraints which

can be drawn from knowledge domain. [9] presents a method for translating logical

constraints in loss functions that guide the training towards the desired output. [11] pro-

poses a different approach to incorporate domain knowledge in an NN by adopting a

loss function that merges mean squared error and a penalty measuring whether the NN

output respect a set of constraints derived from the domain; the method is limited to

constraints enforcing monotonicity and bounds on the target variable. [14] introduces a

method to integrate semantic knowledge in deep NNs, again exploiting a loss function;

in this case the approach is targeted at semi-supervised learning and not well suited for

supervised tasks. Acting on the loss function with a regularization term has been pro-

posed also by [3], with their work on Semantic-Based Regularization (SBR), a method

to merge high-level domain information expressed as first-order logic in ML models.

We have exploited their technique in combination to a data augmentation strategy to

enhance an ML model.

Graph Convolutional Neural Networks (GCNN) [7,2] are a type of neural networks

specialized for learning tasks involving graphs. GCNNs have been recently used in

several fields[15], owning to their capability to deal with data whose structure can be

described via graphs, thanks to a generalization in the spectral domain of the convo-

lutional layers found in many deep learning networks. GCNNs most common applica-

tions involve semi-supervised classification tasks, with the goal of predicting the class

of unlabeled nodes in a graph – a case of graph learning.
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3 Domain Knowledge Injection

The main goal of this paper is the exploration of how an ML model can be improved

through the exploitation of domain knowledge. We claim that data-driven ML models

can benefit from the injection of prior knowledge provided by domain experts; Sec. 5

will report the results of the experimental evaluation, conducted on a specific learn-

ing task where domain knowledge is available (details in Sec. 4). We consider domain

knowledge that can be expressed in the form of logical constraints between variables

(input and output features of the ML models) and/or encoded in a graph. Let X be the

training set and y the targets, either continuous values (regression) or categorical labels

(classification), f the model trained to learn the relation between X and y. A DL model

is a family of parametric functions f(x|ω), i.e. {f(x|ω)|ω ∈ Ω} where the set Ω is

called hypothesis space. Training exploits data to find the parameter values in Ω that

minimize a so called loss function. In the most general case this is a function L(y|θ) ,

where y corresponds to the output of DNN and θ is the available empirical knowledge

(e.g. the labels).

In general, domain knowledge can be expressed as a set of logical constraints be-

tween the input features X and the target y. For instance, the monotonicity property

holds if x1 ≤ x2 =⇒ y1 ≤ y2 for every pair in X . We propose a multi-faceted

domain knowledge injection strategy and we introduce three different approaches, each

one addressing a specific weakness encountered by data-driven techniques (Fig. 1a por-

trays the three injection mechanisms):

1. feature space manipulation for information implicit but hidden in the raw data – if

the examples available in the data set are not sufficient nor informative enough to

train accurate ML models, a set of additional features can be created using the do-

main knowledge and reasoning about the relationships among the original features;

2. ad-hoc network topology for learning tasks where the relationships among the fea-

tures and the data structure can be encoded with graphs (hypothesis space explo-

ration);

3. data augmentation and regularization function for a twofold scope: I) learning with

very few data (e.g. active learning), by generating artificial examples, II) enforcing

desired properties in the output of the ML model by adding a regularization term to

the loss function L.

The feature extraction (1) takes into account prior knowledge that can be expressed via a

set of binary constraints C among the input features X; these constraints can be used to

obtain an extended training set X ′ by checking if every example in X satisfies them or

not. The regularization method (3) assumes that the knowledge can be expressed as first-

order logic constraints between input features X and the target y; data augmentation

helps to cope with scarce data and amplify the effect of the regularization.

We introduce the knowledge injection strategy and present three different tech-

niques, each tailored for a specific source of information. At the current stage we were

more interested in measuring the specific contribution of each method, thus they were

tested separately, but we plan to explore hybrid solutions in future works. As a case

study we consider a complex supervised learning task and then we tackle it with mul-

tiple data-driven ML models, and in particular we use neural networks (NN). Subse-
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(a) Knowledge Injection (b) Dependency Graph

Fig. 1: (a) Domain Knowledge Injection in DNNs - (b) Example of Dependency Graph

quently, we inject the domain knowledge and then we experimentally evaluate the ob-

tained improvements.

4 Transprecision Computing

There exist many techniques for transprecision computing and in this paper we focus

on an approach targeting floating-point (FP) variables and operations, as their execution

and data transfer can require a large share of the energy consumption for many applica-

tions; decreasing the number of bits used to represent FP variables can lead to energy

savings, with the side-effect of reduced accuracy on the outcome of the application (also

referred to as benchmark). Deciding the optimal number of bits for FP variables while

respecting a bound on the computation accuracy is referred to as precision tuning. In

this context, understanding the relationship between assigned precision and accuracy is

a critical issue, and not an easy one, as this relationship cannot be analytically expressed

for non-trivial benchmarks[10]. Therefore, we address this problem via a ML model,

that is learning the relationship between precision and accuracy. For this scope, we use

a transprecision library for precision tuning called FlexFloat[1] to create a suitable data

set; this means running a benchmark with multiple precision configurations and store

the associated error. As this is a highly time-consuming task, we work with data sets

of relatively limited size (5000 samples at maximum) 1 , an issue that complicates the

learning task.

4.1 Problem Description

We consider numerical benchmarks where multiple FP variables partake in the compu-

tation of the result for a given input set, which includes a structured set of FP values

(typically a vector or a matrix). The number of variables with controllable precision in

a benchmark B is nB
var; these variables are the union of the original variables of the

1 The learning task is only a part of a larger project aiming at solving the precision tuning

problem with optimization techniques; state-of-the-art algorithms for FP precision tuning (e.g.

[5]) dictate a bound on the time to solve the optimization problem – hence, the need of a low

data set creation time
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program and the additional variables inserted by FlexFloat to handle intermediate re-

sults (see [13] for details). FlexFloat allows to run a benchmark with different precision

(different numbers of bits assigned to the FP variables) and to measure the reduction in

output quality due to the adjusted precision (reduction w.r.t. the output obtained with

maximum precision) – we will refer to this reduction as error. If O indicates the result

computed with the tuned precision and OM the one obtained with maximum preci-

sion, the error E is given by E = maxi
(oi−oM

i
)2

(oM
i

)2
– this is the metric adopted in the

transprecision community[5]. As a case study we selected a representative subset of the

benchmarks studied in the context of transprecision computing. At this stage, we do not

focus on whole applications but rather on micro-benchmarks, in particular the following

ones: 1) FWT, Fast Walsh Transform for real vectors, from the domain of advanced lin-

ear algebra (nFWT
var = 2); 2) saxpy, a generalized vector addition , basic linear algebra

(nsaxpy
var = 3); 3) convolution, convolution of a matrix, ML (nconv

var = 4); 4) dwt, Dis-

crete wavelet transform, from signal processing (ndwt
var = 7); 5) correlation, compute

correlation matrix of input, data mining (ncorr
var = 7). 6) BlackScholes, estimates the

price for a set of options applying Black-Scholes equation, from computational finance

(nBScholes
var = 15).

Beside the precision configuration, another element that impacts a benchmark’s out-

put, and thus the error, is the input set fed to the application (e.g., the actual values of the

FP variables). The vast majority of transprecision tuning approaches consider the single

input set case[5]: a fixed input set is given to the benchmark and the precision of the

variables is tuned for that particular input set (no guarantee that the configuration found

will suit different input sets). We opted for “stochastic” approach: we consider multiple

input sets, so that a distribution of errors is associated to each configuration, rather than

a single value. The learning task is then not to predict the error associated to a spe-

cific input set but to learn the relation between precision configuration and mean error

over all input sets. Learning the relationship between variable precision and error is a

hard problem. First, the error metric is very susceptible to differences between output

at maximum precision and output at reduced precision, due to the maximization com-

ponent. Secondly, the precision-error space is non-smooth, non-linear, non-monotonic,

and with many peaks (local optima). In practice, increasing the precision of all variables

does not guarantee an error reduction.

4.2 Data Set Creation

As a first step, we created a collection of data sets containing examples of the bench-

marks run at different precision, with the corresponding error values. We call configu-

ration the assignment of a precision to each FP variable. The configuration space was

explored via Latin Hypercube Sampling (LHS). As described in the previous section,

for each configuration the benchmarks were run with 30 different input sets2 and the

error associated to each combination of <configuration, input set> was computed. As

target we then use the average over the 30 input-specific errors. The majority of con-

figurations lead to small errors, from 10−1 to 10−30. However, in a minority of cases

2 Long vectors and matrices containing different real values
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lowering the precision of critical variables generates extremely large errors; in the trans-

precision computing context, error larger than 1 are deemed excessive.

After a preliminary analysis, we realized that for an ML model it is very hard to

discern between small and relatively close errors (i.e. e−20 and e−15); we therefore

opted to predict the negative of the logarithm of the error, thus magnifying the rela-

tive differences. Moreover, a careful examination revealed that overly large error values

were usually due to numerical issues arising during computation (e.g. overflow, un-

derflow, division by zero, or not-a-number exceptions). This intuitively means that the

large-error configurations are likely to follow a distinct pattern w.r.t. the configurations

having a more reasonable error value. We are much more interested in relatively small

error (e.g. E ≤ 0.95, not in logarithmic scale) as in transprecision computing the largest

accepted error is typically 0.1 (meaning an output accuracy higher than 90%). Hence,

we decide to level out all the errors in the data set above the 0.95 threshold; if the <con-

figuration, input set> combination produced an error E ≥ 0.95, after pre-processing

its error is set to 0.95 (before the conversion to logarithmic scale).

4.3 Knowledge Injection

As the benchmarks are programs composed by a set of interdependent FP variables,

the variables’ interactions represent a source of valuable information for learning the

relationship between precision and error. This domain-level knowledge is encoded in

the dependency graph of the benchmark, which specifies how the program variables are

related. For instance, consider the expression V1 = V2 + V3; this corresponds to four

precisions that need to be decided xi, i ∈ [1, 4]. The first three precision-variables x1,

x2, and x3 represent the precision of the actual variables of the expression, respectively

V1, V2, and V3; the last variable x4 is a temporary variable introduced by FlexFloat

to handle the (possibly) mismatching precision of the operands V2 and V3 (FlexFloat

performs a cast from x2 and x3 to the intermediate precision x4). Each variable is a

node in the dependency graph, and the relations among variables are directed edges,

as depicted in Fig. 1b; an edge entering a node means that the precision of the source-

variable is linked to the precision of the destination-variable.

Additional Features Extraction As we have seen, the prior information on the bench-

marks is encoded in directed graphs; for explanatory purposes, we will take as example

the micro-benchmark represented by the graph in Fig. 1b. Using the encoded knowl-

edge, a set of additional features characterizing the precision configurations can be ob-

tained. We consider only one type of relation, that is assignments (e.g. x4 → x1). In

this kind of expression, granting a larger number of bits to the value to be assigned x4

would be pointless since the final precision of the expression is ultimately governed by

the precision of the result variable x1. Configurations that respect this relationship have

a higher probability to lead to smaller errors w.r.t. configurations that do not respect this

constraint. In practice, configurations where x4 ≤ x1 are associated to smaller errors.

This information can be added to the training set as a collection of additional fea-

tures. For each couple of variables involved in an assignment operation xi → xj we
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compute the feature Fji = xj − xi
3, which is then added to the data set. Each feature

corresponds to one of the logic binary constraints used to express the domain knowl-

edge. For instance, if we consider again the example of Fig. 1b there are three additional

features, one for each assignment expression (highlighted by the three arrows in the

graph): F43 = x4−x3, F42 = x4−x2, F14 = x1−x4. Thanks to these additional fea-

tures an extended data set can be obtained. If we consider two possible configurations

for the micro-benchmark in Fig. 1b, C1 = [27, 45, 35, 40] and C2 = [42, 23, 4, 10],
the original data set would be composed by four features (one for each FP variable)

plus the associate error (the target of the regression task). Instead, the extended data set

contains seven features plus the error: Cext
1 = [27, 45, 35, 40, 13,−5,−5] and Cext

2 =
[42, 23, 4, 10,−32,−13,−6].

Graphical Convolutional Neural Networks The transprecision learning task is a su-

pervised regression problem whose prior information can be expressed through a graph,

that is the dependency graph that links the variable in the benchmark. As mentioned in

Section 3, GCNNs are well suited to deal with graph-structured problems. As our prob-

lem is different from those considered in the literature, we did not adopt the standard

approach but we exploited the main component of GCNNs, the graph convolution, im-

plemented via Graph Convolutional Layers (GCL), and applied to the transprecision

task. The GCNN has the following structure: first, from the dependency graph we com-

pute the adjacency matrix; then the adjacency matrix and the input feature matrix are

combined to form the input of a first GCL, which is then fed to a second one. Its output

becomes the input for a fully connected dense layer with 128 neurons, followed by two

other fully connected layers of decreasing dimension (respectively, 32 and 8). The final

layer is, again, a dense layer with a single neuron, that is the network output.

Data Augmentation and Regularization As mentioned in Sec. 4, the learning task

is made more difficult by the presence of non-mononicity: situations where the nor-

mal precision-error relationship is not respected. They arise due to numerical instabil-

ity, and their presence is magnified by the use of small data sets and a limited num-

ber of different input sets; with sufficiently large data sets they would be discarded as

outliers. As mentioned before, the learning task addressed in this paper is a step to-

wards an optimization model for precision tuning; with this scope in mind, it would be

preferable to have an ML model that does not reproduce non-monotonicity events in

its predictions. This is a domain knowledge about an undesirable property that should

be corrected. The problem with non-monotonicity would be solved if we could have

more training examples, but this is not easily attainable as we should run a benchmark

to compute the error associated to a configuration. However, generating new config-

urations without computing the error is trivial; we can exploit this advantage in con-

junction with an appropriate regularization scheme in order to impose monotonicity

on the ML model predictions. This process is a form of data augmentation. Injecting

the monotonicity constraint in the training process may allow to mitigate the noise and

3 If Fji ≤ 0 it means that the xi ≤ xj is not respected, hence a higher error is associated to the

configuration
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improve generalization, even with smaller training sets. We take into account such con-

straints at training time by exploiting ideas from SBR[3], that advocates to the use of

(differentiable) constraints as regularizers in the loss function. Let us write xi ≺ xj

if configuration xj dominates xi, i.e. if every variable in xj has precision at least

as high as xi; let P be the set of dominated-dominating pairs in our training set X ,

P = (i, j)|xi ≺ xj . Then, we can formulate the following regularized loss function:

MSE(X, y) + λ
∑

i,j∈P max(0, f(xj)− f(xi)), where f is the error predictor being

trained, and MSE is the mean squared error. Each regularization term is associated to a

pair in P and has non-zero value iff the error for the dominating pair is larger than for

the dominated pair, i.e. if the monotonicity constraint is violated. New configurations

in P can be generated in order to get a much more stable regularization factor without

the need of a bigger train set. SBR is orthogonal to the use of additional features hence

the two methods can be combined; we plan to explore the benefits of merging multiple

methods in future work.

5 Experimental Evaluation

We selected 5 different data-driven models to obtain a baseline: I) a black-box opti-

mization method (AutoSklearn); II) an NN composed of 4 dense layers with 10× nB
var

neurons each, that is, the number of variables in a benchmark multiplied by 10 (NN-1);

III) an NN composed of 4 dense layers with 100×nB
var neurons each (NN-2); IV) an NN

composed of 10 dense layers with 10× nB
var neurons each (NN-3); V) a NN composed

of 20 dense layers with 10× nB
var neurons each (NN-4). All NNs have a single-neuron

output layer fully connected with the previous one. The black-box method used was

drawn from the AutoML area, namely a framework called autosklearn[4] which uses

Bayesian optimization for algorithm configuration and selection. Our problem can be

cast in the AutoML mold if we treat the variables’ precision as the algorithm configu-

rations to be explored and the associated computation error as the target.

The code used to run the experiments was written in Python, using Keras and Ten-

sorFlow for the implementation of the neural networks. Autosklearn is distributed as

a Python library and we used the version available online 4, with default parameters.

The GCNN model was created using the Spektral library 5. All the results presented

in this section were run on 20 different instances and we report the average values.

Both input feature and targets were normalized. The code used to run the experiments

is available in an online repository6. To evaluate the impact of the additional features,

the four different neural networks previously defined (NN-1, NN-2, NN-3, NN-4) were

trained and tested both with and without the extended data set. At this stage we focus

on the number of layers and their width and discarded other hyperparameters; their ex-

ploration will be the subject of future research works. In this paper, these are the values

for the main hyperparameter used with all methods: number of epochs = 1000; batch

size = 32; as training algorithm we opted for Adam with standard parameters; Mean

Squared Error as the loss function. The data augmentation and SBR approach is used

4 https://automl.github.io/auto-sklearn/master/
5 https://danielegrattarola.github.io/spektral/
6 https://github.com/AndreaBorghesi/knowInject transComputing
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on top of a neural network with the same number of layers and neurons as NN-1. The

new configurations are injected in each batch during the training, with a fixed size of

256 elements; the amount of data generated is specified by a ratio, which represents the

percentage of samples introduced by the data augmentation.

5.1 Models Accuracy

We begin by evaluating the prediction accuracy of the proposed approaches. We mea-

sure the accuracy using the MAE. In Table2 we compare the results obtained using a

training and test set size of, respectively, 5000 and 1000 examples; test and training set

are randomly drawn from the samples generated through LHS. The reported accuracy

measures refer to the test set. The first column of the table identifies the benchmark (the

last row corresponds to the average over all of them); the second column contains the

MAE obtained with the black-box approach, AutoSklearn; columns 3 and 4 report the

MAE with the first NN (NN-1), respectively without and with the additional features;

the three following couples of columns are the results with the other NNs (NN-2, NN-2,

NN-3), again split between the base and the extended data set; the final two columns

correspond respectively to MAE obtained with GCNN and with SBR. For this table, we

consider the SBR approach with 75% of augmented examples.

Benchmark AutoSklearn
NN-1 NN-2 NN-3 NN-4

GCNN SBR
Base Ext. Base Ext. Base Ext. Base Ext.

FWT 0.394 0.315 0.251 0.056 0.054 0.104 0.061 0.070 0.105 0.351 0.243

saxpy 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

convolution 0.020 0.005 0.005 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.006

correlation 0.397 0.139 0.120 0.091 0.092 0.111 0.098 0.114 0.102 0.262 0.139

dwt 0.422 0.057 0.034 0.011 0.012 0.029 0.020 0.031 0.022 0.072 0.068

BlackScholes 0.411 0.238 0.047 0.184 0.035 0.239 0.038 0.297 0.172 0.307 0.220

Average 0.274 0.126 0.076 0.057 0.033 0.081 0.037 0.086 0.067 0.166 0.113

Table 1: Knowledge injection approaches comparison: MAE – train set size: 5k

Benchmark AutoSklearn
NN-1 NN-2 NN-3 NN-4

GCNN SBR
Base Ext. Base Ext. Base Ext. Base Ext.

FWT 1.185 0.628 0.347 0.069 0.161 0.119 0.146 0.217 0.251 0.401 285

saxpy 0.004 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.004 0.003

convolution 0.049 0.006 0.011 0.006 0.004 0.008 0.006 0.005 0.006 0.024 0.012

correlation 0.406 0.400 0.356 0.141 0.288 0.269 0.206 0.284 0.145 0.332 0.152

dwt 0.559 0.062 0.040 0.012 0.038 0.029 0.042 0.076 0.054 0.134 0.094

BlackScholes 0.656 0.394 0.096 0.508 0.046 0.488 0.071 0.593 0.187 0.552 0.308

Average 0.477 0.248 0.142 0.123 0.090 0.152 0.079 0.196 0.107 0.188 0.148

Table 2: Knowledge injection approaches comparison: Root Mean Squared Error – set size 5k

The black-box model AutoSklearn has clearly the worst performance, which is not

entirely surprising given the complexity of the learning task. The first unexpected and
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disappointing result is the poor performance of the GCNN, that is outperformed by all

other approaches in almost all benchmarks. We remark that this was a novel application

of GCNN and this preliminary analysis merely suggests that a more careful exploration

is needed. Changing the network type can produce good results: using a wider NN

(from NN-1 to NN-2) greatly reduces the MAE, while deeper NNs provide smaller

improvements (e.g. NN-3 and NN-4). Very interestingly, a major MAE reduction is

obtained by using the additional features (column Ext.): for all NN types and over all

benchmarks, the approach using the extended data greatly outperforms the baseline,

with an average improvement of 39.7% (considering all four NN types). The results

obtained with data augmentation and SBR show that this method performs better than

AutoSklearn and the simplest NN without the additional features (NN-1), but it has a

higher MAE compared to all the approaches with the extended data set. This is not an

issue as SBR benefits were not expected in terms of prediction accuracy but rather on

the enforcing of the monotonicity (see Sec. 5.2). We are also interested in measuring

the results with smaller training sets, again using MAE as metric; we keep the test set

size fixed at 1000 elements. Table 3 reports the experimental results; it has the same

structure of Tab. 2. As expected, the prediction accuracy decreases with the training set

size, but the benefits brought by the domain knowledge remain – over all training set

size, the improvement brought by the engineered features is 38.7%.

Train Set Size AutoSklearn
NN-1 NN-2 NN-3 NN-4

GCNN SBR
Base Ext. Base Ext. Base Ext. Base Ext.

500 (MAE) 0.288 0.196 0.131 0.100 0.064 0.140 0.078 0.144 0.134 0.316 0.190

1000 (MAE) 0.285 0.178 0.107 0.087 0.048 0.108 0.056 0.142 0.117 0.256 0.181

2000 (MAE) 0.278 0.155 0.085 0.077 0.041 0.094 0.047 0.119 0.060 0.210 0.162

5000 (MAE) 0.274 0.126 0.076 0.057 0.033 0.081 0.037 0.086 0.067 0.166 0.133

500 (RMSE) 0.797 0.550 0.245 0.236 0.153 0.317 0.148 0.249 0.304 0.316 0.23

1000 (RMSE) 0.769 0.435 0.139 0.152 0.121 0.206 0.095 0.375 0.235 0.25 0.21

2000 (RMSE) 0.530 0.284 0.155 0.168 0.072 0.105 0.096 0.260 0.156 0.210 0.184

5000 (RMSE) 0.477 0.248 0.142 0.123 0.090 0.152 0.079 0.196 0.107 0.166 0.148

Table 3: Knowledge injection approaches comparison: average on all benchmarks MAE (rows

1-4) and RMSE (rows 5-8) – varying train set size

5.2 Semantic Based Regularization Impact

This section provides additional details on the experiments on data augmentation and

SBR. The model was tested on the previous benchmarks and different ratios of data

injected, i.e. 25% and 75%. To have a more precise evaluation of the approach, we

relied on another metric beside MAE, that is the number of violated monotonicity con-

straints – the goal of this approach is to reduce their number. We underline that not

every benchmark had monotonicity issues (as they are outliers), and in these cases the

regularization factor is of no use and might keep the model from a good approximation.

For this reason, Table 4 and Table 4, report just the values from significant benchmarks

(i.e. benchmarks that exhibit the most marked non-monotonic behavior), these are con-
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volution and correlation. The third column reports the result obtained with NN-1 with-

out the additional features. Columns 4-6 correspond to the results obtained with data

augmentation and SBR, with different percentages of injected data (0%, 25%, 75%).

Benchmark Size NN-1 SBR SBR 25% SBR 75%
MAE #Viol. MAE #Viol. MAE #Viol. MAE #Viol.

convolution
500 0.012 168 0.019 156 0.013 171 0.011 126

5000 0.005 0 0.006 13 0.006 12 0.006 6

correlation
500 0.263 111 0.265 120 0.263 116 0.262 98

5000 0.139 91 0.059 59 0.059 71 0.139 92

Table 4: SBR: MAE and number of violated constraints (#Viol.)

With larger training sets, the benefits of data augmentation and SBR are marginal:

the additional constraint on the loss function is not very useful, given the abundance of

training samples allowing for better generalization. Similarly, larger training sets lead

to a natural decrease in the number of monotonicity constraints violated (as their pro-

portion in the training set diminishes). Nevertheless, the more interesting results can

be observed when fewer data points are available, since the models show a decrease in

the number of violated constraints opposed to the network without regularization. Fur-

thermore, the networks performed better with higher ratios of data injected, i.e. 18%,

on average. Finally, the MAE seems to have values compatible to the results obtained

with NN-1, a good result since prediction accuracy was not SBR’s scope. These results

encourage the idea of a hybrid model merging data augmentation plus SBR and ad-

ditional features (both approaches enabled by the injection of domain knowledge), as

future development of this work.

6 Conclusion & Future Works

In this paper we present a strategy for injecting domain knowledge in an ML model. As

a case of study, we considered a learning task from the transprecision computing field,

namely predicting the computation error associated to the precision used for handling

a set of FP variables composing a benchmark. This is a difficult regression problem,

hard to be addressed with pure data-driven ML methods; we have shown how critical

improvements can be reached by injecting domain knowledge in the ML models.

We introduced three knowledge-injection approaches and applied them on top of

NNs with varying structures: feature engineering, a GCNN, and a data augmentation

scheme enabled by SBR. The GCNN approach did not improve the accuracy of the

ML model w.r.t. the baseline and it should be explored more in detail. Conversely, the

creation of extended data set was revealed to be extremely useful, leading to remarkable

reduction in prediction error (39.7% on average and up to 47.5% in the best case).

Data augmentation plus SBR showed its potential with training sets of limited size, in

terms of reduced number of violated monotonicity constraints while preserving the ML

models’ prediction accuracy. In future works we plan to integrate the learners in an
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optimization model for solving the FP tuning precision problem. In this regard we will

explore active learning strategies and we expect SBR to have good result, especially

when combined with the additional features (the methods are orthogonal). Moreover,

we will perform experiments with other domain knowledge injection approaches, for

instance by building data sets in accordance with the prior information and by exploiting

the knowledge to guide the training of the NN by constraining its output.
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