nature catalysis

Article

https://doi.org/10.1038/s41929-023-00939-y

Stereoselective conjugate cyanation of enals by combining photoredox and organocatalysis

In the format provided by the authors and unedited

Table of Contents

Supplementary Methods

General Information
Optimisation Studies for the Cross-Electrophile Coupling
Preparation of Enals 1
Synthesis of Acrylates 5
Preparation of Dihydropyridine R-1 13
General Procedure for the Conjugate Cyanation of Enals
Characterization Data for the Conjugate Cyanation of Enals
Further Derivatization of Cyanoaldehyde 2a
Characterization of the β -Sulfone Aldehyde 2a' (byproduct)
General Procedure for the Cross-Electrophile Coupling of Enals and Acrylates
Characterization Data of the Cross Electrophile Coupling Products 6
Derivatization of 1,6-Dicarbonyl Products
Organocatalytic Asymmetric Conjugate Allylation of Enals
NMR spectra
Radical Clock Experiment
Cyclic Voltammetric Studies
UV-Vis Spectroscopic Studies
Stern-Volmer Quenching Studies
Proposed Catalytic Cycle for the Cross Electrophile Coupling
Quantum Yield Determination
X-Ray Crystallography157
Supplementary Table
Supplementary References

Supplementary Methods

General Information

The NMR spectra were recorded at 300 MHz, 400 MHz and 500 MHz Bruker spectrometers for ¹H or at 75 MHz, 101 MHz and 126 MHz for ¹³C or 376 MHz and 471 MHz for ¹⁹F, respectively. The chemical shifts (δ) for ¹H and ¹³C signals are given in ppm relative to residual signals of the solvents (CHCl₃ at 7.26 ppm in ¹H NMR and at 77.16 ppm in ¹³C NMR spectra). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), hept (heptet), m (multiplet), br (broad).

High-resolution mass spectra (HRMS) were obtained from the ICIQ High-Resolution Mass Spectrometry Unit on MicroTOF Focus and Maxis Impact (Bruker Daltonics) with electrospray ionization (EI) or atmospheric pressure chemical ionization (APCI). X-ray data were obtained from the ICIQ X-Ray Unit using a Bruker-Nonius diffractometer equipped with an APPEX 2 4K CCD area detector. Optical rotations were measured on a Polarimeter Jasco P-1030 and are reported as follows: $[\alpha]_D$ ambient temperature (c in g per 100 mL, solvent). Cyclic voltammetry studies were carried out on a Princeton Applied Research PARSTAT 2273 potentiostat, offering compliance voltage up to ± 100 V (available at the counter electrode), ± 10 V scan range and ±2 A current range. UV-Vis measurements were carried out on a Agilent Cary 60 spectrophotometer equipped with silicon diode detector, double beam optics and 80 Hz Xenon Flash Lamp as light source. Ozonolysis was carried out using a CMG 5-5 Ozone Generator and the OMG 200-2 Ozone Analyzer. Hydrogenation was carried out using a H-Cube Pro system using disposible CatCarts cartridges (30 mm, 10% Pd/C).

The authors are indebted to the team of the Research Support Area at ICIQ, particularly to the X-ray, the NMR, and the High-Resolution Mass Spectrometry Units.

General Procedures. All reactions were set up under an argon atmosphere in dry glassware using standard Schlenk techniques, unless otherwise stated. Synthesis grade solvents were used as purchased. Anhydrous solvents were taken from a commercial SPS solvent dispenser. Chromatographic purification of products was accomplished using flash column chromatography (FC) on silica gel (Merck, 230-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm) were used, using UV light as the visualizing agent and common laboratory stains (potassium permanganate (KMnO₄), vanillin, phosphomolybdic acid (PMA), bromocresol) as developing agents. For preparative thin layer chromatography (prepTLC) purification throughout this work, Uniplate precoated TLC plates (silica gel GF₂₅₄, 1000 micron) were used, using UV light as the visualizing agent. Organic solvents were removed under reduced pressure on a Büchi rotary evaporator.

Determination of Enantiomeric Purity: UPC² analysis on chiral stationary phase was performed on a Waters ACQUITY[®] instrument using IA-3, IB-3, ID-3, IE-3, IG-3 and OJ-3 chiral columns. HPLC analysis on chiral stationary phase was performed on an Agilient 1200 series HPLC, using Daicel Chiralpak IC-3 column with n-hexane:iPrOH as the eluent. The exact conditions for the analyses are specified in the experimental section of the individual compounds. UPC² traces were compared to racemic samples prepared by running the reaction either in the presence of a catalytic amount (20 mol%) of racemic catalyst **A-3** (for the conjugate cyanation) or racemic catalyst **A-1** (for the cross electrophile coupling), the latter being commercially available from Sigma Aldrich.

Materials: Commercial grade reagents and solvents were purchased at the highest commercial quality from Sigma Aldrich, Fluka, Acros Organics, Fluorochem or Alfa Aesar and used as received unless otherwise stated. The photocatalyst 4-CzIPN is commercially available and was used as obtained. The chiral secondary amine catalysts **A-1** and **A-2** are commercially available, while amine catalysts **A-3** and **A-4** were prepared according to reported procedures.¹ Some of the enal substrates **1**, including octenal **1a**, crotonaldehyde, and enal **1k** are commercially available and were distilled prior to use. Other

enals or acrylates were prepared according to literature procedures or as detailed in the Supplementary Methods.

Optimisation Studies for the Cross-Electrophile Coupling

Supplementary Table 1. Optimisation studies.^a

^a Reactions performed on a 0.1 mmol scale under illumination by a blue LED; yields determined by ¹H NMR analysis using trichloroethylene as the internal standard.

Preparation of Enals 1

(*E*)-5-methylhex-2-enal (1c): prepared according to a procedure reported in the literature.²

¹**H NMR (400 MHz, CDCl₃)** $\delta = 9.52$ (d, J = 7.9 Hz, 1H), 6.83 (dt, J = 15.5, 7.4Hz, 1H), 6.12 (ddt, J = 15.6, 7.9, 1.4 Hz, 1H), 2.23 (td, J = 7.1, 1.4 Hz, 2H), 1.83 (hept, J = 6.6 Hz, 1H), 0.96 (d, J = 6.7 Hz, 6H).

Chemical Formula: C7H12O Molecular Weight: 112,1720

Chemical Formula: C11 H12O Molecular Weight: 160,2160

Me

(E)-5-Phenylpent-2-enal (1e): prepared according to a procedure reported in the literature.³ Spectral data are in agreement with the literature.

¹**H NMR (500 MHz, CDCl₃)** $\delta = 9.50$ (dd, J = 7.9, 0.8 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.25 – 7.16 (m, 3H), 6.86 (dt, *J* = 15.7, 6.7 Hz, 1H), 6.14 (ddt, *J* = 15.6, 7.9, 1.5 Hz, 1H), 2.84 (t, *J* = 7.6 Hz, 2H), 2.70 – 2.65 (m, 2H).

3-(3-Methoxyphenyl)propanal. 3-(3-methoxyphenyl)propan-1-ol (1.66 g, 10.0 mmol, 1.0 equiv.) was dissolved in DCM (50 mL). The mixture was cooled to 0 °C and Dess-Martin periodinane (5.09 g, 12.0 mmol, 1.2 equiv.) was added in portions over 10 minutes. The mixture was stirred for 16 h and quenched carefully with a mixture of aqueous NaHCO₃ (saturated, 100 mL) and aqueous NaS₂O₃ (10%, 100 mL) and stirred vigorously for 1 hour. The layers were separated and

layers were dried with MgSO₄, concentrated and purified by column chromatography (silica gel, 10% EtOAc in hexanes) to afford 1.56 g (95%) of aldehyde. Analytical data is in agreement with the literature.4

¹**H NMR (500 MHz, CDCl₃):** $\delta = 9.82$ (t, J = 1.4 Hz, 1H), 7.21 (td, J = 7.7, 0.8 Hz, 1H), 6.80 - 6.73 (m, 3H), 3.80 (s, 3H), 2.94 (t, J = 7.6 Hz, 2H), 2.78 (t, J = 7.7 Hz, 2H) ppm.

(E)-5-(3-Methoxyphenyl)pent-2-enal (1f). 3-(3-methoxyphenyl)propanal (1.56 g, 9.53 mmol, 1.0 equiv.) was dissolved in THF (anhydrous, 19 mL) under an argon atmosphere. (Triphenylphosphoranylidene)-acetaldehyde (3.48 g, 11.4 mmol, 1.2 equiv.) was added and the mixture was refluxed for 1 day. Upon concentration, the product was purified by column chromatography (silica gel, 5-10% EtOAc in hexanes). Clean fractions were combined to afford 751 mg (41%) of **1f** as yellow oil.

¹**H NMR (400 MHz, CDCl₃):** $\delta = 9.50$ (d, J = 7.8 Hz, 1H), 7.23 (dd, J = 8.2, 7.5

Chemical Formula: C12H14O2 Molecular Weight: 190,2420

Hz, 1H), 6.85 (dt, J = 15.6, 6.7 Hz, 1H), 6.80 – 6.73 (m, 3H), 6.14 (ddt, J = 15.7, 7.9, 1.5 Hz, 1H), 3.80 (s, 3H), 2.81 (t, J = 7.6 Hz, 2H), 2.71 – 2.63 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 194.1$, 159.9, 157.4, 142.0, 133.6, 129.7, 120.8, 114.4, 111.6, 55.3, 34.2 (2C) ppm.

HRMS (ESI): m/z calculated for [C₁₂H₁₄NaO₂]⁺ [M+Na]⁺: 213.0886; found: 213.0889.

3-(3-(Trifluoromethyl)phenyl)propanal. 3-(3-(trifluoromethyl)phenyl)propan-1-ol (2.04 g, 10.0 mmol, 1.0 equiv.) was dissolved in DCM (50 mL). The mixture was cooled to 0 °C and Dess-Martin periodinane (5.09 g, 12.0 mmol, 1.2 equiv.) was added in portions over 10 minutes. The mixture was stirred for 16 h and quenched carefully with a mixture of aqueous NaHCO₃ (saturated, 100 mL) and aqueous NaS₂O₃ (10%, 100 mL) and stirred vigorously for 1 hour. The layers were separated and the aqueous layer was extracted with DCM (2 x 100 mL). The

Molecular Weight: 202,1762

combined organic layers were dried with MgSO₄, concentrated and purified by column chromatography (silica gel, 10% EtOAc in hexanes) to afford 1.47 g (73%) of aldehyde. Analytical data is in agreement with the literature.⁵

¹**H NMR (500 MHz, CDCl₃):** $\delta = 9.83$ (t, J = 1.2 Hz, 1H), 7.50 – 7.36 (m, 4H), 3.02 (t, J = 7.5 Hz, 2H), 2.83 (td, J = 7.5, 0.9 Hz, 2H) ppm.

(E)-5-(3-(trifluoromethyl)phenyl)pent-2-enal (1g).

3-(3-(trifluoromethyl)phenyl)propanal (1.47 g, 7.28 mmol, 1.0 equiv.) was dissolved in THF (anhydrous, 15 mL) under an Argon atmosphere. (Triphenylphosphoranylidene)-acetaldehyde (2.22 g, 7.28 mmol, 1.0 equiv.) was added and the mixture was refluxed for 1 day. Upon concentration, the product was purified by column chromatography (silica gel, 5-10% EtOAc in hexanes). Clean fractions were combined to afford 545 mg (33%) of **1g** as yellow oil.

Chemical Formula: C₁₂H₁₁F₃O Molecular Weight: 228,2142

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.51$ (d, J = 7.8 Hz, 1H), 7.57 – 7.34 (m, 4H), Molecular Weight: 228,2142 6.84 (dt, J = 15.7, 6.7 Hz, 1H), 6.14 (ddt, J = 15.7, 7.8, 1.5 Hz, 1H), 2.90 (d, J = 7.4 Hz, 2H), 2.74 – 2.64 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 193.8, 156.3, 141.3, 133.8, 131.9, 131.1$ (q, J = 32.0 Hz), 129.2, 125.2 (q, J = 3.9 Hz) 124.2 (q, J = 271.8 Hz), 123.5 (q, J = 3.8 Hz), 34.1, 34.0 ppm. ¹⁹F NMR (471 MHz, CDCl₃): $\delta = -62.64$ ppm.

HRMS (ESI): m/z calculated for [C₁₂H₁₁F₃NaO]⁺ [M+Na]⁺: 251.0654; found: 251.0653.

3-(4-Bromophenyl)propanal. 3-(4-bromophenyl)propan-1-ol (2.15 g, 10.0 mmol, 1.0 equiv.) was dissolved in DCM (50 mL). The mixture was cooled to 0 °C and Dess-Martin periodinane (5.09 g, 12.0 mmol, 1.2 equiv.) was added in portions over 10 minutes. The mixture was stirred for 16 h and quenched carefully with a mixture of aqueous NaHCO₃ (saturated, 100 mL) and aqueous NaS₂O₃ (10%, 100 mL) and stirred vigorously for 1 hour. The layers were separated and the aqueous layer was extracted with DCM (2 x 100 mL). The combined organic

¹**H** NMR (500 MHz, CDCl₃): $\delta = 9.81$ (s, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.07 (d, J = 8.4 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 2.77 (td, J = 7.5, 1.1 Hz, 3H) ppm.

(*E*)-5-(4-Bromophenyl)pent-2-enal (1h). 3-(4-bromophenyl)propanal (1.40 g, 6.58 mmol, 1.0 equiv.) was dissolved in THF (anhydrous, 15 mL) under an Argon atmosphere. (Triphenylphosphoranylidene)-acetaldehyde (3.21 g, 10.5 mmol, 1.6 equiv.) was added and the mixture was refluxed for 1 day. Upon concentration, the product was purified by column chromatography (silica gel, 5-10% EtOAc in hexanes) to afford 970 mg (62%) of 1h. Analytical data is in agreement with the literature.⁷

¹**H** NMR (500 MHz, CDCl₃): $\delta = 9.49$ (d, J = 7.8 Hz, 1H), 7.43 (d, J = 8.4 Hz, Molecular Weight: 239 2H), 7.06 (d, J = 8.6 Hz, 2H), 6.82 (dt, J = 15.7, 6.7 Hz, 1H), 6.13 (ddt, J = 15.7, 7.8, 1.5 Hz, 1H), 2.79 (t, J = 7.6 Hz, 2H), 2.68 – 2.60 (m, 2H) ppm.

Molecular Weight: 213,0740

(E)-octa-2,7-dienal (1i). (E)-octa-2,7-dienal was prepared according to a previous report⁸ and analytical data is in agreement with the literature. ¹**H NMR (300 MHz, CDCl₃):** δ 9.51 (d, J = 7.9 Hz, 1H), 6.85 (dt, J = 15.6, 6.8 Hz, 1H), 6.12 (ddt, J = 15.6, 7.9, 1.5 Hz, 1H), 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.09 - 4.96 (m, 2H), 2.35 (dtd, J = 8.1, 6.9, 1.5 Hz, 2H), 2.11 (dtt, J = 8.0, 6.8, 1.4Hz, 2H), 1.62 (tt, *J* = 8.1, 6.9 Hz, 2H) ppm.

(S,E)-5,9-Dimethyldeca-2,8-dienal (1j). (S)-3,7-dimethyloct-6-enal (1.00 g, 6.48 mmol, 1.0 equiv.) was dissolved in THF (anhydrous, 13.0 mL) under an Argon atmosphere. (Triphenylphosphoranylidene)-acetaldehyde (2.37 g, 7.78 mmol, 1.2 equiv.) was added and the mixture was refluxed for 2 days. Upon concentration, the product was filtered through a pad of silica gel (eluting with DCM). The filtrate was concentrated and purified by column chromatography (silica gel, 1% EtOAc in hexanes) to afford afford 300 mg (26%) of 1j as colorless oil. Analytical data is in agreement with the literature.⁹

¹**H NMR (500 MHz, CDCl₃):** $\delta = 9.51$ (d, J = 7.9 Hz, 1H), 6.83 (dt, J = 15.0, 7.3 Hz, 1H), 6.12 (ddd, J= 15.5, 7.9, 1.4 Hz, 1H), 2.39 - 2.32 (m, 1H), 2.22 - 2.15 (m, 1H), 2.06 - 1.94 (m, 2H), 1.74 - 1.66 (m, 1H), 1,69 (s, 3H), 1.60 (s, 3H), 1.43 - 1.32 (m, 1H), 1.29 - 1.17 (m, 2H), 0.94 (d, J = 6.7 Hz, 3H) ppm.

(E)-Oct-2-en-7-ynal (11). The product was synthesized by stirring hex-5-ynal (0.800 g, 8.32 mmol, 1.0 equiv.), which was synthesized from 5-hexyn-1-ol using reported procedure,¹⁰ with (triphenylphosphoranylidene)-acetaldehyde (5.07 g, 2.0 equiv.) in dry CH₂Cl₂. The reaction was stirred at room temperature for 48 hours. The reaction mixture was carefully concentrated in vacuo, re-dissolved in 10%

Et₂O in n-pentane and filtered through a pad of celite. The crude product was then purified by flash column chromatography (silica gel, 5% Et₂O in n-pentane) to afford 11 as a colorless oil (562 mg, 55% yield). Remarks: Product is highly volatile and would oxidise readily.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.51$ (d, J = 7.8 Hz, 1H), 6.84 (dt, J = 15.6, 6.7 Hz, 1H), 6.15 (ddt, J = 15.6, 6.7 Hz, 1H), 6 = 15.6, 7.8, 1.5 Hz, 1H), 2.48 (dtd, J = 7.6, 6.8, 1.5 Hz, 2H), 2.26 (td, J = 6.9, 2.6 Hz, 2H), 1.99 (t, J = 7.6, 6.8, 1.5 Hz, 2H), 2.26 (td, J = 6.9, 2.6 Hz, 2H), 1.99 (t, J = 7.6, 6.8, 1.5 Hz, 2H), 2.26 (td, J = 6.9, 2.6 Hz, 2H), 1.99 (t, J = 6.9, 2.6 (t, J =2.6 Hz, 1H), 1.75 (p, J = 7.2 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 194.0, 157.3, 133.6, 83.3,$ 69.5, 31.6, 26.6, 18.0 ppm.

HRMS (APCI): m/z calculated for $[C_8H_{11}O]^+[M+H]^+$: 123.0804, found: 123.0799.

4-(1,3-Dioxoisoindolin-2-yl)butanal. The product was synthesized by stirring 2-(4-hydroxybutyl)isoindoline-1,3 dione (2.51 g, 11.4 mmol, 1.00 equiv.), which was prepared according to previous report,¹¹ with pyridinium chlorochromate (PCC, 2.95 g, 1.20 equiv.) in dry CH₂Cl₂ (15 mL) overnight. The crude product was filtered through a pad of celite, concentrated in vacuo and purified by flash column chromatography (silica, 25% EtOAc in n-hexanes) to afford the aldehyde as white solid (1.40 g, 56% yield).

¹**H NMR (300 MHz, CDCl₃):** $\delta = 9.67$ (t, J = 1.2 Hz, 1H), 7.75 - 7.65 (m, 2H), 7.65 - 7.58 (m, 2H), 3.60 (t, J = 6.9 Hz, 2H), 2.46 (td, J = 7.2, 1.2 Hz, 2H), 1.89 (p, J = 7.0 Hz, 2H) ppm. The spectroscopic data is consistent with previous report.¹²

/

Molecul

Molecular Weight: 180,2910

Molecular Formula: 112.0732

Chemical Formula: C₁₂H₁₁NO₃ Molecular Formula: 217.0739

(*E*)-6-(1,3-Dioxoisoindolin-2-yl)hex-2-enal (3m). The product was synthesized by stirring 4-(1,3-dioxoisoindolin-2-yl)butanal (2.10 g, 9.67 mmol, 1.0 equiv.) with (triphenylphosphoranylidene)-acetaldehyde (3.53 g, 1.2 equiv.) in dry THF (21.0 mL). The reaction was heated under reflux for 24 hours. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (silica, 25% EtOAc in n-hexanes). The crude product

Chemical Formula: C₁₄H₁₃NO₃ Ct Molecular Formula: 243.0895

was then recrystallized from CH₂Cl₂/n-hexanes to afford **3m** as white solid. (582 mg, 25% yield). ¹**H NMR (500 MHz, CDCl₃):** $\delta = 9.38$ (d, J = 7.8 Hz, 1H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 7.64 (dd, J = 5.5, 3.1 Hz, 2H), 6.77 (dt, J = 15.6, 6.7 Hz, 1H), 6.05 (ddt, J = 15.7, 7.8, 1.6 Hz, 1H), 3.65 (t, J = 7.0 Hz, 2H), 2.38 – 2.29 (m, 2H), 1.84 (p, J = 7.4 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 193.9$, 168.5, 156.7, 134.2, 133.6, 132.1, 123.5, 37.4, 30.1, 26.9 ppm.

HRMS (ESI): m/z calculated for [C₁₄H₁₃NO₃Na]⁺ [M+Na]⁺: 266.0788, found: 266.0788.

4-(Benzyloxy)butanal. Dess-martin periodinane (9.43 mmol, 4.00 g, 1.1 equiv.) was added portionwise to a mixture of 4-(benzyloxy)butan-1-ol (8.50 mmol, 1.5 mL, 1.0 equiv.) and water (8.93 mmol, 161 μ L, 1.05 equiv.) in DCM (42 mL) previously cooled to 0 °C. The reaction mixture was allowed to warm to room temperature and further stirred for 2 h until completion of the reaction.

Chemical Formula: C₁₁H₁₄O₂ Exact Mass: 178.10

The reaction mixture was then cooled to 0 °C and carefully quenched by a 1:1 mixture of 10% aq. $Na_2S_2O_3$ and sat. aq. $NaHCO_3$ (75 mL) and let to stir until complete dissolution of the reaction mixture. The organic layer was further washed with a 1:1 mixture of 10% aq. $Na_2S_2O_3$ and sat. aq. $NaHCO_3$ (3x 50 mL) and dried over MgSO₄. The volatiles were removed under reduced pressure and the crude was purified by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) to obtain 4- (benzyloxy)butanal (1.35 g, 89%) as a colorless oil. Spectroscopic data are consistent with those previously reported.¹³

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.78$ (t, J = 1.6 Hz, 1H), 7.40 – 7.24 (m, 5H), 4.49 (s, 2H), 3.51 (t, J = 6.1 Hz, 2H), 2.55 (td, J = 7.1, 1.6 Hz, 2H), 1.95 (tt, J = 7.1, 6.0 Hz, 2H) ppm.

(*E*)-6-(Benzyloxy)hex-2-enal (1n). Under an argon atmosphere a solution of (triphenylphosphoranylidene)acetaldehyde (9.09 mmol, 2.77 g, 1.2 equiv.) and 4-(benzyloxy)butanal (7.57 mmol, 1.35 g, 1.0 equiv.) in anhydrous THF (15 mL) was stirred under reflux for 16 h. The reaction mixture was allowed to cool to room temperature and concentrated under

reduced pressure. The crude was purified by flash column chromatography (silica gel, 10-15% EtOAc in hexanes) to obtain 1n (654 mg, 42 %, E/Z = 9:1) as a colorless oil.

¹**H** NMR (500 MHz, CDCl₃, mixture of isomers): $\delta = 9.53$ (d, J = 8.0 Hz, 1H, Z-isomer), 9.49 (d, J = 7.9 Hz, 1H, *E*-isomer), 7.37 – 7.29 (m, 5H), 7.10 – 7.02 (m, 1H, Z-isomer), 6.85 (dt, J = 15.7, 6.8 Hz, 1H, *E*-isomer), 6.31 – 6.25 (m, 1H, Z-isomer), 6.12 (ddt, J = 15.6, 7.9, 1.5 Hz, 1H, *E*-isomer), 4.50 (s, 2H), 3.51 (t, J = 6.1 Hz, 2H), 2.55 (td, J = 7.1, 1.6 Hz, 1H, Z-isomer), 2.49 – 2.42 (m, 2H, *E*-isomer), 1.98 – 1.93 (m, 1H, Z-isomer), 1.83 (tt, J = 7.4, 6.2 Hz, 2H, *E*-isomer) ppm. ¹³C NMR (126 MHz, CDCl₃, major isomer): $\delta = 194.2$, 158.3, 138.4, 133.3, 128.6, 127.8, 127.8, 73.2, 69.2, 29.7, 28.2 ppm. HRMS (ESI): m/z calculated for [C₁₃H₁₆O₂Na]⁺ [M+Na]⁺: 227.1043; found: 227.1038.

(*E*)-7-Oxohept-5-enenitrile (10). Under an atmosphere of argon, a solution of hex-5-enenitrile (9.30 mmol, 1.0 mL, 1.0 equiv.), acrolein (45.0 mmol, 3.0 mL, 4.8 equiv.) and Hoveyda-Grubbs Catalyst 2nd Generation (186 μ mol, 117 mg, 2 mol%) in anhydrous DCM (19 mL) was stirred under reflux for 16 h. The volatiles

were removed under reduced pressure and the crude purified by flash column chromatography (silica

gel, 50% EtOAc in hexanes) to obtain **1o** (340 mg, 30%) as colorless oil. Spectroscopic data are consistent with those previously reported.¹⁴

¹**H NMR (400 MHz, CDCl₃):** $\delta = 9.53$ (d, J = 7.7 Hz, 1H), 6.80 (dt, J = 15.7, 6.7 Hz, 1H), 6.17 (ddt, J = 15.7, 7.7, 1.5 Hz, 1H), 2.57 – 2.48 (m, 2H), 2.46 – 2.36 (m, 2H), 1.95 – 1.86 (m, 2H).

(*E*)-8-Morpholino-8-oxooct-2-enal (1p). A solution of 1morpholinohept-6-en-1-one (7.00 mol, 1.38 g, 1.0 equiv. previously prepared following a reported procedure¹⁵ in anhydrous DCM (28 mL) was cooled to -78 °C and degassed with a stream of oxygen. Ozone was then bubbled through the reaction mixture until it turned blue. The reaction

Molecular Weight: 225.29

was then purged with oxygen to remove excess of ozone and quenched with excess dimethyl sulfide. The reaction mixture was then let to warm to room temperature, the organic layer was washed with brine (3 x 30 mL) and dried over MgSO₄. The volatiles were removed under reduced pressure to obtain crude 6-morpholino-6-oxohexanal (950 mg, 68%) which was engaged in the next step without further purification.

Under an atmosphere of argon, a solution of (triphenylphosphoranylidene)acetaldehyde (5.72 mmol, 1.74 g, 1.2 equiv.) and 6-Morpholino-6-oxohexanal (4.77 mmol, 950 mg, 1.0 equiv.) in anhydrous THF (10 mL) was stirred under reflux for 16 h. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The crude was purified by flash column chromatography (silica gel, 2% MeOH in DCM) to obtain **1p** (219 mg, 20%) as a gum.

¹**H** NMR (500 MHz, CDCl₃): $\delta = 9.50$ (d, J = 7.8 Hz, 1H), 6.85 (dt, J = 15.6, 6.7 Hz, 1H), 6.12 (ddt, J = 15.6, 7.9, 1.5 Hz, 1H), 3.69 – 3.65 (m, 4H), 3.65 – 3.59 (m, 2H), 3.49 – 3.42 (m, 2H), 2.41 – 2.35 (m, 2H), 2.34 (t, J = 7.3 Hz, 2H), 1.74 – 1.67 (m, 2H), 1.60 – 1.53 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 194.1$, 171.2, 158.2, 133.3, 67.1 (rotamer), 66.8 (rotamer), 46.1, 42.1, 32.7 (rotamer), 32.7 (rotamer), 27.8, 24.7 ppm.

HRMS (ESI): m/z calculated for [C₁₂H₁₉NO₃Na]⁺ [M+Na]⁺: 248.1257; found: 248.1261.

(*E*)-12-Hydroxydodec-2-enal (1q). Under an atmosphere of argon, a solution of undec-10-en-1-ol (5.12 mmol, 1.0 mL, 1.0 equiv.), acrolein (15.4 mmol, 1.0 mL, 3.0 equiv.) and Hoveyda-Grubbs

anhydrous DCM (10 mL) was stirred under reflux for 16 h. The volatiles were removed under reduced pressure and the crude purified by flash column chromatography (silica gel, 5-10% Et₂O in hexanes) to obtain **1q** (433 mg, 43%) as a colorless oil. Spectroscopic data are consistent with those previously reported.¹⁶

¹**H NMR (500 MHz, CDCI₃):** δ = 9.50 (d, *J* = 7.9 Hz, 1H), 6.85 (dt, *J* = 15.6, 6.8 Hz, 1H), 6.11 (ddt, *J* = 15.6, 7.9, 1.5 Hz, 1H), 3.64 (t, *J* = 6.6 Hz, 2H), 2.36 – 2.29 (m, 2H), 1.60 – 1.54 (m, 2H), 1.53 – 1.48 (m, 2H), 1.35 – 1.29 (m, 10H).

(*R*,*E*)-6-((*5R*,*8R*,*9S*,*10S*,*13R*,*14S*,*17R*)-10,13-Dimethyl-3,12-dioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)hept-2-enal (1r).

(*R*)-4-((5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,12dioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanal (600 mg, 1.61 mmol, 1.0 equiv., prepared according to a previous report¹⁷) was dissolved in THF (anhydrous, 10.0 mL) under an Argon atmosphere. (triphenylphosphoranylidene)-acetaldehyde (784 mg, 2.58 mmol, 1.6 equiv.) were added and the mixture was refluxed for 6 days. In order to achieve full conversion, another 0.4 equiv. of

Chemical Formula: C₂₆H₃₈O₃ Molecular Weight: 398,5870

(triphenylphosphoranylidene)-acetaldehyde were added and the mixture was refluxed for 1 day. Upon concentration, the mixture was purified by column chromatography (silica gel, 15-20% EtOAc in hexanes). Fractions with minor impurities (< 20% by NMR) were combined, concentrated and purified again by column chromatography (silica gel, 1% MeOH in DCM) to afford 84.0 mg (13%) of **1r** as colorless foam.

 $[\alpha]_{D}^{25} = +76.4 \ (c = 1.0, CHCl_3)$

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.49$ (d, J = 7.9 Hz, 1H), 6.84 (ddd, J = 15.6, 7.2, 6.3 Hz, 1H), 6.11 (ddt, J = 15.6, 7.9, 1.5 Hz, 1H), 2.66 – 2.52 (m, 2H), 2.49 – 2.22 (m, 3H), 2.22 – 2.14 (m, 1H), 2.13 – 1.98 (m, 3H), 1.92 (dddd, J = 15.9, 8.3, 6.3, 3.4 Hz, 6H), 1.76 (ddt, J = 11.9, 7.1, 4.1 Hz, 2H), 1.67 – 1.56 (m, 2H), 1.50 – 1.38 (m, 2H), 1.37 – 1.26 (m, 4H), 1.18 – 1.07 (m, 1H), 1.10 (s, 3H), 1.05 (s, 3H), 0.88 (d, J = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 214.2, 212.2, 194.3, 159.4, 133.0, 58.7, 57.7, 46.7, 44.4, 43.8, 42.2, 38.5, 37.0, 36.9, 35.9, 35.7, 35.6, 33.7, 30.0, 27.8, 26.7, 25.6, 24.4, 22.3, 18.8, 11.8 ppm.$

HRMS (ESI): m/z calculated for [C₂₇H₄₂NaO₄]⁺ [M+MeOH+Na]⁺: 453.2975; found: 453.2970.

6-Chlorohexanal. Dess-martin periodinane (9.01 mmol, 3.82 g, 1.2 equiv.) was added portionwise to a mixture of 6-chlorohexan-1-ol (7.51 mmol, 1.0 mL, 1.0 equiv.) and water (8.26 mmol, 149 μ L, 1.1 equiv.) in DCM (37 mL) previously cooled to 0 °C. The reaction mixture was let to warm to room temperature and

Chemical Formula: C₆H₁₁ClO Molecular Weight: 134.60

further stirred for 2 h until completion of the reaction. The reaction mixture was then cooled to 0 °C and carefully quenched by a 1:1 mixture of 10% aq. $Na_2S_2O_3$ and sat. aq. $NaHCO_3$ (50 mL) and let to stir until complete dissolution of the reaction mixture. The organic layer was further washed with a 1:1 mixture of 10% aq. $Na_2S_2O_3$ and sat. aq. $NaHCO_3$ (3x 25 mL) and dried over MgSO₄. The volatiles were removed under reduced pressure and the crude was purified by flash column chromatography (silica gel, 25% Et₂O in hexanes) to obtain 6-chlorohexanal (1.01 g, quant.) as a colorless oil. Spectroscopic data are consistent with those previously reported.¹⁸

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.78$ (t, J = 1.6 Hz, 1H), 3.54 (t, J = 6.6 Hz, 2H), 2.47 (td, J = 7.3, 1.6 Hz, 2H), 1.88 – 1.75 (m, 2H), 1.71 – 1.60 (m, 2H), 1.53 – 1.39 (m, 2H) ppm.

(*E*)-8-Chlorooct-2-enal (1s). Under an atmosphere of argon, a solution of (triphenylphosphoranylidene)acetaldehyde (10.9 mmol, 3.32 g, 1.4 equiv.) and 6-chlorohexanal (7.80 mmol, 1.01 g, 1.0 equiv.) in anhydrous THF (16 mL) was stirred under reflux for 16 h. The reaction mixture was allowed to

cool to room temperature and carefully (low boiling point) concentrated under reduced pressure. The crude was purified by flash column chromatography (silica gel, 20% Et_2O in hexanes) to obtain **1s** (324 mg, 26%, E/Z = 9:1) as a colorless oil. (NMR spectra contain solvent peaks from FCC due to low boiling point of product).

¹H NMR (300 MHz, CDCl₃, mixture of isomers): $\delta = 9.51$ (d, J = 7.9 Hz, 1H), 7.16 – 7.00 (m, 1H, Z-isomer), 6.84 (dt, J = 15.6, 6.8 Hz, 1H, *E*-isomer), 6.34 – 6.25 (m, 1H, Z-isomer), 6.12 (ddt, J = 15.6, 7.9, 1.5 Hz, 1H, *E*-isomer), 3.54 (t, J = 6.6 Hz, 3H) 2.43 – 2.31 (m, 2H), 1.93 – 1.72 (m, 2H), 1.63 – 1.45 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃, major isomer): $\delta = 194.1$, 158.2, 133.4, 44.9, 32.6, 32.4, 27.3, 26.5 ppm.

HRMS (ESI): m/z calculated for [C₈H₁₃ClONa]⁺ [M+Na]⁺: 183.0547; found: 183.0543.

6-Oxohexanoic acid. A solution of 6-heptenoic acid (7.21 mol, 977 μ L, 1.0 equiv.) in anhydrous DCM (29 mL) was cooled to -78 °C and degassed with a stream of oxygen. Ozone was then bubbled through the reaction mixture until it turned blue. The reaction was then purged with oxygen to remove excess of ozone and quenched with excess dimethyl sulfide. The reaction mixture was then

Chemical Formula: C₆H₁₀O₃ Molecular Weight: 130.14

lallowed to warm to room temperature, the organic layer was washed with sat. aq. NH_4Cl (3x 30 mL) and dried over MgSO₄. The volatiles were removed under reduced pressure to obtain crude 6-oxohexanoic acid (969 mg, quant.) which was engaged in the next step without further purification.

(*E*)-8-Oxooct-6-enoic enal (1t). 6-Oxohexanoic acid (937 mg, 7.20 mmol, 1.0 equiv.) was dissolved in THF (anhydrous, 14.4 mL) under an Argon atmosphere. (Triphenylphosphoranylidene)-acetaldehyde (2.894 g, 9.36 mmol, 1.3 equiv.) was added and the mixture was stirred for 6 days at room temperature. Upon concentration, the residue was purified by column chromatography (silica gel, EtOAc/hexanes/AcOH = 20:79:1) to afford 289 mg (26%) of 1t as bright yellow solid.

HO₂C

¹H NMR (500 MHz, CDCl₃): $\delta = 9.51$ (d, J = 7.9 Hz, 1H), 6.84 (dt, J = 15.6, 6.8 ^{Chemical Formula: C₈H₁₂O₃ Hz, 1H), 6.14 (ddt, J = 15.6, 7.8, 1.5 Hz, 1H), 2.43 – 2.34 (m, 4H), 1.75 – 1.66 (m, 2H), 1.64 – 1.55 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 194.2$, 178.5, 157.9, 133.4, 33.6, 32.4, 27.3, 24.2 ppm. HRMS (ESI): m/z calculated for [C₈H₁₁O₃]⁻ [M-H]⁻: 155.0714; found: 155.0714.}

Methyl 5-oxopentanoate. A few drops of conc. sulfuric acid were added to a solution of δ -valerolactone (25.0 mmol, 2.50 g, 1.0 equiv.) in methanol (50 mL) and the reaction mixture was stirred under reflux for 2 h. The solvent was then removed under reduced pressure and the obtained crude was then dissolved in

Chemical Formula: $C_6H_{10}O_3$ Molecular Weight: 130.14

DCM (150 mL) and cooled to 0 °C. Dess-martin periodinane (30.0 mmol, 12.7 g, 1.2 equiv.) was added portionswise to the reaction mixture, followed by water (28.7 mmol, 518 μ L, 1.15 equiv.). The reaction mixture was then let to warm to room temperature and further stirred for 2 h until completion of the reaction. The reaction mixture was then cooled to 0 °C and carefully quenched by a 1:1 mixture of 10% aq. Na₂S₂O₃ and sat. aq. NaHCO₃ (150 mL) and let to stir until complete dissolution of the reaction mixture. The organic layer was further washed with a 1:1 mixture of 10% aq. Na₂S₂O₃ and sat. aq. NaHCO₃ (3x 100 mL) and dried over MgSO₄. The volatiles were removed under reduced pressure and the crude was purified by flash column chromatography (silica gel, 20% EtOAc in hexanes) to obtain methyl 5-oxopentanoate (2.00 g, 62%) as a colorless oil. Spectroscopic data are consistent with those previously reported.¹⁹

¹**H NMR (400 MHz, CDCl₃):** $\delta = 9.74$ (t, J = 1.3 Hz, 1H), 3.64 (s, 3H), 2.50 (td, J = 7.2, 1.3 Hz, 2H), 2.35 (t, J = 7.3 Hz, 2H), 1.93 (qq, J = 7.1 Hz, 2H) ppm.

Methyl (*E*)-7-oxohept-5-enoate (1u). Under an atmosphere of argon, a solution of (triphenylphosphoranylidene)acetaldehyde (18.4 mmol, 5.61 g, 1.2 equiv.) and methyl 5-oxopentanoate (15.4 mmol, 2.00 g, 1.0 equiv.) in anhydrous THF (31 mL) was stirred under reflux for 16 h. The reaction mixture

MeO Chemical Formula: C₈H₁₂O₃ Molecular Weight: 156.18

was allowed to cool to room temperature and concentrated under reduced pressure. The crude was purified by flash column chromatography (silica gel, 5-20% EtOAc in hexanes) to obtain 1u as a colorless oil. Spectroscopic data are consistent with those previously reported.²⁰

¹**H NMR (400 MHz, CDCl₃):** $\delta = 9.50$ (d, J = 7.8 Hz, 1H), 6.81 (dt, J = 15.7, 6.7 Hz, 1H), 6.12 (ddt, J = 15.7, 7.8, 1.5 Hz, 1H), 3.66 (s, 3H), 2.41 – 2.33 (m, 4H), 1.85 (qq, J = 7.4 Hz, 2H) ppm.

(*E*)-3-(*trans*-2-Phenylcyclopropyl)acrylaldehyde (10). Under an atmosphere of argon, a solution of (triphenylphosphoranylidene)acetaldehyde (8.28 mmol, 2.52 g, 1.4 equiv.) and (*trans*)-2-phenylcyclopropane-1-carbaldehyde (5.92 mmol, 865 mg, 1.0 equiv. prepared following a reported procedure²¹) in anhydrous THF (12 mL) was stirred under reflux for 16 h. The reaction mixture

Chemical Formula: C₁₂H₁₂O Molecular Weight: 172.23

was allowed to cool to room temperature and concentrated under reduced pressure. The crude was

purified by flash column chromatography (silica gel, 5-10% Et_2O in hexanes) to obtain **10** (621 mg, 61%) as an orange solid. Spectroscopic data are consistent with those previously reported.²²

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.47$ (d, J = 7.8 Hz, 1H), 7.34 - 7.26 (m, 2H), 7.25 - 7.19 (m, 1H), 7.14 - 7.07 (m, 2H), 6.46 (dd, J = 15.4, 9.7 Hz, 1H), 6.21 (dd, J = 15.4, 7.8 Hz, 1H), 2.33 - 2.26 (m, 1H), 1.96 (dddd, J = 9.5, 8.3, 5.4, 4.0 Hz, 1H), 1.64 - 1.56 (m, 1H), 1.41 (ddd, J = 9.0, 5.3 Hz, 1H) ppm.

Synthesis of Acrylates 5

General procedure A for the synthesis of benzyl phenylacetate esters: To a 25 mL round bottom flask was added phenylacetic acid (1.05 equiv.), potassium carbonate (0.6 equiv.) and benzyl bromide (1.0 equiv.). DMF (5.0 mL) was added and the reaction stirred at room temperature for 6 hours. Then, water (10 mL) and Et_2O (10 mL) were added. The layers were separated and the organic layer was washed with water (5 x 10 mL), dried with MgSO₄, and concentrated *in vacuo* to afford desired ester product. The ester was used directly in the next step without further purification.

General procedure B for synthesis of benzyl acrylate esters: the procedure was adopted from a previous report.²³ To a 50 mL round bottom flask was added benzyl phenylacetate ester (1.0 equiv.), potassium carbonate (1.0 equiv.), paraformaldehyde (10.0 equiv.) and tetrabutylammonium iodide (1.0 equiv.). Toluene (30 mL) was added and the reaction was heated at 80 °C and stirred for 4 hours in the dark. The reaction mixture was then washed with water, the layers were separated, and the organic layer was dried with MgSO₄. The crude product was then concentrated, re-dissolved in 10% Et₂O in *n*-hexanes and purified by passing through a pad of silica.

4-Methoxybenzyl 2-phenylacrylate (**5a**). Oxalyl chloride (11.4 mmol, 1.0 mL, 1.15 equiv.) was added to a solution of 2-phenylacrylic acid (10.0 mmol, 1.48 g, 1.0 equiv.) in anhydrous DCM (25 mL) under inert atmosphere at 0 $^{\circ}$ C, followed by a few drops of DMF. The reaction mixture was let to warm to room temperature and stirred until the bubbling ceased. The reaction mixture was concentrated under reduced pressure and placed

under an inert atmosphere. The crude residue was dissolved in anhydrous DCM (25 mL) and (4methoxyphenyl)methanol (11.4 mmol, 1.4 mL, 1.15 equiv.), pyridine (11.4 mmol, 922 μ L, 1.15 equiv.) and *N*,*N*-dimethylpyridin-4-amine (1.00 mmol, 122 mg, 0.1 equiv.) were added to the reaction mixture, which was let to stir for 3 h. The reaction mixture was then quenched and washed with 1M HCl (3x 20 mL) and brine (20 mL) and the organic layer was dried over MgSO₄. The volatiles were removed under reduced pressure and the crude was purified by flash column chromatography (silica gel, 10% EtOAc in hexanes) to obtain **5**a (2.15 g, 80%) as a colorless oil. Spectroscopic data are consistent with those previously reported.²⁴

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.42$ (dtd, J = 5.4, 3.1, 1.6 Hz, 2H), 7.38 – 7.33 (m, 5H), 6.94 – 6.88 (m, 2H), 6.37 (d, J = 1.2 Hz, 1H), 5.91 (d, J = 1.2 Hz, 1H), 5.23 (s, 2H), 3.82 (s, 3H) ppm.

Methyl 2-phenylacrylate (5b). Procedure adapted from previous report.²⁵ To a 25 mL round bottom flask was added 2-phenylacrylic acid (500 mg, 3.37 mmol, 1.05 equiv.), potassium carbonate (267 mg, 0.6 equiv.) and methyl iodide (190 µL, 1.0 equiv.). DMF (5.0 mL) was added and reaction was stirred at room temperature for 6 hours. Upon completion of reaction water (10 mL) and Et₂O

Chemical Formula: C10H10O2 (10 mL) was added. The layers were separated in a separatory funnel. The organic Molecular Weight: 162,1880 layer was washed with water (5 x 10 mL), dried with MgSO₄ and concentrated *in vacuo* to afford desired

5b as a light-yellow oil (497 mg, 95% yield). The spectroscopic data is consistent with previous report.²⁶ ¹**H NMR (300 MHz, CDCl₃):** $\delta = 7.62 - 7.39$ (m, 2H), 7.37 - 7.28 (m, 3H), 6.36 (d, J = 1.2 Hz, 1H), 5.89 (d, J = 1.2 Hz, 1H), 3.82 (s, 3H) ppm.

Benzyl 2-phenylacrylate (5c). Prepared according to reported procedure ²⁵ using 2-phenylacrylic acid (500 mg, 3.37 mmol, 1.05 equiv.). The product was obtained as a colorless oil which solidifies upon storage at -20 °C (785 mg, 98% yield). The spectroscopic data is consistent with previous report.

¹**H NMR (400 MHz, CDCl₃):** δ = 7.40-7.29 (m, 10H), 6.39 (d, *J* = 1.0 Hz, 1H), 5.93 (d, *J* = 1.0 Hz, 1H), 5.29 (s, 2H) ppm.

Benzyl 2-(p-tolyl)acetate. Prepared according to general procedure A using p-tolyl acetic acid (510 mg, 3.40 mmol). The product was obtained as a colorless oil (707 mg, 91% yield). The spectroscopic data is consistent with previous report.²³ ¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.44 - 7.24$ (m, 5H), 7.18 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.13 (s, 2H), 3.64 (s, 2H), 2.34 (s, 3H) ppm.

Benzyl 2-(p-tolyl)acrylate (5d). Prepared according to general procedure B using benzyl 2-(p-tolyl)acetate (707 mg, 2.94 mmol). The product was obtained as a colorless oil (390 mg, 55% yield).

¹**H NMR (500 MHz, CDCl₃):** $\delta = 7.46 - 7.29$ (m, 7H), 7.21 - 7.07 (m, 2H), 6.35(d, J = 1.2 Hz, 1H), 5.89 (d, J = 1.2 Hz, 1H), 5.29 (s, 2H), 2.34 (s, 3H) ppm. The spectroscopic data is consistent with previous report.²³

Benzyl 2-(3-methoxyphenyl)acetate. Prepared according to general procedure A using 3-methoxyphenyl acetic acid (500 mg, 3.01 mmol). The product was obtained as a colorless oil (713 mg, 96% yield).

¹**H NMR (500 MHz, CDCl₃):** $\delta = 7.43 - 7.28$ (m, 5H), 7.24 (t, J = 7.8 Hz, 1H), 6.90 - 6.79 (m, 3H), 5.14 (s, 2H), 3.78 (s, 3H), 3.65 (s, 2H) ppm. ¹³C NMR (126 **MHz**, **CDCl**₃): δ = 171.4, 159.9, 136.0, 135.4, 129.7, 128.7, 128.4, 128.3, 121.8, 114.9, 113.0, 66.8, 55.3, 41.5 ppm.

HRMS (ESI): m/z calculated for $[C_{16}H_{16}O_3Na]^+$ [M+Na]⁺: 279.0992, found: 279.0982.

Chemical Formula: C₁₆H₁₆O₃ Molecular Weight: 256,3010

Chemical Formula: C16H14O2 Molecular Weight: 238,2860

ΟΜε

Molecular Weight: 240,3020

Chemical Formula: C17H16O2 Molecular Weight: 252,3130

Benzyl 2-(3-methoxyphenyl)acrylate (5e). Prepared according to the general procedure **B** using benzyl 2-(3-methoxyphenyl)acetate (384 mg, 1.50 mmol). The product was obtained as a light yellow oil (150 mg, 37% yield).

¹**H NMR (500 MHz, CDCl₃):** $\delta = 7.49 - 7.33$ (m, 5H), 7.30 (dd, J = 8.2, 7.7 Hz, 1H), 7.05 (ddd, J = 7.6, 1.6, 1.0 Hz, 1H), 7.01 (dd, J = 2.6, 1.6 Hz, 1H), 6.92 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 6.42 (d, J = 1.2 Hz, 1H), 5.95 (d, J = 1.2 Hz, 1H), 5.31 (s, 2H), 3.81 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 166.5, 159.4, 141.2,$ 138.0, 136.0, 129.2, 128.7, 128.3, 128.3, 127.2, 120.9, 114.0 (2C), 66.9, 55.3 ppm.

HRMS (ESI): m/z calculated for [C₁₇H₁₆O₃Na]⁺ [M+Na]⁺: 291.0992, found: 291.0978.

Benzyl 2-(4-fluorophenyl)acetate. Prepared according to the general procedure A using 4-fluorophenyl acetic acid (510 mg, 3.31 mmol). The product was obtained as a colorless oil, which solidifies upon storage at -20 °C (725 mg, 94% yield). The spectroscopic data is consistent with previous report.²⁷

¹H NMR (400 MHz, CDCl₃): $\delta = 7.37 - 7.28$ (m, 5H), 7.36 - 7.21 (m, 2H), 6.99 (t, *J* = 8.7 Hz, 2H), 5.13 (s, 2H), 3.63 (s, 2H) ppm.

Benzyl 2-(4-fluorophenyl)acrylate (5f). Prepared according to general procedure B using benzyl 2-(4-fluororophenyl)acetate (770 mg, 3.15 mmol). The product was obtained as a light-yellow oil which solidifies upon storage at -20 °C (561 mg, 69% yield).

¹H NMR (500 MHz, CDCl₃): $\delta = 7.45 - 7.30$ (m, 7H), 7.09 - 7.00 (m, 2H), 6.40 (d, J = 1.1 Hz, 1H), 5.90 (d, J = 1.1 Hz, 1H), 5.27 (s, 2H) ppm. ¹³C NMR (126)

MHz, CDCl₃): δ = 166.5, 162.9 (d, J_{C-F} = 247.7 Hz), 140.3, 136.0, 132.8 (d, J_{C-F} Molecular Weight: 256,2764 = 3.3 Hz), 130.2 (d, J_{C-F} = 8.1 Hz), 128.7, 128.4, 128.3, 127.3, 115.2 (d, J_{C-F} = 21.6 Hz), 67.0 ppm. ¹⁹**F**{¹**H**} **NMR** (471 MHz, CDCl₃): δ = -113.79 ppm.

HRMS (ESI): m/z calculated [C₁₆H₁₃FO₂Na]⁺ [M+Na]⁺: 279.0792, found: 279.0787.

Preparation of Dihydropyridine R-1

Triethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (R-1). Ethyl glyoxylate (50 % by weight in PhMe, 11.0 mL, 1.0 equiv., 55.5 mmol) and ethyl (Z)-3-aminobut-2-enoate (14.0 mL, 2.0 equiv., 111 mmol) was stirred in glacial acetic acid (25 mL) for 16 hours. After removal of volatiles, the residue was transferred to a separation funnel containing aqueous NaHCO₃ (saturated, 100 mL) and the product was extracted with EtOAc (3 x 200 mL). After concentration

of the combined organic layers, the product was purified by flash column chromatography (silica, 25% EtOAc in n-hexanes) to afford a bright yellow solid, which was then recrystallized from CH₂Cl₂/nhexanes to afford **R-1** as a white crystalline solid. (7.27 g, 40% yield)

¹**H NMR (500 MHz, CDCl₃):** $\delta = 6.18$ (br s, 1H), 4.82 (s, 1H), 4.28 - 4.11 (m, 4H), 4.07 (q, J = 7.1 Hz, 1) 2H), 2.28 (s, 6H), 1.28 (t, J = 7.1 Hz, 6H), 1.20 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 174.4, 167.4, 145.6, 98.8, 60.8, 60.1, 40.7, 19.3, 14.5, 14.3$ ppm.

HRMS (ESI): m/z calculated for $[C_{16}H_{23}NO_6Na]^+$ [M+Na]⁺: 348.1418, found: 348.1412.

COOFt

Chemical Formula: C16H23NO6 Molecular Weight: 325,3610

COOEt

EtOOC

Molecular Weight: 268,3120

General Procedure for the Conjugate Cyanation of Enals

General procedure C (*for 0.25 mmol scale*): An 8.0 mL vial equipped with a stirring bar was charged with tosyl cyanide (48 mg, 250 µmol, 95% purity, 1.0 equiv.), the chiral amine catalyst **A-4** (83 mg, 75.0 µmol, 0.3 equiv.), **R-1** (122 mg, 375 µmol, 1.5 equiv.), 4-CzIPN (2 mg, 2.50 µmol, 1 mol%) and enal **1** (3.0 equiv.). The vial was sealed with a septum and purged with Argon. The reactants were suspended in EtOAc (500 µL, ensure that all compounds are suspended) and deionized water (13.5 µL, 3.0 equiv.) was added. Then, TFA (7.5 µL, 100 µmol, 0.4 eq) was added and the vial was instantly placed in a pre-cooled metal support (set for an internal temperature of 5 °C) mounted on an aluminum block fitted with a high-power single blue LED ($\lambda_{max} = 460$ nm, irradiance set at 90 mW/cm² as controlled by an external power supply). The set-up secured a reliable irradiation while keeping a distance of 1 cm between the reaction vessel and the light source (set-up detailed in **Supplementary Figure 1**). After 16 hours (unless otherwise stated), the mixture was concentrated under reduced pressure.

Supplementary Figure 1: Detailed set-up and illumination system used in these studies. The light source consisted of a single 460 nm high-power LED (LZ1-00DB00) purchased from LedEngin; distance between LED and reaction vessel = 1 cm.

Determination of analytical yields for the conjugate cyanation of enals. Analytical yields were determined by ¹H NMR analysis (400 MHz) of the crude reaction mixtures using trichloroethylene (TCE, 22.5 uL, 250 μ mol, 1.0 equiv.) as the internal standard. For integration, aldehydic peaks have been used (d1 = 6 seconds). This analysis allowed to infer the analytic yields of both the target cyanation product 2 and the by-product 2' (arising from the competitive addition of tosyl radical to enal 1), which was typically formed in a similar amount as the target adduct 2. *For each specific entry (see below), we report the analytical yields of products 2 and 2'*. The aldehydic peaks typically appear in the following order from low to high field, as shown in **Supplementary Figure 2** (case example using octenal **1a**).

Supplementary Figure 2: Crude reaction mixture using **1a** (400 MHz), showing aldehydic products: β -cyanoaldehyde **2a** (br s, left); β -sulfone aldehyde **2a**' (t, J = 1.00 Hz), and octenal starting material **1a** (d, J = 8.0 Hz, right)

It was not always possible to isolate the cyanoaldehydes 2 because of a difficult separation from the β sulfone aldehyde by-product 2'. When the direct isolation of pure cyanoaldehydes was not feasible, they were isolated as cyano-alcohols 3 upon reduction of the crude reaction mixture according to **Supplementary Figure 3**. Conversion to alcohols 3 allowed a simple separation from the sulfone byproduct 2'.

Supplementary Figure 3: Reduction of cyanoaldehydes 2 (crude mixture) to their corresponding cyanoalcohols 3

Reduction to β -cyanoalcohols 3 (*one-pot*) - General procedure D: Upon completion of the organocatalytic conjugate cyanation, the solvent was evaporated and the crude reaction mixture containing 2 was dissolved in THF (2.0 mL); then water (0.5 mL) was added. After cooling to 0 °C with an ice bath, NaBH₄ (94.6 mg, 2.50 mmol, 10 equiv.) was added in a few portions under vigorous stirring. After 10 minutes, the ice bath was removed and the mixture was stirred for 90 minutes at ambient temperature. After cooling to 0 °C with an ice bath, the slurry was quenched dropwise with 1 N HCl until gas evolution ceased. The mixture was transferred to a separation funnel and extracted with DCM (3 x 20 mL). The combined organic layers were dried with MgSO₄ and concentrated. The β -cyanoalcohols 3 were isolated under conditions stated at the individual compounds below.

Derivatization of products 2 or 3 for determination of the enantiomeric ratio by UPC² analysis

In order to determine the enantiomeric ratio of the products, β -cyanoaldehydes 2 were converted into the corresponding 2,4-dinitrophenylhydrazones (see **Supplementary Figure 4**), while β -cyanoalcohols 3 were best analysed upon derivatisation into the corresponding nitrobenzoic esters (**Supplementary Figure 5**).

Supplementary Figure 4: Preparation of an analytical sample of 2,4-dinitrophenylhydrazones from β-cyanoaldehydes 2

Procedure: A analytical sample of cyanoaldehyde **2** (1.00 mg) and 1 equiv. of 2,4dinitrophenylhydrazine were dissolved in MeOH (0.3 mL). 1 drop of concentrated HCl was added and the solution was allowed to stand for 15 minutes and then concentrated under reduced pressure. The hydrazone was separated from unreacted hydrazine by preparative TLC and the enantiomeric ratio of the hydrazones was determined by UPC² analysis with conditions specified in the experimental section of the individual compounds.

Supplementary Figure 5: Preparation of an analytical sample of 4-nitrobenzoic esters from β -cyanoalcohols 3.

Procedure: An analytical sample of cyanoalcohol **3** (1.00 mg) and 1 equiv. of p-NO₂-benzoyl chloride were suspended in DCM (0.3 mL). 1 Equiv. of 4-dimethylaminopyridine (DMAP) was added and the solution was allowed to stir for 90 minutes. The ester was separated from unreacted reactands by preparative TLC and the enantiomeric ratio of the benzoic ester was determined by UPC² analysis with conditions specified in the experimental section of the individual compounds.

Characterization Data for the Conjugate Cyanation of Enals

(R)-2-(2-Hydroxyethyl)heptanenitrile (3a)

Following the general procedure **C** using enal **1a** (750 μ mol, 94.5 mg), a mixture containing the β -cyanoaldehyde **2a** (77% NMR yield) and the sulfone by-product **2a'** (45% NMR yield) was obtained. The crude target product **2a** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3a** as a pale-yellow oil (29.0 mg, 75% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was

Chemical Formula: C₉H₁₇NO Molecular Weight: 155,2410

determined to be 90.5:9.5 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.25$ min, $\tau_{Minor} = 4.55$ min.

 $[\alpha]_{D^{25}} = -2.0 \ (c = 1.0, CHCl_3, 90.5:9.5 \text{ e.r.}).$

¹H NMR (400 MHz, CDCl₃): $\delta = 3.86-3.79$ (m, 2H), 2.85-2.76 (m, 1H), 1.88-1.78 (m, 2H), 1.69-1.39 (m, 4H), 1.38-1.27 (m, 4H), 0.93-0.87 (t, J = 6.9 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 122.2, 59.9, 35.0, 32.3, 31.4, 28.3, 26.9, 22.5, 14.1$ ppm.

HRMS (**APCI**): m/z calculated for [C₉H₁₈NO]⁺ [M+H]⁺: 156.1383; found: 156.1386.

Supplementary Figure 6: UPC² traces of 3a

(R)-2-(2-Hydroxyethyl)heptanenitrile (3a) (Kessil Lamp Experiment)

The reaction mixture (0.25 mmol standard scale) was prepared as described above and the vial containing all reactants was instantly placed in a cooling bath (set to 5 °C) using a cryostat. The mixture was irradiated with a Kessil lamp (PR160L-456 nm, 40 W). After 40 hours, the mixture was concentrated under reduced pressure. A mixture containing the β -cyanoaldehyde **2a** (67% NMR yield) and the sulfone by-product **2a**' (73% NMR yield) was obtained. The crude target product **2a** was reduced according to the general procedure **D** and the

Chemical Formula: C₉H₁₇NO Molecular Weight: 155,2410

desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3a** as a pale-yellow oil (25.0 mg, 65% yield). Analytical data was in agreement with the product obtained from the single LED experiment as described above. The enantiomeric ratio was determined as described above to be 90:10 by UPC² analysis.

Supplementary Figure 7: Set-up for the conjugate cyanation of octenal **1a** using a Kessil lamp (456 nm, maximal intensity). The vial was placed in a cooling bath (Dewar containing toluene) which was cooled to 5 °C by use of a cryostat (Thermo Fisher Scientific - EK90 Immersion Cooler). Distance from the Kessil lamp to the bottom of the vial was approximately 5 cm.

(R)-2-(2-Hydroxyethyl)heptanenitrile (3a) (1 mmol scale experiment)

An 8 mL vial equipped with a stirring bar was charged with tosyl cyanide (191 mg, 1.00 mmol, 95% purity, 1.0 equiv.), A-4 (331 mg, 300 μ mol, 0.3 equiv.), **R-1** (390 mg, 1.20 mmol, 1.2 equiv.), 4-CzIPN (8 mg, 10.0 μ mol, 1 mol%) and 1a (450 μ L, 3.00 mmol, 3.0 equiv.). The vial was sealed with a septum and purged with Argon. The reactants were suspended in EtOAc (2.00 mL, ensure that all compounds are suspended) and deionized water (54.1 μ L, 3.0 equiv.) was added. Then, TFA (30.0 μ L, 400 μ mol, 400 μ mol) was added and the vial

Chemical Formula: C₉H₁₇NO Molecular Weight: 155,2410

was instantly placed in a pre-cooled metal block (set for an internal temperature of 5 °C) and irradiated with a high-power single LED (460 nm, irradiance 150 mW/cm²). After 40 hours, the mixture was concentrated under reduced pressure.

The crude reaction mixture containing the β -cyanoaldehyde **2a** (58% NMR yield) and the sulfone byproduct **2a'** (68% NMR yield) was dissolved in THF (8.00 mL) and then water (2.00 mL) was added. After cooling 0 °C with an ice bath, NaBH₄ (380 mg, 10.0 mmol, 10 equiv.) was added in a few portions while rigorous stirring. After 10 minutes, the ice bath was removed and the mixture was stirred for 90 minutes at ambient temperature. After cooling to 0 °C with an ice bath, the slurry was quenched dropwise with 1 N HCl until gas evolution ceased. The mixture was transferred to a separation funnel and extracted with DCM (3 x 50 mL). The combined organic layers were dried with MgSO₄ and concentrated. A mixture containing the β -cyanoaldehyde with 58% NMR yield was obtained. The crude mixture was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3a** as a pale-yellow oil (86.0 mg, 55% yield). Analytical data was in agreement with the product obtained from the 0.25 mmol scale experiment as described above. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative (**Supplementary Figure 5**) was determined to be 90.5:9.5 by UPC² analysis on a Daicel Chiralpak IA-3 column as described for the 0.25 mmol scale experiment.

(R)-4-Hydroxy-2-methylbutanenitrile (3b)

Following the general procedure **C** using enal **1b** (750 μ mol, 52.5 mg), a mixture containing the β -cyanoaldehyde **2b** (56% NMR yield) and the sulfone by-product **2b'** (45% NMR yield) was obtained. The crude target product **2b** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3b** as a pale-yellow oil (14.0 mg, 57% yield). *During all operations, low pressure was best avoided due to the high volatility of the*

Chemical Formula: C₅H₉NO Molecular Weight: 99,1330

compound. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 85:15 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 90% CO₂ in CH₃CN for 5 min, 90% CO₂ in CH₃CN for 2 min, gradient 90% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 255$ nm) $\tau_{Major} = 6.15$ min, $\tau_{Minor} = 6.30$ min.

 $[\alpha]_{D^{25}} = -43.7 (c = 0.5, CHCl_3, 85:15 e.r.).$

¹H NMR (400 MHz, CDCl₃): $\delta = 3.81$ (dd, J = 6.6, 5.4 Hz, 2H), 2.94-2.84 (m, 1H), 1.90-1.74 (m, 2H), 1.35 (d, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 123.0, 59.6, 36.6, 22.2, 18.0$ ppm.

HRMS: not obtained due to volatility

(R)-2-(2-Hydroxyethyl)-4-methylpentanenitrile (3c)

Following the general procedure **C** using enal **1c** (750 µmol, 187 mg, 45 w% in hexanes), a mixture containing the β -cyanoaldehyde **2c** (60% NMR yield) and the sulfone by-product **2c'** (85% NMR yield) was obtained. The crude target product **2c** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3c** as a colorless oil (19.5 mg, 56% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 89.5:10.5 by UPC² analysis on a Daicel Chiralpak IA-3 column

(eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 3.90$ min, $\tau_{Minor} = 4.15$ min.

 $[\alpha]_D^{25} = -1.2 (c = 0.5, CHCl_3, 89.5:10.5 e.r.).$

¹**H** NMR (400 MHz, CDCl₃): $\delta = 3.83$ (t, J = 5.7 Hz, 2H), 2.92 – 2.78 (m, 1H), 1.94 – 1.74 (m, 3H), 1.72 (br s, OH), 1.63 (ddd, J = 13.5, 10.4, 5.0 Hz, 1H), 1.33 (ddd, J = 13.5, 9.3, 5.4 Hz, 1H), 0.97 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 122.2$, 59.8, 41.3, 35.3, 26.4, 26.3, 23.0, 21.6 ppm.

HRMS (APCI): m/z calculated for [C₈H₁₆NO]⁺ [M+H]⁺: 142.1226; found: 142.1231.

Supplementary Figure 9: UPC² traces of 3c.

(S)-4-Hydroxy-2-isopropylbutanenitrile (3d)

Following the general procedure **C** using enal **1d** (750 µmol, 73.5 mg), a mixture containing the β -cyanoaldehyde **2d** (42% NMR yield) and the sulfone by-product **2d'** (> 95% NMR yield) was obtained. The crude target product **2d** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3d** as a pale-yellow oil (13.0 mg, 42% yield). *During all operations, low pressure was best avoided due to potential*

Chemical Formula: C₇H₁₃NO Molecular Weight: 127,1870

volatility. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 92:8 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 3.95$ min, $\tau_{Minor} = 4.05$ min.

 $[\alpha]_D^{25} = -20.9 (c = 0.5, CHCl_3, 92:8 e.r.).$

¹**H** NMR (400 MHz, CDCl₃): δ = 3.92-3.76 (m, 2H), 2.79-2.69 (m, 1H), 1.96-1.74 (m, 3H), 1.08 (dd, *J* = 7.9, 6.7 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 121.0, 60.2, 35.5, 32.8, 30.2, 21.1, 18.7 ppm.

Supplementary Figure 10: UPC² traces of 3d.

(R)-4-Hydroxy-2-phenethylbutanenitrile (3e)

Following the general procedure **C** using enal **1e** (750 μ mol, 120 mg), a mixture containing the β -cyanoaldehyde **2e** (71% NMR yield) and the sulfone by-product **2e**' (73% NMR yield) was obtained. The crude target product **2e** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3e** as a colorless oil (35.0 mg, 74% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 90:10 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min,

Chemical Formula: C₁₂H₁₅NO Molecular Weight: 189,2580

60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 257$ nm) $\tau_{Major} = 4.95$ min, $\tau_{Minor} = 5.10$ min.

 $[\alpha]_D^{25} = +30.1$ (c = 1.0, CHCl₃, 90:10 e.r.).

¹H NMR (400 MHz, CDCl₃): δ = 7.34 – 7.28 (m, 2H), 7.25 – 7.18 (m, 3H), 3.86 – 3.75 (m, 2H), 2.91 (ddd, *J* = 14.1, 9.0, 4.6 Hz, 1H), 2.86 – 2.71 (m, 2H), 2.04 – 1.80 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 140.2, 128.8 (2C), 128.5 (2C), 126.5, 121.9, 59.7, 34.9, 34.0, 33.4, 27.8 ppm.

HRMS (APCI): m/z calculated for $[C_{12}H_{16}NO]^+$ $[M+H]^+$: 190.1226; found: 190.1235.

Supplementary Figure 11: UPC² traces of **3e**.

(R)-4-Hydroxy-2-(3-methoxyphenethyl)butanenitrile (3f)

Following the general procedure **C** using enal **1f** (750 μ mol, 143 mg), a mixture containing the β -cyanoaldehyde **2f** (66% NMR yield) and the sulfone by-product **2f'** (64% NMR yield) was obtained. The crude target product **2f** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) followed by preparative TLC (silica gel, 60% ethylacetate in hexane) to afford product **3f** as a pale-yellow oil (32.0 mg, 58% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 89.5:10.5 by UPC² analysis on a Daicel Chiralpak IE-3

Chemical Formula: C₁₃H₁₇NO₂ Molecular Weight: 219,2840

column (eluent: 100% CO₂ for 1 min, gradient 100% - 70% CO₂ in CH₃CN for 12 min, 70% CO₂ in CH₃CN for 2 min, gradient 70% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, λ = 259 nm) τ_{Major} = 11.95 min, τ_{Minor} = 12.30 min.

 $[\alpha]_D^{25} = +31.6 \text{ (c} = 1.0, \text{ CHCl}_3, 89.5:10.5 \text{ e.r.}).$

¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.22$ (t, J = 7.7 Hz, 1H), 6.82 - 6.72 (m, 3H), 3.86 - 3.77 (m, 5H), 2.93 - 2.84 (m, 1H), 2.84 - 2.69 (m, 2H), 2.01 - 1.81 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 159.9$, 141.8, 129.8, 121.9, 120.9, 114.3, 111.8, 59.8, 55.3, 34.9, 33.9, 33.5, 27.8 ppm.

HRMS (ESI): m/z calculated for [C₁₃H₁₇NNaO₂]⁺ [M+Na]⁺: 242.1151; found: 242.1146.

Supplementary Figure 12: UPC² traces of 3f.

(R)-4-Hydroxy-2-(3-(trifluoromethyl)phenethyl)butanenitrile (3g)

Following the general procedure **C** using enal **1g** (750 μ mol, 171 mg), a mixture containing the β -cyanoaldehyde **2g** (78% NMR yield) and the sulfone by-product **2g'** (79% NMR yield) was obtained. The crude target product **2g** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3g** as a colorless oil (44.5 mg, 70% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 90:10 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min,

Chemical Formula: C₁₃H₁₄F₃NO Molecular Weight: 257,2562

60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.15$ min, $\tau_{Minor} = 4.35$ min.

 $[\alpha]_D^{25} = +14.4$ (c = 1.0, CHCl₃, 90:10 e.r.).

¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.38 - 7.21$ (m, 4H), 3.75 - 3.60 (m, 2H), 2.83 (ddd, J = 14.7, 9.6, 5.5 Hz, 1H), 2.75 - 2.61 (m, 2H), 1.91 - 1.65 (m, 4H) ppm. ¹³**C NMR** (101 MHz, CDCl₃): $\delta = 141.2$, 132.0 (q, J = 1.5 Hz), 131.1 (q, J = 32.2 Hz), 129.2, 125.2 (q, J = 3.6 Hz), 124.20 (q, J = 272.3 Hz), 123.5 (q, J = 3.9 Hz), 121.6, 59.6, 34.8, 33.8, 33.3, 27.9 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta = -62.7$ ppm.

HRMS (ESI): m/z calculated for [C₁₃H₁₄F₃NNaO]⁺ [M+Na]⁺: 280.0920; found: 280.0919.

Supplementary Figure 13: UPC² traces of 3g.

(R)-2-(4-Bromophenethyl)-4-hydroxybutanenitrile (3h)

Following the general procedure **C** using enal **1h** (750 μ mol, 179 mg), a mixture containing the β -cyanoaldehyde **2h** (57% NMR yield) and the sulfone by-product **2h'** (61% NMR yield) was obtained. The crude target product **2h** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3h** as a pale yellow oil (34.5 mg, 52% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 90:10 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min,

Chemical Formula: C₁₂H₁₄BrNO Molecular Weight: 268,1540

60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 257$ nm) $\tau_{Major} = 5.70$ min, $\tau_{Minor} = 6.00$ min.

 $[\alpha]_D^{25} = +26.1$ (c = 1.0, CHCl₃, 90:10 e.r.).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.41$ (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 3.82 (br t, J = 5.5 Hz, 2H), 2.92 – 2.66 (m, 3H), 2.01 – 1.76 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 139.2$, 131.9 (2C), 130.3 (2C), 121.7, 120.4, 59.7, 34.9, 33.8, 32.9, 27.7 ppm.

HRMS (ESI): m/z calculated for [C₁₂H₁₄BrNNaO]⁺ [M+Na]⁺: 290.0151 found: 290.0155.

Supplementary Figure 14: UPC² traces of 3h.

(R)-2-(2-Hydroxyethyl)hept-6-enenitrile (3i)

Following the general procedure C using enal 1i (750 µmol, 93.0 mg), a mixture containing the β -cyanoaldehyde 2i (73% NMR yield) and the sulfone by-product 2i' (< 10% NMR yield) was obtained. The crude target product 2i was reduced according to the general procedure D and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product 3i as a pale yellow oil (27.5 mg, 72% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 92.5:7.5 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min,

Chemical Formula: C₉H₁₅NO Molecular Weight: 153,2250

60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.20$ min, $\tau_{Minor} = 4.60$ min.

 $[\alpha]_D^{25} = -4.9 \ (c = 1.0, CHCl_3, 92.5:7.5 \text{ e.r.}).$

¹**H** NMR (500 MHz, CDCl₃): $\delta = 5.78$ (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.06 - 5.00 (m, 1H), 5.00 - 4.96 (m, 1H), 3.89 - 3.72 (m, 2H), 2.88 - 2.75 (m, 1H), 2.18 - 2.03 (m, 2H), 1.86 - 1.80 (m, 2H), 1.71 - 1.50 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 137.8, 122.1, 115.5, 59.7, 34.9, 33.2, 31.6, 28.1, 26.4$ ppm.

HRMS (APCI): m/z calculated for [C₉H₁₆NO]⁺ [M+H]⁺: 154.1226; found: 154.1230.

Supplementary Figure 15: UPC² traces of 3i.

(2R,4S)-2-(2-Hydroxyethyl)-4,8-dimethylnon-7-enenitrile (3j)

Following the general procedure **C** using enal **1j** (750 μ mol, 135 mg), a mixture containing the β -cyanoaldehyde **2j** (80% NMR yield) and the sulfone by-product **2j'** (> 95% NMR yield) was obtained. The crude target product **2j** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3j** as a pale yellow oil (35.5 mg, 68% yield). Since determination of the d.r. by NMR was not successful due to overlapping signals, the diastereomeric ratio of the corresponding 4-nitrobenzoate

derivative was determined to be 90.5:9.5 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 257$ nm) $\tau_{Major} = 4.95$ min, $\tau_{Minor} = 6.05$ min.

 $[\alpha]_{D}^{25} = -4.7 (c = 1.0, CHCl_3, 90.5:9.5 d.r.).$

¹H NMR (400 MHz, CDCl₃, major diastereomer): $\delta = 5.12 - 5.05$ (m, 1H), 3.83 (dd, J = 6.6, 5.4 Hz, 2H), 2.96 - 2.82 (m, 1H), 2.07-1.93 (m, 2H), 1.85-1.77 (m, 2H), 1.76 - 1.65 (m, 6H), 1.60 (s, 3H), 1.38 - 1.17 (m, 3H), 0.94 (d, J = 6.5 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃, major diastereomer): $\delta = 131.8, 124.3, 122.1, 59.8, 39.6, 37.5, 35.6, 30.8, 26.3, 25.8, 25.5, 18.9, 17.8$ ppm.

HRMS (APCI): m/z calculated for $[C_{13}H_{24}NO]^+$ $[M+H]^+$: 210.1852; found: 210.1858.

Supplementary Figure 16: UPC² traces of **3**j.

(R)-2-(2-Hydroxyethyl)oct-5-enenitrile (3k)

Following the general procedure **C** using enal **1k** (750 µmol, 104 mg), a mixture containing the β -cyanoaldehyde **2k** (73% NMR yield) and the sulfone by-product **2k'** (32% NMR yield) was obtained. The crude target product **2k** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3k** as a pale yellow oil (21.0 mg, 69% yield, (*Z*):(*E*) = 60:40). The enantiomeric ratio of the corresponding 4-

nitrobenzoate derivative was determined to be 91.5:8.5 for both double bond isomers by UPC² analysis on a Daicel Chiralpak IE-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in MeOH for 14 min, 60% CO₂ in MeOH for 2 min, gradient 60% - 100% CO₂ in MeOH for 1 min; flow rate 2.0 mL/min, $\lambda = 254$ nm) (*Z*)-isomer: $\tau_{Major} = 11.45$ min, $\tau_{Minor} = 12.00$ min; (*E*)-isomer: $\tau_{Major} = 12.25$ min, $\tau_{Minor} = 12.50$ min.

 $[\alpha]_{D}^{25} = +6.2 \text{ (c} = 1.0, \text{CHCl}_{3}, E:Z = 60:40, 91.5:8.5 \text{ e.r.}).$

¹**H** NMR (500 MHz, CDCl₃, mixture of *E*/*Z*-isomers): $\delta = 5.60 - 5.50$ (m, 1H, minor), 5.50 - 5.41 (m, 1H, major), 5.35 (td, J = 7.7, 6.1 Hz, 1H, minor), 5.30 - 5.22 (m, 1H, major), 3.87 - 3.77 (m, 4H, major & minor), 2.88 - 2.78 (m, 2H, major & minor), 2.32 - 1.93 (m, 8H, major & minor), 1.90-1.80 (m, 4H, major & minor), 1.78 - 1.58 (m, 6H, major and minor), 0.97 (t, J = 7.5, 3H, major), 0.96 (t, J = 7.5, 3H, minor). ¹³C NMR (126 MHz, CDCl₃, mixture of *E*/*Z*-isomers): $\delta = 134.3$, 133.9, 126.7, 126.5, 122.1, 122.0, 59.8, 59.8, 34.9, 34.9, 32.3, 32.2, 30.1, 27.7, 27.6, 25.7, 24.8, 20.7, 14.4, 13.9 ppm.

HRMS (APCI): m/z calculated for $[C_{10}H_{18}NO]^+$ [M+H]⁺: 168.1383; found: 168.1385.

Supplementary Figure 17: UPC² traces of 3k.

(R)-2-(2-Hydroxyethyl)hept-6-ynenitrile (3l)

Following the general procedure **C** using enal **11** (750 µmol, 91.5 mg), a mixture containing the β -cyanoaldehyde **21** (56% NMR yield) and the sulfone by-product **21'** (41% NMR yield) was obtained. The crude target product **21** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **31** as a pale yellow oil (21.0 mg, 56% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 90:10 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂

for 1 min, gradient 100% - 60% CO₂ in i-PrOH for 5 min, 60% CO₂ in i-PrOH Molecular Weight: 151,2090 for 2 min, gradient 60% - 100% CO₂ in i-PrOH for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.40$ min, $\tau_{Minor} = 4.55$ min.

 $[\alpha]_{D^{25}} = -51.3 (c = 1.0, CHCl_3, 90:10 e.r.).$

¹**H** NMR (400 MHz, CDCl₃): $\delta = 3.89 - 3.76$ (m, 2H), 2.92 - 2.78 (m, 1H), 2.30 - 2.23 (m, 2H), 1.98 (t, J = 2.7 Hz, 1H), 1.89 - 1.63 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 121.8$, 83.3, 69.4, 59.7, 34.9, 31.2, 27.9, 25.9, 18.1 ppm.

Supplementary Figure 18: UPC² traces of 3l.

(R)-5-(1,3-Dioxoisoindolin-2-yl)-2-(2-oxoethyl)pentanenitrile (2m)

Following the general procedure C using enal 1m (750 μ mol, 182 mg), a mixture containing the β -cyanoaldehyde 2m (71% NMR yield) and the sulfone by-product 2m' (78% NMR yield) was obtained. The crude target product 2m was purified by flash column chromatography (silica gel, 20-30% ethyl acetate in hexanes). Product containing fractions were loaded on a pad of silica gel, kept to open air and eluted after 16 h with ethylacetate. The filtrate was concentrated and purified by preparative TLC

 $\begin{array}{l} \mbox{Chemical Formula: } C_{15}H_{14}N_2O_3 \\ \mbox{Molecular Weight: } 270,2880 \end{array}$

(silica gel, 70% ethylacetate in hexanes) to afford the aldehyde product **2m** as a pale-yellow wax (53.5 mg, 79% yield). The enantiomeric ratio of the corresponding dinitrophenylhydrazone derivative (see **Supplementary Figure 4**) was determined to be 88.5:11.5 by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in i-PrOH for 5 min, 60% CO₂ in i-PrOH for 2 min, gradient 60% - 100% CO₂ in i-PrOH for 1 min; flow rate 2.0 mL/min) λ = 345 nm, τ_{Major} = 5.65 min, τ_{Minor} = 6.00 min.

 $[\alpha]_D^{25} = +3.3 (c = 1.0, CHCl_3, 88.5:11.5 e.r.).$

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.74$ (s, 1H), 7.84 (dd, J = 5.5, 3.0 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 2H), 3.74 (t, J = 6.8 Hz, 2H), 3.22 – 3.12 (m, 1H), 2.90 (ddd, J = 18.6, 7.0, 0.7 Hz, 1H), 2.74 (ddd, J = 18.6, 6.4, 0.7 Hz, 1H), 2.03 – 1.90 (m, 1H), 1.90 – 1.79 (m, 1H), 1.76 – 1.58 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 196.9$, 168.5 (2C), 134.2 (2C), 132.1 (2C), 123.5 (2C), 120.6, 45.5, 36.9, 29.2, 26.4, 24.5 ppm.

Supplementary Figure 19: UPC² traces of 2m.

(R)-5-(Benzyloxy)-2-(2-hydroxyethyl)pentanenitrile (3n)

Following the general procedure **C** using enal **1n** (750 μ mol, 153 mg), a mixture containing the β -cyanoaldehyde **2n** (55% NMR yield) and the sulfone by-product **2n'** (72% NMR yield) was obtained. The crude target product **2n** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford product **3n** as a pale-yellow oil (30.0 mg, 52% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 88.5:11.5 by UPC² analysis on a Daicel Chiralpak IA-3

Molecular Weight: 233,3110

column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min) λ = 257 nm, τ_{Major} = 5.50 min, τ_{Minor} = 6.40 min.

 $[\alpha]_D^{25} = +0.1 \text{ (c} = 1.0, \text{CHCl}_3, 88.5:11.5 \text{ e.r.}).$

¹H NMR (400 MHz, CDCl₃): $\delta = 7.40 - 7.23$ (m, 5H), 4.50 (s, 2H), 3.85 - 3.75 (m, 2H), 3.57 - 3.47 (m, 2H), 2.89 - 2.78 (m, 1H), 1.97 - 1.60 (m, 6H), 1.52 (t, *J* = 4.9 Hz, OH) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 138.4$, 128.6 (2C), 127.8 (2C), 127.8, 122.1, 73.1, 69.3, 59.7, 34.9, 29.3, 28.0, 27.4 ppm.

HRMS (**APCI**): m/z calculated for $[C_{14}H_{20}NO_2]^+$ [M+H]⁺: 234.1489; found: 234.1493.

Supplementary Figure 20: UPC² traces of 3n.

(R)-2-(2-Hydroxyethyl)hexanedinitrile (30)

Following the general procedure **C** using enal **10** (750 μ mol, 92.5 mg), a mixture containing the β -cyanoaldehyde **20** (60% NMR yield) and the sulfone by-product **20'** (75% NMR yield) was obtained. The crude target product **20** was reduced according to the general procedure **D** and the desired alcohol was purified by flash column chromatography (silica gel, 40-50% ethyl acetate in hexanes). Product-containing fractions were combined and purified by preparative TLC (silica gel, 100% ethylacetate) to afford product **30** as a pale yellow oil (17.0 mg, 44% yield). The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative was determined to be 88:12 by UPC² analysis on a

Chemical Formula: C₈H₁₂N₂O Molecular Weight: 152,1970

Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in i-PrOH for 5 min, 60% CO₂ in i-PrOH for 2 min, gradient 60% - 100% CO₂ in i-PrOH for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 5.35$ min, $\tau_{Minor} = 5.60$ min.

 $[\alpha]_{D}^{25} = -55.8 \text{ (c} = 0.5, \text{CHCl}_{3}, 88:12 \text{ e.r.}).$

¹**H NMR (400 MHz, CDCl₃):** $\delta = 3.91 - 3.76$ (m, 2H), 2.96 - 2.84 (m, 1H), 2.51 - 2.41 (m, 2H), 1.97 - 1.74 (m, 6H) ppm. ¹³**C NMR (101 MHz, CDCl₃):** $\delta = 121.3$, 118.9, 59.4, 34.7, 31.1, 27.8, 23.2, 17.0 ppm.

HRMS (**APCI**): m/z calculated for $[C_8H_{13}N_2O]^+$ [M+H]⁺: 153.1022; found: 153.1022.

Supplementary Figure 21: UPC² traces of 30.

(R)-7-Morpholino-7-oxo-2-(2-oxoethyl)heptanenitrile (2p)

Following the general procedure C using enal **1p** (750 μ mol, 169 mg), a mixture containing the β -cyanoaldehyde **2p** (64% NMR yield) and the sulfone by-product **2p'** (86% NMR yield) was obtained. The crude target product **2p** was purified by flash column chromatography (silica gel, 1% MeOH in DCM). The product-containing fractions were combined and loaded on another column chromatography (silica gel, 100% ethylacetate). After 16 h, the product was eluted with ethylacetate to

Chemical Formula: C₁₃H₂₀N₂O₃ Molecular Weight: 252,3140

afford the aldehyde product **2p** as a pale yellow oil (41.0 mg, 65% yield). The enantiomeric ratio of the corresponding dinitrophenylhydrazone derivative (**Supplementary Figure 4**) was determined to be 86.5:13.5 by UPC² analysis on a Daicel Chiralpak IB-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 70% CO₂ in EtOH for 34 min, 70% CO₂ in EtOH for 2 min, gradient 70% - 100% CO₂ in EtOH for 1 min; flow rate 2.0 mL/min, $\lambda = 345$ nm) $\tau_{Major} = 27.70$ min, $\tau_{Minor} = 28.05$ min.

 $[\alpha]_{D}^{25} = +2.4 (c = 1.0, CHCl_3, 86.5:13.5 e.r.).$

¹**H NMR** (**400 MHz**, **CDCl**₃): $\delta = 9.75$ (s, 1H), 3.70 - 3.63 (m, 4H), 3.63 - 3.57 (m, 2H), 3.45 (t, J = 4.9 Hz, 2H), 3.14 - 3.04 (m, 1H), 2.90 (ddd, J = 18.6, 6.9, 0.7 Hz, 1H), 2.75 (ddd, J = 18.6, 6.5, 0.7 Hz, 1H), 2.33 (t, J = 7.2 Hz, 2H), 1.76 - 1.45 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 197.2, 171.1, 121.0, 67.0, 66.7, 46.0, 45.6, 42.1, 32.6, 31.7, 26.9, 24.7, 24.4$ ppm.

HRMS (ESI): m/z calculated for [C₁₃H₂₀N₂NaO₃]⁺ [M+Na]⁺: 275.1366; found: 275.1365.

Supplementary Figure 22: UPC² traces of 2p.

(R)-11-Hydroxy-2-(2-oxoethyl)undecanenitrile (2q)

Following the general procedure C using enal **1q** (750 µmol, 149 mg), a mixture containing the β -cyanoaldehyde **2q** (47% NMR yield) and the sulfone by-product **2q'** (75% NMR yield) was obtained. The crude target product **2q** was loaded on column chromatography (silica gel, 20% ethyl acetate in hexanes). After 3 days, the product was eluted (20-30% ethylacetate in hexanes). Product-containing fractions were combined, concentrated and purification by chromatography was repeated as described above to afford the aldehyde product **2q** as a pale yellow oil (25.5 mg, 46% yield). The enantiomeric ratio of the corresponding dinitrophenylhydrazone derivative (**Supplementary Figure 4**) was determined to be 90.5:9.5 by UPC² analysis on a Daicel Chiralpak IE-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in EtOH for 5 min, 60% CO₂ in EtOH for 10 min, gradient 60% - 100% CO₂ in EtOH for 1 min; flow rate 2.0 mL/min, $\lambda = 345$ nm) $\tau_{Maior} = 10.55$

min, $\tau_{Minor} = 11.45$ min. Note: This compound was found unstable and decomposed upon storage at -20 °C for several months.

 $[\alpha]_{D^{25}} = -32.4 \ (c = 0.5, CHCl_3, 90.5:9.5 \text{ e.r.}).$

¹H NMR (400 MHz, CDCl₃): $\delta = 9.77$ (s, 1H), 3.63 (t, J = 6.6 Hz, 2H), 3.13 – 3.02 (m, 1H), 2.90 (dd, J = 18.5, 6.9 Hz, 1H), 2.73 (dd, J = 18.5, 6.5 Hz, 1H), 1.67 – 1.19 (m, 17H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 197.3, 121.2, 63.2, 45.7, 32.9, 31.9, 29.5, 29.4, 29.3, 29.0, 27.1, 25.8, 24.9$ ppm.

Supplementary Figure 23: UPC² traces of 2q.
(2R,5R)-5-((5R,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-3,12-dioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(2-oxoethyl)hexanenitrile (2r)

Tosyl cyanide (1.0 equiv., 19.0 mg, 100 μ mol, 95%), **2r** (2.0 equiv., 79.5 mg, 200 μ mol), dihydropyridine **R-1** (1.2 eq, 39.0 mg, 120 μ mol), aminocatalyst **A-4** (0.3 equiv., 31.1 mg, 30.0 μ mol) and 4-CzIPN (1 mol%, 790 μ g, 1.00 μ mol) were loaded in a reaction vial and the vessel was sealed with a septum and flushed with argon. Then, ethylacetate (200 μ L), water (3.0 equiv., 5.41 μ L) and TFA (0.4 equiv., 2.97 μ L, 40.0 μ mol) was added and the vial was immediately placed in a cooling block (set to 5 °C internal temperature) and irradiated with 460 nm (90 mW/cm²) for 16 hours. The crude mixture, containing β -

Chemical Formula: C₂₇H₃₉NO₃ Molecular Weight: 425,6130

cyanoaldehyde 2r (44% NMRy) and sulfone by-product 2r' (83% NMRy) was concentrated and loaded on column chromatography (silica gel, 15% ethyl acetate in hexanes). After 16 h being absorbed on the silica gel (in order to decompose unstable and inseparable sulfone by-product 2r'), the product was eluted (15-30% ethylacetate in hexanes). The product-containing fractions were combined, concentrated and column chromatography was repeated as described above to afford the aldehyde product 2r as a white solid (42.5 mg, 42% yield). Although no minor diaseteroisomer could be observed by NMR analysis. we conducted chiral chromatographic analysis of the the corresponding dinitrophenylhydrazone derivative to reveal a d.r. of 90:10 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in MeOH for 5 min, 60% CO₂ in MeOH for 2 min, gradient 60% - 100% CO₂ in MeOH for 1 min; flow rate 2.0 mL/min, $\lambda = 343$ nm) $\tau_{Major} = 6.00 \text{ min}, \tau_{Minor} = 4.95 \text{ min}.$

 $[\alpha]_{D^{25}} = +56.1 \text{ (c} = 0.5, \text{CHCl}_3, 90:10 \text{ d.r.}).$

¹**H** NMR (400 MHz, CDCl₃, major diastereoisomer): $\delta = 9.77$ (s, 1H), 3.13 – 3.01 (m, 1H), 2.92 (ddd, J = 18.6, 6.9, 0.7 Hz, 1H), 2.74 (ddd, J = 18.6, 6.6, 0.8 Hz, 1H), 2.67 – 2.52 (m, 2H), 2.34 (td, J = 14.6, 5.3 Hz, 1H), 2.23 – 2.14 (m, 1H), 2.13-1.27 (m, 21H), 1.19-1.07 (m, 1H), 1.11 (s, 3H), 1.06 (s, 3H), 0.86 (d, J = 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃, major diastereoisomer): $\delta = 214.3, 212.2, 197.3, 121.1, 58.7, 57.7, 46.4, 45.9, 44.4, 43.8, 42.3, 38.5, 37.1, 36.9, 35.8, 35.6, 35.3, 32.6, 28.7, 27.7, 26.7, 25.6, 24.9, 24.4, 22.3, 18.8, 11.9, ppm.$

HRMS (ESI): m/z calculated for [C₂₈H₄₃NNaO₄]⁺ [M+MeOH+Na]⁺: 480.3084; found: 480.3093.

Supplementary Figure 24: UPC² trace of 2r (diastereoisomer).

Further Derivatization of Cyanoaldehyde 2a

(4R)-2-Hydroxy-4-pentylpentanedinitrile (4a)

Following the general procedure **C** using enal **1a** (750 μ mol, 94.5 mg), the crude mixture containing cyanoaldehyde **2a** was used without purification (evaporation of the solvent, *one-pot approach*). A solution of NaHSO₃ (104 mg, 1.00 mmol, 4.0 equiv.) in water (0.5 mL) was added to the crude product and the mixture was cooled to 0 °C. Then, a solution of KCN (130 mg, 2.00 mmol, 8.0 equiv.) in water (1.0 mL) was added dropwise and stirred for 10 minutes at 0 °C. DCM (1.5 mL) was added and the mixture was stirred vigorously at room temperature under open air. The mixture was transferred to a separation funnel and extracted with DCM (3 x 20 mL). The combined layers were dried with MgSO₄ and concentrated. Column chromatography (silica gel,

Chemical Formula: C₁₀H₁₆N₂O Molecular Weight: 180,2510

5-8% ethyl acetate in hexanes) afforded 31.0 mg (69% yield over 2 steps) of cyanohydrine **4a** as a diastereomeric mixture of 66:34. The enantiomeric ratios of the corresponding 4-nitrobenzoate derivatives were determined to be 90:10 (for both diastereoisomers) by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in MeOH for 5 min, 60% CO₂ in MeOH for 2 min, gradient 60% - 100% CO₂ in MeOH for 1 min; flow rate 2.0 mL/min, λ = 254 nm) Major diastereoisomer: τ_{Major} = 4.80 min, τ_{Minor} = 4.35 min, Minor diastereoisomer: τ_{Major} = 4.50 min, τ_{Minor} = 5.20 min. Racemic material could be obtained as diastereopure samples (see UPC² traces below).

 $[\alpha]_D^{25} = -143.2 \text{ (c} = 0.5, \text{CHCl}_3, 66:34 \text{ d.r.}, 90:10 \text{ e.r.}).$

¹**H** NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 4.78 - 4.64$ (m, 2H, major & minor), 3.24 - 2.98 (br m, 2 OH, major & minor), 2.93 (ddt, J = 10.3, 8.9, 5.4 Hz, 1H, major), 2.86 - 2.70 (m, 1H, minor), 2.29 - 2.04 (m, 4H, major & minor), 1.75 - 1.28 (m, 16H, major & minor), 0.91 (t, J = 6.9 Hz, 6H, major & minor). ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 120.8$ (2C), 119.0, 118.8, 59.5, 58.5, 37.4, 37.4, 32.1, 32.1, 31.2 (2C), 27.9, 27.7, 26.8, 26.7, 22.5 (2C), 14.0 (2C) ppm.

HRMS (APCI): m/z calculated for $[C_{10}H_{17}N_2O]^+$ $[M+H]^+$: 181.1335; found: 181.1331.

Supplementary Figure 25: UPC² traces of 4a.

(R)-3-Cyanooctanoic acid (4b)

Following the general procedure **C** using enal **1a** (750 μ mol, 94.5 mg), the crude mixture containing cyanoaldehyde **2a** was used without purification (evaporation of the solvent, *one-pot approach*). The crude mixture was redissolved in t-BuOH (8.0 mL) and 2-methylbut-1-ene (808 μ L, 7.50 mmol, 30 equiv.) was added. Then, a solution of NaClO₂ (271 mg, 3.00 mmol, 12 equiv.) and NaH₂PO₄ (300 mg, 2.50 mmol, 10 equiv.) in water (3.0 mL) was added dropwise and the mixture was stirred for 2 hours at room temperature.

Chemical Formula: C₉H₁₅NO₂ Molecular Weight: 169,2240

organic layers were dried with MgSO₄, concentrated and the product was purified by column chromatography (silica gel, 8-15% EtOAc in hexanes with 1% AcOH). The pyridine containing product was again separated by column chromatography (silica gel, 10-15% EtOAc in hexanes for elution of pyridine followed by 1% AcOH in EtOAc for elution of product) to obtain 26.0 mg (62%) of the desired cyanoacid **4b** as bright yellow oil. NMR data was found to be in agreement with the literature.²⁸

¹**H** NMR (400 MHz, CDCl₃) $\delta = 3.06 - 2.94$ (m, 1H), 2.77 (dd, J = 17.1, 7.7 Hz, 1H), 2.62 (dd, J = 17.1, 6.6 Hz, 1H), 1.73 - 1.21 (m, 8H), 0.91 (t, J = 6.8 Hz, 3H) ppm.

(R)-3-(Aminomethyl)octanoic acid (4c)

Cyanoacid **4b** (26.1 mg, 154 μ mol) was dissolved in MeOH (100 mL, HPLC grade and the solution was subjected to hydrogenation using a H-Cube pro apparatus (conditions: new Pd/C cartridge, 70 °C, 50 bar H₂, 1.0 mL/min). The apparatus was flushed with MeOH (3 x 20 mL) and the combined fractions were concentrated to afford 24.5 mg (91%) of aminoacid **4c** as off-white semisolid without need for further purification.

Determination of e.r.: 1.00 mg of **4c** was dissolved in MeOH (1 mL) and TMSdiazomethane (2M in diethylether, 0.3 mL) was added. After 5 minutes, the mixture was dried under reduced pressure, and the methylester was re-dissolved

Chemical Formula: C₉H₁₉NO₂ Molecular Weight: 173,2560

in CHCl₃ (0.2 mL) and 4-NO₂-benzoyl chloride (5.0 equiv.) and DMAP (5.0 equiv.) were added. After stirring for 1 h, the amide was isolated by preparative TLC (20% EtOAc in hexanes) and the enantiomeric ratio was determined to be 90.5:9.5 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 262$ nm, $\tau_{Major} = 5.15$ min, $\tau_{Minor} = 5.40$ min.

 $[\alpha]_D^{25} = -97.6 \text{ (c} = 0.5, \text{ MeOH}, 90.5:9.5 \text{ e.r.}).$

¹**H** NMR (400 MHz, CD₃OD) $\delta = 2.98$ (dd, J = 12.8, 4.7 Hz, 1H), 2.90 (dd, J = 12.8, 7.5 Hz, 1H), 2.45 (dd, J = 16.0, 4.4 Hz, 1H), 2.33 (dd, J = 16.0, 8.0 Hz, 1H), 2.08 – 1.98 (m, 1H), 1.43 – 1.26 (m, 8H), 0.92 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) $\delta = 179.0, 45.1, 41.0, 35.3, 33.4, 33.0, 27.4, 23.6, 14.4$ ppm.

HRMS (ESI): m/z calculated for [C₉H₂₀NO₂]⁺ [M+H]⁺: 174.1489; found: 174.1496.

Supplementary Figure 26: UPC² traces of 4c.

Characterization of the β-Sulfone Aldehyde 2a' (byproduct)

Due to the inseparability of the aldehydic reaction products **2a** and **2a'**, a clean mixture was obtained upon reduction to alcohols **3** and column chromatography purification, as described below.

Following the general procedure C using enal **1a** (750 μ mol, 94.5 mg), the crude product was purified by flash column chromatography (silica gel, CHCl₃) to afford 38.0 mg of an inseparable mixture of **2a** and **2a**' (and traces of pyridine byproduct). Isolated peaks in ¹H NMR are as following:

Characteristic peaks of 2a:

¹**H** NMR (400 MHz, CDCl₃) δ = 9.74 (bs, 1H), 3.08 – 3.01 (m, 1H), 2.87 (ddd, *J* = 18.5, 7.1, 0.7 Hz, 1H), 2.71 (ddd, *J* = 18.6, 6.4, 0.8 Hz, 1H), 0.87 (t, *J* = 7.0 Hz, 3H), ppm.

Characteristic peaks of 2a':

¹**H** NMR (400 MHz, CDCl₃) $\delta = 9.70$ (t, J = 1.2 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.66-3.57 (m, 1H), 3.00 (ddd, J = 18.3, 5.9, 1.4 Hz, 1H), 2.61 (ddd, J = 18.3, 6.1, 0.9 Hz, 1H), 2.43 (s, 3H), 0.80 (t, J = 6.7 Hz, 3H) ppm.

Supplementary Figure 27: Mixture of β -cyano aldehyde 2a and β -sulfone aldehyde 2a' (400 MHz).

Upon reduction of the crude mixture obtained with enal **1a**, the alcohol derivatives of **2a** and **2a'** could be separated readily by column chromatography. This allowed us to isolate and characterise the sulfonyl-alcohol by-product **3a'**:

3-Tosyloctan-1-ol (3a'). A 8.0 mL vial equipped with a stirring bar was charged with tosyl cyanide (19.1 mg, 100 μ mol, 95% purity, 1.0 equiv.), **A-3** (14.0 mg, 20.0 μ mol, 0.2 equiv.), **R-1** (49.0 mg, 150 μ mol, 1.5 equiv.), 4-CzIPN (1.00 mg, 1.00 μ mol, 1 mol%) and octenal **1a** (44.8 μ L, 300 μ mol, 3.0 equiv.). The vial was sealed with a septum and purged with Argon. The reactants were suspended in EtOAc (200 μ L, ensure that all compounds are suspended) and deionized water (5.4 μ L, 3.0 equiv.)

was added. Then, TFA (2.23 μ L, 30 μ mol, 0.3 equiv.) was added and the vial was instantly placed in a pre-cooled metal block (set for an internal temperature of -10 °C) and irradiated with a high-power single LED (460 nm, irradiance 90 mW/cm²). After 16 hours the mixture was concentrated under reduced pressure. The residue was dissolved in THF (0.40 mL) and then water (0.10 mL) was added. After cooling to 0 °C with an ice bath, NaBH₄ (37.8 mg, 1.00 mmol, 10 equiv.) was added in a few portions while rigorous stirring. After 10 minutes, the ice bath was removed and the mixture was stirred for 90 minutes at ambient temperature. After cooling to 0 °C with an ice bath, the slurry was quenched dropwise with 1 N HCl until gas evolution ceased. The mixture was transferred to a separation funnel and extracted with DCM (3 x 20 mL). The desired alcohol were purified by flash column chromatography (silica gel, 15-20% ethyl acetate in hexanes) to afford 20.0 mg (70%) of sulfone alcohol **3a**' as a pale-yellow oil. The enantiomeric ratio of the corresponding 4-nitrobenzoate (prepared in anaolgy to the general procedure for derivatization of β -cyanoalcohols) was determined to be 86:14 by UPC² analysis on a Daicel Chiralpak IE-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 224$ nm) $\tau_{Major} = 6.20$ min, $\tau_{Minor} = 6.40$ min.

 $[\alpha]_{D}^{25} = -3.2 (c = 1.0, CHCl_3, 86:14 e.r.).$

¹H NMR (400 MHz, CDCl₃) $\delta = 7.76$ (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 3.90 – 3.80 (m, 1H), 3.75 – 3.65 (m, 1H), 3.19 – 3.08 (m, 1H), 2.45 (s, 3H), 2.15 – 2.02 (m, 2H), 1.92 – 1.73 (m, 2H), 1.54 – 1.35 (m, 2H), 1.32 – 1.13 (m, 4H), 0.83 (t, J = 6.9 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 144.8$, 134.7 (2C), 129.9 (2C), 129.1, 62.0, 60.0, 31.6, 31.0, 28.7, 26.4, 22.4, 21.8, 14.0 ppm.

HRMS (ESI): m/z calculated for $[C_{15}H_{25}O_3S]^+$ $[M+H]^+$: 285.1519; found: 285.1523.

Supplementary Figure 28: UPC² traces of 3a'

General Procedure for the Cross-Electrophile Coupling of Enals and Acrylates

General Procedure E (*for 0.25 mmol scale*): To a 8.0 mL argon-purged glass vial, containing the acrylate **5** (1.0 equiv.), enal **1** (3.0 equiv.), DHP **R-1** (375 µmol, 1.5 equiv.), 4-CzIPN (2.50 µmol, 1 mol%) and amine catalyst **A-3** (50.0 µmol, 20 mol%), was added 500 µL of dimethoxyethane, H₂O (2.50 mmol, 10 equiv.) and TFA (75.0 µmol, 30 mol%). The vial was sealed with Parafilm, and then placed into a cooled aluminium support mounted on an aluminium block fitted with a 460 nm high-power single LED ($\lambda = 460$ nm, irradiance = 90 mW/cm², as controlled by an external power supply; the set-up is detailed in **Supplementary Figure 1**). This set-up secured a reliable irradiation while keeping a constant distance of 1 cm between the reaction vessel and the light source. The reaction was stirred under visible light irradiation at -10 °C internal temperature for 16 hours. Then the solvent was evaporated, and the crude mixture was purified by column chromatography on silica gel to furnish product **6** in the stated yield and enantiomeric purity. Diastereomeric ratio was determined by ¹H NMR analysis of the crude mixture. The light source for illuminating the reaction vessel consisted in a 460 nm high-power single LED (OCU-440 UE460-X-T) purchased from OSA OPTO.

Derivatization of 6 for determination of enantiomeric ratio by UPC² analysis

Determination of enantiomeric ratios of the individual diastereoisomers of 1,6-dicarbonyls **6** failed in our hands due to inseparability of the 4 stereoisomers. Therefore, the following reaction sequence was performed for e.r. determination of the individual diastereoisomers (as outlined in **Supplementary Figure 29**). Upon global reduction of **6**, the diastereoisomeric mixture of the obtained diols could be separated by preparative TLC. Then, the individual diastereomeric diols were converted to their 4-nitrobenzoic esters by global acylation which could then be used for determination of the e.r. values by UPC² analysis.

Supplementary Figure 29: Reaction sequence to separate diastereoisomers and determine e.r. of 6

Procedure:

An analytical sample of 1,6-dicarbonyl product **6** (5.00 mg) was dissolved in 500 μ L of THF. LiAlH₄ (5 equiv.) were added and the mixture was stirred for 1 h. The reaction mixture was diluted with Et₂O (2.0 mL), quenched with Glauber's salt (NaSO₄·10 H₂O) and then filtered over a pad of silica gel, which was subsequently rinsed with EtOAc. The volatiles were removed under reduced pressure and the two diastereomeric diols were separated by preparative TLC using EtOAc in hexanes (generally 75% EtOAc in hexanes).

The obtained diols were then further functionalized to the 4-nitrobenzoates as follows. The diol together with a slight excess of both *p*-NO₂-benzoyl chloride and 4-dimethylaminopyridine (DMAP) were suspended in DCM (0.5 mL) and the solution was allowed to stir for 90 minutes. The ester was separated by preparative TLC from unreacted starting material (generally 25% EtOAc in hexanes) and analyzed by UPC² analysis with conditions specified in the experimental section of the individual compounds.

Characterization Data of the Cross Electrophile Coupling Products 6

4-Methoxybenzyl (4S)-4-(2-oxoethyl)-2-phenylnonanoate (6a)

Following the general procedure **E** using acrylate **5a** (250 µmol, 67.0 mg) and 2-octenal **1a** (750 µmol, 94.5 mg, 112 µL), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6a** as a pale yellow oil (91.0 mg, 92% yield) in a 1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 94:6 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 85% CO₂

in CH₃CN for 5 min, 85% CO₂ in CH₃CN for 2 min, gradient 85% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.60$ min, $\tau_{Minor} = 4.35$ min, and 87:13 for *diastereomer* 2 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in CH₃CN for 5 min, 80% CO₂ in CH₃CN for 2 min, gradient 80% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 7.80$ min, $\tau_{Minor} = 7.45$ min.

 $[\alpha]_{\mathbf{D}^{26}} = -6.5 \ (c = 1.0, CHCl_3, 1:1 \ d.r., 94:6 \ e.r.^1, 87:13 \ e.r.^2).$

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.4 Hz, 1H), 9.60 (t, J = 2.2 Hz, 1H), 7.34 – 7.25 (m, 10H), 7.21 – 7.15 (m, 4H), 6.87 – 6.80 (m, 4H), 5.08 (d, J = 12.0 Hz, 2H), 4.98 (d, J = 12.1 Hz, 1H), 4.97 (d, J = 12.1 Hz, 1H), 3.80 (s, 6H), 3.66 (td, J = 7.8, 3.6 Hz, 2H), 2.30 (ddt, J = 4.5, 2.2, 1.0 Hz, 4H), 2.17 – 2.10 (m, 1H), 2.06 – 1.99 (m, 1H), 1.88 – 1.80 (m, 3H), 1.75 (dd, J = 13.7, 7.0 Hz, 1H), 1.30 – 1.15 (m, 16H), 0.88 – 0.82 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.7$, 202.5, 173.7, 173.7, 159.7 (2C), 138.8, 138.8, 130.0, 130.02, 128.8, 128.8, 128.1, 128.1 (2C), 128.0, 127.5 (2C), 114.0 (2C), 66.6 (2C), 55.4 (2C), 49.4, 49.4, 48.3, 48.2, 38.0, 38.0, 34.0, 33.9, 32.0, 31.1, 31.0, 26.1, 26.0, 22.6 (2C), 14.1, 14.1 ppm.

HRMS (ESI): m/z calculated for [C₂₅H₃₂O₄Na]⁺ [M+Na]⁺: 419.2193; found: 419.2193.

Supplementary Figure 30: UPC² traces of 6a, diastereomer 1.

Supplementary Figure 31: UPC² traces of **6a**, diastereomer 2.

4-Methoxybenzyl (4S)-4-(2-oxoethyl)-2-phenylnonanoate (6a) (1.00 mmol scale experiment)

To a 8.0 mL argon-purged glass vial, containing the acrylate **5a** (1.00 mmol, 268 mg, 1 equiv.), octenal **1a** (3.00 mmol, 379 mg, 448 μ L), DHP **R-3*** (1.20 mmol, 532 mg 1.2 equiv.), 4-CzIPN (10.0 μ mol, 7.9 mg, 1 mol%) and amine catalyst **A-3** (2.00 mmol, 141 mg, 20 mol%), was added 2.0 mL of dimethoxyethane, H₂O (10.0 mmol, 180 μ L, 10 equiv.) and TFA (300 μ mol, 23 μ L, 30 mol%). The vial was sealed with Parafilm, and then placed into a cooled alluminium support mounted on an aluminium block fitted with a 460 nm high-power single LED

 $(\lambda = 460 \text{ nm}, \text{irradiance} = 90 \text{ mW/cm}^2$, as controlled by an external power supply; the set-up is detailed in **Supplementary Figure 1**). This set-up secured a reliable irradiation while keeping a constant distance of 1 cm between the reaction vessel and the light source. The reaction was stirred under visible light irradiation at -10 °C internal temperature for 72 hours. Then the solvent was evaporated, and the crude mixture was purified by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) to afford product **6a** as a pale yellow oil (258 mg, 65% yield) in a 1:1 diastereomeric ratio. The light source for illuminating the reaction vessel consisted in a 460 nm high-power single LED (OCU-440 UE460-X-T) purchased from OSA OPTO. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 93:7 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 85% CO₂ in CH₃CN for 5 min, 85% CO₂ in CH₃CN for 2 min, gradient 85% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256 \text{ nm}$) $\tau_{Major} = 4.65 \text{ min}, \tau_{Minor} = 4.40 \text{ min}, \text{ and 84:16 for$ *diastereomer 2*by UPC²analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ inCH₃CN for 5 min, 80% CO₂ in CH₃CN for 2 min, gradient 80% - 100% CO₂ in CH₃CN for 1 min; flow $rate 2.0 mL/min, <math>\lambda = 256 \text{ nm}$) $\tau_{Major} = 8.00 \text{ min}, \tau_{Minor} = 7.55 \text{ min}.$

Spectroscopic data are consistent with those of the smaller scale reaction.

* Reductant R-3 (Supplementary Figure 83) was used for enhanced solubility

4-Methoxybenzyl (S)-4-methyl-6-oxo-2-phenylhexanoate (6b)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1b** (750 μ mol, 52.5 mg, 61.6 μ L), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6b** as a pale yellow oil (60.0 mg, 71% yield) in a 1:1 diastereometric ratio. The enantiometric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 87:13 for

Chemical Formula: C₂₁H₂₄O₄ Molecular Weight: 340.42

diastereomer 1 by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 70% CO₂ in MeOH for 8 min, 70% CO₂ in MeOH for 4 min, gradient 70% - 100% CO₂ in MeOH for 2 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 10.65$ min, $\tau_{Minor} = 10.95$ min, and 76.5:23.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.10$ min, $\tau_{Minor} = 5.65$ min.

 $[\alpha]_{D}^{26} = -11.2 \text{ (c} = 1.0, \text{CHCl}_{3}, 1:1 \text{ d.r.}, 87:13 \text{ e.r.}^{1}, 76.5:23.5 \text{ e.r.}^{2}).$

¹**H** NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.66 - 9.63$ (m, 1H), 9.63 - 9.61 (m, 1H), 7.35 - 7.25 (m, 10H), 7.22 - 7.16 (m, 4H), 6.87 - 6.82 (m, 4H), 5.08 (d, J = 12.1 Hz, 2H), 5.00 (d, J = 12.0 Hz, 1H), 4.97 (d, J = 12.1 Hz, 1H), 3.79 (s, 6H), 3.73 - 3.65 (m, 2H), 2.42 - 2.34 (m, 2H), 2.24 - 2.13 (m, 3H), 2.02 - 1.87 (m, 4H), 1.68 - 1.63 (m, 1H), 0.98 (d, J = 6.7 Hz, 3H), 0.95 (d, J = 6.2 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.3$, 202.2, 173.8, 173.6, 159.7 (2C), 139.0, 138.4, 130.0, 130.0, 128.8 (2C), 128.2, 128.0 (2C), 128.0, 127.6, 127.5, 114.0 (2C), 66.6 (2C), 55.4 (2C), 51.0, 50.8, 49.4, 49.3, 40.7, 40.0, 26.5, 26.0, 19.9, 19.5 ppm.

HRMS (ESI): m/z calculated for [C₂₁H₂₄O₄Na]⁺ [M+Na]⁺: 363.1567; found: 363.1566.

Supplementary Figure 32: UPC² traces of **6b**, diastereomer 1.

Supplementary Figure 33: UPC² traces of **6b**, diastereomer 2.

4-Methoxybenzyl (S)-4-isopropyl-6-oxo-2-phenylhexanoate (6c)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1c** (750 μ mol, 73.5 mg, 87.0 μ L), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6c** as a pale yellow oil (42.0 mg, 46% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be

93:7 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 99% CO₂ in CH₃CN for 20 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 14.0$ min, $\tau_{Minor} = 12.15$ min, and 89:11 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 258$ nm) $\tau_{Major} = 5.60$ min, $\tau_{Minor} = 5.35$ min.

 $[\alpha]_{D}^{26} = +2.4 \text{ (c} = 0.5, \text{CHCl}_{3}, 1.1:1 \text{ d.r.}, 93:7 \text{ e.r.}^{1}, 89:11 \text{ e.r.}^{2}).$

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.61$ (t, J = 2.4 Hz, 1H), 9.58 (t, J = 2.2 Hz, 1H), 7.34 – 7.24 (m, 10H), 7.22 – 7.15 (m, 4H), 6.88 – 6.81 (m, 4H), 5.09 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 4.97 (d, J = 12.1 Hz, 1H), 3.79 (s, 6H), 3.65 – 3.59 (m, 2H), 2.39 – 2.29 (m, 2H), 2.26 – 2.15 (m, 3H), 1.95 – 1.90 (m, 1H), 1.85 – 1.70 (m, 4H), 1.69 – 1.58 (m, 2H), 0.84 (d, J = 6.8 Hz, 3H), 0.83 – 0.79 (m, 6H), 0.78 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 203.0$, 202.8, 173.8, 173.7, 159.7 (2C), 138.9, 138.7, 130.1, 130.1, 128.9, 128.9, 128.2, 128.1, 128.1 (2C), 127.6, 127.6, 114.0 (2C), 66.6 (2C), 55.4 (2C), 49.7, 49.6, 45.3, 45.2, 36.4, 36.2, 35.6, 35.2, 30.1, 30.1, 19.5, 19.4, 18.4, 18.2 ppm.

HRMS (ESI): m/z calculated for [C₂₃H₂₈O₄Na]⁺ [M+Na]⁺: 391.1880; found: 391.1872.

Supplementary Figure 34: UPC² traces of 6c, diastereomer 1.

Supplementary Figure 35: UPC² traces of 6c, diastereomer 2.

4-Methoxybenzyl (S)-6-methyl-4-(2-oxoethyl)-2-phenylheptanoate (6d)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and a solution of enal **1d** (750 μ mol, 187 mg, 45 wt% in hexanes), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6d** as a pale yellow oil (54.0 mg, 56% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 93.5:6.5 for *diastereomer 1* by

UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 95% CO₂ in CH₃CN for 5 min, 95% CO₂ in CH₃CN for 2 min, gradient 95% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.50$ min, $\tau_{Minor} = 5.95$ min, and 89:11 for *diastereomer* 2 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 5.40$ min, $\tau_{Minor} = 5.20$ min.

 $[\alpha]_{D}^{26} = -1.1 \text{ (c} = 1.0, \text{CHCl}_{3}, 1.1:1 \text{ d.r.}, 93.5:6.5 \text{ e.r.}^{1}, 89:11 \text{ e.r.}^{2}).$

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.62$ (t, J = 2.4 Hz, 1H), 9.60 (t, J = 2.3 Hz, 1H), 7.33 – 7.24 (m, 10H), 7.19 (dd, J = 8.7, 2.2 Hz, 4H), 6.86 – 6.81 (m, 4H), 5.10 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 2H), 4.98 (d, J = 12.0 Hz, 1H), 4.96 (d, J = 12.0 Hz, 2H), 3.79 (s, 6H), 3.67 (t, J = 7.7 Hz, 2H), 2.37 – 2.23 (m, 4H), 2.18 – 2.10 (m, 1H), 2.07 – 1.98 (m, 1H), 1.92 – 1.79 (m, 3H), 1.75 – 1.68 (m, 1H), 1.62 – 1.54 (m, 2H), 1.22 – 1.05 (m, 6H), 0.85 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H), 0.75 (d, J = 6.6 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.7$, 202.6, 173.7, 173.7, 159.7 (2C), 138.8, 138.7, 130.1, 130.1, 128.9, 128.8, 128.1, 128.1 (2C), 128.1, 127.6, 127.5, 114.0, 114.0, 66.6 (2C), 55.4 (2C), 49.4, 49.3, 48.6, 48.5, 44.0, 43.9, 38.4, 38.3, 29.0, 29.0, 25.2 (2C), 23.0, 22.7, 22.6, 22.6 ppm.

HRMS (ESI): m/z calculated for [C₂₄H₃₀O₄Na]⁺ [M+Na]⁺: 405.2036; found: 405.2038.

Supplementary Figure 36: UPC² traces of 6d, diastereomer 1.

Supplementary Figure 37: UPC² traces of 6d, diastereomer 2

4-Methoxybenzyl (S)-6-oxo-4-phenethyl-2-phenylhexanoate (6e)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1e** (750 μ mol, 120 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) and preparative thin layer chromatography (silica gel, DCM) afforded product **6e** as a pale yellow oil (84.0 mg, 78% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared

Molecular Weight: 430.54

following the general procedure, was determined to be 92:8 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 75% CO₂ in CH₃CN for 8 min, 75% CO₂ in CH₃CN for 4 min, gradient 75% - 100% CO₂ in CH₃CN for 2 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.10$ min, $\tau_{Minor} = 5.65$ min, and 84.5:15.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 85% CO₂ in CH₃CN for 20 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 12.75$ min, $\tau_{Minor} = 11.60$ min.

 $[\alpha]_{D}^{26} = -4.6 \text{ (c} = 1.0, \text{ CHCl}_{3}, 1.1:1 \text{ d.r.}, 92:8 \text{ e.r.}^{1}, 84.5:15.5 \text{ e.r.}^{2}$).

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.65$ (t, J = 2.3 Hz, 1H), 9.62 (t, J = 2.1 Hz, 1H), 7.38 – 7.25 (m, 14H), 7.24 – 7.18 (m, 6H), 7.17 – 7.12 (m, 2H), 7.12 – 7.07 (m, 2H), 6.90 – 6.83 (m, 4H), 5.10 (d, J = 12.0 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 5.00 (d, J = 12.0 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.74 – 3.65 (m, 2H), 2.62 – 2.52 (m, 4H), 2.44 – 2.37 (m, 4H), 2.29 – 2.23 (m, 1H), 2.17 – 2.11 (m, 1H), 2.01 – 1.92 (m, 3H), 1.86 – 1.81 (m, 1H), 1.76 – 1.68 (m, 2H), 1.68 – 1.60 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.3$, 202.2, 173.7, 173.7, 159.8 (2C), 141.9, 141.8, 138.7, 138.7, 130.1, 130.1, 128.9, 128.9, 128.6, 128.6, 128.4, 128.4, 128.1, 128.1, 128.0, 128.0, 127.6, 127.6, 126.1 (2C), 114.0 (2C), 66.7 (2C), 55.4 (2C), 49.4, 49.4, 48.2, 48.2, 37.9, 37.9, 36.0, 35.8, 32.9, 32.8, 30.9, 30.8 ppm.

HRMS (ESI): m/z calculated for [C₂₈H₃₀O₄Na]⁺ [M+Na]⁺: 453.2036; found: 453.2041.

Supplementary Figure 38: UPC² traces of 6e, diastereomer 1.

Supplementary Figure 39: UPC² traces of 6e, diastereomer 2

4-Methoxybenzyl (S)-4-(3-methoxyphenethyl)-6-oxo-2-phenylhexanoate (6f)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1f** (750 μ mol, 143 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) and preparative thin layer chromatography (silica gel, DCM) afforded product **6f** as a pale yellow oil (62.0 mg, 54% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be

Molecular Weight: 460.57

93.5:6.5 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.65$ min, $\tau_{Minor} = 4.35$ min, and 84.5:15.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak IC-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 65% CO₂ in CH₃CN for 5 min, 65% CO₂ in CH₃CN for 2 min, gradient 65% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.85$ min, $\tau_{Minor} = 7.10$ min.

 $[\alpha]_{D}^{26} = -6.0 \text{ (c} = 1.0, \text{CHCl}_3, 1.1:1 \text{ d.r.}, 93.5:6.5 \text{ e.r.}^1, 84.5:15.5 \text{ e.r.}^2).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.3 Hz, 1H), 9.60 (t, J = 2.1 Hz, 1H), 7.36 – 7.25 (m, 10H), 7.22 – 7.15 (m, 6H), 6.88 – 6.81 (m, 4H), 6.76 – 6.64 (m, 6H), 5.08 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.99 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 3.80 (s, 6H), 3.79 (s, 3H), 3.78 (s, 3H), 3.72 – 3.63 (m, 2H), 2.61 – 2.48 (m, 4H), 2.42 – 2.33 (m, 4H), 2.28 – 2.19 (m, 1H), 2.16 – 2.08 (m, 1H), 1.99 – 1.89 (m, 3H), 1.85 – 1.76 (m, 1H), 1.73 – 1.58 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.3$, 202.1, 173.6, 173.6, 159.8 (2C), 159.7 (2C), 143.5, 143.4, 138.7 (2C), 130.1, 130.0, 129.5, 129.5, 128.9, 128.8, 128.1, 128.0, 128.0, 127.6, 127.6, 120.8, 120.8, 114.2, 114.1, 114.0 (2C), 111.4, 111.3, 66.6 (2C), 55.4 (2C), 55.2 (2C), 49.4, 49.3, 48.1, 48.1, 37.9, 37.8, 35.8, 35.7, 32.9, 30.9, 30.7 ppm.

HRMS (ESI): m/z calculated for [C₂₉H₃₂O₅Na]⁺ [M+Na]⁺: 483.2142; found: 483.2153.

Supplementary Figure 40: UPC² traces of 6f, diastereomer 1

Supplementary Figure 41: UPC² traces of 6f, diastereomer 2

4-Methoxybenzyl (S)-6-oxo-2-phenyl-4-(3-(trifluoromethyl)phenethyl)hexanoate (6g)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1g** (750 μ mol, 171 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) and preparative thin layer chromatography (silica gel, DCM) afforded product **6g** as a pale yellow oil (68.0 mg, 55% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be

92.5:7.5 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 3.55$ min, $\tau_{Minor} = 3.25$ min, and 83.5:16.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak IE-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in MeOH for 38 min, 80% CO₂ in MeOH for 5 min, gradient 80% - 100% CO₂ in MeOH for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 31.35$ min, $\tau_{Minor} = 30.75$ min.

 $[\alpha]_{D}^{26} = -4.6 \text{ (c} = 1.0, \text{CHCl}_3, 1.1:1 \text{ d.r.}, 92.5:7.5 \text{ e.r.}^1, 83.5:16.5 \text{ e.r.}^2).$

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.65$ (t, J = 2.1 Hz, 1H), 9.63 (t, J = 2.0 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.41 – 7.22 (m, 16H), 7.22 – 7.15 (m, 4H), 6.87 – 6.80 (m, 4H), 5.09 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.99 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.70 – 3.63 (m, 2H), 2.67 – 2.51 (m, 4H), 2.48 – 2.34 (m, 4H), 2.31 – 2.22 (m, 1H), 2.16 – 2.07 (m, 1H), 2.02 – 1.87 (m, 3H), 1.85 – 1.77 (m, 1H), 1.70 – 1.57 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 201.9$, 201.8, 173.6, 173.5, 159.8 (2C), 142.8, 142.7, 138.6, 138.5, 131.8 (q, J = 1.1 Hz), 131.8 (q, J = 1.1 Hz), 130.8 (q, J = 31.9 Hz), 130.8 (q, J = 32.0 Hz), 130.1, 130.1, 129.0, 128.9, 128.9, 128.9, 128.0, 128.0, 128.0, 128.0, 127.7, 127.6, 125.1 (q, J = 3.7 Hz), 125.0 (q, J = 3.7 Hz), 124.3 (q, J = 272.4 Hz, 2C), 123.0 (q, J = 3.9 Hz, 2C), 114.0 (2C), 66.7 (2C), 55.4, 55.4, 49.4, 49.4, 48.1 (2C), 37.8, 37.69, 35.8, 35.7, 32.7, 32.7, 30.8, 30.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃, mixture of diastereoisomers): $\delta = -62.59$ ppm.

HRMS (ESI): m/z calculated for [C₂₉H₂₉F₃O₄Na]⁺ [M+Na]⁺: 521.1910; found: 521.1908.

Supplementary Figure 42: UPC^2 traces of **6g**, diastereomer 1.

Supplementary Figure 43: UPC² traces of 6g, diastereomer 2

4-Methoxybenzyl (S)-4-(4-bromophenethyl)-6-oxo-2-phenylhexanoate (6h)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1h** (750 μ mol, 179 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) and preparative thin layer chromatography (silica gel, DCM) afforded product **6h** as a pale yellow oil (68.0 mg, 53% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate

Chemical Formula: C₂₈H₂₉BrO₄ Molecular Weight: 509.44

derivative, prepared following the general procedure, was determined to be 92.5:7.5 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.70$ min, $\tau_{Minor} = 4.40$ min, and 84:16 for *diastereomer* 2 by UPC² analysis on a Daicel Chiralpak IC-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 70% CO₂ in CH₃CN for 5 min, 70% CO₂ in CH₃CN for 2 min, gradient 70% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 7.05$ min, $\tau_{Minor} = 7.30$ min.

 $[\alpha]_{D}^{26} = -9.0 \text{ (c} = 1.0, \text{CHCl}_{3}, 1.1:1 \text{ d.r.}, 92.5:7.5 \text{ e.r.}^{1}, 84:16 \text{ e.r.}^{2}).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.62$ (t, J = 2.2 Hz, 1H), 9.59 (t, J = 2.1 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.36 – 7.34 (m, 2H), 7.33 – 7.23 (m, 10H), 7.20 – 7.15 (m, 4H), 7.00 – 6.96 (m, 2H), 6.94 – 6.89 (m, 2H), 6.86 – 6.82 (m, 4H), 5.08 (d, J = 12.0 Hz, 1H), 5.07 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 4.97 (d, J = 12.0 Hz, 1H), 3.79 (s, 3H), 3.79 (s, 3H), 3.68 – 3.60 (m, 2H), 2.56 – 2.43 (m, 4H), 2.42 – 2.33 (m, 4H), 2.26 – 2.18 (m, 1H), 2.13 – 2.05 (m, 1H), 1.98 – 1.92 (m, 1H), 1.92 – 1.85 (m, 2H), 1.82 – 1.76 (m, 1H), 1.66 – 1.54 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.1$, 202.0, 173.6, 173.6, 159.7 (2C), 140.8, 140.7, 138.6 (2C), 131.6, 131.5, 130.2, 130.1, 130.1, 128.9, 128.9, 128.0, 128.0, 128.0, 127.9, 127.6, 127.6, 119.8, 119.7, 114.0 (2C), 66.7 (2C), 55.4 (2C), 49.4, 49.3, 48.1, 48.1, 37.8, 37.7, 35.7, 35.6, 32.2, 32.2, 30.6, 30.5 ppm.

HRMS (**ESI**): m/z calculated for [C₂₈H₂₉BrO₄Na]⁺ [M+Na]⁺: 531.1141; found: 531.1141.

Supplementary Figure 44: UPC² traces of **6h**, diastereomer 1.

Supplementary Figure 45: UPC² traces of **6h**, diastereomer 2.

4-Methoxybenzyl (S)-4-(2-oxoethyl)-2-phenylnon-8-enoate (6i)

Following the general procedure E using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1i** (750 μ mol, 93.0 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6i** as a pale yellow oil (81.0 mg, 82% yield) in a 1.2:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 94.5:5.5 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent:

100% CO₂ for 1 min, gradient 100% - 85% CO₂ in CH₃CN for 8 min, 85% CO₂ in CH₃CN for 4 min, gradient 85% - 100% CO₂ in CH₃CN for 2 min; flow rate 2.0 mL/min, $\lambda = 300$ nm) $\tau_{Major} = 4.85$ min, $\tau_{Minor} = 4.55$ min, and 86.5:13.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 5.65$ min, $\tau_{Minor} = 5.45$ min.

 $[\alpha]_{D}^{26} = -7.4 \ (c = 1.0, CHCl_3, 1.2:1 \ d.r., 94.5:5.5 \ e.r.^1, 86.5:13.5 \ e.r.^2).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.3 Hz, 1H), 9.61 (t, J = 2.2 Hz, 1H), 7.34 – 7.25 (m, 10H), 7.22 – 7.16 (m, 4H), 6.88 – 6.82 (m, 4H), 5.80 – 5.69 (m, 2H), 5.08 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 5.00 – 4.92 (m, 6H), 3.79 (s, 6H), 3.69 – 3.63 (m, 2H), 2.38 – 2.27 (m, 4H), 2.18 – 2.12 (m, 1H), 2.07 – 2.03 (m, 1H), 2.01 – 1.93 (m, 4H), 1.90 – 1.80 (m, 3H), 1.76 (dd, J = 13.9, 7.0 Hz, 1H), 1.37 – 1.27 (m, 8H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.5$, 202.4, 173.7, 173.7, 159.7 (2C), 138.8, 138.7, 138.5, 138.5, 130.1, 130.1, 128.9, 128.8, 128.1 (2C), 128.0 (2C), 127.6, 114.9, 114.0, 114.0, 66.6, 55.4, 49.4, 49.4, 48.2, 48.2, 37.9, 33.8, 33.8, 33.5, 33.3, 30.9, 30.9, 25.7, 25.6 ppm.

HRMS (ESI): m/z calculated for [C₂₅H₃₀O₄Na]⁺ [M+Na]⁺: 417.2036; found: 417.2034.

Supplementary Figure 46: UPC² traces of 6i, diastereomer 1.

Supplementary Figure 47: UPC² traces of **6i**, diastereomer 2.

4-Methoxybenzyl (4S,6S)-6,10-dimethyl-4-(2-oxoethyl)-2-phenylundec-9-enoate (6j)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1j** (750 μ mol, 135 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6j** as a pale yellow oil (75.0 mg, 67% yield) in a 1.6:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was

determined to be 86:14 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in iPrOH for 8 min, 80% CO₂ in iPrOH for 4 min, gradient 80% - 100% CO₂ in iPrOH for 2 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.60$ min, $\tau_{Minor} = 4.20$ min, and 88.5:11.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak IB-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in iPrOH for 8 min, 80% CO₂ in iPrOH for 4 min, gradient 80% - 100% CO₂ in iPrOH for 2 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 7.05$ min, $\tau_{Minor} = 7.20$ min.

 $[\alpha]_{D^{26}} = -2.3 \ (c = 1.0, CHCl_3, 1.6:1 \ d.r., 86:14 \ e.r.^1, 88.5:11.5 \ e.r.^2).$

¹**H** NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.65 - 9.57$ (m, 2H), 7.34 - 7.24 (m, 10H), 7.24 - 7.16 (m, 4H), 6.87 - 6.80 (m, 4H), 5.14 - 4.93 (m, 6H), 3.79 (s, 6H), 3.70 - 3.63 (m, 2H), 2.41 - 2.29 (m, 2H), 2.29 - 2.18 (m, 3H), 1.99 - 1.86 (m, 7H), 1.68 (dt, J = 4.3, 1.3 Hz, 6H), 1.67 - 1.61 (m, 2H), 1.59 (dd, J = 8.0, 1.3 Hz, 6H), 1.44 (dt, J = 9.5, 7.1 Hz, 2H), 1.36 - 1.28 (m, 2H), 1.22 - 1.16 (m, 2H), 1.11 - 0.97 (m, 4H), 0.85 (d, J = 6.5 Hz, 3H), 0.71 (d, J = 6.5 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.6$, 202.5, 173.8, 173.6, 159.7, 159.7, 139.0, 138.6, 131.4, 131.4, 130.1, 130.0, 128.9, 128.8, 128.1, 128.0, 128.0 (2C), 127.6, 127.5, 124.8, 124.7, 114.0, 114.0, 66.6 (2C), 55.4, 55.4, 49.4, 49.3, 48.8, 48.7, 42.4, 42.3, 38.2, 37.8, 37.2, 37.2, 29.8, 29.7, 28.9, 28.6, 25.8, 25.8, 25.5, 25.5, 19.8, 19.6, 17.8, 17.8 ppm.

HRMS (ESI): m/z calculated for [C₂₉H₃₈O₄Na]⁺ [M+Na]⁺: 473.2662; found: 473.2660.

Supplementary Figure 49: UPC² traces of 6j, diastereomer 2

4-Methoxybenzyl (S,Z)-4-(2-oxoethyl)-2-phenyldec-7-enoate (6k)

Following the general procedure E using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1k** (750 μ mol, 109 mg, 126 μ L), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6k** as a pale yellow oil (87.0 mg, 85% yield) in a 1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 94:6 for *diastereomer 1* by UPC² analysis on a

Chemical Formula: $C_{26}H_{32}O_4$ Molecular Weight: 408.54

Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 85% CO₂ in CH₃CN for 8 min, 85% CO₂ in CH₃CN for 4 min, gradient 85% - 100% CO₂ in CH₃CN for 2 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 4.75$ min, $\tau_{Minor} = 4.40$ min, and 88.5:11.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in CH₃CN for 5 min, 80% CO₂ in CH₃CN for 2 min, gradient 80% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 8.15$ min, $\tau_{Minor} = 7.80$ min.

 $[\alpha]_{D}^{26} = -5.6 \text{ (c} = 1.0, \text{CHCl}_3, 1:1 \text{ d.r.}, 94:6 \text{ e.r.}^1, 88.5:11.5 \text{ e.r.}^2).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.3 Hz, 1H), 9.60 (t, J = 2.2 Hz, 1H), 7.34 – 7.25 (m, 10H), 7.22 – 7.17 (m, 4H), 6.86 – 6.82 (m, 4H), 5.40 – 5.30 (m, 2H), 5.27 – 5.15 (m, 2H), 5.09 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 4.97 (d, J = 12.0 Hz, 1H), 3.79 (s, 6H), 3.70 – 3.64 (m, 2H), 2.37 – 2.27 (m, 4H), 2.20 – 2.14 (m, 1H), 2.09 – 2.05 (m, 1H), 2.01 – 1.93 (m, 8H), 1.90 – 1.84 (m, 3H), 1.81 – 1.75 (m, 1H), 1.45 – 1.38 (m, 2H), 1.37 – 1.30 (m, 2H), 0.94 (td, J = 7.5, 1.7 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.5$, 202.3, 173.7 (2C), 159.7 (2C), 138.8, 138.7, 132.4 (2C), 130.0, 130.0, 128.9, 128.8, 128.2, 128.2, 128.1 (2C), 128.0 (2C), 127.5 (2C), 114.0 (2C), 66.6 (2C), 55.4 (2C), 49.4, 49.3, 48.1, 48.1, 37.9, 37.9, 34.1, 33.9, 30.8, 30.7, 24.1, 24.0, 20.6 (2C), 14.4 (2C) ppm.

HRMS (ESI): m/z calculated for [C₂₆H₃₂O₄Na]⁺ [M+Na]⁺: 431.2193; found: 431.2192.

Supplementary Figure 50: UPC² traces of 6k, diastereomer 1.

Supplementary Figure 51: UPC² traces of 6k, diastereomer 2

4-Methoxybenzyl (S)-10-chloro-4-(2-oxoethyl)-2-phenyldecanoate (6l)

Following the general procedure E using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1s** (750 μ mol, 52.5 mg, 61.6 μ L), purification of the crude product by flash column chromatography (silica gel, 10-20% EtOAc in hexanes) afforded product **6l** as a pale yellow oil (70.5 mg, 65% yield) in a 1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate drivative, prepared following the general procedure, was determined to be 94.5:5.5 for *diastereomer 1* by

Molecular Weight: 430.97

UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in MeOH for 20 min, 80% CO₂ in MeOH for 8 min, gradient 85% - 100% CO₂ in MeOH for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 20.65$ min, $\tau_{Minor} = 21.10$ min, and 86:14 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 90% CO₂ in CH₃CN for 5 min, 90% CO₂ in CH₃CN for 2 min, gradient 90% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.80$ min, $\tau_{Minor} = 6.50$ min.

 $[\alpha]_{D^{26}} = -3.6 \ (c = 1.0, CHCl_3, 1:1 \ d.r., 94.5:5.5 \ e.r.^1, 86:14 \ e.r.^2).$

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.3 Hz, 1H), 9.61 (t, J = 2.1 Hz, 1H), 7.34 – 7.24 (m, 10H), 7.22 – 7.16 (m, 4H), 6.87 – 6.80 (m, 4H), 5.09 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.1 Hz, 2H), 3.79 (s, 6H), 3.69 – 3.61 (m, 2H), 3.50 (t, J = 6.7 Hz, 2H), 3.48 (t, J = 6.7 Hz, 2H), 2.38 – 2.26 (m, 4H), 2.16 (ddd, J = 13.7, 8.4, 6.4 Hz, 1H), 2.07 – 1.99 (m, 1H), 1.90 – 1.81 (m, 3H), 1.76 – 1.67 (m, 5H), 1.37 – 1.23 (m, 12H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.4$, 202.3, 173.7, 173.6, 159.7 (2C), 138.7, 138.7, 130.1 (2C), 128.9, 128.9, 128.1, 128.0, 128.0 (2C), 127.6, 127.6, 114.0 (2C), 66.6 (2C), 55.4 (2C), 49.4, 49.4, 48.3, 48.2, 45.1, 45.0, 37.9 (2C), 33.9, 33.8, 32.5 (2C), 30.9 (2C), 27.1, 27.0, 25.7, 25.7 ppm.

HRMS (ESI): m/z calculated for [C₂₆H₃₁ClO₄Na]⁺ [M+Na]⁺: 453.1803; found: 453.1796.

Supplementary Figure 52: UPC² traces of 6l, diastereomer 1

Supplementary Figure 53: UPC² traces of 6l, diastereomer 2

4-Methoxybenzyl (S)-13-hydroxy-4-(2-oxoethyl)-2-phenyltridecanoate (6m)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1q** (750 μ mol, 153 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6m** as a pale yellow oil (84.0 mg, 71% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 92:8

for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 10% CO₂ in CH₃CN for 19 min, 10% CO₂ in CH₃CN for 6 min, gradient 10% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 23.90$ min, $\tau_{Minor} = 22.75$ min, and 81.5:18.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak OJ-3 column eluent: 100% CO₂ for 1 min, gradient 100% - 10% CO₂ in CH₃CN for 19 min, 10% CO₂ in CH₃CN for 6 min, gradient 100% - 10% CO₂ in CH₃CN for 19 min, 10% CO₂ in CH₃CN for 6 min, gradient 10% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 25.60$ min, $\tau_{Minor} = 23.80$ min.

 $[\alpha]_{D}^{26} = -4.8 \ (c = 1.0, CHCl_3, 1,1:1 \ d.r., 92:8 \ e.r.^1, 81.5:18.5 \ e.r.^2)$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.62$ (t, J = 2.4 Hz, 1H), 9.60 (t, J = 2.2 Hz, 1H), 7.34 – 7.24 (m, 10H), 7.21 – 7.15 (m, 4H), 6.87 – 6.80 (m, 4H), 5.08 (d, J = 12.0 Hz, 2H), 4.98 (d, J = 12.1 Hz, 1H), 4.97 (d, J = 12.1 Hz, 1H), 3.79 (s, 6H), 3.69 – 3.63 (m, 2H), 3.63 (td, J = 6.7, 1.2 Hz, 4H), 2.35 – 2.26 (m, 4H), 2.19 – 2.10 (m, 1H), 2.06 – 2.01 (m, 1H), 1.89 – 1.80 (m, 3H), 1.77 – 1.71 (m, 1H), 1.60 (bs, 2H), 1.63 – 1.52 (m, 4H), 1.34 – 1.17 (m, 28H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.8$, 202.6, 173.8, 173.7, 159.7 (2C), 138.8, 138.8, 130.0, 130.0, 128.9, 128.8, 128.1 (2C), 128.1 (2C), 127.5 (2C), 114.0, 113.9, 66.6 (2C), 63.2 (2C), 55.4 (2C), 49.4, 49.4, 48.3, 48.3, 38.0 (2C), 34.1, 33.9, 32.9 (2C), 31.1, 31.0, 29.8, 29.7, 29.6 (2C), 29.5 (2C), 29.5 (2C), 29.5 (2C), 26.4, 26.3, 25.8 (2C) ppm.

HRMS (ESI): m/z calculated for [C₂₉H₄₀O₅Na]⁺ [M+Na]⁺: 491.2768; found: 491.2768.

Supplementary Figure 54: UPC² traces of 6m, diastereomer 1

Supplementary Figure 55: UPC² traces of 6m, diastereomer 2.

4-Methoxybenzyl (S)-7-(benzyloxy)-4-(2-oxoethyl)-2-phenylheptanoate (6n)

Following the general procedure E using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1n** (750 μ mol, 153 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6n** as a pale yellow oil (84.0 mg, 71% yield) in a 1.1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-

Molecular Weight: 474.60

nitrobenzoate derivative, prepared following the general procedure, was determined to be 93.5:6.5 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 75% CO₂ in CH₃CN for 8 min, 75% CO₂ in CH₃CN for 4 min, gradient 75% - 100% CO₂ in CH₃CN for 2 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.15$ min, $\tau_{Minor} = 5.75$ min, and 83.5:16.5 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 6.95$ min, $\tau_{Minor} = 6.70$ min.

 $[\alpha]_{D}^{26} = -3.2 (c = 1.0, CHCl_3, 1.1:1 d.r., 93.5:6.5 e.r.^1, 83.5:16.5 e.r.^2).$

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.3 Hz, 1H), 9.61 (t, J = 2.1 Hz, 1H), 7.40 – 7.22 (m, 20H), 7.22 – 7.15 (m, 4H), 6.90 – 6.80 (m, 4H), 5.08 (d, J = 12.1 Hz, 1H), 5.08 (d, J = 12.1 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 4.48 (s, 2H), 4.45 (s, 2H), 3.79 (s, 3H), 3.79 (s, 3H), 3.71 – 3.64 (m, 2H), 3.42 (t, J = 6.3 Hz, 2H), 3.38 (t, J = 6.3 Hz, 2H), 2.39 – 2.28 (m, 4H), 2.20 – 2.01 (m, 2H), 1.94 – 1.82 (m, 3H), 1.81 – 1.74 (m, 1H), 1.59 – 1.37 (m, 8H) ppm. ¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.4$, 202.3, 173.7, 173.7, 159.7 (2C), 138.7, 138.6, 138.6, 130.0 (2C), 128.7, 128.8, 128.5 (2C), 128.1 (2C), 128.1 (2C), 127.8, 127.7, 127.7 (2C), 127.6 (2C), 114.0 (2C), 73.1, 73.0, 70.3, 70.3, 66.6 (2C), 55.4 (2C), 49.4, 49.3, 48.2 (2C), 37.8, 37.8, 30.9, 30.7, 30.6, 30.4, 26.7, 26.6 ppm.

HRMS (ESI): m/z calculated for [C₃₀H₃₄O₅Na]⁺ [M+Na]⁺: 497.2298; found: 497.2295.

Supplementary Figure 56: UPC² traces of 6n, diastereomer 1.

Supplementary Figure 57: UPC² traces of 6n, diastereomer 2

1-(4-Methoxybenzyl) 8-methyl (S)-4-(2-oxoethyl)-2-phenyloctanedioate (60)

Following the general procedure E using acrylate **5a** (250 μ mol, 67.0 mg) and enal **1o** (750 μ mol, 117 mg), purification of the crude product by flash column chromatography (silica gel, 5-10% EtOAc in hexanes) afforded product **6o** as a pale yellow oil (62.0 mg, 58% yield) in a 1.2:1 diastereomeric ratio. The enantiomeric ratio was determined to be 93:7 for *diastereomer 1* and 85:15 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak IA-3 column (eluent: 100% CO₂ for 1

min, gradient 100% - 75% CO₂ in iPrOH for 49 min, 75% CO₂ in iPrOH for 10 min, gradient 75% - 100% CO₂ in iPrOH for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm) $\tau_{Major} = 45.35$ min, $\tau_{Minor} = 46.25$ min for *diastereomer 1*, and $\tau_{Major} = 47.80$ min, $\tau_{Minor} = 47.05$ min for *diastereomer 2*.

 $[\alpha]_{D^{26}} = -4.8 \ (c = 1.0, CHCl_3, 1.2:1 \ d.r., 93:7 \ e.r.^1, 85:15 \ e.r.^2).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.63$ (t, J = 2.2 Hz, 1H), 9.61 (t, J = 2.0 Hz, 1H), 7.34 – 7.22 (m, 10H), 7.21 – 7.16 (m, 4H), 6.87 – 6.79 (m, 4H), 5.08 (d, J = 12.1 Hz, 2H), 4.97 (d, J = 12.0 Hz, 1H), 4.97 (d, J = 12.0 Hz, 1H), 3.79 (s, 6H), 3.67 – 3.62 (m, 8H), 2.37 – 2.30 (m, 4H), 2.27 – 2.18 (m, 4H), 2.16 – 2.11 (m, 1H), 2.07 – 2.03 (m, 1H), 1.90 – 1.82 (m, 3H), 1.79 – 1.73 (m, 1H), 1.60 – 1.50 (m, 4H), 1.37 – 1.27 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.2$, 202.0, 173.8, 173.8, 173.6 (2C), 159.7 (2C), 138.7, 138.6, 130.1 (2C), 128.9, 128.9, 128.1, 128.0, 128.0 (2C), 127.6 (2C), 114.0 (2C), 66.6 (2C), 55.4 (2C), 51.6 (2C), 49.4, 49.3, 48.0 (2C), 37.7, 37.7, 34.0, 33.4, 33.2, 30.8, 30.6, 21.7, 21.7 ppm.

HRMS (ESI): m/z calculated for [C₂₅H₃₀O₆Na]⁺ [M+Na]⁺: 449.1935; found: 449.1936.

Supplementary Figure 58: UPC² traces of 60, mixture of diastereomers.

Methyl (4S)-phenyl-4-(2-oxoethyl)nonanoate (6p)

Prepared according to the general procedure **E** using octenal **1a** (112 μ L, 750 μ mol) and acrylate **5b** (40.5 mg, 250 μ mol), the crude product was purified by flash column chromatography (silica, 5% EtOAc in n-hexanes) to obtain product **6p** as a colorless oil (54.0 mg, 75% yield) in a 1.2:1 diastereomeric ratio. Analytical data is in agreement with the literature.²⁹ The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 94:6 for *diastereomer 1* by UPC²

Molecular Weight: 290,4030

analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 85% CO₂ in CH₃CN for 11 min, 85% CO₂ in CH₃CN for 2 min, gradient 85% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 258$ nm, $\tau_{Major} = 4.60$ min, $\tau_{Minor} = 4.35$ min.), and 86.0:14.0 for *diastereomer* 2 by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm, $\tau_{Major} = 5.65$ min, $\tau_{Minor} = 5.40$ min)

 $[\alpha]_{D}^{24} = -148.1 \text{ (c} = 0.5, \text{CHCl}_{3}, 1.2:1 \text{ d.r.}, 94:6 \text{ e.r.}^{1}, 86:14 \text{ e.r.}^{2}).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.72$ (t, J = 2.3 Hz, 1H), 9.69 (t, J = 2.2 Hz, 1H), 7.47 – 7.18 (m, 10H), 3.68 (s, 6H), 2.40 – 2.34 (m, 4H), 2.19 – 2.14 (m, 2H), 2.07 – 2.02 (m, 2H), 1.94 – 1.84 (m, 4H), 1.81 – 1.75 (m, 2H), 1.47 – 1.09 (m, 14H), 0.98 – 0.76 (m, 6H) ppm.

Supplementary Figure 59: UPC² Traces of 6p, diastereomer 1.

Supplementary Figure 60: UPC² Traces of 6p, diastereomer 2.

Benzyl (4S)-phenyl-4-(2-oxoethyl)nonanoate (6q)

Prepared according to the general procedure **E** using octenal **1a** (46.0 μ L, 300 μ mol) and acrylate **5c** (23.8 mg, 100 μ mol), the crude product was purified by flash column chromatography (silica, 5% EtOAc in n-hexanes) to obtain product **6q** as a colorless oil (33.0 mg, 89% yield) in a 1.1:1 diastereomeric ratio. Analytical data is in agreement with the literature.²⁹ The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure,

Chemical Formula: C₂₄H₃₀O₃ Molecular Weight: 366,5010

was determined to be 94:6 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 93% CO₂ in CH₃CN for 11 min, 93% CO₂ in CH₃CN for 2 min, gradient 93% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 254$ nm, $\tau_{Major} = 9.40$ min, $\tau_{Minor} = 8.60$ min.), and 88:12 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in CH₃CN for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 254$ nm, $\tau_{Major} = 5.40$ min, $\tau_{Minor} = 5.25$ min.)

 $[\alpha]_{D}^{24} = -118.3 \text{ (c} = 0.5, \text{CHCl}_{3}, 1.1:1 \text{ d.r.}, 94:6 \text{ e.r.}^{1}, 88:12 \text{ e.r.}^{2}).$

¹**H** NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.66$ (t, J = 2.3 Hz, 1H), 9.64 (t, J = 2.2 Hz, 1H), 7.35 – 7.29 (m, 14H), 7.27 – 7.24 (m, 6H), 5.16 (d, J = 12.4 Hz, 2H), 5.08 (dd, J = 12.4, 2.4 Hz, 2H), 3.74 – 3.70 (m, 2H), 2.36 – 2.33 (m, 4H), 2.22 – 2.16 (m, 2H), 2.13 – 2.02 (m, 1H), 1.86 – 1.73 (m, 1H), 1.50 – 1.13 (m, 18H), 0.91 – 0.87 (m, 6H) ppm.

Supplementary Figure 61: UPC² Traces of 6q, diastereomer 1.

Supplementary Figure 62: UPC² Traces of **6q**, diastereomer 2.

Benzyl (4S)-(4-methylphenyl)-4-(2-oxoethyl)nonanoate (6r)

Prepared according to the general procedure **E** using octenal **1a** (112 μ L, 750 μ mol) and acrylate **5d** (63.0 mg, 250 μ mol), the crude product was purified by flash column chromatography (silica, 5% EtOAc in n-hexanes) to obtain product **6r** as a colorless oil (72.0 mg, 76% yield) in a 1.5:1 diastereomeric ratio. The enantiomeric ratio was determined to be 93.5:6.5 and 87.5:12.5 by HPLC analysis on a Daicel Chiralpak IC-3 column, isocratic 96:4 n-hexane: iPrOH, flow rate = 0.45 mL/min, 15 °C; λ = 215 nm. Diastereoisomer 1: τ_{Major} = 36.70 min, τ_{Minor} = 51.65 min. Diastereoisomer 2: τ_{Major} = 34.55 min, τ_{Minor} = 44.55 min.

Chemical Formula: C₂₅H₃₂O₃ Molecular Weight: 380,5280

 $[\alpha]_{D}^{25} = -4.5 \text{ (c} = 0.5, \text{CHCl}_{3}, 1.5:1 \text{ d.r.}, 93.5:6.5 \text{ e.r.}^{1}, 87.5:12.5 \text{ e.r.}^{2}).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.66$ (t, J = 2.4 Hz, 1H), 9.63 (t, J = 2.2 Hz, 1H), 7.37 – 7.31 (m, 6H), 7.29 – 7.26 (m, 4H), 7.23 – 7.19 (m, 4H), 7.17 – 7.13 (m, 4H), 5.17 (d, J = 12.4 Hz, 2H), 5.07 (dd, J = 12.4, 2.0 Hz, 2H), 3.73 – 3.67 (m, 2H), 2.36 (s, 6H), 2.34 – 2.32 (m, 3H), 2.24 – 2.13 (m, 1H), 2.11 – 2.02 (m, 1H), 1.89 (m, 3H), 1.78 (dt, J=14.1, 7.1 Hz, 1H), 1.44 – 1.14 (m, 18H), 0.91 – 0.87 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.8, 202.7, 173.9, 173.8, 137.3$ (2C), 136.0 (2C), 135.7 (2C), 129.6, 129.5, 128.6 (2C), 128.3, 128.2 (2C) 128.2, 128.0, 127.9, 66.7 (2C), 49.0 (2C), 48.3, 48.3 (2C), 37.9 (2C), 37.9, 34.1, 33.8, 32.1, 32.0, 31.1, 31.0, 26.1, 26.0, 22.87 (2C), 21.2 (2C), 14.2, 14.1 ppm.

HRMS (ESI): m/z calculated for [C₂₅H₃₂O₃Na]⁺ [M+Na]⁺: 403.2244, found: 403.2250.

Supplementary Figure 63: HPLC Traces of 6r.

Benzyl (4S)-(3-methoxyphenyl)-4-(2-oxoethyl)nonanoate (6s)

Prepared according to the general procedure E using octenal **1a** (112 μ L, 750 μ mol) and acrylate **5e** (67.0 mg, 250 μ mol), the crude product was purified by flash column chromatography (silica, 5% EtOAc in n-hexanes) to obtain product **6s** as a colorless oil (83.5 mg, 85% yield) in a 1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 94.5:5.5 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient

Chemical Formula: C₂₅H₃₂O₄ Molecular Weight: 396,5270

100% - 93% CO₂ in CH₃CN for 11 min, 93% CO₂ in CH₃CN for 2 min, gradient 93% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm, $\tau_{Major} = 8.35$ min, $\tau_{Minor} = 7.75$ min.), and 91:9 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in CH₃CN for 5 min, 80% CO₂ in CH₃CN for 2 min, gradient 80% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm, $\tau_{Major} = 8.20$ min, $\tau_{Minor} = 7.85$ min.)

 $[\alpha]_{D}^{24} = -83.1 \text{ (c} = 1.0, \text{CHCl}_{3}, 1:1 \text{ d.r.}, 94.5:5.5 \text{ e.r.}^{1}, 91:9 \text{ e.r.}^{2}).$

2.0e-2

7.00

7.20

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.67$ (t, J = 2.3 Hz, 1H), 9.64 (t, J = 2.2 Hz, 1H), 7.35 – 7.31 (m, 6H), 7.31 – 7.19 (m, 6H), 6.93 – 6.88 (m, 3H), 6.88 – 6.80 (m, 3H), 5.17 (d, J = 12.3 Hz, 2H), 5.09 (dd, J = 12.3, 2.3 Hz, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.75 – 3.65 (m, 2H), 2.39 – 2.30 (m, 4H), 2.17 (ddd, J = 13.7, 8.1, 6.7 Hz, 1H), 2.13 – 2.03 (m, 1H), 1.95 – 1.84 (m, 3H), 1.80 (dt, J = 14.0, 7.1 Hz, 1H), 1.47 – 1.15 (m, 18H), 0.92 – 0.86 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.7$, 202.5, 173.5 (2C), 156.0, 159.9, 140.2, 140.2, 135.9 (2C), 129.8, 129.8, 128.6 (2C), 128.3 (2C), 128.2, 128.2, 120.5, 120.4, 113.6, 113.6, 113.1, 113.08, 66.7 (2C), 55.3 (2C), 49.4, 49.4, 48.3, 48.3, 37.9, 37.8, 34.0, 33.9, 32.0, 32.0, 31.1, 31.0, 26.1, 26.0, 22.6 (2C), 14.1, 14.1 ppm.

HRMS (ESI): m/z calculated for [C₂₅H₃₂O₄Na]⁺ [M+Na]⁺: 419.2193, found: 419.2181.

Supplementary Figure 64: UPC² Traces of 6s, diastereomer 1.

8.60

9.00

9.20

9.40

Supplementary Figure 65: UPC² Traces of 6s, diastereomer 2.

Benzyl (4S)-(4-fluorophenyl)-4-(2-oxoethyl)nonanoate (6t)

Prepared according to the general procedure E using octenal **1a** (112 μ L, 750 μ mol) and acrylate **5f** (64.0 mg, 250 μ mol), the crude product was purified by flash column chromatography (silica, 5% EtOAc in n-hexanes) to obtain **6t** as a colorless oil (85.0 mg, 89% yield) in a 1:1 diastereomeric ratio. The enantiomeric ratio of the corresponding 4-nitrobenzoate derivative, prepared following the general procedure, was determined to be 93:7 for *diastereomer 1* by UPC² analysis on a Daicel Chiralpak OJ-3 column (eluent: 100% CO₂ for 1 min, gradient

Chemical Formula: C₂₄H₂₉FO₃ Molecular Weight: 384,4914

100% - 93% CO₂ in CH₃CN for 5 min, 93% CO₂ in CH₃CN for 2 min, gradient 93% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 255$ nm, $\tau_{Major} = 6.25$ min, $\tau_{Minor} = 5.80$ min.), and 88:12 for *diastereomer 2* by UPC² analysis on a Daicel Chiralpak ID-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 80% CO₂ in CH₃CN for 5 min, 80% CO₂ in CH₃CN for 2 min, gradient 80% - 100% CO₂ in CH₃CN for 1 min; flow rate 2.0 mL/min, $\lambda = 256$ nm, $\tau_{Major} = 7.15$ min, $\tau_{Minor} = 6.95$ min).

 $[\alpha]_{D}^{24} = -87.9 \text{ (c} = 1.0, \text{CHCl}_{3}, 1:1 \text{ d.r.}, 93:7 \text{ e.r.}^{1}, 88:12 \text{ e.r.}^{2}).$

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 9.67$ (t, J = 2.3 Hz, 1H), 9.65 (t, J = 2.1 Hz, 1H), 7.35 – 7.21 (m, 14H), 7.03 (m, 4H), 5.16 (d, J = 12.3 Hz, 2H), 5.09 (dd, J = 12.3, 2.7 Hz, 2H), 3.76 – 3.69 (m, 2H), 2.37 – 2.28 (m, 4H), 2.20 – 2.09 (m, 1H), 2.10 – 2.00 (m, 1H), 1.89 – 1.82 (m, 3H), 1.77 (dt, J = 14.1, 7.1 Hz, 1H), 1.44 – 1.21 (m, 18H), 0.91 – 0.86 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers): $\delta = 202.5$, 202.4, 173.7, 173.5, 162.3 (d, $J_{C-F} = 246.0$ Hz, 2C), 135.8 (2C) 134.5 (d, $J_{C-F} = 3.3$ Hz), 134.4 (d, $J_{C-F} = 3.2$ Hz), 129.7 (d, $J_{C-F} = 7.8$ Hz), 129.6 (d, $J_{C-F} = 7.8$ Hz), 128.6 (2C), 128.4 (2C), 128.2, 128.2, 115.7 (d, $J_{C-F} = 21.5$ Hz), 115.7 (d, $J_{C-F} = 21.3$ Hz) 66.8 (2C), 48.6, 48.6, 48.3, 48.2, 38.1, 38.0, 34.1, 33.8, 32.0, 31.9, 31.0, 30.8, 26.1, 26.0, 22.6 (2C), 14.1, 14.1 ppm. ¹⁹F{¹H} NMR (471 MHz, CDCl₃, mixture of diastereoisomers): $\delta = -115.04$ (s), -115.07 (s) ppm.

HRMS (ESI): m/z calculated for [C₂₄H₂₉FO₃Na]⁺ [M+Na]⁺: 407.1993, found: 407.1997.

Supplementary Figure 66: UPC² Traces of 6t, diastereomer 1.

Supplementary Figure 67: UPC² Traces of 6t, diastereomer 2.

Derivatization of 1,6-Dicarbonyl Products

Separation of diastereomers

Lithium aluminium hydride (500 µmol, 19.0 mg, 2.0 equiv.) was added portion wise to a solution of **6a** (250 µmol, 99.0 mg, 1.0 equiv.) in anhydrous THF (1.0 mL) at 0 °C under an Argon atmosphere. The reaction mixture was allowed to warm to room temperature and was stirred for 3 h. The reaction mixture was then diluted with Et₂O (20 mL), cooled to 0 °C and carefully quenched by addition of Glauber's salt (NaSO₄· 10 H₂O). After 10 min the solids were removed by filtration over a silica pad, which was thoroughly rinsed with EtOAc. The volatiles were removed under reduce pressure and the crude was purified by flash column chromatography (silica gel, 25-50% EtOAc in hexanes) to afford (2*R*,4*S*)-4-pentyl-2-phenylhexane-1,6-diol (**7a**, 25.0 mg, 38% yield, see x-ray analysis) and (2*S*,4*S*)-4-pentyl-2-phenylhexane-1,6-diol (**7b**, 21.0 mg, 32% yield) as colorless oils.

7a:

 $[\alpha]_D^{26} = -34.1 \text{ (c} = 1.0, \text{CHCl}_3, 93:7 \text{ e.r.}).$

¹H NMR (400 MHz, CDCl₃): $\delta = 7.36 - 7.28$ (m, 2H), 7.25 - 7.17 (m, 3H), 3.75 - 3.64 (m, 2H), 3.59 - 3.51 (m, 2H), 2.93 - 2.84 (m, 1H), 1.62 - 1.56 (m, 2H), 1.56 - 1.47 (m, 2H), 1.47 - 1.37 (m, 2H), 1.32 - 1.15 (m, 7H), 0.87 (t, *J*=7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 142.6$, 128.9, 128.2, 126.9, 68.1, 61.1, 46.4, 37.3, 36.5, 33.4, 32.4, 31.7, 25.7, 22.8, 14.2 ppm.

HRMS (ESI): m/z calculated for [C₁₇H₂₈O₂Na]⁺ [M+Na]⁺: 287.1982; found: 287.1972.

7b:

 $[\alpha]_D^{26} = +6.6 (c = 1.0, CHCl_3, 84:16 e.r.).$

¹H NMR (400 MHz, CDCl₃): $\delta = 7.36 - 7.28$ (m, 2H), 7.27 - 7.17 (m, 3H), 3.71 (d, J = 6.6 Hz, 2H), 3.69 - 3.51 (m, 2H), 2.95 - 2.84 (m, 1H), 1.61 (t, J = 7.0 Hz, 2H), 1.59 - 1.45 (m, 2H), 1.39 - 1.09 (m, 9H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 142.8$, 128.8, 128.2, 126.9, 68.0, 60.9, 46.2, 36.5, 36.3, 34.6, 32.2, 32.0, 26.2, 22.8, 14.2.

HRMS (ESI): m/z calculated for [C₁₇H₂₈O₂Na]⁺ [M+Na]⁺: 287.1982; found: 287.1973.

Organocatalytic Asymmetric Conjugate Allylation of Enals

Methyl (S)-2-methylene-4-(2-oxoethyl)nonanoate (9)

To a 8.0 mL argon-purged glass vial, containing acrylate **8** (24.0 mg, 100 μ mol), octenal **1a** (59.6 μ L, 400 μ mol, 4.0 equiv.), DHP **R-1** (48.5 mg, 150 μ mol, 1.5 equiv.), 4-CzIPN (1.0 mg, 1.0 μ mol, 1 mol%) and amine catalyst **A-3** (14.0 mg, 20.0 μ mol, 20 mol%), was added 200 μ L of dimethoxyethane, H₂O (5.5 μ L, 300 μ mol, 3 equiv.) and trichloroacetic acid (3.0 μ L 30.0 μ mol, 30 mol%). The vial was sealed with Parafilm, and then placed into a cooled aluminium support mounted on an aluminium block fitted with a 460 nm high-

Chemical Formula: C₁₃H₂₂O₃ Molecular Weight: 226,3160

power single LED ($\lambda = 460$ nm, irradiance = 90 mW/cm², as controlled by an external power supply; the set-up is detailed in **Supplementary Figure 1**). The reaction was stirred under visible light irradiation at 5 °C internal temperature for 16 hours. The product was purified by flash column chromatography (silica,5% EtOAc in n-hexanes) to obtain **9** as a colorless oil (13.5 mg, 60% yield). The enantiomeric ratio of the corresponding 2,4-dinitrophenylhydrazone derivative (prepared following the general procedure of β -cyanoaldehydes **2a**), was determined to be 90.0:10.0 by UPC² analysis on a Daicel Chiralpak IE-3 column (eluent: 100% CO₂ for 1 min, gradient 100% - 60% CO₂ in EtOH for 5 min, 60% CO₂ in CH₃CN for 2 min, gradient 60% - 100% CO₂ in EtOH for 1 min; flow rate 2.0 mL/min, $\lambda = 348$ nm, $\tau_{Major} = 6.60$ min, $\tau_{Minor} = 6.25$ min).

 $[\alpha]_{D}^{25} = -0.9 (c = 0.1, CHCl_3, 90:10 e.r.).$

¹**H** NMR (500 MHz, CDCl₃): $\delta = 9.74$ (t, J = 2.2 Hz, 1H), 6.22 (d, J = 1.5 Hz, 1H), 5.55 (d, J = 1.3 Hz, 1H), 3.76 (s, 3H), 2.50 – 2.42 (m, 1H), 2.40 – 2.27 (m, 2H), 2.25 – 2.20 (m, 1H), 2.18 – 2.16 (m, 1H), 1.39 – 1.23 (m, 8H), 0.88 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 203.0$, 167.6, 138.9, 127.2, 52.1, 48.1, 37.2, 34.3, 32.3, 32.1, 26.4, 22.7, 14.2 ppm.

HRMS (ESI): m/z calculated for $[C_{13}H_{22}O_3Na]^+$ [M+Na]⁺: 249.1461, found: 249.1452.

Supplementary Figure 68: UPC² Traces of 9.

NMR Spectra

¹H NMR (400 MHz, CDCl₃) of **1f**:

¹³C NMR (126 MHz, CDCl₃) of **1f**:

¹H NMR (400 MHz, CDCl₃) of **1g**:

¹³C NMR (126 MHz, CDCl₃) of **1g**:

¹⁹F NMR (471 MHz, CDCl₃) of **1g**:

¹H NMR (400 MHz, CDCl₃) of **1**I:

110 100 f1 (ppm) ¹H NMR (500 MHz, CDCl₃) of **1m**:

¹H NMR (500 MHz, CDCl₃, *E*/*Z* = 9:1) of **1n**:

¹³C NMR (126 MHz, CDCl₃, *E*/*Z* = 9:1) of **1n**:

¹H NMR (500 MHz, CDCl₃) of **1p**:

¹³C NMR (126 MHz, CDCl₃) of **1p**:

¹H NMR (400 MHz, CDCl₃) of 1r:

¹³C NMR (101 MHz, CDCl₃) of **1r**:

¹H NMR (300 MHz, CDCl₃) of **1s**:

 ^{13}C NMR (101 MHz, CDCl₃) of 1s:

¹H NMR (500 MHz, CDCl₃) of **1t**:

¹³C NMR (126 MHz, CDCl₃) of 1t:

¹H NMR (500 MHz, CDCl₃) of precursor to **5e**:

MeO. 3.08<u>4</u> 2.05<u>4</u> 5.23-I 0.97-≝ 2.99-Z.00-I 10.5 5.5 f1 (ppm) 4.5 3.5 2.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.0 4.0 3.0 2.0 1.5 1.0 0.5

 ^{13}C NMR (126 MHz, CDCl₃) of precursor to **5e**:

110 100 f1 (ppm) 210 200 70 20 10 190 180 170 160 150 140 130 120 90 80 60 50 40 30

¹H NMR (500 MHz, CDCl₃) of **5e**:

¹H NMR (500 MHz, CDCl₃) of **5f**:

7.42 7.42 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.73 7.75

$^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR (471 MHz, CDCl₃) of **5f**:

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -30(f1 (ppm)

¹H NMR (500 MHz, CDCl₃) of **R-1**:

¹H NMR (400 MHz, CDCl₃) of **3a**:

¹³C NMR (100 MHz, CDCl₃) of **3b**:

¹H NMR (400 MHz, CDCl₃) of **3c**:

¹³C NMR (126 MHz, CDCl₃) of **3c**:

¹H NMR (400 MHz, CDCl₃) of **3d**:

¹³C NMR (126 MHz, CDCl₃) of **3d**:

¹H NMR (400 MHz, CDCl₃) of **3e**:

¹³C NMR (126 MHz, CDCl₃) of **3e**:

¹H NMR (500 MHz, CDCl₃) of **3f**:

¹³C NMR (126 MHz, CDCl₃) of **3f**:

¹H NMR (400 MHz, CDCl₃) of **3g**:

¹³C NMR (101 MHz, CDCl₃) of **3g**:

¹⁹F NMR (376 MHz, CDCl₃) of **3g**:

¹H NMR (400 MHz, CDCl₃) of **3h**:

¹³C NMR (101 MHz, CDCl₃) of **3h**:

¹H NMR (500 MHz, CDCl₃) of 3i:

¹³C NMR (126 MHz, CDCl₃) of **3i:**

¹H NMR (400 MHz, CDCl₃, 90.5:9.5 d.r.) of **3j**:

¹³C NMR (101 MHz, CDCl₃, 90.5:9.5 d.r.) of **3j**:

¹H NMR (500 MHz, CDCl₃, E/Z = 60:40) of **3k**:

¹³C NMR (126 MHz, CDCl₃, E/Z = 60:40) of **3k**:

¹H NMR (400 MHz, CDCl₃) of **3l**:

¹³C NMR (101 MHz, CDCl₃) of **3**I:

¹H NMR (400 MHz, CDCl₃) of **2m**:

¹³C NMR (101 MHz, CDCl₃) of **2m**:

¹H NMR (500 MHz, CDCl₃) of **3n**:

¹³C NMR (126 MHz, CDCl₃) of **3n**:

¹H NMR (400 MHz, CDCl₃) of **30**:

¹³C NMR (101 MHz, CDCl₃) of **30**:

¹H NMR (400 MHz, CDCl₃) of **2p**:

¹³C NMR (101 MHz, CDCl₃) of **2p:**

¹H NMR (400 MHz, CDCl₃) of **2q**:

¹³C NMR (101 MHz, CDCl₃) of **2q**:

¹H NMR (400 MHz, CDCl₃) of **2r**:

¹³C NMR (101 MHz, CDCl₃) of **2r**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **4a**:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **4a**:

¹H NMR (400 MHz, CD₃OD) of **4c**:

¹³C NMR (101 MHz, CD₃OD) of **4c**:

¹H NMR (400 MHz, CDCl₃) of **3a'**:

¹³C NMR (126 MHz, CDCl₃) of 3a':

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6a**:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6a**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6b**:

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6b**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6c**:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6c**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6d**:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6d**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6e**:

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6e**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6f**:

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6f**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6g**:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6g**:

^{19}F NMR (376 MHz, CDCl₃, mixture of diastereoisomers) of **6g**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6h**:

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6h**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6i**:

¹³C NMR (126 MHz, CDCl3, mixture of diastereoisomers) of **6i**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6**j:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6j**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6k**:

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6k**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6**I:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6**I:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6m**:

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6m**:

¹H NMR (400 MHz, CDCl₃, mixture of diastereoisomers) of **6n**:

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) of **6n**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **60:**

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **60**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of 6r:

9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 9,565 1,122

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6r**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6s**:

9.9 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6 (5)
9.6

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of **6s**:

¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) of **6t**:

9,956 9,9566 9,956 9,956 9,956 9,956 9,956 9,956 9,956 9,956 9,956 9,956

¹³C NMR (126 MHz, CDCl₃, mixture of diastereoisomers) of 6t

¹⁹F{¹H} NMR (471 MHz, CDCl₃, mixture of diastereoisomers) of **6t**:

¹H NMR (400 MHz, CDCl₃) of **7a**:

¹³C NMR (101 MHz, CDCl₃) of **7a**:

¹³C NMR (101 MHz, CDCl₃) of **7b:**

¹H NMR (500 MHz, CDCl₃) of **9**:

¹³C NMR (126 MHz, CDCl₃) of **9**:

¹H NMR (500 MHz, CDCl₃) of **11**:

¹³C NMR (126 MHz, CDCl₃) of **11**:

Radical Clock Experiment

4-Methoxybenzyl (E)-2-(3-oxoprop-1-en-1-yl)-1,4-diphenylcyclopentane-1-carboxylate (11)

Following the general procedure **E** using acrylate **5a** (250 μ mol, 67.0 mg) and enal **10** (750 μ mol, 129 mg), purification of the crude product by flash column chromatography (silica gel, 5-8% EtOAc in hexanes) afforded product **11** as a pale yellow oil (39.0 mg, 35% yield) in a 16.5:2.5:1:1 diastereometric ratio.

NMR peaks of major diastereomer only:

¹**H NMR (500 MHz, CDCl₃):** $\delta = 9.28 (d, J = 7.9 Hz, 1H, H1), 7.40 - 7.19 (m, M 10H, H9-H16), 7.16 - 7.08 (m, 2H, H20), 6.94 (dd, J = 15.6, 7.8 Hz, 1H, H3),$

Chemical Formula: C₂₉H₂₈O₄ Molecular Weight: 440.54

6.84 - 6.76 (m, 2H, H21), 6.05 (ddd, J = 15.6, 7.9, 1.2 Hz, 1H, H2), 5.06 (d, J = 11.9 Hz, 1H, H18a), 4.98 (d, J = 11.9 Hz, 1H, H18b), 3.80 (s, 3H, H23), 3.58 - 3.50 (m, 1H, H4), 3.31 - 3.19 (m, 1H, H7), 2.90 (dd, J = 13.9, 10.3 Hz, 1H, H6a), 2.70 (dd, J = 14.6, 8.8 Hz, 1H, H6b), 2.46 - 2.39 (m, 1H, H8a), 2.08 - 2.00 (m, 1H, H8b) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 193.9$ (C1), 174.3 (C17), 159.9 (C22), 157.7 (C3), 143.8 (C9), 142.6 (C13), 133.0 (C2), 130.5 (C20), 128.8 (Carom), 128.7(Carom), 127.6(Carom), 127.3(Carom), 127.3(Carom), 126.6(Carom), 126.6(Carom), 114.1 (C21), 66.9 (C18), 62.1 (C5), 55.4 (C23), 51.4 (C4), 45.3 (C6), 42.9 (C7), 39.7 (C8) ppm.

HRMS (ESI): m/z calculated for [C₂₉H₂₈O₄Na]⁺ [M+Na]⁺: 463.1880; found: 463.1877.

Supplementary Figure 69: Cross peaks (NOESY) (a) and numbering (b) for product 11, which established the relative configuration of the major diastereomer; green: NOE signals; red: no NOE signals

Cyclic Voltammetric Studies

The following section details the cyclic voltammograms of the substrates (TsCN and 5a) and the reductant (R-1) used in this study.

Supplementary Figure 70:Cyclic voltammogram of **TsCN** (5 mM) in 0.1 M [NBu4PF6] in MeCN. Sweep rate: 100 mV/s. Working electrode: Glassy carbon; reference electrode: Ag/AgCl (KCl sat.); Auxiliary electrode: Pt. Irreversible reduction. $E_p^A = E_p^{red}$ (TsCN-/TsCN) = -1.32 V; E_p^A is the cathodic peak potential, while E_p^{red} value describes the electrochemical properties of **TsCN**.

Potential/ V vs. Ag/AgCl

Supplementary Figure 71: Cyclic voltammogram of acrylate **5a** (1 mM) in 0.1 M [NBu₄PF₆] in MeCN. Sweep rate: 100 mV/s. Working electrode: Glassy carbon; reference electrode: Ag/AgCl (KCl sat.); Auxiliary electrode: Pt. Irreversible reduction. $E_p^{A} = E_p^{red}$ (**5a**⁻/**5a**) = -1.93 V; E_p^{A} is the cathodic peak potential, while E_p^{red} value describes the electrochemical properties of **5a**.

Supplementary Figure 72: Cyclic voltammogram of dihydropyridine **R-1** (5 mM) in 0.1 M [NBu₄PF₆] in MeCN. Sweep rate: 100 mV/s. Working electrode: Glassy carbon; reference electrode: Ag/AgCl (KCl sat.); Auxiliary electrode: Pt. Irreversible oxidation. $E_p^A = E_p^{\text{ox}} (\mathbf{R-1^{+/} R-1}) = +.1.36 \text{ V}; E_p^A$ is the anodic peak potential, while E_p^{ox} value describes the electrochemical properties of **R-1**.

UV-Vis Spectroscopic Studies

The following section reports the UV/Vis spectra of substrates and reductant **R-1** used in this study. None of the substrates (alone or as mixture) can absorb significantly at 460 nm. The best absorbing species is the photoredox catalyst 4-CzIPN.

Supplementary Figure 73: UV-Vis absorption spectra, recorded in DME in 1 cm path quartz cuvettes using an Agilent Cary 60 spectrophotometer. DHP [**R-1**] = 0.10 M, [**TsCN**] = 0.10 M.

Supplementary Figure 74: UV-Vis absorption spectra, recorded in DME in 1 cm path quartz cuvettes using an Agilent Cary 60 spectrophotometer. DHP [**R-1**] = 0.10 M, [**5a**] = 0.10 M.

Stern-Volmer Quenching Studies

To evaluate the feasibility of the proposed reductive quenching of the excited photocatalyst **4-CzPIN** ($E_{1/2}(PC^*/PC^*) = +1.35$ V vs SCE) by dihydropyridine **R-1** ($E^{ox} = +1.36$ V vs. Ag/AgCl), we conducted Stern Volmer studies, which confirmed this mechanistic scenario. The emission spectra were recorded in a Fluorolog Horiba Jobin Yvon spectrofluorimeter equipped with a photomultiplier detector, a double monochromator, and a 450W xenon light source. 2.5 mL of HPLC grade DME, thoroughly degassed by freeze-pump-thaw, were placed in a 10 x 10 mm light path quartz fluorescence cuvette equipped with Silicone/PTFE 3.2 mm septum under an argon atmosphere. Then, 25 µL of a 1.5 mM solution of photocatalyst 4-CzIPN in DME was added to give a final concentration of 15 µM. To measure the emission spectrum, the excitation wavelength was fixed at 460 nm (incident light slit regulated to 3 nm).

Supplementary Figure 75: Absorption and emission spectra of photocatalyst 4-CzIPN

Stern-Volmer quenching studies with dihydropyridine R-1

A 0.25 M solution of dihydropyridine **R-1** in DME was prepared, and 20 μ L of this stock solution was added to the solution of photocatalyst 4-CzIPN, prepared as described above. The addition of **R-1** solution was repeated four consecutive times. After each addition, the solution was sparged with argon for 20 s. An absorption spectrum and an emission spectrum of the solution were then recorded. The excitation wavelength was fixed at 460 nm (incident light slit regulated to 3 nm); the emission light was acquired from 470 nm to 650 nm (emission light slit regulated to 3 nm). A solvent blank was subtracted from all the measurements. The excitation wavelength was chosen in order to avoid saturation of the emission detector. The results shown in **Supplementary Figure 76** indicate that **R-1** quenches the excited state of 4-CzIPN and its emission. No change in the relevant region of absorption spectra were observed during the addition of **R-1** (**Supplementary Figure 77**).

Supplementary Figure 76: Emission of the photocatalyst 4-CzIPN (15 μM in DME) in the presence of increasing amounts of dihydropyridine **R-1** [Q].

Supplementary Figure 77: UV-vis absorption spectra of 4-CzIPN (15 μ M in DME) in the presence of increasing amounts of dihydropyridine **R-1** [Q].

The Stern-Volmer plot (**Supplementary Figure 78**), derived from the normalized emission intensity at 530 nm, shows a linear correlation between the amounts of **R-1** and the ratio I⁰/I. Based on the following Equation 1, we calculated the Stern-Volmer constant $K_{SV 2}^{30}$ as 30.5 M⁻¹.

$$\frac{I^0}{I} = 1 + K_{SV}[Q] \ (1)$$

Supplementary Figure 78: Stern-Volmer quenching plot using R-1 as the quencher.

Stern-Volmer quenching studies with TsCN

A 1.00 M solution of TsCN in DME was prepared, and 20 μ L was added to the solution of photocatalyst 4-CzIPN, prepared as described above. The addition of TsCN solution was repeated three consecutive times. After each addition, the solution was sparged with argon for 20 s. An absorption spectrum and an emission spectrum of the solution were then recorded. The excitation wavelength was fixed at 460 nm (incident light slit regulated to 3 nm); the emission light was acquired from 470 nm to 650 nm (emission light slit regulated to 3 nm). A solvent blank was subtracted from all the measurements. The excitation wavelength was chosen in order to avoid saturation of the emission detector. The results shown in **Supplementary Figure 79** indicate that TsCN does not quench the excited state of 4-CzIPN and its emission significantly. No change in the relevant region of absorption spectra were observed during the addition of TsCN (**Supplementary Figure 80**).

Supplementary Figure 79: Emission of the photocatalyst 4-CzIPN (15 µM in DME) in the presence of increasing amounts of TsCN [Q2].

Supplementary Figure 80: UV-Vis absorption spectra of 4-CzIPN (15 μ M in DME) in the presence of increasing amounts of TsCN [Q2].

The Stern-Volmer plot (**Supplementary Figure 81**), derived from the normalized emission intensity at 530 nm, shows a linear correlation between the amounts of TsCN and the ratio I^0/I . Based on equation 1, we calculated the Stern-Volmer constant K_{SV-2}^{31} as 1.7 M⁻¹.

Supplementary Figure 81: Stern-Volmer quenching plot using TsCN as the quencher.

Proposed Catalytic Cycle for the Cross Electrophile Coupling

Supplementary Figure 82: Proposed mechanism for the cross electrophile coupling of enals 1 with acrylates 5 by merging the action of photocatalyst 4-CzIPN and chiral amine catalyst A-3.

Quantum Yield Determination

In order to confirm the proposed reaction mechanism for the cross-electrophile coupling proposed in **Supplementary Figure 82**, a quantum yield measurement was conducted on the reaction of **1a** and **5a** (**Supplementary Figure 83**).

Supplementary Figure 83: Conditions for the quantum yield determination of the cross electrophile coupling. In this case, reductant **R-3** was used to guarantee homogeneity of the reaction mixture due to improved solubility.

A ferrioxalate actinometer solution was prepared by following the Hammond variation of the Hatchard and Parker procedure³¹ outlined in the *Handbook of Photochemistry*.³² Ferrioxalate actinometer solution measures the decomposition of Fe(III) to Fe(II) ions, which are complexed by 1,10-phenanthroline and monitored by UV/Vis absorbance at 510 nm. The number of moles of Fe(II)-phenanthroline complex formed are directly proportional to moles of photons absorbed. The values of the quantum yield of potassium ferrioxalate are related to concentration and wavelength.

The solutions were prepared and stored in the dark (wrapped with aluminium foil, red light environment):

0.012M Potassium ferrioxalate solution: 147.4 mg of potassium ferrioxalate (commercially available from Alfa Aesar) and 69.5 μ L of sulfuric acid (96%) were added to a 25 mL volumetric flask, and filled to the mark with HPLC grade water.

Phenanthroline solution: 100 mg of 1,10-phenanthroline in a 50 mL volumetric flask, filled to the mark with HPLC grade water (0.2% by weight).

Buffer solution: to a 100 mL volumetric flask 4.94 g of NaOAc and 1.0 mL of sulfuric acid (96%) were added and filled to the mark with HPLC grade water.

Internal standard solution: 1.261 g of 1,3,5-trimethoxybenzene was added to a 5 mL volumetric flask which was filled up with HPLC grade acetonitrile (1.50 M).

Reaction setup.

Reaction solution: A Schlenk flask was charged with amine catalyst **A-3** (14.1 mg, 0.2 equiv., 20 μ mol), DHP **R-3** (53.2 mg, 1.2 equiv., 120 μ mol), *which was chosen for its improved solubility*, unsaturated ester **1a** (26.8 mg, 1.0 eq., 100 μ mol), photocatalyst 4-CzIPN (0.8 mg, 1 mol%, 1.00 μ mol), *(E)*-oct-2-enal (44.8 μ L, 3.0 eq., 300 μ mol) and water (18 μ L, 10 equiv., 1.00 mmol). After four cycles of freeze-pump-thaw (with septum), TFA (2.2 μ L, 30.0 μ mol) in DME (0.4 mL) and were added and the tube was sealed with parafilm and put in the HP-LED 460 nm at 1 cm distance at -10 °C with irradiance of 90 mW/cm². Three different reactions were set up and irradiated for different times: 15 min, 30 min and 45 min. After each reaction was finished, internal standard solution (66 μ L, 0.1 mmol) was added. This solution was diluted with 3 mL of acetone, from the solution was taken 1 mL to be analyzed by GC-FID.

Actinometer solutions: A Schlenk flask of the same dimensions as used for the reaction mixtures was loaded with 0.4 mL of actinometer solution and placed on the HP-LED the same light intensity as the reaction (without freeze-pump-thaw). Three different actinometer solutions were irradiated in sequence for 10 s, 25 s and 40 s. To irradiate the Schlenk tube, it was placed on the holder with the light off and the light was turned on for the desired time. After each irradiation the actinometer solutions were carefully transferred into a 10 mL volumetric flask, then 0.5 mL of phenanthroline solution and 2.0 mL of buffer solution were added and the flask was filled up with water. The mixture was then analyzed by UV-Vis absorption spectroscopy (**Supplementary Figure 84**).

Supplementary Figure 84: UV-Vis spectra of the actinometer solutions irradiated for different periods.

The moles of Fe(II) formed for each sample are determined using Beers' Law (**Supplementary** Equation 2):

Moles of
$$Fe(II) = \frac{V_1 V_3 \cdot \Delta A (510 \text{ nm})}{10^3 V_2 l \cdot \varepsilon (510 \text{ nm})}$$
 (2)

where V₁ is the irradiated volume (0.4 mL), V₂ is the aliquot of the irradiated solution taken for the quantification of the Fe(II) complex (0.4 mL), V₃ is the final volume after complexation with phenanthroline (10 mL), 1 is the optical path-length of the irradiation cell (1 cm), ΔA (510 nm) is the optical difference in absorbance between the irradiated solution and the one stored in the dark, $\varepsilon_{510 \text{ nm}}$ is the extinction coefficient the complex [Fe(phen)₃]²⁺ at 510 nm (11100 L mol⁻¹ cm¹).

The moles of Fe(II) formed (x) are plotted as a function of time (t) (**Supplementary Figure 85**). The slope of this line was correlated to the moles of incident photons by unit of time $(q^{0}_{n,p})$ by the use of the following **Supplementary Equation 3**:

$$\Phi(\lambda) = \frac{dx/dt}{q_{n,p}^0 [1 - 10^{-A(\lambda)}]} \quad (3)$$

where the quantum yield (Φ) for formation of Fe(II) at 458 nm is 1.11³³, dx/dt is the rate of change of a measurable quantity (spectral or any other property), [1-10^{-A(λ)}] is the ratio of absorbed photons by the solution, and A(λ) is the absorbance of the actinometer at the wavelength used to carry out the experiments (460 nm). The absorbance at 460 nm was 0.03.

Supplementary Figure 85: Plot of the moles of Fe(II) generated from the irradiation of the actinometer solutions against time.

The photon flux, which is $q_{n,p}^0$, was determined to 3.08 x 10⁻⁷ einstein s⁻¹.

The moles of product **6a** per unit of time are plotted against the number of photons absorbed (**Supplementary Figure 86**). The photons absorbed are correlated to the number of incident photons by the use of Equiv. 3. According to this, if we plot the moles of product (y-axis) versus the moles of incident photons ($q_{n,p}^0$ dt, x-axis), the slope is equal to:

slope =
$$\Phi[1 - 10^{-A(460 nm)}]$$
 (4)

where Φ is the quantum yield to be determined and A_{460 nm} is the absorption of the reaction under study. A_{460 nm} was measured to be of 0.12 for the model reaction mixture after 25-fold dilution.

Supplementary Figure 86: Plot of the moles of products **6a** generated from the irradiation of the reaction solutions, against the moles of photons absorbed.

The quantum yield of the cross electrophile coupling process was calculated to be 0.04.

X-Ray Crystallography

Single Crystal X-ray Diffraction Data for the 4-nitrobenzoate derivative of β -cyano alcohol 3d (Ac-3d)

4-Nitrobenzoate derivative **Ac-3d** was obtained from an analytical sample prepared according to the general procedure as described in the Supplementray Figure 5 using β -cyano alcohol **3d**. Crystals of the compound **Ac-3d** were obtained by slow evaporation of a dichloromethane/hexane solution. *Data Collection*. Measurements were performed at 100 K on a Bruker Kappa Apex II DUO diffractometer equiped with a Cryostream 700 plus low temperature device, a microsource anode with Mo K α (λ = 0.71073 Å).

Supplementary Figure 87: Structure of Ac-3d.

This chiral compound crystallizes in the space group P21 with two identical molecules (A and B) in the asymmetric unit. One of the molecules is disordered in two inverted orientations of the chiral center with a ratio 82:18. The absolute structure could be determined reliable with a Flack value based on Parsons' quotients of $0.02(8)^{34-37}$ Flack X determined using 2186 quotients [(I+)-(I-)]/[(I+)+(I-)]). The Flack parameter value for the correct absolute structure determination should be 0; the inverted structure would give 1; always taking in account the standard deviation. For molecule A the absolute configuration was assigned with S(C10A). In molecule B the absolute configuration was assigned with 82% of configuration S(C10B) and 18% of configuration R(C10'). Adding the results, it was determined that the majoritarian part of the structure (91%) shows S configuration and a minoritarian part (9%) shows a R configuration in accordance with the e.r. value obtained in the preparation of the product. The structure is of excellent quality (no A- or B-alerts) and of publishable quality with a R1 value of 3.07%.

Crystal data and structure refinement for Ac-3d. CCDC2197381

Identification code	cu_MBE389_0m
Empirical formula	C28 H32 N4 O8
Formula weight	552.57
Temperature	100(2)K
Wavelength	1.54178 Å
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$a = 7.2034(2)$ Å $a = 90^{\circ}$.
	$b = 18.8414(6)$ Å $b = 91.8741(14)^{\circ}$.
	$c = 10.3566(3)$ Å $g = 90^{\circ}$.
Volume	1404.87(7) Å ³
Z	2
Density (calculated)	1.306 Mg/m ³

Absorption coefficient	0.806 mm ⁻¹
F(000)	584
Crystal size Theta range for data collection	0.200 x 0.200 x 0.010 mm ³ 4.271 to 67.930°.
Index ranges	-8<=h<=8,-22<=k<=21,-8<=l<=12
Reflections collected	11462
Independent reflections	4916[R(int) = 0.0278]
Completeness to theta = 67.930°	98.6%
Absorption correction	Multi-scan
Max. and min. transmission	0.75 and 0.65
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 4916/ 99/ 432
Goodness-of-fit on F ²	1.058
Final R indices [I>2sigma(I)]	R1 = 0.0307, wR2 = 0.0814
R indices (all data)	R1 = 0.0315, $wR2 = 0.0819$
Flack parameter	x =0.02(8)
Largest diff. peak and hole	0.189 and -0.158 e.Å ⁻³

Bond lengths [Å] and angles [°] for Ac-3d. CCDC2197381

Bond	engths	
O1A	N1A	1.225(3)
O2A	N1A	1.229(3)
O3A	C7A	1.203(3)
O4A	C7A	1.340(3)
O4A	C8A	1.454(3)
N1A	C1A	1.475(3)
N2A	C11A	1.145(3)
C1A	C2A	1.382(4)
C1A	C6A	1.385(4)
C2A	C3A	1.388(3)
C2A	H2A	0.9500
C3A	C4A	1.389(3)
C3A	H3A	0.9500
C4A	C5A	1.391(4)
C4A	C7A	1.496(3)
C5A	C6A	1.385(3)
C5A	H5A	0.9500
C6A	H6A	0.9500
C8A	C9A	1.517(3)
C8A	H8AA	0.9900
C8A	H8AB	0.9900
C9A	C10A	1.533(3)
C9A	H9AA	0.9900
C9A	H9AB	0.9900
C10A	C11A	1.470(3)
C10A	C12A	1.547(3)
C10A	H10A	1.0000
C12A	C14A	1.522(4)
C12A	C13A	1.530(4)
C12A	H12A	1.0000
C13A	H13A	0.9800
C13A	H13B	0.9800
C13A	H13C	0.9800
C14A	H14A	0.9800
C14A	H14B	0.9800
C14A	H14C	0.9800
O1B	N1B	1.224(3)
O2B	N1B	1.228(3)
O3B	C7B	1.204(3)

$O_{1}D$	
U4D	C7B 1.338(3)
$O_{1}D$	$C^{9}P = 1.440(2)$
U4D	Cob 1.449(3)
N1B	C1B 1.472(3)
C1B	C6B = 1.381(4)
CID	
CIB	C2B 1.385(3)
C ₂ B	C3B 1 386(3)
COD	U2D 0.0500
C2B	H2B 0.9500
C3B	C4B 1.389(4)
COD	
C3B	H3B 0.9500
C4B	C5B 1.399(3)
C4D	C7D = 1.404(2)
C4D	C/D 1.494(3)
C5B	C6B 1.382(3)
C5B	H5B 0.9500
CJD	115D 0.9500
C6B	H6B 0.9500
C8B	C9' = 1.322(17)
COD	$C_{1} = 1.522(17)$
C8B	C9B 1.550(4)
C8B	H8BA 0.9900
COD	
COB	H8BB 0.9900
C8B	H8BX 0.9900
COD	
COD	Hod I 0.9900
N2B	C11B 1.145(4)
COP	C10P 1 526(4)
C9D	C10B 1.550(4)
C9B	H9BA 0.9900
COR	HOBB 0 9900
C10B	C11B 1.470(4)
C10B	C12B 1 548(4)
CIOD	U10D 1.0000
CIOR	H10B 1.0000
C12B	C13B 1.527(6)
CIDD	C14D = 1.524(5)
C12B	C14B 1.534(5)
C12B	H12B 1.0000
C12D	H12D 0.0800
CIDD	HISD 0.9800
C13B	H13E 0.9800
C13B C13B	H13E 0.9800
C13B C13B	H13E 0.9800 H13F 0.9800
C13B C13B C14B	H13E 0.9800 H13F 0.9800 H14D 0.9800
C13B C13B C14B C14B	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800
C13B C13B C14B C14B	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800
C13B C13B C14B C14B C14B	H13E0.9800H13F0.9800H14D0.9800H14E0.9800H14F0.9800
C13B C13B C14B C14B C14B C14B N2'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2)
C13B C13B C14B C14B C14B C14B N2'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2)
C13B C13B C14B C14B C14B C14B N2' C9'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3)
C13B C13B C14B C14B C14B N2' C9' C9' C9'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 H9BD 0.9900
C13B C14B C14B C14B C14B N2' C9' C9' C9' C9' C9' C9' C9'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 H9BD 0.9900 C11' 1.52(2)
C13B C13B C14B C14B C14B C14B C14B C9' C9' C9' C9' C10' C10'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 H9BD 0.9900 C11' 1.52(2) C12' 1.59(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C9' C9' C9' C9' C10'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 H9BD 0.9900 C11' 1.52(2) C12' 1.59(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C9' C10' C10' C10'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000
C13B C13B C14B C14B C14B C14B N2' C9' C9' C9' C9' C9' C10' C10' C10' C10' C12'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C10' C10' C10' C10' C10' C12' C12'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C10' C10' C10' C10' C12' C12'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C10' C10' C10' C10' C10' C12' C12' C12' C12'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 H9BD 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C12' C13'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13' C13' C13'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13L 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 H9BD 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C14'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13I 0.9800 H14G 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13' C13' C14'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H14G 0.9800 H14H 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C13' C13'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H14G 0.9800 H14H 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C9' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C13' C14' C14'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H14G 0.9800 H14H 0.9800
C13B C13B C14B C14B C14B C14B C9' C9' C9' C9' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C13' C14' C14'	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' $1.11(2)$ C10' $1.46(3)$ H9BC 0.9900 C11' $1.52(2)$ C12' $1.59(2)$ H10' 1.0000 C13' $1.45(3)$ C14' $1.52(3)$ H12' 1.0000 H13G 0.9800 H13H 0.9800 H14G 0.9800 H14H 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C13' C14' C14' C14' C14' C9' C9' C9' C9' C9' C9' C9' C9' C9' C9	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13' C13' C14' Angle	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13' C13' C13' C14' C14' C14' C14' C14' C9' C9' C9' C9' C9' C9' C9' C9' C9' C9	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S O4A C8A 116.25(18)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C13' C13' C14' C14' C14' C14' C14' C14' C9' C9' C9' C9' C9' C9' C9' C9' C9' C9	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124 1(2)
C13B C13B C14B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13' C13' C13' C14' C14' C14' C14' C14' C9' C9' C9' C9' C9' C9' C9' C9' C9' C9	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14D 0.9800 H14E 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C10' C10	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2) N1A C1A 118.0(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C12' C12' C13' C13' C13' C14' C14' C14' C14' C12' C12' C12' C12' C12' C12' C12' C12	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2) N1A C1A 118.0(2) N1A C1A 117.9(2)
C13B C13B C14B C14B C14B N2' C C9' D C9' D C10' C10' C10' C10' C10' C12' C12' C12' C12' C13' C13' C13' C13' C13' C13' C13' C14' C14' C14' C14' C14' C12' C12' C12' C12' C12' C12' C12' C12	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2) N1A C1A 118.0(2) N1A C1A 117.9(2)
C13B C13B C14B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C13' C13' C13' C13' C13' C14' C14' C14' C12' C12' C12' C12' C12' C12' C12' C12	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2) N1A C1A 118.0(2) N1A C1A 117.9(2) C1A C6A 123.0(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C10' C10	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2) N1A C1A 118.0(2) N1A C1A 117.9(2) C1A C6A 123.0(2) C1A N1A 118.7(2)
C13B C13B C14B C14B C14B N2' C9' C9' C9' C10' C10' C10' C10' C10' C10' C10' C12' C12' C12' C12' C12' C12' C12' C12	H13E 0.9800 H13F 0.9800 H14D 0.9800 H14E 0.9800 H14F 0.9800 C11' 1.11(2) C10' 1.46(3) H9BC 0.9900 C11' 1.52(2) C12' 1.59(2) H10' 1.0000 C13' 1.45(3) C14' 1.52(3) H12' 1.0000 H13G 0.9800 H13H 0.9800 H13H 0.9800 H14H 0.9800 H14H 0.9800 S O4A C8A 116.25(18) N1A O2A 124.1(2) N1A C1A 118.0(2) N1A C1A 117.9(2) C1A C6A 123.0(2) C1A N1A 118.7(2)

C1A			
0111	C ₂ A	C3A	1182(2)
C1 A	C2 A	112.4	120.0
CIA	C2A	ΠZA	120.9
C3A	C2A	H2A	120.9
C2A	C3A	C4A	1197(2)
C2.1	C2 A	112 4	120.1
C2A	C3A	H3A	120.1
C4A	C3A	H3A	120.1
C3A	C/Δ	C5A	1210(2)
CJA		CJA .	121.0(2)
C3A	C4A	C/A	121.6(2)
C5A	C4A	C7A	117.4(2)
CGA	C5 A	C1A	110.9(2)
COA	CJA	C4A	119.8(2)
C6A	C5A	H5A	120.1
C4A	C5A	H5A	120.1
051	CCA	01.4	120.1
C5A	C6A	CIA	118.2(2)
C5A	C6A	H6A	120.9
C1A	CGA	Цбл	120.0
CIA	COA	поА	120.9
O3A	C7A	O4A	124.4(2)
03A	C7A	C4A	1235(2)
044	07.4	011	123.3(2)
O4A	C/A	C4A	112.08(19)
O4A	C8A	C9A	109.83(18)
$\Omega 4 \Lambda$	C8A	H8 A A	100 7
047	COA	полл	109.7
C9A	C8A	H8AA	109.7
O4A	C8A	H8AB	109.7
COA	COA	TIOND	100.7
C9A	CoA	поар	109.7
H8AA	C8A	H8AB	108.2
C8A	C9A	C10A	$113\ 50(19)$
COA	COA		100.0
C8A	C9A	H9AA	108.9
C10A	C9A	H9AA	108.9
COA	COA	LUVD	102.0
CoA	C9A	пуар	108.9
C10A	C9A	H9AB	108.9
H9AA	C9A	H9AB	107.7
0114	0104		100 ((10)
CIIA	CIUA	C9A	109.66(18)
C11A	C10A	C12A	110.26(19)
CO A		~	
1 4A	C10A	C12A	$114\ 1(2)$
C9A	C10A	C12A	114.1(2)
C9A C11A	C10A C10A	C12A H10A	114.1(2) 107.5
C9A C11A C9A	C10A C10A C10A	C12A H10A H10A	114.1(2) 107.5 107.5
C9A C11A C9A	C10A C10A C10A	C12A H10A H10A	114.1(2) 107.5 107.5
C9A C11A C9A C12A	C10A C10A C10A C10A	C12A H10A H10A H10A	114.1(2) 107.5 107.5 107.5
C9A C11A C9A C12A N2A	C10A C10A C10A C10A C10A C11A	C12A H10A H10A H10A C10A	114.1(2) 107.5 107.5 107.5 177.8(3)
C9A C11A C9A C12A N2A C14A	C10A C10A C10A C10A C10A C11A C12A	C12A H10A H10A H10A C10A C13A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2)
C9A C11A C9A C12A N2A C14A	C10A C10A C10A C10A C11A C11A C12A	C12A H10A H10A C10A C13A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2)
C9A C11A C9A C12A N2A C14A C14A	C10A C10A C10A C10A C10A C11A C12A C12A	C12A H10A H10A C10A C13A C10A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2)
C9A C11A C9A C12A N2A C14A C14A C14A C13A	C10A C10A C10A C10A C10A C11A C12A C12A C12A	C12A H10A H10A C10A C13A C10A C10A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2)
C9A C11A C9A C12A N2A C14A C14A C14A C13A C14A	C10A C10A C10A C10A C10A C11A C12A C12A C12A	C12A H10A H10A C10A C13A C10A C10A C10A H12A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6
C9A C11A C9A C12A N2A C14A C14A C14A C13A C14A	C10A C10A C10A C10A C11A C12A C12A C12A C12A	C12A H10A H10A C10A C10A C10A C10A C10A H12A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6
C9A C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A	C12A H10A H10A C10A C10A C10A C10A H12A H12A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6
C9A C11A C9A C12A N2A C14A C14A C13A C14A C13A C10A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6
C9A C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A C10A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6
C9A C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A C10A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6
C9A C11A C9A C12A N2A C14A C14A C14A C14A C14A C13A C10A C12A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H13A H13B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C13A C14A C13A C10A C12A C12A H13A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A C10A C12A C12A H13A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A C12A H13A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5 109.5
C9A C11A C9A C12A N2A C14A C14A C13A C14A C13A C12A H13A C12A H13A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13B H13C H13C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C14A C14A C12A C12A H13A C12A H13A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13B H13C H13C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5
C9A C11A C9A C12A N2A C14A C14A C14A C14A C13A C12A C12A H13A H13B	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13B H13C H13C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A C12A H13A C12A H13B C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13B H13C H13C H13C H14A	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C13A C14A C12A H13A C12A H13B C12A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C13A C13A C13A C13A C13A C13A C13A C13	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13B H13C H13C H13C H14A H14B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C9A C11A C9A C12A N2A C14A C14A C13A C14A C13A C12A H13A C12A H13B C12A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13B H13C H13C H13C H14A H14B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C14A C12A C12A C12A H13A C12A H13B C12A C12A H13A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13B H13C H13C H13C H14A H14B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C13A C12A C12A H13A C12A H13B C12A C12A H14A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13B H13C H13C H13C H14A H14B H14B H14C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C14A C14A C12A H13A C12A H13B C12A C12A H14A C12A H14A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13C H13C H13C H13C H13C H14A H14B H14B H14C H14C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C14A C13A C14A C12A C12A H13A C12A H13B C12A C12A H13B C12A C12A H14A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13C H13C H13C H13C H14A H14B H14B H14C H14C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C13A C14A C13A C12A C12A C12A H13A C12A H13B C12A C12A H13A C12A H14A C12A H14A C12A H14A C12A	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13B H13C H13C H13C H13C H14A H14B H14B H14C H14C H14C	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C11A C9A C12A N2A C14A C14A C13A C14A C13A C12A C12A C12A H13B C12A C12A H13B C12A C12A H14A C12A H14A C12A C12A C12A C14A C14A C14A C14A C14A C14A C14A C14	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13B H13C H13C H13C H13C H14A H14B H14B H14C H14C H14C C8B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 107.5 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C13A C12A C12A C12A H13A C12A H13B C12A C12A H13B C12A C12A H14A C12A H14A C12A C12A C14A C14A C14A C14A C14A C14A C14A C14	C10A C10A C10A C10A C10A C12A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13C H13C H13C H14A H14B H14B H14B H14C H14C C8B C2P	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 109.5
C11A C9A C12A N2A C14A C14A C14A C14A C14A C14A C12A C12A C12A C12A C12A C12A C12A C12	C10A C10A C10A C10A C10A C12A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13B H13C H13C H13C H13C H14A H14B H14B H14B H14C H14C C8B O2B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 109.5
C11A C9A C12A N2A C14A C14A C14A C13A C14A C13A C12A C12A H13A C12A H13B C12A C12A H13B C12A C12A H14A C12A H14A C12A C12A H14A C12A H14B C7B O1B O1B	C10A C10A C10A C10A C11A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13B H13C H13C H13C H13C H14A H14B H14C H14C C8B C1B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 109.5
C11A C9A C12A N2A C14A C14A C13A C14A C13A C12A C12A C12A C12A H13A C12A H13B C12A C12A H13A C12A H14A C12A H14A C12A C12A C14A C13A C14A C14A C14A C14A C14A C14A C14A C14	C10A C10A C10A C10A C10A C12A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A C10A H12A H12A H12A H12A H13B H13C H13C H13C H13C H13C H14A H14B H14B H14B H14C H14C H14C C8B C1B C1B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 109.5
C9A C11A C9A C12A N2A C14A C13A C14A C13A C12A C12A C12A C12A C12A C12A C12A C12	C10A C10A C10A C10A C10A C12A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H12A H13B H13B H13C H13C H13C H13C H14C H14C H14C H14C C8B C1B C1B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100
C17A C11A C9A C12A N2A C14A C14A C14A C14A C12A C12A C12A C12A C12A C12A C12A C12	C10A C10A C10A C10A C10A C12A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H13B H13C H13C H13C H13C H13C H14A H14B H14B H14B H14C H14C C8B C1B C1B C1B C1B C1B C1B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 109.5 100.5 100
C11A C9A C12A N2A C14A C14A C14A C14A C14A C12A C12A C12A C12A C12A C12A C12A C12	C10A C10A C10A C10A C10A C12A C12A C12A C12A C12A C12A C12A C12	C12A H10A H10A C10A C10A C10A C10A H12A H12A H12A H12A H12A H12A H13B H13C H13C H13C H13C H13C H14A H14B H14B H14B H14C H14C C8B C1B C1B C1B C2B I N1B	114.1(2) 107.5 107.5 107.5 177.8(3) 111.5(2) 112.4(2) 109.9(2) 107.6 107.6 107.6 107.6 107.6 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100

$C^{2}B$			
C.2D	C1B	N1B	118.7(2)
C1B	C ₂ B	C3B 1	1181(2)
CID	C2D		120.0
CIB	C2B	HZB	120.9
C3B	C2B	H2B	120.9
C2B	C3B	C4B 1	120.2(2)
C2B	C3B	H3B	119.9
C4B	C3B	H3B	119.9
C3B	C4B	C5B 1	1204(2)
C2D		C7D 1	120.4(2)
COD	C4D	C/D 1	118.4(2)
C2B	C4B	C/B	121.2(2)
C6B	C5B	C4B 1	119.8(2)
C6B	C5B	H5B	120.1
C4B	C5B	H5B	120.1
C1B	C6B	C5B 1	118 6(2)
CID	C6P		120.7
		HOD .	120.7
C5B	C6B	H6B	120.7
O3B	C7B	O4B	125.0(2)
O3B	C7B	C4B	123.6(2)
O4B	C7B	C4B	111.3(2)
C9' (78B (MR 1'	787(9)
			1040(2)
04B		C9B .	104.0(2)
O4B	C8B	H8BA	111.0
C9B	C8B	H8BA	111.0
O4B	C8B	H8BB	111.0
C9B	C8B	H8BB	111.0
HSBV	CSB	HABB	100.0
			109.0
09 0	-98 F	18DA .	105.1
O4B	C8B	H8BX	105.1
C9' (C8B F	ISBY 1	105.1
O4B	C8B	H8BY	105.1
HODV	COD	HODV	1050
	ιхв		105.9
C10B	COB	C8B	105.9
C10B	C8B C9B	C8B	105.9 113.6(2)
C10B C10B	C9B C9B	C8B H9BA	105.9 113.6(2) 108.9
C10B C10B C8B	C9B C9B C9B	C8B H9BA H9BA	105.9 113.6(2) 108.9 108.9
C10B C10B C8B C10B	C9B C9B C9B C9B C9B	C8B H9BA H9BA H9BB	105.9 113.6(2) 108.9 108.9 108.9
C10B C10B C8B C10B C8B	C9B C9B C9B C9B C9B C9B	C8B H9BA H9BA H9BB H9BB	105.9 113.6(2) 108.9 108.9 108.9 108.9
C10B C10B C8B C10B C8B C8B H9BA	C8B C9B C9B C9B C9B C9B C9B	H3B I C8B H9BA H9BA H9BB H9BB H9BB	105.9 113.6(2) 108.9 108.9 108.9 108.9 108.9
C10B C10B C8B C10B C8B H9BA C11B	C8B C9B C9B C9B C9B C9B C9B C10B	C8B H9BA H9BA H9BB H9BB H9BB C9B	105.9 113.6(2) 108.9 108.9 108.9 108.9 108.9 107.7
C10B C10B C8B C10B C8B H9BA C11B	C8B C9B C9B C9B C9B C9B C9B C9B C10B	C8B H9BA H9BA H9BB H9BB H9BB C9B C12P	105.9 113.6(2) 108.9 108.9 108.9 108.9 107.7 109.9(2)
C10B C10B C8B C10B C8B H9BA C11B C11B	C8B C9B C9B C9B C9B C9B C9B C10B C10B	C8B H9BA H9BA H9BB H9BB H9BB C9B C12B	105.9 113.6(2) 108.9 108.9 108.9 108.9 107.7 109.9(2) 110.2(2)
C10B C10B C8B C10B C8B H9BA C11B C11B C9B	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B	C8B H9BA H9BA H9BB H9BB H9BB C9B C12B C12B	105.9 113.6(2) 108.9 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3)
C10B C10B C8B C10B C8B H9BA C11B C11B C9B C11B	C3B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B	C8B H9BA H9BA H9BB H9BB H9BB C9B C12B C12B H10B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2
C10B C10B C8B C10B C8B H9BA C11B C11B C9B C11B C9B	C3B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B	C8B H9BA H9BA H9BB H9BB H9BB C9B C12B C12B C12B H10B H10B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2
C10B C10B C8B C10B C8B C10B C8B C11B C11B C9B C11B C9B C12B	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2
C10B C10B C8B C10B C8B C10B C8B C11B C11B C9B C11B C9B C12B N2B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 179.3(4)
C10B C10B C8B C10B C8B C10B C8B C11B C11B C9B C11B C9B C12B N2B C13B	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C12B C12B	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 179.3(4) 111.0(3)
C10B C10B C8B C10B C8B C10B C11B C11B C9B C11B C9B C12B N2B C12B N2B C13B	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C12B C12B	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 179.3(4) 111.0(3)
C10B C10B C8B C10B C8B C10B C11B C11B C9B C11B C9B C12B N2B C12B N2B C13B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C11B C12B C12B	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B C10B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 179.3(4) 111.0(3) 112.9(4)
C10B C10B C8B C10B C8B C10B C11B C11B C11B C9B C11B C9B C12B N2B C12B N2B C13B C13B C14B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C12B C12B C12B C12B	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B C10B C10B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 179.3(4) 111.0(3) 112.9(4) 111.0(3)
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B N2B C12B N2B C13B C13B C14B C13B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C12B C12B C12B C12B C12B	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B C10B C10B C10B H12B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 102.9 102.
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B N2B C12B C12B C13B C13B C14B C14B C14B	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C12B C12B C12B C12B C12B C12B C12B C12	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B C10B C10B C10B C10B H12B H12B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 108.2 179.3(4) 111.0(3) 112.9(4) 111.0(3) 107.2 107.2
C10B C10B C8B C10B C8B C10B C11B C11B C9B C11B C9B C12B C12B C12B C12B C12B C12B C13B C13B C14B C14B C14B C14B C10B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C12B C12B C12B C12B C12B C12B C12B C12	R3B I C8B H9BA H9BA H9BB H9BB C9B C12B H10B H10B C10B C10B C10B C10B H12B H12B	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 108.2 179.3(4) 111.0(3) 112.9(4) 111.0(3) 107.2 107.2 107.2
C10B C10B C8B C10B C8B C10B C11B C11B C11B C9B C11B C9B C12B C12B C12B C12B C13B C13B C14B C13B C14B C12B C12B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C12B C12B C12B C12B C12B C12B C12B C12	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C10B C14B C10B C10B C10B C10B C10B H12B H12B H12B H12B	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 1$
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C13B C13B C14B C13B C14B C12B C12B C12B C12B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C12B C12B C12B C12B C12B C12B C12B C12	R3B1 C8B H9BA H9BB H9BB H9BB C9B C12B C12B H10B H10B C10B C14B C10B C10B C10B H12B H12B H13D	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 107.3(4) 111.0(3) 112.9(4) 111.0(3) 107.2 107.2 107.2 109.5 100.5
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C13B C14B C13B C14B C13B C14B C12B C12B C12B C12B	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	C8B H9BA H9BB H9BB H9BB C9B C12B C12B C12B C12B H10B H10B C10B C14B C10B C14B C10B C14B C10B C14B C10B H12B H12B H12B H13D H13E	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 107.3(4) 111.0(3) 112.9(4) 111.0(3) 107.2 107.2 107.2 109.5 109.5 109.5
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C12B C12B C12B C12	C38B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	R3B I C8B H9BA H9BB H9BB H9BB C9B C12B C12B H10B H10B C10B C14B C10B C10B H12B H12B H13D H13E H13E	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 1$
C10B C10B C8B C10B C8B C10B C1B C1B C1B C1B C12B C12B C12B C12B C1	C38B C99B C99B C99B C99B C108 C108 C108 C108 C108 C108 C108 C108	R3B I C8B H9BA H9BB H9BB H9BB C9B C12B H10B H10B C10B C14B C10B C10B H12B H12B H13D H13E H13F	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 1$
C10B C10B C8B C10B C8B C10B C1B C1B C1B C1B C1B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	R3B I C8B H9BA H9BB H9BB H9BB C9B C12B H10B H10B C10B C14B C10B C10B H12B H12B H13D H13E H13F	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 108.2 179.3(4) 111.0(3) 112.9(4) 111.0(3) 107.2 107.2 107.2 107.2 109.5 109.5 109.5 109.5 109.5
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C13B C13B C14B C13B C14B C12B C12B C12B C12B C12B C12B C12B C13B C13B C13B C13B C13B C13B C13B C13	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	Rob I C8B H9BA H9BB H9BB H9BB C9B C12B H10B H10B C10B C10B C10B C10B C10B H12B H12B H13D H13E H13F H13F	105.9 113.6(2) 108.9 108.9 108.9 107.7 109.9(2) 110.2(2) 112.0(3) 108.2 108.2 108.2 108.2 108.2 179.3(4) 111.0(3) 107.2 107.2 107.2 107.2 109.5 109.5 109.5 109.5 109.5 109.5
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C13B C14B C13B C14B C12B C12B C12B C12B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	Rob I C8B H9BA H9BB H9BB H9BB C9B C12B H10B H10B C10B C10B C10B C10B C10B C10B H12B H13D H13E H13F H13F H14D	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 107.3(4)\\ 111.0(3)\\ 112.9(4)\\ 111.0(3)\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 109.5\\$
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	Rob I C8B H9BA H9BB H9BB H9BB C9B C12B H10B H10B C10B C14B C10B C10B C10B H12B H12B H13D H13E H13F H13F H13F H14D	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 109.5\\ 109.$
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C13B C12B C12B C12B C12B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	C8B H9BA H9BA H9BB H9BB C9B C12B C12B C12B H10B H10B H10B C12B H10B C12B H10B C12B C12B H10B H10B C12B C12B C12B H10B H10B H10B H12B H12B H12B H13D H13E H13F H13F H13F H13F H14D H14E	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 109.5\\ 109.$
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	R3B I C8B H9BA H9BB H9BB H9BB C12B C12B C12B H10B C10B C10B C10B C10B C10B C10B C10B C10B H12B H12B H12B H13E H13E H13F H13F H14D H14E H14E	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 108.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 107.2\\ 109.5\\ 109.$
C10B C10B C8B C10B C8B C10B C8B C11B C9B C11B C9B C12B C12B C12B C12B C12B C12B C12B C12	C8B C9B C9B C9B C9B C9B C10B C10B C10B C10B C10B C10B C10B C10	R3B I C8B H9BA H9BB H9BB H9BB C12B C12B C12B H10B C10B C10B C10B C10B C10B C10B H12B H12B H13E H13E H13F H13F H14D H14E H14F	$\begin{array}{c} 105.9\\ 113.6(2)\\ 108.9\\ 108.9\\ 108.9\\ 108.9\\ 107.7\\ 109.9(2)\\ 110.2(2)\\ 112.0(3)\\ 108.2\\ 109.5\\ 109.$

H14E C14B H14F 109.5 C8B C9' C10' 105.2(16) C8B C9' H9BC 110.7 C10' C9' H9BC 110.7 C8B C9' H9BD 110.7 C10' C9' H9BD 110.7 H9BC C9' H9BD 108.8 C9' C10' C11' 108.6(12) C9' C10' C12' 117.6(14) C11' C10' C12' 107.1(14) C9' C10' H10' 107.7 C11' C10' H10' 107.7 C12' C10' H10' 107.7 N2' C11' C10' 179(2) C13' C12' C14' 113.8(17) C13' C12' C10' 110.6(18) C14' C12' C10' 112.8(15) C13' C12' H12' 106.3 C14' C12' H12' 106.3 C10' C12' H12' 106.3 C12' C13' H13G 109.5 C12' C13' H13H 109.5 H13G C13' H13H 109.5 C12' C13' H13I 109.5 H13G C13' H13I 109.5 H13H C13' H13I 109.5 C12' C14' H14G 109.5 C12' C14' H14H 109.5 H14G C14' H14H 109.5 C12' C14' H14I 109.5 H14G C14' H14I 109.5 H14H C14' H14I 109.5

Torsion angles [°] for Ac-3d. CCDC2197381

O1A N1A C1A C2A 175.8(2) O2A N1A C1A C2A -6.0(3) O1A N1A C1A C6A -6.6(3) O2A N1A C1A C6A 171.6(2) C6A C1A C2A C3A -0.6(3) N1A C1A C2A C3A 176.77(18) C1A C2A C3A C4A -0.9(3) C2A C3A C4A C5A 1.7(3) C2A C3A C4A C7A -176.63(19) C3A C4A C5A C6A -1.0(3) C7A C4A C5A C6A 177.41(18) C4A C5A C6A C1A -0.5(3) C2A C1A C6A C5A 1.3(3) N1A C1A C6A C5A -176.09(19) C8A O4A C7A O3A -2.9(3) C8A O4A C7A C4A 175.97(16) C3A C4A C7A O3A 167.4(2) C5A C4A C7A O3A -11.0(3) C3A C4A C7A O4A -11.5(3) C5A C4A C7A O4A 170.11(18) C7A O4A C8A C9A -85.8(2) O4A C8A C9A C10A -59.7(3) C8A C9A C10A C11A -59.9(3) C8A C9A C10A C12A 175.8(2) C11A C10A C12A C14A -58.4(3) C9A C10A C12A C14A 65.5(3)

C11A C10A C12A C13A 66.4(3) C9A C10A C12A C13A -169.7(2) O1B N1B C1B C6B -177.3(2) O2B N1B C1B C6B 3.3(3) O1B N1B C1B C2B 4.4(3) O2B N1B C1B C2B -175.0(2) C6B C1B C2B C3B -0.5(3) N1B C1B C2B C3B 177.75(18) C1B C2B C3B C4B 1.0(3) C2B C3B C4B C5B -0.7(3) C2B C3B C4B C7B -179.16(18) C3B C4B C5B C6B -0.2(3) C7B C4B C5B C6B 178.18(18) C2B C1B C6B C5B -0.4(3) N1B C1B C6B C5B -178.67(18) C4B C5B C6B C1B 0.8(3) C8B O4B C7B O3B 13.7(3) C8B O4B C7B C4B -165.90(17) C3B C4B C7B O3B 9.7(3) C5B C4B C7B O3B -168.7(2) C3B C4B C7B O4B -170.65(18) C5B C4B C7B O4B 10.9(3) C7B O4B C8B C9' 73.3(12) C7B O4B C8B C9B 93.9(3) O4B C8B C9B C10B 166.1(2) C8B C9B C10B C11B -63.2(3) C8B C9B C10B C12B 174.0(3) C11B C10B C12B C13B -66.3(4) C9B C10B C12B C13B 56.3(4) C11B C10B C12B C14B 59.1(4) C9B C10B C12B C14B -178.3(3) O4B C8B C9' C10' 67.6(13) C8B C9' C10' C11' 65.3(16) C8B C9' C10' C12' -173.0(12) C9' C10' C12' C13' 167.4(18) C11' C10' C12' C13' -70(2) C9' C10' C12' C14' -63.8(19) C11' C10' C12' C14' 58.7(19)

Symetry operations

1 'x, y, z' 2 '-x, y+1/2, -z'

Single Crystal X-ray Diffraction Data for the 4-nitrobenzoate derivative of diol 7e (Ac-7e)

4-Nitrobenzoate derivative **Ac-7e** was obtained from an analytical sample prepared according to the general procedure as described in the Supplementray Figure 5 using diol **7e** obtained upon reduction of 1,6-dicarbonyl **6e**. Crystals of the compound **Ac-7e** were obtained by slow evaporation of a dichloromethane/hexane solution. *Data Collection*. Measurements were performed at 100 K on a Bruker Kappa Apex II DUO diffractometer equiped with a Cryostream 700 plus low temperature device, a microsource anode with Mo Ka ($\lambda = 0.71073$ Å).

Supplementary Figure 88: Structure of Ac-7e.

This chiral compound crystallizes in the space group P1 showing disorder in the group with the benzene ring (atoms C18 to C25) with a ratio of 75:25. Both disordered orientations show the same stereochemistry. The absolute structure could be determined reliable with a Flack value based on Parsons' quotients of $-0.05(9)^{34.37}$. Flack X determined using 1202 quotients [(I+)-(I-)]/[(I+)+(I-)]). The Flack parameter value for the correct absolute structure determination should be 0; the inverted structure would give 1; always taking in account the standard deviation. The absolute configuration based on the absolute structure of the measured crystal was determined with S(C9), R(C17). The structure is of excellent quality (no A-alerts and *one commented B-alerts related to the poor data to parameter ratio*, see CIF/checkCIF) and of publishable quality with a R1 value of 3.18%.

The B alert in the checkCIF file is due to formation of small chiral crystals of low symmetry (Space group P1) which were measured using CuKalfa radiation. Additionally, the structure showed disorder which enlarged the number of parameters. Maximum exposition time and intensity was used for the measurement. The data measured were considered of enough quality for publication.

Crystal data and structure refinement for Ac-7e. CCDC 2197380

Identification code	cu_YBA203D1-c_0m
Empirical formula	C34 H32 N2 O8
Formula weight	596.61
Temperature	100(2)K
Wavelength	1.54178 Å
Crystal system	triclinic
Space group	P 1
Unit cell dimensions	$ a = 6.9484(2) \text{\AA} a = 82.727(2)^{\circ}. $ $ b = 7.1418(2) \text{\AA} b = 86.432(2)^{\circ}. $
	$c = 15.8024(5)Ag = 75.4121(19)^{\circ}.$
Volume	752.42(4) Å ³
Z	1
Density (calculated)	1.317 Mg/m ³
Absorption coefficient	0.778 mm ⁻¹
F(000)	314
Crystal size	0.300 x 0.030 x 0.020 mm ³
Theta range for data collection	2.820 to 66.476°.
Index ranges	-8<=h<=8,-8<=k<=8,-16<=l<=18
Reflections collected	8999
Independent reflections	4737[R(int) = 0.0243]
Completeness to theta $=66.476^{\circ}$	96.8%
Absorption correction	Multi-scan
Max. and min. transmission	0.75 and 0.52
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4737/ 150/ 469
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0318, $wR2 = 0.0823$
R indices (all data)	R1 = 0.0356, wR2 = 0.0848
Flack parameter	x = -0.05(9)
Largest diff. peak and hole	0.116 and -0.193 e.Å ⁻³

Bond lengths [Å] and angles [°] for Ac-7e. CCDC 2197380

Bond lengths			
01	N1	1.229(3)	
O2	N1	1.223(3)	
03	C7	1.206(3)	
04	C7	1.333(3)	
04	C8	1.450(3)	
05	C28	1.330(3)	
05	C27	1.461(3)	
06	C28	1.201(3)	
07	N2	1.223(3)	
08	N2	1.219(3)	
N1	C1	1.473(3)	
N2	C32	1.469(3)	
C1	C2	1.386(4)	
C1	C6	1.386(3)	
C2	C3	1.380(4)	
C2	H2	0.9500	
C3	C4	1.402(3)	
C3	H3	0.9500	
C4	C5	1.388(4)	
C4	C7	1.494(4)	
C5	C6	1.382(4)	
C5	H5	0.9500	
C6	H6	0.9500	

C8	C9 1.523(4)
Co	
Co	П6А 0.9900
C8	H8B 0.9900
CO	$C_{10} = 1.510(2)$
09	C10 1.510(5)
C9	C16 1.528(3)
CO	U0 1.0000
09	H9 1.0000
C10	C15 1.385(4)
C10	$C_{11} = 1 202(2)$
C10	C11 1.595(5)
C11	C12 1.390(5)
011	U11 0.0500
CH	HII 0.9500
C12	C13 1.377(6)
C10	U12 0.0500
CI2	H12 0.9500
C13	C14 1.371(5)
C12	1112 0.0500
CIS	HI3 0.9500
C14	C15 1.384(4)
014	
CI4	HI4 0.9500
C15	H15 0.9500
010	
C16	C17 1.528(4)
C16	H16A 0.9900
010	
C10	HI6B 0.9900
C17	C26 1.531(3)
C17	C18 + 1563(4)
C17	018 1.303(4)
C17	C18' 1.586(10)
C17	H17 1 0000
017	
CI/	H17 1.0000
C26	C27 1.487(4)
C^{26}	H26A 0.9900
C20	1120A 0.9900
C26	H26B 0.9900
C27	H27A 0.9900
C27	1127D 0.0000
C_{27}	H2/B 0.9900
C28	C29 1.496(3)
C_{20}	C30 + 1.302(4)
C29	0.50 1.592(4)
C29	C34 1.393(3)
C30	C31 1 382(3)
C30	U20 0.0500
C30	H30 0.9500
C31	C32 1.386(3)
C21	H21 0.0500
C31	H31 0.9300
C32	C33 1.383(4)
C33	C34 + 1.382(4)
C55	
C33	H33 0.9500
C34	H34 0.9500
C10	$C_{10} = 1.520(5)$
CIS	C19 1.552(5)
C18	H18A 0.9900
C18	H18B 0.0000
C10	1118D 0.9900
C19	C20 1.508(5)
C19	H19A 0 9900
C10	
C19	H19B 0.9900
C20	C25 1.386(6)
C20	C21 1 201(6)
C20	$C_{21} 1.391(0)$
C21	C22 1.394(8)
C21	H21 0 9500
C21	
C22	C23 1.3/9(7)
C22	H22 0.9500
C22	$C_{24} = 1.270(7)$
C23	$C_{24} = 1.5/0(7)$
C23	H23 0.9500
C24	C25 = 1.391(7)
C24	1124 0.0500
C24	H24 0.9500
C25	H25 0.9500
C18'	C19' 1 541(10)
CIO	$U_{10} = 1.3 + 1(10)$
C18'	HI8C 0.9900
C18'	H18D 0.9900

C24' C25' 1.393(12) C24' H24' 0.9500 C25' H25' 0.9500	
AnglesC7O4C8 $117.3(2)$ C28O5C27 $114.90(19$ O2N1O1 $123.8(2)$ O2N1C1 $118.4(2)$ O1N1C1 $117.8(2)$ O8N2O7 $123.6(2)$ O8N2C32 $118.7(2)$ O7N2C32 $117.8(2)$ C2C1C6 $122.9(2)$ C2C1N1 $118.8(2)$ C6C1N1 $118.4(2)$ C3C2C1 $118.2(2)$ C3C2C1 $118.2(2)$ C3C2C1 $118.2(2)$ C3C2C1 $118.2(2)$ C3C2H2 120.9 C1C2H2 120.9 C2C3C4 $120.0(2)$ C3C4C7 $117.9(2)$ C3C4C7 $117.9(2)$ C3C4C7 $118.3(2)$ C6C5H5 119.9 C4C5H5 119.9 C5C6C1 $118.3(2)$ C5C6H6 120.8 C1C6H6 120.8 C3C7C4 $124.0(2)$ O3C7C4 $124.0(2)$ O4C7C4 $111.8(2)$ O4C8H8B 110.4 C9C8H8A 110.4 C9C8H8B 110.4 C9C8H8B 110.4 C9C8	

C19' C20' 1.508(10)

C12		
C12	C11	H11 1196
	C11	IIII 110.0
C10	CII	HII 119.0
C13	C12	C11 120.5(3)
C13	C12	H12 119.8
C11	C12	H12 119.8
C14	C13	C12 119 4(3)
C14	C13	H13 120 3
C14	C13	1113 120.3
CI2	C13	HI3 120.3
C13	C14	C15 120.3(3)
C13	C14	H14 119.9
C15	C14	H14 119.9
C14	C15	C10 121.5(2)
C14	C15	H15 119 3
C_{10}	C15	H15 110.2
C10		$\Pi J \Pi J \Pi J J J J J J J J J J J J J J J$
CI7	C16	C9 114.4(2)
C17	C16	H16A 108.7
C9	C16	H16A 108.7
C17	C16	H16B 108.7
C9	C16	H16B 108 7
U16/	C_{16}	U16P 107.6
		GP(100.0(2)
C16	CI7	C26 109.8(2)
C16	C17	C18 116.9(2)
C26	C17	C18 116.0(2)
C16	C17	C18' 99.0(4)
C26	C17	C18' 998(4)
C16	C17	U17 10/1
	C17	1117 104.1
C26	CI/	H1/ 104.1
C18	C17	H17 104.1
C16	C17	H17' 115.3
C26	C17	H17' 115.3
C18'	C17	H17' 115 3
C27	C^{26}	C17 1122(2)
C27	C20	$U_1 = 112.2(2)$
C27	C20	H20A 109.2
CI7	C26	H26A 109.2
C27	C26	H26B 109.2
		H26B 109.2
C17	C26	
C17 H26A	C26 A C26	H26B 107.9
C17 H26A	C26 A C26 C27	H26B 107.9
C17 H26A O5	C26 A C26 C27 C27	H26B 107.9 C26 108.65(19)
C17 H26A O5 O5	C26 A C26 C27 C27 C27	H26B 107.9 C26 108.65(19) H27A 110.0
C17 H26A O5 O5 C26	C26 A C26 C27 C27 C27 C27	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0
C17 H26A O5 O5 C26 O5	C26 C27 C27 C27 C27 C27 C27	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0
C17 H26A O5 O5 C26 O5 C26	C26 C27 C27 C27 C27 C27 C27 C27 C27	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 110.0
C17 H26A O5 O5 C26 O5 C26 H27A	C26 C27 C27 C27 C27 C27 C27 C27 C27 A C27	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 110.0 H27B 108.3
C17 H26A O5 O5 C26 O5 C26 H27A O6	C26 C27 C27 C27 C27 C27 C27 C27 A C27 C28	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 Q5 123.7(2)
C17 H26A O5 O5 C26 O5 C26 H27A O6 O6	C26 C27 C27 C27 C27 C27 C27 C27 C27 A C27 C28 C28	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123 2(2)
C17 H26A O5 O5 C26 O5 C26 H27A O6 O6	C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C20 112 12(10)
C17 H26A O5 O5 C26 O5 C26 H27A O6 O6 O5	C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19)
C17 H264 O5 O5 C26 O5 C26 H274 O6 O6 O5 C30	C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C29	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2)
C17 H264 O5 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30	C26 C27 C27 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C29 C29	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2)
C17 H264 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C34	C26 A C26 C27 C27 C27 C27 C27 C27 A C27 C28 C28 C28 C28 C28 C29 C29 C29	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2)
C17 H264 O5 C26 O5 C26 H274 O6 O5 C30 C30 C30 C34 C31	C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2)
C17 H264 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C30 C30 C34 C31	C26 A C26 C27 C27 C27 C27 C27 C27 A C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30 C30	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119 7
C17 H264 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C30 C30 C34 C31 C31 C31	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30 C30 C30	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 H30 119.7
C17 H264 O5 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C30 C30 C31 C31 C31 C29	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30 C30 C30 C30	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 H30 119.7
C17 H264 O5 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C30 C30 C31 C31 C29 C30	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30 C30 C30 C30	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 C32 117.8(2)
C17 H264 O5 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C30 C34 C31 C29 C30 C30 C30	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C28 C29 C29 C29 C29 C30 C30 C30 C30 C31 C31	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C29 120.5(2) H30 119.7 H30 119.7 C32 117.8(2) H31 121.1
C17 H264 O5 O5 C26 O5 C26 H274 O6 O6 O5 C30 C30 C30 C34 C31 C29 C30 C30 C30 C30 C30 C30 C30	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C30 C30 C30 C30 C31 C31 C31	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C29 120.5(2) H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1
C17 H264 O5 O5 C26 O5 C26 H274 O6 O5 C30 C30 C30 C34 C31 C29 C30 C30 C30 C32 C33	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C30 C30 C30 C30 C31 C31 C31 C31 C32	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C29 120.5(2) H30 119.7 H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1 C31 123.0(2)
C17 H264 O5 C26 O5 C26 H274 O6 O5 C30 C30 C30 C34 C31 C31 C29 C30 C30 C30 C32 C33 C33	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C28 C29 C29 C29 C29 C30 C30 C30 C31 C31 C31 C31 C32 C32	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1 C31 123.0(2) N2 118 7(2)
C17 H264 O5 O5 C26 O5 C26 H274 O6 O5 C30 C30 C30 C34 C31 C29 C30 C30 C32 C33 C33 C33 C31	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C30 C30 C30 C31 C31 C31 C31 C31 C32 C32 C32	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1 C31 123.0(2) N2 118.7(2)
C17 H264 O5 C26 O5 C26 H274 O6 O5 C30 C30 C30 C30 C34 C31 C31 C29 C30 C30 C30 C32 C33 C33 C33 C33	C26 A C26 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30 C30 C30 C31 C31 C31 C31 C31 C32 C32 C32	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1 C31 123.0(2) N2 118.7(2) N2 118.7(2) N2 118.3(2) C32 117.8(2) H36 (2)
C17 H264 O5 O5 C26 O5 C26 H274 O6 O5 C30 C30 C30 C30 C30 C34 C31 C31 C30 C30 C30 C32 C33 C33 C33 C33 C33 C34	C26 A C26 C27 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C30 C30 C30 C31 C31 C31 C31 C32 C32 C32 C32 C32	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1 C31 123.0(2) N2 118.7(2) N2 118.3(2) C32 118.4(2)
C17 H264 O5 O5 C26 H274 O6 O5 C30 C30 C30 C30 C30 C30 C31 C31 C32 C33 C33 C33 C33 C31 C34 C34 C34	C26 A C26 C27 C27 C27 C27 C27 C27 C27 C28 C28 C28 C28 C28 C29 C29 C29 C29 C29 C29 C30 C30 C30 C31 C31 C31 C31 C32 C32 C32 C32 C33 C33	 H26B 107.9 C26 108.65(19) H27A 110.0 H27A 110.0 H27B 110.0 H27B 110.0 H27B 108.3 O5 123.7(2) C29 123.2(2) C29 113.12(19) C34 120.3(2) C28 117.0(2) C28 122.7(2) C29 120.5(2) H30 119.7 H30 119.7 H30 119.7 C32 117.8(2) H31 121.1 H31 121.1 C31 123.0(2) N2 118.7(2) N2 118.3(2) C32 117.8(2) H33 120.8

C33	C34	$C29 119 \ 9(2)$	
C22	C24	124 1200	
C33	C34	П34 120.0	
C29	C34	H34 120.0	
C19	C18	C17 112.9(3)	
C10	C18	H18A 100 0	
C19		1110A 109.0	
C17	C18	H18A 109.0	
C19	C18	H18B 109.0	
C17	C18	H18B 100 0	
	C10	1110D 109.0	
H18A	C18	H18B 107.8	
C20	C19	C18 112.0(3)	
C20	C19	H19A 1092	
C20	C19 C10	1119A 109.2	
C18	C19	H19A 109.2	
C20	C19	H19B 109.2	
C18	C19	H19B 109 2	
1110 4		1110D 107.2	
HI9A	C19	HI9B 107.9	
C25	C20	C21 118.1(4)	
C25	C20	C19 120 $3(4)$	
C23	C20	C10 120.5(4)	
C21	C20	C19 121.6(4)	
C20	C21	C22 120.9(5)	
C20	C21	H21 1196	
C20	C21	H21 117.0	
C22	C21	H21 119.6	
C23	C22	C21 119.7(6)	
C23	C22	H22 120 1	
C21	C22	1122 120.1	
C21	C22	H22 120.1	
C24	C23	C22 120.1(5)	
C24	C23	H23 120.0	
C21	C22	1123 120.0	
C22	C25	п25 120.0	
C23	C24	C25 120.2(6)	
C23	C24	H24 119.9	
C25	C24	$H_{24} = 110.0$	
C25	C24	П24 119.9	
C20	C25	C24 120.9(5)	
C20	C25	H25 119.5	
C24	C25	H25 110 5	
C24	C25		
C19'	C18'	C17 106.2(7)	
C19'	C18'	H18C 110.5	
C17	C18'	H18C 110.5	
		1110C 110.5	
C19'	C18'	H18D 110.5	
C17	C18'	H18D 110.5	
H18C	C18'	H18D 108 7	
	C10	(110) 1100.7	
C20°	C19	C18 112.9(8)	
C20'	C19'	H19C 109.0	
C18'	C19'	H19C 109.0	
C20'	C10'	H10D 100.0	
C20	C19	HI9D 109.0	
C18'	C19'	H19D 109.0	
H19C	C19'	H19D 107.8	
C25'	C'20'	C21' 118.6(9)	
C25	C20	$C_{21} = 110.0(7)$	
C25'	C20 [°]	C19' 120.7(9)	
C21'		(-)	
C'20'	C20'	C19' 120.6(9)	
C20	C20'	C19' 120.6(9) C22' 120.9(11)	
("/l)"	C20' C21'	C19' 120.6(9) C22' 120.9(11)	
C_{20}	C20' C21' C21'	C19' 120.6(9) C22' 120.9(11) H21' 119.6	
C20 C22'	C20' C21' C21' C21'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6	
C20 C22' C23'	C20' C21' C21' C21' C21'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12)	
C20 C22' C23'	C20' C21' C21' C21' C22'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12)	
C22' C22' C23' C23'	C20' C21' C21' C21' C22' C22'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5	
C22' C22' C23' C23' C21'	C20' C21' C21' C21' C22' C22' C22'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5	
C22' C22' C23' C23' C21' C21'	C20' C21' C21' C22' C22' C22' C22' C22'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11)	
C22' C23' C23' C23' C21' C24'	C20' C21' C21' C22' C22' C22' C22' C22' C23'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11)	
C22' C23' C23' C21' C24' C24'	C20' C21' C21' C22' C22' C22' C22' C22' C23'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7	
C22' C23' C23' C21' C24' C24' C24' C22'	C20' C21' C21' C22' C22' C22' C22' C23' C23' C23'	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7 H23' 119.7	
C22' C23' C23' C21' C24' C24' C24' C22' C23'	C20' C21' C21' C22' C22' C22' C22' C23' C23' C23' C23	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7 H23' 119.7 C25' 119.9(13)	
C22' C23' C23' C21' C24' C24' C24' C22' C23' C23'	C20' C21' C21' C22' C22' C22' C22' C22' C23' C23' C23	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7 H23' 119.7 C25' 119.9(13) H24' 120.1	
C22' C23' C23' C21' C24' C24' C24' C22' C23'	C20' C21' C21' C22' C22' C22' C22' C23' C23' C23' C23	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7 H23' 119.7 C25' 119.9(13) H24' 120.1	
C22' C22' C23' C21' C24' C24' C22' C23' C23' C23' C23'	C20' C21' C21' C22' C22' C22' C22' C23' C23' C23' C23	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7 H23' 119.7 C25' 119.9(13) H24' 120.1	
C22' C22' C23' C21' C24' C24' C22' C23' C23' C23' C23' C23' C23' C25' C20'	C20' C21' C21' C22' C22' C22' C22' C23' C23' C23' C23	C19' 120.6(9) C22' 120.9(11) H21' 119.6 H21' 119.6 C21' 119.0(12) H22' 120.5 H22' 120.5 C22' 120.7(11) H23' 119.7 H23' 119.7 C25' 119.9(13) H24' 120.1 H24' 120.1 C24' 120.7(11)	

C20' C25' H25' 119.7 C24' C25' H25' 119.7

Torsion angles [°] for Ac-7e. *CCDC 2197380*

02	N1	C1	C2	-0.5(3)
01	N1	C1	C2	179.3(2)
O2	N1	C1	C6	-179.6(2)
01	N1	C1	C6	0.2(3)
C6	C1	C^2	C3	0.2(3)
N1	C1	C^2	C^2	178 5(2)
NI C1		C_2		-176.3(2)
CI	C2	C3	C4	0.0(4)
C2	C3	C4	C5	-0.7(4)
C2	C3	C4	C7	-179.6(2)
C3	C4	C5	C6	0.9(3)
C7	C4	C5	C6	179.8(2)
C4	C5	C6	C1	-0.3(3)
C2	C1	C6	C5	-0.4(3)
N1	C1	C6	C5	178 7(2)
C8	04	C7	03	-0.8(4)
	04	C7	C_{4}	178.87(10)
	04 C4	C7	02	1/0.07(19)
C5	C4	C7	03	-10.5(4)
C3	C4	C7	03	168.4(2)
C5	C4	C7	04	169.8(2)
C3	C4	C7	O4	-11.3(3)
C7	O4	C8	C9	-159.8(2)
O4	C8	C9	C10	58.7(3)
04	C8	C9	C16	-175.5(2)
C8	C9	C10	C15	65.6(3)
C16	C9	C10	C15	-57 6(3)
	C^{0}	C10	C11	100.8(3)
C_0	C9	C10		-109.0(3)
C10	C9			127.0(3)
CIS	CIU	CH	CI2	-1.3(4)
C9	C10	C11	C12	174.3(3)
C10	C11	C12	C13	-0.8(5)
C11	C12	C13	C14	1.8(5)
C12	C13	C14	C15	-0.8(5)
C13	C14	C15	C10	-1.2(4)
C11	C10	C15	C14	2.3(4)
C9	C10	C15	C14	-1732(2)
C10		C15	C17	-175.2(2) 57.1(2)
C_{10}	C9	C16	C17	-37.1(3)
	C9	C10		179.3(2)
C9	C16	CI/	C26	177.9(2)
C9	C16	C17	C18	-47.3(3)
C9	C16	C17	C18'	-78.2(4)
C16	C17	C26	C27	-174.9(2)
C18	C17	C26	C27	49.8(3)
C18'	C17	C26	C27	81.7(4)
C28	05	C27	C26	169.3(2)
C17	C26	C27	05	1723(2)
C27	05	C^{28}	06	-0.2(4)
C27	05	C28	C20	178.8(2)
06	C^{20}	C_{20}	C29	-170.0(2)
06	C28	C29	C30	0.3(3)
05	C28	C29	C30	1/9.0(2)
06	C28	C29	C34	-178.1(2)
05	C28	C29	C34	0.5(3)
C34	C29	C30	C31	0.6(3)
C28	C29	C30	C31	-177.9(2)
C29	C30	C31	C32	-0.6(3)
C30	C31	C32	C33	0.3(3)
C30	C31	C32	N2	-178.66(19)
				/

08	N2	C32	C33	2.5(3)
O7	N2	C32	C33	-176.2(2)
08	N2	C32	C31	-178.5(2)
O7	N2	C32	C31	2.8(3)
C31	C32	C33	C34	0.0(4)
N2	C32	C33	C34	178.9(2)
C32	C33	C34	C29	0.1(3)
C30	C29	C34	C33	-0.4(3)
C28	C29	C34	C33	178.0(2)
C16	C17	C18	C19	-62.6(3)
C26	C17	C18	C19	69.5(3)
C17	C18	C19	C20	-176.2(3)
C18	C19	C20	C25	84.2(5)
C18	C19	C20	C21	-94.2(5)
C25	C20	C21	C22	1.3(9)
C19	C20	C21	C22	179.7(7)
C20	C21	C22	C23	0.1(14)
C21	C22	C23	C24	-2.0(14)
C22	C23	C24	C25	2.6(13)
C21	C20	C25	C24	-0.7(9)
C19	C20	C25	C24	-179.1(7)
C23	C24	C25	C20	-1.2(12)
C16	C17	C18'	C19'	129.9(6)
C26	C17	C18'	C19'	-118.0(6)
C17	C18'	C19'	C20'	175.7(7)
C18'	C19'	C20'	C25'	-92.9(14)
C18'	C19'	C20'	C21'	89.0(14)
C25'	C20'	C21'	C22'	1(3)
C19'	C20'	C21'	C22'	179(2)
C20'	C21'	C22'	C23'	-3(4)
C21'	C22'	C23'	C24'	5(4)
C22'	C23'	C24'	C25'	-6(4)
C21'	C20'	C25'	C24'	-2(3)
C19'	C20'	C25'	C24'	-179.8(19)
C23'	C24'	C25'	C20'	4(4)

Symetry operations

1 'x, y, z'

Supplementary References

- 1. Silvi, M., Verrier, C., Rey, Y. P., Buzzetti, L. & Melchiorre, P. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals. *Nat. Chem.* **9**, 868–873 (2017).
- Guo, C., Saifuddin, M, Saravanan, T., Sharifi, M. & Poelarends, G. J. Biocatalytic Asymmetric Michael Additions of Nitromethane to α,β-Unsaturated Aldehydes via Enzyme-bound Iminium Ion Intermediates. *ACS Catal.* 9, 4369–4373 (2019).
- Bouisseau, A., Gao, M. & Willis, M. C. Traceless Rhodium-Catalyzed Hydroacylation Using Alkyl Aldehydes: The Enantioselective Synthesis of β-Aryl Ketones. *Chem. Eur. J.* 22, 15624– 15628 (2016).
- 4. Ren, W., Chang, W., Dai, J., Li, J. & Shi, Y. An Effective Pd-Catalyzed Regioselective Hydroformylation of Olefins with Formic Acid. J. Am. Chem. Soc. 138, 14864–14867 (2016).
- Uto, Y., Ogata, T., Harada, J., Kiyotsuka, Y., Ueno, Y., Miyazawa, Y., Kurata, H., Deguchi, T., Watanabe, N., Takagi, T., Wakimoto S., Okuyama, R., Abe, M., Kurikawa, N., Kawamura, S., Yamato, M. & Osumi, J. Novel and potent inhibitors of stearoyl-CoA desaturase-1. Part I: Discovery of 3-(2-hydroxyethoxy)-4-methoxy-N-[5-(3-trifluoromethylbenzyl)thiazol-2yl]benzamide. *Bioorganic Med. Chem. Lett.* 19, 4151–4158 (2009).
- 6. Frost, C. G. & Hartley, B. C. Lewis Base-Promoted Hydrosilylation of Cyclic Malonates: Synthesis of β -Substituted Aldehydes and γ -Substituted Amines. *J. Org. Chem.* **74**, 3599–3602 (2009).
- Liu, Y., Izzo, J. A., McLeod, D., Ričko, S., Svenningsen, E. B., Poulsen, T. B. & Jørgensen, K. A. Organocatalytic Asymmetric Multicomponent Cascade Reaction for the Synthesis of Contiguously Substituted Tetrahydronaphthols. *J. Am. Chem. Soc.* 143, 8208–8220 (2021).
- Singh, O. V., Han, H. Tandem Overman Rearrangement and Intramolecular Amidomercuration Reactions. Stereocontrolled Synthesis of cis- and trans-2,6-Dialkylpiperidines *Org. Lett.* 6, 3067– 3070 (2004).
- Landa, A., Puente, A., Santos, J. I., Vera, S., Oiarbide, M. & Palomo, C. Catalytic Conjugate Additions of Geminal Bis(sulfone)s: Expanding the Chemistry of Sulfones as Simple Alkyl Anion Equivalents. *Chem. Eur. J.* 15, 11954–11962 (2009).
- 10. Amoroso, J. W., Borketey, L. S., Prasad, G. & Schnarr, N. A. Direct Acylation of Carrier Proteins with Functionalized β-Lactones. *Org. Lett.* **12**, 2330–2333 (2010).
- Wappes, E. A., Nakafuku, K. M. & Nagib, D. A. Directed β C–H Amination of Alcohols via Radical Relay Chaperones. J. Am. Chem. Soc. 139, 10204–10207 (2017).
- 12. Spallarossa, M., Wang, Q., Riva, R., & Zhu, J. Synthesis of Vinyl Isocyanides and Development of a Convertible Isonitrile. *Org. Lett.* **18**, 1622–1625 (2016).
- 13. Packard, G. K., Hu, Y., Vescovi, A. & Rychnovsky, S. D. Synthesis of Rimocidinolide Methyl Ester, the Aglycone of (+)-Rimocidin. *Angew. Chem. Int. Ed.* **43**, 2822–2826 (2004).
- Shiomi, S., Sugahara, E. & Ishikawa, H. Efficient Organocatalytic Construction of C4-Alkyl Substituted Piperidines and Their Application to the Synthesis of (+)-α-Skytanthine. *Chem. Eur. J.* 21, 14758–14763 (2015).
- Bigi, M. A. & White, M. C. Terminal Olefins to Linear α,β-Unsaturated Ketones: Pd(II)/Hypervalent Iodine Co-catalyzed Wacker Oxidation–Dehydrogenation. J. Am. Chem. Soc. 135, 7831–7834 (2013).
- 16. Nishimura, T., Sawano, T. & Hayashi, T. Asymmetric Synthesis of β-Alkynyl Aldehydes by Rhodium-Catalyzed Conjugate Alkynylation. *Angew. Chem. Int. Ed.* **48**, 8057–8059 (2009).
- 17. Edelsztein, V. C., Di Chenna, P. H. & Gerardo, B. Synthesis of C-C bonded dimeric steroids by olefin metathesis. *Tetrahedron* **65**, 3615–3623 (2009).

- Fox, R. J., Lalic, G. & Bergman, R. G. Regio- and Stereospecific Formation of Protected Allylic Alcohols via Zirconium-Mediated S_N2[•] Substitution of Allylic Chlorides. *J. Am. Chem. Soc.* 129, 14144–14145 (2007).
- 19. Gannett, P. M., Nagel, D. L., Reilly, P. J., Lawson, T., Sharpe, J. & Toth, B. Capsaicinoids: their separation, synthesis, and mutagenicity. *J. Org. Chem.* **53**, 1064–1071 (1988).
- Egger, J., Bretscher, P., Freigang, S., Kopf, M. & Carreira, E. M. Discovery of a highly potent anti-inflammatory epoxyisoprostane-derived lactone. J. Am. Chem. Soc. 136, 17382–17385 (2014).
- Schmittel, M., Mahajan, A. A., Bucher, G. & Bats J. W. Thermal C2–C6 Cyclization of Enyne–Allenes. Experimental Evidence for a Stepwise Mechanism and for an Unusual Thermal Silyl Shift. J. Org. Chem. 72, 2166–2173 (2007).
- Li, Z., Huang, M., Zhang, X., Chen, J. & Huang, Y. N-Heterocyclic Carbene-Catalyzed Four-Component Reaction: Chemoselective C_{radical}-C_{radical} Relay Coupling Involving the Homoenolate Intermediate. *ACS Catal.* 11, 10123–10130 (2021).
- Dai, Z.-Y., Nong, Z.-S., Song, S. & Wang, P.-S. Photocatalytic C(sp³)–H Bond Addition to α-Substituted Acrylates. Org. Lett. 23, 3157–3161 (2021).
- 24. Kawashima, S., Aikawa, K. & Mikami, K. Rhodium-Catalyzed Hydrocarboxylation of Olefins with Carbon Dioxide. *Eur. J. Org. Chem.* **2016**, 3166-3170 (2016).
- Buxton C. S., Blakemore D. C. & Bower J. F. Reductive Coupling of Acrylates with Ketones and Ketimines by a Nickel-Catalyzed Transfer-Hydrogenative Strategy. *Angew. Chem. Int. Ed.* 56, 13824–13828 (2017).
- Zhu, Q. & Nocera, D. G. Photocatalytic Hydromethylation and Hydroalkylation of Olefins Enabled by Titanium Dioxide Mediated Decarboxylation. J. Am. Chem. Soc. 142, 17913–17918 (2020).
- Yu, W., Yang, S., Xiong, F., Fan, T., Feng, Y., Huang Y., Fu J. & Wang T. Palladium-catalyzed carbonylation of benzylic ammonium salts to amides and esters via C–N bond activation. *Org. Biomol. Chem.* 16, 3099–3103 (2018).
- Monge, D., Martín-Zamora, E., Vázquez, J., Alcarazo, M., Álvarez, E., Fernández, R. & Lassaletta, J. M. Enantioselective Conjugate Addition of *N*,*N*-Dialkylhydrazones to α-Hydroxy Enones. *Org. Lett.* 9, 2867–2870 (2007).
- Terrett, J. A., Clift, M. D. & MacMillan, D. W. C. Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc. 136, 6858–6861 (2014).
- 30. Lakowicz, J. R. Ed. Principles of Fluorescence Spectroscopy, Plenum Press, 52-93. (1983)
- 31. Hatchard, C. G., Parker, C. A. A new sensitive chemical actinometer II. Potassium ferrioxalate as a standard chemical actinometer. *Proc. R. Soc. (London)*, **235**, 518-536 (1956).
- 32. Montalti, M., Credi, A., Prodi, L., Gandolfi, M.T. *Handbook of photochemistry*, Taylor & Francis, 601 (2006).
- Holubov, C. A., Langford, C. H. Wavelength and Temperature Dependence in the Photolysis of the Chemical Actinometer, Potassium trisoxalatoferrate(III), at Longer Wavelengths. *Inorganica Chim. Acta* 53, 59 (1981).
- 34. Flack, H. D. On enantiomorph-polarity estimation Acta Cryst. A39, 876-881 (1983).
- 35. Parsons, S. & Flack, H. D. Precise absolute-structure determination in light-atom crystals *Acta Cryst.* **A60**, 61-61 (2004).
- 36. Parsons, S., Flack, H. D. & Wagner, T. Use of intensity quotients and differences in absolute structure refinement *Acta Cryst.* **B69**, 249-259 (2013).
- 37. Escudero-Adán, E.C., Benet-Buchholz, J. & Ballester P. The use of Mo Kα radiation in the assignment of the absolute configuration of light-atom molecules; the importance of high-resolution data *Acta Cryst.* **B70**, 660-668 (2014).