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Abstract 

The design of a borehole-heat-exchanger (BHE) field is usually performed by means of dimensionless 

functions, called g-functions, that yield the time evolution of the mean temperature of the external 

surface of the BHEs, Tsm, produced by a time constant heat flux, which is usually considered as 

uniform. The mean temperature of the fluid, Tfm, is then evaluated by adding to Tsm the product of 

the heat flux per unit length and the BHE thermal resistance. This method overestimates the difference 

between Tfm and Tsm in the short term, and overestimates the g-function of the field in the long term. 

Methods to obtain more accurate results have been proposed, but require difficult and time-

consuming numerical computations. In this paper dimensionless fluid-to-ground (ftg) functions that 

yield directly the time evolution of Tfm, in a time scale from a few minutes to hundreds of years, are 

provided for any single-line bore field subjected to a time constant heat flux, composed of up to four 

BHEs fed in parallel with the same inlet temperature. The ftg-functions are obtained by finite-element 

simulations implemented in COMSOL Multiphysics, and are reported in two Excel files that, after 

entering the dimensionless parameters of the BHE field under examination, instantly yield a short-

term and a long-term ftg-function perfectly joined at the separation instant. The main novelties of this 

work are the characterization of each BHE field by a few dimensionless parameters, the improvement 

of the BHE model presented in Naldi and Zanchini 2020, the accuracy, speed and simplicity of use 

of the final results. The validations of the simulation codes for a single BHE and for fields of 3 and 4 

BHEs, by comparison with analytical solutions, yielded root-mean-square deviations equal to 

0.023%, 0.43%, and 0.49% of the mean value, respectively. The validation of the simulation code for 

two BHEs, performed with an extremely high distance between the BHEs, yielded a root-mean-square 

deviation equal to 0.054 % of the mean value, with respect to the long-term ftg-function obtained for 

a single BHE. 
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Nomenclature 

a 

b 

Bd 

Rescaling coefficient, interpolation parameter 

Interpolation parameter 

Buried depth 

 

 

(m) 

BHE Borehole Heat Exchanger  

c1, c2 

d 

Correction coefficients, defined in Eqs. (24), (25) 

Spacing between boreholes 

 

(m) 

Ei 

Erf 

FLS 

ftg 

GCHP 

Exponential integral function 

Error function, defined in Eq. (29) 

Finite line-source 

Fluid-to-ground 

Ground-coupled heat pump 

 

H 

HCL 

Ierf 

ILS 

k 

Borehole length 

Heat capacity per unit length 

Integral error function, defined in Eq. (28) 

Function defined in Eq. (27) 

Thermal conductivity 

(m) 

(J m-1 K-1) 

 

(W m-1 K-1) 

OMEC One-Material Equivalent Cylinder  

Q 

ql 

Total heat flux 

Heat flux per unit length 

(W) 

(W m-1) 

r Radius, radial coordinate (m) 

Rb Borehole thermal resistance per unit length (m K W-1) 

s Shank spacing (m) 

T Temperature (°C) 

TRCMs Thermal resistance and capacity models  

x, y 

z 

Horizontal coordinates 

Vertical coordinate 

(m) 

(m) 

 

Greek symbols 

θ Temperature difference (°C) 



(ρ c) Volumetric heat capacity (J m-3 K-1) 

τ Time (s) 

τ0 Instant of time (s) 

ϕ 

φ 

Dimensionless coefficient 

Angular coordinate 

 

rad 

Superscripts   

* Dimensionless  

   

Subscripts   

b Of borehole  

e External  

eff Effective  

eq Equivalent  

fm Mean, of fluid  

g Of the ground  

gt Of the grout  

i Internal  

p Of pipe  

r rescaled  

sc Of the superconductor  

sm Mean, of surface  

 

1. Introduction 

Ground-Coupled Heat Pumps (GCHPs) are the most efficient and eco-friendly system for air 

conditioning, in both winter and summer [1, 2]. In most applications, GCHPs are equipped with 

vertical ground heat exchangers, called Borehole Heat Exchangers (BHEs), having a diameter of 

about 15 cm and a typical length between 60 and 150 m. Each BHE is usually composed of either a 

single U-tube or a double U-tube in high density polyethylene, surrounded by a sealing grout. 

The most accurate methods for the design and the simulation of a BHE field are based on functions 

called thermal response factors. A thermal response factor yields the time evolution of either the mean 

temperature of the surface between BHEs and ground, Tsm, or the mean temperature of the fluid in 

the BHEs, Tfm, produced by a time constant heat flux from the BHEs to the ground. In this paper, a 

dimensionless thermal response factor yielding the time evolution of Tsm is called g-function, and a 

dimensionless thermal response factor yielding the time evolution of Tfm is called fluid-to-ground 



function (ftg-function). In the long term, g-functions and ftg-functions can be considered as 

equivalent, because the heat transfer inside the BHEs is quasi-stationary and the difference between 

Tfm and Tsm is given by 

− =fm sm l bT T q R   ,          (1) 

where ql is the mean heat flux per unit length from the BHEs to the ground and Rb is the BHE thermal 

resistance, that can be evaluated by a numerical simulation of a BHE cross section or by a thermal 

response test (TRT). On the contrary, g-functions do not determine accurately Tfm in the short time, 

when Eq. (1) does not hold. 

Under the assumption of uniform heat flux, the g-function for a single BHE can be easily calculated 

by the Finite Line-Source (FLS) scheme, that sketches the BHE as line with a finite length H, having 

its top at a buried depth Bd beneath the ground surface. Analytical expressions of the temperature 

field produced by a FLS with Bd = 0 were determined by Zeng et al. [3], and, in simpler forms, by 

Lamarche and Beauchamp [4] and by Bandos et al. [5]. An analytical solution for the general case Bd 

≠ 0 was obtained by Claesson and Javed [6]. Under the same assumption, the g-function of a BHE 

field can be evaluated by the superposition of the effects of the single BHEs, so that it is not necessary 

to perform a computation for each field. 

In real applications, however, the BHEs of a field are fed in parallel with the same inlet temperature 

and the heat flux is not quite uniform along each BHE and is not the same for all BHEs. Therefore, 

Eskilson [7] preferred to consider the boundary condition of time constant total heat flux and uniform 

temperature of the bore field surface, and determined numerically the g-functions of several BHE 

fields under this condition. A semi-analytical method to determine g-functions with Eskilson’s 

boundary condition was proposed by Cimmino and Bernier [8]. These authors showed that, in the 

case of large BHE fields with compact shape, the g-functions evaluated by the FLS scheme with 

uniform heat flux overestimate considerably the ground thermal response, with respect to Eskilson’s 

g-functions. Improvements of the method presented in Ref. [8], with the aim of reducing the 

computation time, were proposed by Lamarche [9] and by Cimmino [10]. Numerical methods to 

determine g-functions with the boundary condition of uniform surface temperature of the BHE field 

were proposed by Monzó et al. [11] and by Naldi and Zanchini [12]. 

Indeed, while the fluid temperature averaged between the pipes is almost independent of the vertical 

coordinate, z, the surface temperature of the BHEs varies with z, due to the combined effect of the 

BHE thermal resistance and the non-uniform heat flux per unit length. As a consequence, the 

condition of uniform temperature should be imposed on the boundary between the working fluid and 

the pipes, and not at the external surface of the BHEs. Monzó et al. [13] refined the numerical method 

of Ref. [11] to take into account the effects of the BHE thermal resistance. Cimmino [14] improved 



the method employed in Ref. [8] in order to obtain g-functions with the boundary condition of equal 

inlet fluid temperature for all boreholes in the field. 

Even if evaluated with the most suitable boundary conditions, namely time constant total heat flux 

and either uniform fluid temperature or equal intel temperature for all the BHEs, g-functions are not 

completely satisfactory because they do not yield accurately the time evolution of the mean fluid 

temperature in the short time. Therefore, several authors developed methods to determine ftg-

functions, suitable to determine the effects of peak loads on the mean fluid temperature. 

Some methods to determine the short-term thermal response of a BHE are based on representing the 

BHE by a grid of thermal resistances and heat capacities, and are called thermal resistance and 

capacity models (TRCMs). Methods of this kind were proposed by De Carli et al. [15], Zarrella et al. 

[16], Bauer et al. [17], Pasquier and Marcotte [18], Ruiz-Calvo et al. [19]. Other analytical or 

numerical BHE models are based on replacing the pipes by a single equivalent pipe coaxial with the 

BHE axis, so that the BHE geometry becomes axisymmetric. Models of this kind were proposed by 

Gu and O’Neal [20], Shonder and Beck [21], Beier and Smith [22], Xu and Spitler [23], Lamarche 

and Beauchamp [24], Bandyopadhyay et al. [25, 26], Man et al. [27], Javed and Claesson [28], 

Lamarche [29], Naldi and Zanchini [30]. Three of these models will be briefly illustrated: the model 

presented in Ref. [27], that will be employed for a validation of our 2D axisymmetric simulation code, 

the model developed in Ref. [29], that is very accurate, and that proposed in Ref. [30], that will be 

employed, with a slight modification, to determine our ftg-functions. 

In the model of Man et al. [27], the BHE is represented by a solid cylinder with the same thermal 

properties as the external ground, containing a heat-generating cylindrical surface that represents the 

heat supplied by the fluid. The authors provide two analytical solutions for the model: the first 

solution is for the case of purely radial heat flow, while the second is for 2D axisymmetric heat flow 

and takes into account the finite BHE length. The analytical solutions contain an integral that must 

be computed numerically, but the numerical computation is rather simple and can be performed with 

high accuracy. The solution for purely radial heat flow is employed in this paper to validate the finite-

element simulation code of our new cylindrical model, in the special case of purely radial heat flow 

and properties of the model equal to those of the ground. 

In Lamarche [29], the fluid is modeled as an isothermal cylinder with a heat capacity per unit length 

equal to that of the real fluid, surrounded by a thin cylindrical resistive layer with a thermal resistance 

per unit length equal to that between fluid and grout, surrounded on turn by a cylindrical layer 

representing the grout, with external radius equal to that of the BHE. The fluid is subjected to a given 

heat generation per unit time and unit BHE length. The external radius of the resistive layer is selected 

to reproduce the grout thermal resistance with the real grout thermal conductivity, and the volumetric 



heat capacity of the grout is adjusted to yield the real heat capacity per unit length. The author 

determined an analytical solution for his model and found a good agreement between his results and 

those obtained by Beier and Smith [22] and by Javed and Claesson [28]. The excellent accuracy of a 

numerical version of the model proposed by Lamarche [29] was proved in Ref. [30]. 

In the model proposed in Ref. [30], called One Material Equivalent Cylinder (OMEC), the BHE is 

represented by an equivalent solid cylinder made of one material, with the same radius as the BHE, 

rb. The OMEC contains a heat-generating cylindrical surface, with radius req, that replaces the BHE 

fluid. The thermal conductivity and the volumetric heat capacity of the OMEC are chosen so that the 

thermal resistance of the cylindrical annulus between req and rb is equal to the BHE thermal 

resistance, and the heat capacity per unit length of the OMEC is equal to that of the BHE. The optimal 

value of req can be determined by repeated 2D numerical simulations. A table and a correlation that 

yield the optimal value of req for single U-tube BHEs is reported in Ref. [30]. In this paper, a slight 

modification of the model is adopted, that will be illustrated in Section 2. In the modified form, the 

cylindrical model is as accurate as the model by Lamarche [29], and has the advantage of being 

determined by a lower number of parameters. 

In order to perform a careful design or an accurate simulation of a BHE field, one needs a ftg-function 

valid in the full-time scale, from some minutes to many years. Some methods to determine full-time-

scale ftg-functions have been proposed in the literature. Claesson and Javed [6] proposed to employ 

their axisymmetric BHE model [28] for the short-term analysis, and their analytical solution of the 

FLS model with uniform heat flux [6], coupled with the superposition of the effects of single BHEs, 

for the long-term analysis. The authors suggested a method for matching the short-term and the long-

term solution. However, the FLS model with uniform heat flux does not yield accurate ftg-functions 

for BHE fields in the long term. Naldi and Zanchini [31] showed that their OMEC model [30] can be 

used to obtain accurate ftg-functions for BHE fields with uniform fluid temperature and presented the 

simulation results for a square field of 4 BHEs. Laferrière et al. [32] developed a full-time-scale bore 

field simulation model, where a semi-analytical tool yielding the g-function for a BHE field with the 

boundary condition of uniform bore-field surface temperature is coupled with a thermal resistances 

and capacities model that yields the time evolution of the fluid temperature in short time scales. 

Although methods for determining full-time-scale ftg-functions of bore fields are available, the use 

of these methods requires a high-level and time-consuming computational work. Therefore, 

dimensionless results easily employable to determine the ftg-function of any bore field with a usual 

geometry would be useful for designers. 

In this paper the full-time-scale ftg-functions are provided for single-line bore fields with up to 4 

BHEs and isothermal fluid. The result is obtained through a BHE model that allows characterizing a 



BHE field by six dimensionless parameters, and finite-element simulations implemented in 

COMSOL Multiphysics. Each BHE is modeled as a solid cylinder, with radius equal to the BHE 

radius and a uniform volumetric heat capacity, composed of a superconductive inner core and an 

annulus with a thermal conductivity such that the thermal resistance of the annulus is equal to the 

BHE thermal resistance. 

One of the dimensionless parameters, namely the dimensionless buried depth, is kept fixed. Three 

values are considered for each variable parameter. The number of combinations is reduced by proving 

that only 3 variable parameters have appreciable effects on the short-term ftg-functions, and only 3 

(2 in the case of a single BHE) have appreciable effects on the long-term ftg-functions. For BHE 

fields with two or more BHEs, the condition of equal temperatures of the superconductive cores is 

ensured by a superconductive horizontal bar that interconnects them. 

The final product consists of two Excel files that, after entering the dimensionless parameters that 

characterize any single-line BHE field with up to 4 BHEs, instantly yield a short-term and a long-

term ftg-function perfectly joined at the separation instant. Thus, unlike most of the available 

numerical and semi-analytical methods, that are difficult to apply and time consuming, the results 

provided in this paper are very easy to employ, and can be highly useful in standard design and 

simulation activities. 

The results apply to single U-tube and double U-tube BHEs, with ratios between length and radius 

from 800 to 2000, i.e., length between 60 and 150 m for rb =7.5 cm, in the absence of appreciable 

effects of groundwater seepage. The effects of groundwater seepage and the extension to other 

common bore-field geometries will be considered in future work. 

 

2. Mathematical model 

The ground is modeled as a homogeneous solid, equivalent to the real sequence of soil layers. This 

scheme, usually adopted, has been proved to be sufficiently accurate [33, 34]. The BHE model 

employed is a slight modification of the OMEC model presented in Ref. [30]. Each BHE is modeled 

as a one-material cylindrical annulus, with radius rb, containing a superconductive inner core with 

radius req and the same volumetric heat capacity as the annulus. The thermal conductivity of the 

cylindrical annulus, keq, and the volumetric heat capacity of both the inner core and the annulus, 

(ρ c)eq, are such that the thermal resistance of the annulus is equal to Rb, and the heat capacity of the 

cylindrical model is equal to that of the BHE. The thermal conductivity of the superconductor is 

chosen so high that increasing or decreasing its value by an order of magnitude has no effect on the 

ftg-function. The superconductive core is subjected to a heat flux Q at its top surface. For single U-

tube BHEs, the optimal value of req can be taken from the table or from the correlation reported in 



Ref. [30]. For other kinds of BHEs, the optimal value of req can be determined by repeated simulations 

of a BHE cross section. 

An example of the model is illustrated in Figure 1. In the real BHE cross section, that appears on the 

left, the grout is in light brown, the pipes are in grey, and the water is in blue. In the cylindrical model, 

that appears on the right, the superconductive core is in blue and the annulus is in light grey. The 

geometry is specified in the figure, with lengths in cm. The thermal conductivity of the grout is 

kgt = 1.6 W/(mK), that of the ground is kg = 1.8 W/(mK), and the volumetric heat capacities of the 

grout and of the ground are equal, with values (ρ c)gt = (ρ c)g = 3.0 MJ/(m3K). The corresponding 

radius of the superconductive core is req = 2.16 cm, as reported in Table 2 of Ref. [30]. A complete 

set of data is reported in Section 2, where this example is used to check the accuracy of the model. 

 

 
Figure 1. Cross section of a single U-tube BHE (left) and of the corresponding cylindrical model 

with superconductive core (right), with lengths in cm. 
 

 In the case of a BHE field, all the top surfaces of the BHEs are connected by a superconductive bar 

that is subjected to the total heat flux of the bore field. The mean temperature of the superconductive 

inner core of the BHEs represents the mean fluid temperature. The new cylindrical model has been 

preferred to the original OMEC model [30], employed in Ref. [31], to avoid the repeated simulations 

that are necessary to reach the condition of uniform fluid temperature with that model. For single U-

tube BHEs, the optimal values of req reported in Ref. [30] can be adopted without changes, and the 

new model is more precise than the original one. 

Our model, like any other purely conductive model, does not simulate the fluid flow. Therefore, the 

ftg-functions determined by our model could be not accurate for values of time lower than the time 

employed by the fluid to travel a complete path through the borehole. Another potential cause of 

inaccuracy could be the fact that our model does not consider the thermal short-circuiting between 

the legs of the BHE. However, as is shown in Ref. [35], the temperature distribution along the flow 
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4.0

3.26
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direction has a negligible effect on the borehole thermal resistance. As a consequence, a negligible 

effect of the thermal short-circuiting in the time evolution of the mean fluid temperature is expected. 

On the contrary, the thermal short-circuiting may have a relevant effect on the difference between the 

outlet temperature and the mean temperature of the fluid, for long BHEs and low flow rates. This 

difference can be easily determined by employing Eq. (6) of Ref. [36], with the values of the 

dimensionless coefficient ϕ given in Ref. [36] for single U-tube BHEs and in Ref. [37] for double U-

tube BHEs. 

2.1. Differential equations and limit conditions 

For a single BHE, the local energy balance equations in the superconductive core, in the cylindrical 

annulus surrounding the core and in the ground are given by equations (2), (3), (4), respectively: 

( )
2 , 0 , 0sc

eq
eq

kT T r r H z
c

∂
= ∇ ≤ ≤ − ≤ ≤

∂τ ρ
 ,      (2) 

( )
2 ,  , 0eq

eq b
eq

kT T r r r H z
c

∂
= ∇ ≤ ≤ − ≤ ≤

∂τ ρ
 ,      (3)  

( )
2 ,g

b
g

kT T r r
c

∂
= ∇ ≥

∂τ ρ
 .         (4) 

In Eqs. (2) – (4), T is temperature; τ is time; r is the radial coordinate; z is the vertical coordinate, 

with origin at the top of the BHE; H is the BHE length; ksc, keq, and kg are the thermal conductivities 

of the superconductor, of the cylindrical annulus and of the ground; (ρ c)eq and (ρ c)g are the 

volumetric heat capacities of the whole cylindrical model and of the ground. 

The initial condition, in the whole computational domain, is 

( ), z,0 gT r T=   ,          (5) 

where Tg is the undisturbed ground temperature, assumed to be uniform. The boundary condition at 

the ground surface, placed at z = Bd, is 

( ), ,d gT r B Tτ =   .           (6) 

The conditions at the internal boundaries between superconductor and cylindrical annulus and 

between annulus and ground are the continuity of temperature and 

, 0
eq eq

sc eq
r r r r

T Tk k H z
r r

− +

= =

∂ ∂
− = − − ≤ ≤

∂ ∂
   ,       (7) 

, 0
b b

eq g
r r r r

T Tk k H z
r r

− +

= =

∂ ∂
− = − − ≤ ≤

∂ ∂
   .         (8) 

The boundary condition at the superconductor upper surface is 



2
0

,  0, 0sc eq
z eq

T Qk z r r
z r=

∂
= = ≤ ≤

∂ π
 ,       (9) 

where Q is the heat flux supplied to the BHE. All the other boundaries are adiabatic. 

2.2 Dimensionless quantities, dimensionless differential equations and limit conditions 

The dimensionless temperature, T*, the dimensionless time, τ*, the dimensionless Nabla operator, ∇*, 

the dimensionless coordinates, r* and z*, the dimensionless thermal conductivities of the 

superconductor and of the cylindrical annulus, ksc
* and keq

*, and the dimensionless volumetric heat 

capacity of the whole cylindrical model, (ρ c)eq
*, are defined as follows: 

( )
( )

* * * * *
2

* * * * *

; ; ; ; ;

( )
; ; ; ; ( )

( )

g g g eq
b eq

b b bg

eq eqsc
sc eq eq

b b g g g

k H T T k rrT r r r
Q c r r r

k ckz Hz H k k c
r r k k c

−
= = ∇ = ∇ = =

= = = = =

τ
τ

ρ

ρ
ρ

ρ

  .   (10) 

By introducing in Eqs. (2) – (9) the dimensionless quantities defined above, one obtains the following 

dimensionless differential equations and limit conditions 
**

*2 * * * * *
* * , 0 , 0

( )
sc

eq
eq

kT T r r H z
c

∂
= ∇ ≤ ≤ − ≤ ≤

∂τ ρ
 ,      (11) 

**
*2 * * * * *

* * , 1, 0
( )

eq
eq

eq

kT T r r H z
c

∂
= ∇ ≤ ≤ − ≤ ≤

∂τ ρ
  ,       (12) 

*
*2 * *

* , 1T T r∂
= ∇ ≥

∂τ
 ,         (13) 

( )* * *, ,0 0=T r z   ,          (14) 

( )* * * *, , 0dT r B τ =  ,          (15) 

* * * *

* *
* * * *

* * , 0
eq eq

sc eq
r r r r

T Tk k H z
r r

− +

= =

∂ ∂
− = − − ≤ ≤
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 ,      (16) 

* *

* *
* * *

* *
1 1

, 0eq
r r

T Tk H z
r r

− +

= =

∂ ∂
− = − − ≤ ≤

∂ ∂
  ,       (17) 

*

* *
* * * *

* *2
0

, 0, 0sc eq
eqz

T Hk z r r
z r

−

=

∂
= = ≤ ≤

∂ π
  .       (18) 

Since sck  is chosen so high that the temperature distribution is independent of sck , Eqs. (11) – (18) 

show that the dimensionless temperature distribution ( )* * * *, ,T r z τ  depends only on 



( )** * * *, , , ,eq d eqeq
r H B c kρ  . The parameter *

dB  has not a strong effect on the result and is kept equal to 24, 

i.e. 1.80 m for radius 7.5 cm. Under this assumption, the dimensionless temperature field for a single 

BHE, in the cylindrical model, depends only on ( )** * *, , ,eq eqeq
r H c kρ . The parameter *

eqk can be replaced 

by the dimensionless BHE thermal resistance, *
bR  . In fact, one has 

*
* *

1 1ln
2b g b

eq eq

R k R
k r

= =
π

  ,         (19) 

*
* *

1 1ln
2eq

b eq

k
R rπ

=  .          (20) 

The ftg-function for a single BHE, i.e. the volume average of T* on the superconductive core, is 

computed as a function of ( )** * *, , , .b eq eq
R r c Hρ  The ftg-function for a single-line bore field with n > 1 

BHEs is computed as a function of those parameters plus an additional one, namely the dimensionless 

spacing between adjacent BHEs, 

*

b

dd
r

=  .           (21) 

2.3 Evaluation of the cross-section dimensionless parameters of the model 

The evaluation of the cross-section dimensionless parameters of the model, * *,b eqR r , and ( )*

eq
cρ , 

requires the knowledge of the geometrical parameters of the BHE cross section and of the thermal 

properties of the ground and of the BHE materials. The equivalent thermal conductivity of the 

homogeneous soil that corresponds to the real sequence of soil layers can be determined accurately 

by a TRT evaluated with the usual Infinite Line-Source scheme, provided that the heat flux per unit 

length supplied to the BHE, ql, is much greater than the product of the geothermal heat flux per unit 

area multiplied by the BHE length, H [38, 39]. For H ≤ 150 m and typical values of the geothermal 

gradient, this condition is automatically fulfilled if the ASHRAE recommendations are followed. On 

the contrary, an accurate determination of the thermal conductivity of the grout, kgt, and of the 

volumetric heat capacities of the grout and of the ground, ( )gt
cρ  and ( )g

cρ , is more problematic and 

requires a numerical evaluation of a TRT. Indeed, the values of kgt and ( )gt
cρ  given by the 

manufacturer, or obtained by laboratory measurements, often do not correspond to those of the 

material in the real conditions taking place in the BHE [40]. 

A flow chart illustrating the evaluation of the cross-section dimensionless parameters of the model is 

reported in Figure 2. For single U-tube BHEs, the evaluation is very simple, because the optimal 

value of *
eqr  can be found in Ref. [30]. For double U-tube BHEs, the optimal value of *

eqr  must be 



determined iteratively, by comparing the results of 2D short-term simulations of the cross sections of 

the BHE and of the model. 

 

 

Figure 2. Flow chart illustrating the evaluation of the dimensionless parameters * *,b eqR r , and ( )*

eq
cρ  

of the model 
 

3. Validation of the model and of the simulation code 

In this section, first the accuracy of the new cylindrical model is checked by comparison with a 

simulation of the real BHE, then the simulation code of the model is validated by comparison with 

the analytical model by Man et al. [27], in a special case. 

3.1. Check of the accuracy of the cylindrical model 

The accuracy of the model is checked by comparing the ftg-function obtained by a finite-element 

simulation of the model with that obtained by a finite-element simulation of the real BHE, in 

conditions of purely radial heat flux. 

 



The simulation of the real BHE is performed by considering a BHE cross section surrounded by the 

ground, with reference to the single U-tube BHE illustrated in Figure 1. The thermal power per unit 

length supplied to the fluid, ql = 50 W/m, is reproduced by a uniform heat generation term in a 

superconductive solid that represents the fluid [30, 41]. The convection coefficient between water 

and pipes is determined by the Churchill correlation [42] at constant heat flux, by considering a 

volume flow rate of 14 liters per minute and water properties evaluated at 20°C: density 998.21 kg/m3, 

dynamic viscosity 0.0010016 Pa s, thermal conductivity 0.59846 W/(mK), specific heat capacity at 

constant pressure 4184.1 J/(kg K) [43]. The Reynolds number is 9082, the Nusselt number is 80.186, 

the convection coefficient is 1472 W/(m2K). Since the fluid is replaced by a heat generating solid, the 

convective thermal resistance is included in the conductive thermal resistance of the pipes. For this 

purpose, the thermal conductivity of the pipes, kp = 0.4 W/(mK), is replaced by an effective thermal 

conductivity, kpeff = 0.369859 W/(mK). The simulation is performed in dimensionless form, and is 

implemented in COMSOL Multiphysics. The dimensional quantities characterizing the BHE and the 

dimensionless quantities employed in the simulation are reported in Table 1. In order to obtain as 

output the dimensionless temperature field, the undisturbed ground temperature is replaced by 

Tg
* = 0, the ground thermal conductivity is replaced by kg

* = 1, and the linear heat flux is replaced 

by ql
* = 1. 

The dimensionless-time interval considered in the simulation is 10-4 ≤ τ* ≤ 102. For a ground thermal 

diffusivity equal to 7.5 × 10-7 m2/s and rb = 7.5 cm, it corresponds to the time interval 

0.75 s ≤ τ  ≤ 7.5 × 105 s ≈ 208.33 h. The computational domain is a circle having dimensionless radius 

100 (7.5 m for rb = 7.5 cm), center in the BHE axis, and adiabatic external boundary. The size of the 

computational domain is such that the effects of the boundary condition on the ftg-function are lower 

than 10-5. This result has been checked by replacing the adiabatic boundary condition with that of 

uniform dimensionless temperature, T* = 0. The mesh selected consists of 137720 triangular elements 

and is obtained by a regular refinement of the extremely fine physics-controlled mesh built by the 

software. Further mesh refinements do not yield significant changes of the ftg-function. A particular 

of the mesh, that shows a narrow region around the BHE, is illustrated in Figure 3. Values of the ftg-

function are collected with steps of 0.05 in log10(τ*). The time steps for the computation are selected 

by the software, in order to reach the accuracy parameters imposed: relative accuracy 0.0001 and 

absolute accuracy 0.0001. 

The simulation of the cylindrical model is performed by a 2D axisymmetric code, that refers to a 105 

m long BHE with cross section characterized by the parameters reported in Table 1. A heat flux 

Q = 5250 W is applied to the top of the superconductive core. In order to have purely radial heat flux 

in the whole domain surrounding the superconductive core, the buried depth is assumed as vanishing 



and the computational domain is bounded by two adiabatic horizontal surfaces at z = 0 and at z = – H. 

The equivalent radius of the superconductive core is req = 2.16 cm, as reported in Table 2 of Ref. [30] 

and illustrated in Figure 1. 

Table 1. Dimensional quantities that characterize the BHE and corresponding dimensionless 
quantities employed in the 2D simulation of the BHE. 

 Dimensional quantities Dimensionless 
quantities 

Quantity Symbol Unit Value Symbol Value 
Borehole radius rb m 0.075 rb

* 1 
Pipe external radius rpe m 0.02 rpe

* 0.266667 
Pipe internal radius rpi m 0.0163 rpe

* 0.217333 
Shank  spacing s m 0.08 s* 1.066667 
Linear heat flux ql W/m 50 ql

* 1 
Heat generation qg W/m3 29951.25 qg

* 3.369515 
Superconductor thermal conductivity ksc W/(mK) 1.8 × 106 ksc

* 106 
Pipe effective thermal conductivity kpeff W/(mK) 0.369859 kpeff

* 0.205477 
Grout thermal conductivity kgt W/(mK) 1.6 kgt

* 0.888889 
Ground thermal conductivity kg W/(mK) 1.8 kg

* 1 
Pipe volumetric heat capacity (ρ c)p MJ/(m3K) 1.824 (ρ c)p

* 0.608 
Ground volumetric heat capacity (ρ c)g MJ/(m3K) 3 (ρ c)g

* 1 
 

 

 
Figure 3. Particular of the triangular mesh employed in the 2D simulation of the real BHE. 

 

In order to determine the equivalent thermal conductivity of the cylindrical annulus, keq, the BHE 

thermal resistance is calculated by a stationary 2D simulation of a BHE cross section surrounded by 

a ground layer with external radius 5 m. The fluid is replaced by two holes in the computational 



domain, and a convective boundary condition is imposed at the internal surface of the pipes, with 

convection coefficient 1472 W/(m2K) and mean fluid temperature Tfm = 25 °C. A uniform 

temperature equal to 0 °C is imposed on the external boundary of the ground. The selected mesh has 

132016 triangular elements, and is obtained by a regular refinement of extremely fine physics-

controlled mesh built by the software. The relative accuracy is set equal to 0.00001. The results of 

the simulation are: Tsm = 19.444 °C, ql = 52.363 W/m, and, from Eq. (1), Rb = 0.106105 mK/W. 

Thus, by applying the dimensional form of Eq. (19) one obtains keq = 1.86715 W/(mK), and, by Eq. 

(10), keq
* = 1.03731. 

In analogy with previous papers [35 – 37, 41, 44], the vertical coordinate, z, is replaced by the rescaled 

one, zr = z/20, in order to reduce the vertical length of the computational domain. Thus, the BHE 

length H is replaced by the rescaled one, Hr = H/20 = 5.25 m, and the heat flux Q = 5250 W is 

replaced by the rescaled one, Qr = 262.5 W. The thermal conductivities in the vertical direction of all 

the materials, except the superconductor, are reduced by a rescaling factor 202 = 400. The dimensional 

quantities characterizing the model and the dimensionless quantities employed in the simulation are 

reported in Table 2. The rescaled dimensionless total heat flux is given by Qr
*= ql

* × Hr
* = Hr

*= 70. 

The equivalent volumetric heat capacity of the model, (ρ c)eq = 3.054992 MJ/(m3K), is determined 

by imposing that the heat capacity of the model, per unit length, is equal to that of the BHE, namely 

53986.165 J/(m K). 

The computational domain is a cylinder with dimensionless vertical length 70 and dimensionless 

radius 100, equal to that of the circle employed for the 2D simulation of the real BHE. The selected 

mesh is an unstructured mesh with 83636 triangular elements, and is obtained by a regular refinement 

of the extremely fine physics-controlled mesh built by the software. Further refinements do not yield 

relevant changes in the ftg-function. A particular of the mesh is illustrated in Figure 4. Values of the 

ftg-function are collected with steps of 0.05 in log10(τ*), in the range 10-4 ≤ τ* ≤ 102. The accuracy 

parameters are the same as in the simulation of the real BHE: relative accuracy 0.0001 and absolute 

accuracy 0.0001. 

In Figure 5, the ftg-function obtained by the cylindrical model is compared with that obtained by the 

2D simulation of the real BHE. The dimensionless time is reported in logarithmic scale, in the range 

− 4 ≤ log10(τ*) ≤ 2. The figure shows that the model is very accurate, and becomes extremely accurate 

for log10(τ*) > 0. The root-mean-square deviation between the ftg-function obtained by the cylindrical 

model and that obtained by the 2D model of the real BHE is 0.0013 in the whole time interval 

considered and 0.00013 in the range 0 ≤ log10(τ*) ≤ 2. 

 

 



 

Table 2. Dimensional quantities that characterize the cylindrical model and corresponding 
dimensionless quantities employed in the 2D axisymmetric simulation. 

 Dimensional quantities Dimensionless 
quantities 

Quantity Symbol Unit Value Symbol Value 
Model radius rb m 0.075 rb

* 1 
Superconductor radius req m 0.0216 req

* 0.288 
Rescaled model length Hr m 5.25 Hr

* 70 
Rescaled total heat flux Qr W 262.5 Qr

* 70 
Superconductor thermal conductivity ksc W/(mK) 1.8 × 109 ksc

* 109 
Annulus thermal conductivity, radial keq W/(mK) 1.86715 keq

* 1.037308 
Annulus thermal conduct., vertical keqr W/(mK) 0.0046679 keqr

* 0.0025933 
Ground thermal conductivity, radial kg W/(mK) 1.8 kg

* 1 
Ground thermal conduct., vertical kgr W/(mK) 0.0045 kgr

* 0.0025 
Model volumetric heat capacity (ρ c)eq MJ/(m3K) 3.054992 (ρ c)eq

* 1.0183307 
Ground volumetric heat capacity (ρ c)g MJ/(m3K) 3 (ρ c)g

* 1 
 

 

 
Figure 4. Particular of the mesh employed in the 2D axisymmetric simulation of the cylindrical 

model with purely radial heat flux. 
 



 
Figure 5. Comparison between the ftg-function obtained by the 2D axisymmetric simulation of the 

model, with purely radial heat flux, and that obtained by the 2D simulation of the real BHE. 
 

3.2. Validation of the 2D axisymmetric simulation code of the cylindrical model 

The excellent agreement between the ftg-function obtained by the 2D axisymmetric simulation of the 

cylindrical model and that obtained by the 2D simulation of the real BHE could already be considered 

as a validation of both the simulation codes. However, a further validation of the simulation code of 

the model, by comparison with an analytical solution, is presented here. 

The semi-analytical BHE model proposed by Man et al. [27] is selected for the validation. In this 

model, the BHE is represented by a solid cylinder with the same thermal properties as the ground, 

containing a heat generating cylindrical surface located at r = req, that represents the fluid. The authors 

provide two analytical solutions for the model: a 1D solution for the case of purely radial heat flow, 

and a 2D axisymmetric solution for the case of finite BHE length and uniform heat generation. The 

1D solution is considered for the validation, because the 2D axisymmetric case of interest in this 

paper is not that with uniform heat flux, but that with uniform fluid temperature. In the 1D solution 

of Ref. [27], the difference between the fluid temperature and the undisturbed ground temperature is 

given by 
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where ql is the heat flux per unit length released by the generating surface, φ is an angular integration 

variable, and Ei is the exponential integral function. Equation (22) can be easily written in the 

dimensionless form 
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The ftg-function yielded by Eq. (23) with req
* = 0.288 is determined by a numerical integration, in 

the dimensionless-time range − 3 ≤ log10(τ*) ≤ 6, with steps of 0.05 in log10(τ*). 

The cylindrical model is modified, to reproduce the conditions of the semi-analytical solution. The 

superconductor is replaced by a material having the same thermal properties as the annulus and the 

ground, with a rescaled thermal conductivity in the vertical direction, kscr. A heat generating surface 

that represents the fluid is placed at r* = req
*= 0.288. Some dimensionless parameters of Table 2 are 

modified, as follows: ksc
* = 1, kscr

* = 0.0025, keq
* = 1, keqr

* = 0.0025, (ρ c)eq
* =1. The surface heat 

source intensity is set equal to Qr
*/(2π req

*H*) = 1/(2π × 0.288). The computational domain is a 

cylinder with dimensionless vertical length 70 and dimensionless radius 2500. The mesh is obtained 

by two regular refinements of the extremely fine physics-controlled mesh built by the software, and 

has 107360 triangular elements. The relative accuracy and the absolute accuracy are set equal to 

0.0001. The results are collected with steps of 0.05 in log10(τ*), in the range − 3 ≤ log10(τ*) ≤ 2. A 

comparison between the ftg-function obtained by Eq. (23) and that obtained by a 2D axisymmetric 

finite-element simulation of the cylindrical model is illustrated in Figure 6. The figure shows an 

excellent agreement between the ftg-function obtained by the semi-analytical method and that 

obtained by the finite-element simulation. The root-mean-square deviation is 0.000132, and 

corresponds to 0.023% of the mean value of the ftg-function. 

 
Figure 6. Comparison between the ftg-function obtained by the 2D axisymmetric simulation of the 

cylindrical model, with purely radial heat flux, and that obtained by the analytical solution. 
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4. Values of the dimensionless parameters 

The following dimensionless parameters characterize a single-line bore field, in the cylindrical model: 

dimensionless BHE thermal resistance, Rb
*; dimensionless radius of the superconductor that 

represents the fluid, req
*; dimensionless volumetric heat capacity of the model, (ρ c)eq

*; dimensionless 

BHE length, H 
*; dimensionless distance between adjacent BHEs, d 

*; dimensionless buried depth, 

Bd
*. 

The dimensionless buried depth has not an important effect on the ftg-function. Therefore, in our 

study it is fixed, with value Bd
* = 24. For rb = 0.075 m, this value corresponds to Bd = 1.80 m, that is 

a common buried depth for temperate climates. The following values of Rb
* are considered: 0.1, 0.2, 

0.3. They correspond to Rb = 0.05 mK/W, 0.10 mK/W and 0.15 mK/W for kg = 2 W/(mK). The 

following values are considered for req
* and (ρ c)eq

*: req
* = 0.20, 0.35, 0.50; (ρ c)eq

* = 0.6, 1.1, 1.6. 

These values cover all the cases considered in Ref. [30]. For H 
*, the values H 

* = 800, 1400, 2000 are 

considered. They correspond to H = 60 m, 105 m, 150 m, for rb = 0.075 m. Finally, the following 

values of d 
*, for bore fields with two or more BHEs, are considered: d 

* = 60, 90, 120. These values 

correspond to d = 4.50 m, 6.75 m and 9.00 m, for rb = 0.075 m. 

The ftg-functions for bore fields in a single line with isothermal fluid are calculated in the 

dimensionless-time range 10-4 ≤ τ* ≤ 106. For a ground thermal diffusivity equal to 7.5 × 10-7 m2/s 

and rb = 7.5 cm, this range corresponds to the time interval 0.75 s ≤ τ  ≤ 7.5 × 109 s ≈ 237.8 years. 

The results for 10-4 ≤ τ* ≤ 10-2 should be considered mainly as benchmark values for simulations 

performed under the assumption of isothermal fluid and may be not quite accurate for real BHEs. 

 

5. Short-term and long-term ftg-functions 

With a fixed value of Bd
*, five dimensionless parameters are necessary to identify the model of a bore 

field with two or more BHEs, namely Rb
*, req

*, (ρ c)eq
*, H 

*, d 
*. With three values for each parameter, 

35 = 243 combinations of parameters would be necessary to provide a suitable data base of ftg-

functions, for each bore field. However, preliminary simulations revealed that not all the 

dimensionless parameters have significant effects on the ftg-function during the whole dimensionless-

time interval 10-4 ≤ τ* ≤ 106. It is possible to find a value of the dimensionless time,  τ0
*, such that: 

for τ* ≤ τ0
* the ftg-function depends only on Rb

*, req
*, and (ρ c)eq

*; for τ* ≥ τ0
* the ftg-function depends 

only on Rb
*, H 

*, d 
*. Therefore, the simulation results are divided in two groups: simulation results 

for τ* ≤ τ0
*, that yield short-term ftg-functions; simulation results for τ* ≥ τ0

*, that yield long-term ftg-

functions. The short-term ftg-functions are computed for a single BHE, with H * = 1400. In fact, the 

interference between BHEs has no appreciable effects for τ * ≤ τ0
*. Thus, 33 short-term ftg-functions 

are obtained, by combinations of Rb
*, req

*, (ρ c)eq
*.  For each value of Rb

*, the short-term ftg-functions 



are slightly modified, in a narrow neighborhood of τ0
*, so that at τ0

* they have all the same value as 

the ftg-function for req
* = 0.35 and (ρ c)eq

* = 1.1. The long-term ftg-functions are computed for each 

bore field. Thus, 33 long-term ftg-functions are obtained for each bore field with at least 2 BHEs, by 

combinations of Rb
*, H *, d *, and 32 long term ftg-functions for the single BHE, where d *is not a 

parameter. The long-term ftg-functions are computed with req
* = 0.35 and (ρ c)eq

* = 1.1. For each 

value of Rb
*, the long-term ftg-functions are slightly modified, in a narrow neighborhood of τ0

*, so 

that at τ0
* they coincide with each other and with the short-term ftg-function for the same value of 

Rb
*. The corrections usually change only the fourth decimal digit or, exceptionally, also the third 

decimal digit by one unit. By this method, all the ftg-functions are perfectly joined at τ0
*. The value 

τ0
* = 102 is selected, that corresponds to τ  = 7.5 × 105 s ≈ 208.33 h for a ground thermal diffusivity 

equal to 7.5 × 10-7 m2/s and rb = 7.5 cm. 

Since τ0
* is much shorter than the dimensionless time required to have appreciable effects of 

interference between BHEs, the independence of the short-term ftg-functions from H 
*will be proved 

with reference to a single BHE. Similarly, since the effects of req
* and (ρ c)eq

* on the ftg-function 

vanish before the interference between BHEs takes place, the independence of the long-term ftg-

functions from req
* and (ρ c)eq

* will be proved for one BHE. 

5.1. Independence of the short-term ftg-functions from H 
* 

In order to prove that the ftg-functions are independent of H 
* for τ* ≤ 102, the results of computations 

performed with Rb
* = 0.2, req

* = 0.35, (ρ c)eq
* = 1.1, and H 

* = 800, 1400, 2000 are presented. Similar 

results hold for other combinations of Rb
*, req

*, and (ρ c)eq
*. 

2D axisymmetric simulations of the cylindrical model are performed, that differ only in the 

dimensionless BHE length and, as a consequence, on the total dimensionless height of the 

computational domain. The whole interval of dimensionless time 10-4 ≤ τ* ≤ 106 is considered. 

Bd
* = 24 is assumed, and a rescaling ratio 20 in the vertical direction is employed. So, one has 

Bdr
* = 1.2 and Hr 

* = 40, 70, 100. The top of the BHE is placed at zr
* = 0. The computational domain 

is a cylinder with vertical extension from zr
* = 1.2 to zr

* = – (Hr 
*+ 125), and dimensionless radius 

2500. The initial condition is T 
* = 0, in the whole computational domain. The boundary condition at 

the ground surface is T 
* = 0, while the vertical and bottom boundaries of the computational domain 

are assumed to be adiabatic. The size of the domain is such that if the adiabatic boundary condition 

at the vertical and bottom boundaries is replaced by T 
* = 0, no change of the ftg-functions occurs 

within the digits of interest. The rescaled total heat flux is Qr
* = Hr 

*. The dimensionless thermal 

conductivity of the superconductor, that of the ground in the radial direction and that of the ground 

in the vertical direction are the same as in Table 2, namely ksc
* = 109, kg

* = 1 and kgr
* = 0.0025. The 



dimensionless thermal conductivity of the cylindrical annulus in the radial direction is that 

corresponding to Rb
* = 0.2, namely keq

* = 0.835422, and the rescaled one, in the vertical direction, is 

keqr
* = 0.00208855. The relative accuracy and the absolute accuracy are both equal to 0.0001. Values 

of the ftg-functions are collected with steps of 0.05 in log10(τ*). In each case, the selected mesh is the 

extremely fine physics-controlled mesh built by the software, with two regular refinements. The 

number of triangular elements is 103904, 143904, 186432, respectively for Hr 
* = 40, 70, 100. A 

particular of the mesh, for Hr 
* = 70, is illustrated in Figure 7. The particular, focused on the upper 

part of the BHE, shows that the thin ground cylinder above the superconductor has been removed, in 

order to impose the heat flux boundary condition at the upper surface of the superconductor. 

 

 
Figure 7. Particular of the mesh employed in the 2D axisymmetric simulation of the model with Rb

* 
= 0.2, req

* = 0.35, (ρ c)eq
* = 1.1, H 

* = 1400. 
 

The mesh independence of the ftg-function, for Hr 
* = 70, is illustrated in Figure 8. The figure 

compares the ftg-functions obtained with different meshes: Mesh 1, having 8994 triangular elements; 

Mesh 2, obtained by a regular refinement of Mesh 1 and having 35976 triangular elements; Mesh 3, 

obtained by a regular refinement of Mesh 2 and having 143904 triangular elements. The comparison 

shows that the g-functions are graphically indistinguishable when plotted in the whole range of 

dimensionless time, 10-4 ≤ τ* ≤ 106. 

A particular of Figure 8, in the range 105 ≤ τ* ≤ 106, is reported in Figure 9. It shows that the 

differences between the results obtained by Mesh 3 and those obtained by Mesh 2 are much lower 

than the differences between the results obtained by Mesh 2 and those obtained by Mesh 1. The 

maximum difference is 0.0007. A further refinement would yield a much lower maximum difference 

from the results of Mesh 3. Therefore, the ftg-function obtained by Mesh 3 can be considered as mesh 

independent for the scope of the present paper. Mesh 3 or similar meshes are employed hereafter in 

all the simulations of a single BHE. 



 
Figure 8. Proof of mesh-independence of the simulation results of the model obtained with Mesh 3 

(selected mesh), for Rb
* = 0.2, req

* = 0.35, (ρ c)eq
* = 1.1, H 

* = 1400. 
 

 
Figure 9. Particular of Figure 8, in the range 105 ≤ τ* ≤ 106. 

 

The independence of the results from the domain extension is checked by replacing the adiabatic 

condition at the vertical and bottom boundaries with the isothermal condition T 
* = 0. The first 

condition overestimates the temperature changes with respect to the real situation of infinite ground, 

the second underestimates them. The maximum difference between the ftg-functions obtained with 

these conditions is 0.0001. Moreover, the independence of the results from the dimensionless thermal 
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conductivity of the superconductor is checked, by replacing ks
* = 109 with ks

* = 1010. Again, the 

highest discrepancy is 0.0001. 

The independence of the short-term ftg-functions from H 
* is illustrated in Figure 10, where diagrams 

of the ftg-functions with H 
* = 800, 1400 and 2000 are compared graphically, for Rb

* = 0.2, req
* = 

0.35, (ρ c)eq
* = 1.1. The figure shows that the effects of H 

* on the ftg-functions are negligible up to τ* 

= 102. For τ* = 102, the difference between the ftg-function for H 
* = 1400 and that for H 

* = 800 is 

0.0013, and the difference between the ftg-function for H 
* = 2000 and that for H 

* = 1400 is 0.0005. 

Therefore, the highest possible error due to neglecting the effect of H 
* on the short-term ftg-functions, 

that are computed with H 
* = 1400, is 0.0013. 

5.2. Independence of the long-term ftg-functions from req* and (ρ c)eq*. 

In order to prove that the ftg-functions are independent of req
* for τ* ≥ 102, the ftg-functions of a single 

BHE for Rb
* = 0.2, H 

* = 1400, (ρ c)eq
* = 1.1, are analyzed with three different values of req

*, namely 

0.20, 0.35, 0.50. The corresponding values of the dimensionless thermal conductivity of the 

cylindrical annulus in the radial direction are keq
* = 1.28075, 0.835422, 0.551589, and the rescaled 

values, along z, are keqr
* = 0.00320187, 0.00208855, 0.00137897. The meshes employed are the 

extremely fine physics-controlled meshes built by the software, with two regular refinements, and 

have 208608, 143904, 117168 triangular elements, respectively. The relative accuracy and the 

absolute accuracy are again equal to 0.0001. 

 

 
Figure 10. Proof of independence of the short-term ftg-functions from H 

*, for Rb
* = 0.2, req

* = 0.35, 
(ρ c)eq

* = 1.1. 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

-4 -3 -2 -1 0 1 2 3 4 5 6

H* = 800
H* = 1400
H* = 2000

log10(τ *)

ftg
-fu

nc
tio

n H* = 800
H* = 1400
H* = 2000

Rb
* = 0.2, req

* = 0.35, (ρc)eq
* = 1.1



The ftg-functions for Rb
* = 0.2, H 

* = 1400, (ρ c)eq
* = 1.1, and req

* = 0.20, 0.35, 0.50 are compared in 

Figure 11. The figure shows that the effect of req
* on the ftg-function is negligible for τ* ≥ 102. For 

τ* = 102, the difference between the ftg-function for req
* = 0.20, and that for req

* = 0.35 is 0.0003, and 

the difference between the ftg-function for req
* = 0.35 and that for req

* = 0.50 is 0.0004. Therefore, 

the highest possible error due to neglecting the effect of req
* on the long-term ftg-functions, that are 

computed with req
* = 0.35, is 0.0004. 

In order to prove that the ftg-functions are independent of (ρ c)eq
* for τ* ≥ 102, in Figure 12 diagrams 

of the ftg-functions for Rb
* = 0.2, H 

* = 1400, req
* = 0.35, are reported with three different values of 

(ρ c)eq
*, namely 0.6, 1.1, 1.6. The input parameters, the mesh and the accuracy parameters are the 

same as for the case Rb
* = 0.2, H 

* = 1400, req
* = 0.35, (ρ c)eq

* = 1.1, already illustrated in Figure 11, 

except for the values of (ρ c)eq
*. The figure show that the effect of (ρ c)eq

* can be considered as 

negligible for τ* ≥ 102. For τ* = 102, the difference between the ftg-function for (ρ c)eq
* = 0.6 and that 

for (ρ c)eq
* = 1.1 is 0.0013, and the difference between the ftg-function for (ρ c)eq

* = 1.1 and that for 

(ρ c)eq
* = 1.6 is 0.0013. Therefore, the highest possible error due to neglecting the effect of (ρ c)eq

* on 

the long-term ftg-functions, that are computed with (ρ c)eq
* = 1.1, is 0.0013. 

 

 
Figure 11. Proof of independence of the long-term ftg-functions from req 

*, for Rb
* = 0.2, H 

* = 1400, 
(ρ c)eq

* = 1.1. 
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Figure 12. Proof of independence of the long-term ftg-functions from (ρ c)eq

*, for Rb
* = 0.2, 

H 
* = 1400, req 

* = 0.35. 
 

6. Short-term ftg-functions for BHEs with isothermal fluid 

The short-term ftg-functions have been computed for a single BHE, with H 
* = 1400, but they are 

valid also for BHE fields with several BHEs and for different values of H 
*. Due to the slight 

corrections, they have the same value at τ0
* = 102, for each value of Rb

*.  

 

 
Figure 13. Short-term ftg-functions for Rb

* = 0.1. 
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Figure 14. Short-term ftg-functions for Rb

* = 0.2. 
 
 

 
Figure 15. Short-term ftg-functions for Rb

* = 0.3. 
 

The short-term ftg-functions for Rb
* = 0.1, 0.2 and 0.3 are illustrated in Figures 13, 14 and 15, 

respectively. The figures show that the short-term ftg-functions are increasing functions of Rb
* and 

decreasing functions of req 
* and of (ρ c)eq

*. The dependence on req 
* and of (ρ c)eq

* is stronger for 

higher values of Rb
*. 
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Tables of the short-term ftg-functions of BHEs with isothermal fluid, with steps of 0.05 in log10(τ 
*), 

are reported in the Excel file “Short-term ftg-functions”, available in the Repository AMSActa (see 

Data Availability Section). 

 

7. Long-term ftg-functions for a single BHE with isothermal fluid 

The long-term ftg-functions for a single BHE with isothermal fluid are illustrated in Figure 16. The 

figure shows that, as expected, they are increasing functions of both Rb
* and H 

*. A table of the long-

term ftg-functions for a single BHE, with steps of 0.05 in log10(τ 
*), is reported in the Excel file “Long-

term ftg-functions for a single BHE”, available in the Repository AMSActa (see Data Availability 

Section). 

 

 
Figure 16. Long-term ftg-functions for a single BHE with isothermal fluid. 

 

8. Long-term ftg-functions for a line of 2 BHEs with isothermal fluid 

The long-term ftg-functions for a line of 2 BHEs with isothermal fluid have been determined by 3D 

finite-element simulations, with the following values of the dimensionless parameters: Bd
* = 24; 

Rb
* = 0.1, 0.2, 0.3; H 

* = 800, 1400, 2000; d 
* = 60, 90, 120. For each geometric configuration, a 

computational domain with a symmetry plane placed between the BHEs, at an equal distance from 

each of them, has been employed. In this domain, the ground is a rectangular parallelepiped with 

dimensionless horizontal sides equal to 2500 + d 
*/2 along the direction, x, that connects the axes of 

the BHEs, equal to 5000 along y, and equal to (Bd
*+ H 

*+ 2500)/20 along z, where 20 is the rescaling 

coefficient adopted in the vertical direction. Each BHE is modeled as in the previous sections.  
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In order to obtain equal fluid temperatures in the BHEs, the vertical superconductive cylinders 

representing the fluid are connected with a horizontal superconductive bar placed above the ground. 

The bar has a square cross section with dimensionless sides equal to 2, and is connected with each 

cylinder representing the fluid by means of additional superconductive material: a vertical cylinder, 

with the same diameter as the sides of the bar, and a vertical cone that reduces the diameter of the 

cylinder to that of the fluid. The dimensionless thermal properties of the superconductive material are 

ks
* = 109 and (ρ c)sc

* = 0.01. A particular of the computational domain, with the mesh adopted in the 

final computations, denoted by Mesh 2, is illustrated in Figure 17. The figure refers to the geometry 

with H 
* = 1400 and d 

* = 90, where the employed mesh consists of 6 079 360 tetrahedral elements. 

The part of the figure in black and gray represents the superconductive material that interconnects the 

BHEs and, in transparency, the superconductive material that represents water, while the part in blue 

and light blue represents the other elements of the computational domain. 

 

 
Figure 17. Particular of the computational domain and mesh employed for the final simulation of 

the field with 2 BHEs, H 
* = 1400, d 

* = 90, Rb
* = 0.2. 

 

Before performing the final computations for the lines of 2 BHEs, the accuracy of the 3D simulation 

code has been checked by comparing the results yielded by this code with those obtained by the 2D 

axisymmetric code employed for the simulations of the single BHEs. For this purpose, with reference 

to the field with H 
* = 1400, d 

* = 90 and Rb
* = 0.2, the distance between the BHEs has been increased 

from d 
* = 90 to d 

* = 5000, to reach the thermal independence of the BHEs. The half-length of the 

superconductive horizontal bar, from the axis of the left BHE, has been kept equal to 45, and an 

adiabatic boundary has been placed at the right end of the bar. 



Two meshes have been employed to check the accuracy of the 3D simulations: Mesh 1, with 936 912 

tetrahedral elements, obtained by a regular refinement of the extremely fine physics-controlled mesh 

built by the software; Mesh 2, with 7 495 296 tetrahedral elements, obtained by a second regular 

refinement. In Figure 18, the long-term ftg-functions obtained by Mesh 1 and by Mesh 2 are compared 

with that obtained by the 2D axisymmetric code, in the long-term range 2 ≤ log10(τ 
*) ≤ 6. A particular, 

in the range 5 ≤ log10(τ 
*) ≤ 6, is reported in Figure 19, and illustrates better the convergence of Mesh 

2 to the 2D axisymmetric ftg-function. The root-mean-square deviation between the long-term ftg-

function obtained by the 3D simulation with Mesh 2 and that obtained by the 2D axisymmetric 

simulation is 0.0005, and corresponds to 0.054% of the mean value of the long-term ftg-function. This 

result shows the high accuracy reached by the 3D simulation performed with Mesh 2. 

The final simulations to determine the long-term ftg-functions for a line of 2 BHEs with isothermal 

fluid have been performed by meshes, denoted by Mesh 2, obtained by two regular refinements of 

the extremely fine physics-controlled mesh built by the software. The number of tetrahedral elements 

ranged from 3 937 408, for H 
* = 800 and d 

* = 60, to 8 332 800, for H 
* = 2000 and d 

* = 120. 

The effects of the dimensionless BHE length on the long-term ftg-function, for Rb
* = 0.2 and d 

* = 90, 

are illustrated in Figure 20. The figure shows that, as expected, higher values of H 
* yield higher values 

of the ftg-function in the long term, due to the lower beneficial effect of the constant temperature at 

the ground surface. The difference between the ftg-functions with H 
* = 1400 and H 

* = 800 is more 

relevant that that between the ftg-functions with H 
* = 2000 and H 

* = 1400. 

 
Figure 18. Comparison between the long-term ftg-functions obtained by 3D simulations with Mesh 

1 and with Mesh 2 and that obtained by the 2D axisymmetric code, for a single BHE with 
H 

* = 1400 and Rb
* = 0.2 
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Figure 19. Particular of Figure 18, in the range 105 ≤ τ* ≤ 106. 

 
The effects of d 

* on the ftg-function, for Rb
* = 0.2 and H* = 1400, are illustrated in Figure 21. As 

expected, the ftg-function is higher for lower values of d 
*, due to the higher thermal interference 

between the BHEs, and the difference between the ftg-functions for d 
* = 60 and d 

* = 90 is higher than 

that between the ftg-functions for d 
* = 90 and d 

* = 120. 

 

 
Figure 20. Effects of H 

* on the long-term ftg-function of a field with 2 BHEs, for Rb
* = 0.2 and d 

* = 
90. 
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Figure 21. Effects of d 

* on the long-term ftg-function of a field with 2 BHEs, for Rb
* = 0.2 and H 

* = 
1400. 

 

The effects of Rb
* on the long-term ftg-function, for the case H* = 1400 and d 

* = 90, are illustrated in 

Figure 22. Indeed, an increase in Rb
* yields a nearly uniform increase in the ftg-function, very close 

to the increase in Rb
*. More precisely, the simulations performed have shown that it is possible to 

find two dimensionless correction coefficients, c1(τ*) and c2(τ*), very close to 1, such that 

ftg-function ( )* * * *, , ,bR H d τ  = ftg-function ( ) ( )( )* * * * *
10.2, , , 0.2τ τ+ − bH d c R , for * 0.2bR <  ,   (24) 

ftg-function ( )* * * *, , ,bR H d τ  = ftg-function ( ) ( )( )* * * * *
20.2, , , 0.2bH d c R+ −τ τ , for * 0.2bR >  . (25) 

The coefficients c1(τ*) and c2(τ*) evaluated for H 

* = 1400 and d 

* = 90 can be applied to all the fields 

with 2 BHEs considered, and the accuracy of Eqs. (24) and (25) is excellent for *0.1 0.3.bR≤ ≤  The 

accuracy of the approximate evaluation of the long-term ftg-functions through the coefficients c1(τ*) 

and c2(τ*), for a field of 2 BHEs with H 

* = 2000 and d 

* = 60, is illustrated in Figure 23, where the 

approximate ftg-functions for * 0.1bR =  and * 0.3=bR evaluated from that for * 0.2=bR  are compared 

to those obtained by the direct simulations. The root-mean-square deviation between the approximate 

values and those obtained by direct simulations is 0.0002, for both * 0.1bR =  and * 0.3bR = . 

Tables of the long-term ftg-functions of fields with 2 BHEs and isothermal fluid, with steps of 0.05 

in log10(τ 
*), are reported in the Excel file “Long-term ftg-functions for fields with 2 BHEs”, available 

in the Repository AMSActa (see Data Availability Section). The same file reports also the values of 

the coefficients c1(τ*) and c2(τ*) for these fields. 
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Figure 22. Effects of Rb

* on the long-term ftg-function of a field with 2 BHEs, for H 
* = 1400 and 

d 
* = 90. 

 

 
Figure 23. Approximate long-term ftg-functions for * 0.1bR =  and * 0.3bR = , for a field of 2 BHEs 

with H 
* = 2000 and d 

* = 60, compared with those obtained by direct simulations. 
 

9. Long-term ftg-functions for a line of 3 BHEs with isothermal fluid 

The long-term ftg-functions for a line of 3 BHEs with isothermal fluid have been determined by 3D 

finite-element simulations with the following values of the dimensionless parameters: Bd
* = 24; Rb

* 

= 0.2; H 
* = 800, 1400, 2000; d 

* = 60, 90, 120. Then, the dimensionless correction coefficients, c1(τ*) 

and c2(τ*), that yield the ftg-functions for Rb
* ≠ 0.2, have been determined by 3D finite-element 
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simulations with Rb
* = 0.1, 0.3; H 

* = 1400; d 
* = 90. The use of the correction coefficients has allowed 

reducing the number of 3D simulations from 27 to 11. 

For each geometric configuration, a computational domain where the ground is a rectangular 

parallelepiped centered in the axis of the central BHE has been employed, with dimensionless 

horizontal sides equal to 5000 + 2d 
* along x, equal to 5000 along y, and equal to (Bd

*+ H 
*+ 2500)/a 

along z, where a is the rescaling coefficient in the vertical direction. To reduce the computation time 

for the highest values of H*, the coefficient a has been assumed equal to 20 for H 
* = 800, equal to 25 

for H 
* = 1400 and for H 

* = 2000. Each BHE is modeled as in the previous sections. 

To obtain equal fluid temperatures in the BHEs, the superconductive cylinders representing the fluid 

are interconnected with a superconductive horizontal bar with the same cross section and the same 

dimensionless thermal properties as in Section 8. A particular of the computational domain, centered 

in the upper part of central BHE, is illustrated in Figure 24. The figure refers to the geometry with H 
* 

= 1400 and d 
* = 90, where the employed mesh consists of 11 929 600 tetrahedral elements. The part 

of the figure in black and gray evidences the vertical superconductive elements that connect the solid 

representing water to the horizontal bar. 

 

 
Figure 24. Particular of the computational domain and mesh employed for the simulation of the 

fields with 3 BHEs, H 
* = 1400 and d 

* = 90: connection of the central BHE to the superconductive 
bar. 

 
Before performing the final computations for the lines of 3 BHEs, the 3D simulation code has been 

validated by comparing the long-term g-function yielded by the code with that obtained by integrating 

the semi-analytical expression of the length-averaged temperature on a surface with radius r 

determined by Claesson and Javed [6] through the FLS model with uniform linear heat flux: 
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The validation has been performed for the case H 
* = 1400, d 

* = 90, and Rb
* = 0.2. To obtain the 

condition of uniform linear heat flux in the simulation code, the thermal conductivity ksc
* = 0 for the 

solid material (formerly superconductor) that interconnects the BHEs has been employed, together 

with the thermal conductivity ksc
* = 1 for the solid (formerly superconductor) representing water. 

Moreover, the boundary condition of uniform heat flux imposed on the top of the superconductor has 

been replaced with an adiabatic condition, coupled with a uniform heat generation in the solid 

representing water. The simulations have been performed with three meshes: Mesh 1, obtained by a 

regular refinement of the extremely fine physics-controlled mesh build by the software and having 

1 491 576 tetrahedral elements; Mesh 2, obtained by a regular refinement of Mesh 1 and having 

11 932 608 tetrahedral elements; Mesh 3, obtained from Mesh 2 by a regular refinement of the portion 

of domain occupied by the BHEs and having 15 571 661 tetrahedral elements. The FLS g-function for 

the field has been obtained through the g-functions for a single BHE determined by Eqs. (25 – 28) 

and the superposition of effects in space. The comparison, illustrated in Figure 25, shows a very good 

agreement between the long-term FLS g-function and that obtained through the simulation with Mesh 

3: the root-mean-square deviation is 0.0041 and corresponds to 0.43% of the mean value of the long-

term g-function. 

The final simulations to obtain the ftg-functions for a line of 3 BHEs with isothermal fluid have been 

performed by Mesh 2, obtained by two regular refinements of the extremely fine physics-controlled 

mesh build by the software, after checking that the difference between the results obtained by Mesh 

2 and those obtained by Mesh 3 is negligible when the dimensionless thermal conductivity of the 

superconductor is ksc
* = 109, the heat flux is applied to the upper surface of the horizontal bar, and no 

heat generation occurs in the solid representing water. The relative and the absolute accuracy have 

been set equal to 0.0001. The ftg-functions obtained by Mesh 1, Mesh 2, and Mesh 3, in the case H 
* 

= 1400, d 
* = 90, and Rb

* = 0.2, are illustrated in Figure 26. The figure shows that the ftg-function 

obtained by Mesh 3 is graphically indistinguishable from that obtained by Mesh 2. 

 



 
Figure 25. Comparison between the long-term g-functions obtained by 3D simulations and that 
obtained by the FLS solution [6], for a line of 3 BHEs with H 

* = 1400, d 
* = 90, and Rb

* = 0.2, 
subjected to a uniform linear heat flux. 

 

 
Figure 26. Comparison between the long-term ftg-functions with isothermal fluid, obtained by 3D 
simulations with Mesh 1, Mesh 2, and Mesh 3, for a line of three BHEs with H 

* = 1400, d 
* = 90, 

and Rb
* = 0.2. 

 

Tables of the long-term ftg-functions of single-line fields with 3 BHEs and isothermal fluid, with 

steps of 0.05 in log10(τ 
*), are reported in the Excel file “Long-term ftg-functions for single-line fields 
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with 3 BHEs”, available in the Repository AMSActa (see Data Availability Section). The same file 

reports also the values of the coefficients c1(τ*) and c2(τ*) for these fields. 

 

10. Long-term ftg-functions for a line of 4 BHEs with isothermal fluid 

The long-term ftg-functions and the correction factors c1(τ*) and c2(τ*) for a line of 4 BHEs with 

isothermal fluid have been determined by 3D finite-element simulations with the same values of the 

dimensionless parameters Bd
*, Rb

*, H 
*, and d 

* as those employed in Section 9, the same kind of mesh, 

denoted by Mesh 2, and the same accuracy parameters, both equal to 0.0001. 

For each geometric configuration, a computational domain with a symmetry plane placed between 

the second and the third BHE has been employed. In this domain, the ground is a rectangular 

parallelepiped with dimensionless horizontal sides equal to 2500 + 1.5 d 
* along x, equal to 5000 along 

y, and equal to (Bd
*+ H 

*+ 2500)/a along z, where a is the rescaling coefficient in the vertical direction, 

equal to 20 for H 
* = 800 and equal to 25 for H 

* = 1400 and for H 
* = 2000. Each BHE is modeled as 

in the previous sections. The superconductive cylinders representing the fluid are interconnected with 

a superconductive horizontal bar and superconductive vertical elements, with the same geometry and 

the same dimensionless thermal properties as in Section 9, apart from the length of the horizontal bar. 

Figure 27 illustrates a particular of the computational domain for the geometry with H 
* = 1400 and 

d 
* = 90, where the employed mesh consists of 11 929 600 tetrahedral elements. 

 

 
Figure 27. Particular of the computational domain and mesh (Mesh 2) employed for the simulation 

of the field with 4 BHEs, H 
* = 1400, d 

* = 90, Rb
*= 0.2.  

 

Before performing the final computations for the lines of 4 BHEs, the 3D simulation code has been 

validated by comparing the long-term g-function yielded by the code with that obtained through the 



semi-analytical solution of the FLS model determined by Claesson and Javed [6] and the 

superposition of effects in space. As in Section 9, the superconductor connecting the BHEs has been 

replaced by a solid with vanishing thermal conductivity and very low heat capacity, and the uniform 

heat flux imposed on the top of the horizontal bar has been replaced by a uniform generation term in 

the solid representing water, having dimensionless thermal conductivity ksc
* = 1. The validation has 

been performed for the case H 
* = 1400, d 

* = 90, and Rb
* = 0.2, with Mesh1, Mesh 2 and Mesh 3, 

having 997104, 7976832 and 10420634 tetrahedral elements, respectively. The results of the 

validation are illustrated in Figure 28. The figure shows a very good agreement between the long-

term g-function obtained by the simulation with Mesh 3 and that obtained by the FLS solution: the 

root mean square deviation is 0.00497 and corresponds to 0.49% of the mean value of the long-term 

g-function. The final simulations to obtain the ftg-functions for a line of 4 BHEs with isothermal fluid 

have been performed by Mesh 2, after checking that the difference between the results obtained by 

Mesh 2 and those obtained by Mesh 3 is negligible in this case. 

 

 
Figure 28. Comparison between the long-term g-functions obtained by 3D simulations and that 
obtained by the FLS solution [6], for a line of 4 BHEs with H 

* = 1400, d 
* = 90, and Rb

* = 0.2, 
subjected to a uniform linear heat flux. 

 

Tables of the long-term ftg-functions of single-line fields with 4 BHEs and isothermal fluid, with 

steps of 0.05 in log10(τ 
*), are reported in the Excel file “Long-term ftg-functions for single-line fields 

with 4 BHEs”, available in the Repository AMSActa (see Data Availability Section). The same file 

reports also the values of the coefficients c1(τ*) and c2(τ*) for these fields. 
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The long-term ftg-functions obtained for a single BHE, a line of 2 BHEs, a line of 3 BHEs and a line 

of 4 BHEs with isothermal fluid, with the most typical values of H 
*, d 

*and Rb
*, namely H 

* = 1400, 

d 
* = 90, and Rb

* = 0.2, are reported in Figure 29, and are compared with the ftg-functions yielded by 

the FLS solution with uniform heat flux [6], obtained by adding *
bR  to the g-functions. The 

comparison between the ftg-functions for different numbers of BHEs shows that the effects of the 

thermal interference between BHEs are relevant in the long term, even for a line of few BHEs with a 

typical length (105 m for BHE radius 7.5 cm) and a rather wide separation (6.75 m for BHE radius 

7.5 cm). The comparison between the ftg-functions corresponding to different working conditions, 

namely isothermal fluid and uniform heat flux, shows that the overestimation of the ftg-functions due 

to the assumption of uniform heat flux is negligible for a single BHE, but becomes significant for 

higher numbers of BHEs. For a line of 3 BHEs, the overestimation is equal to 2.10% for τ*= 105 and 

to 3.33% for τ*= 106. For a line of 4 BHEs, the overestimation is equal to 2.73% for τ*= 105 and to 

4.46% for τ*= 106. 

 

 
Figure 29. Long-term ftg-functions for a single BHE, a line of 2 BHEs, a line of 3 BHEs and a line 

of 4 BHEs, with isothermal fluid (solid lines), compared with those yielded by the FLS solution 
with uniform heat flux (dashed lines), for H 

* = 1400, d 
* = 90, and Rb

* = 0.2. 
 

11. Interpolation method and examples 

The short-term ftg-functions depend on Rb
*, req 

*, and (ρ c)eq
*. The dependence on Rb

* can be 

considered as linear, but those on req 
* and on (ρ c)eq

* are nonlinear. Therefore, the following 

interpolation method between the results reported in our auxiliary material is recommended. Consider 
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two values of Rb
* that include the correct one. These values will be denoted here by Rb1

* and Rb2
*. 

Select Rb1
* and req 

*= 0.2, and perform a second-order interpolation between the corresponding three 

columns of (ρ c)eq
*, to determine a column with Rb1

*, req 
*= 0.2, and the correct value of (ρ c)eq

*. 

Repeat the second-order interpolation with req 
*= 0.35, and with req 

*= 0.5. You will obtain three 

columns of results, with Rb1
* and the correct value of (ρ c)eq

*. Perform a second order interpolation 

between these columns, by imposing the correct value of req 
*. You will obtain a column with Rb1

*, 

and with the correct values of (ρ c)eq
* and of req 

*. Repeat the procedure with Rb2
*, then perform a 

linear interpolation between the two columns of results obtained. 

The long-term ftg-functions for a single BHE depend on Rb
* and H 

*. The dependence on Rb
* is linear, 

but that on H 
* is not. Consider two values of Rb

* that include the correct one, denoted by Rb1
* and 

Rb2
*. Select Rb1

*, and perform a second order interpolation between the columns with the different 

values of H 
*, to obtain a column with Rb1

* and the correct value of H 
*. Repeat the procedure with 

Rb2
*, then perform a linear interpolation between the two columns of results obtained. 

The long-term ftg-functions for single-line bore fields with 2, 3, or 4 BHEs depend on Rb
*, H 

* and 

d 
*. The dependence on Rb

*can be determined by the correction coefficients c1(τ*) and c2(τ*). Select 

Rb
*= 0.2, H 

*= 800, and perform a perform a second order interpolation between the columns with the 

different values of d 
*, to obtain a column with Rb

*= 0.2, H 
*= 800, and the correct value of d 

*. Repeat 

the same procedure with H 
*= 1400 and H 

*= 2000, then perform a second order interpolation between 

the three columns obtained, to determine a column with the correct values of d 
* and of H 

*. Finally, 

apply the correction factor c1(τ*), if Rb
*< 0.2, or c2(τ*), if Rb

*> 0.2. 

If one denotes by x0, x1, x2 the values of a dimensionless parameter in three columns of results, by 

y0, y1, y2 the corresponding values of the ftg-function at a given instant of time, by x the correct value 

of the dimensionless parameter, and by y the corresponding value of the ftg-function at that time, the 

second order interpolation is given by 

( ) ( )2
0 0 0y y a x x b x x= + − + −  ,       (30) 

( )( ) ( )( )
( ) ( ) ( ) ( )

1 0 2 0 2 0 1 0
2 2

1 0 2 0 2 0 1 0

y y x x y y x x
a

x x x x x x x x
− − − − −

=
− − − − −

 ,      (31) 

( )2 0
2 0

2 0

y yb a x x
x x
−

= − −
−

 .                                                        (32) 

A check of the accuracy of the proposed interpolation method, in the case of one BHE with Rb
* = 0.15, 

req 
* = 0.28, (ρ c)eq

* = 0.85, and H 

* = 1100,  is illustrated in Figure 30, where the ftg-function obtained 

by interpolation is compared with that obtained directly by a finite-element simulation similar to those 

performed to determine the tables of the ftg-functions. The figure shows that the interpolation 



accuracy is excellent. The root-mean-square deviation between the interpolated values and those 

computed directly is 0.0011. 

Another check, regarding the long-term ftg-function of a single-line field of 4 BHEs with Rb
* = 0.25, 

H 

* = 1700, d 
* = 110, is illustrated in Figure 31. The figure shows that the interpolation accuracy is 

good. The root-mean-square deviation between the interpolated values and those computed directly 

is 0.0060. 

Two Excel files that perform automatically the interpolations are available in the Repository 

AMSActa (see Data Availability Section). The first file (“Interpolation short term”) yields the short-

term ftg-function for any set of values of Rb
*, req

*, and (ρ c)eq
*. The second one (“Interpolation long 

term 1-2-3-4 BHEs”) yields the long-term ftg-function for any single-line bore field with up to 4 

BHEs and any set of values of Rb
*, H 

* and d 
*. 

 

 

Figure 30. Ftg-function for a single BHE with Rb
* = 0.15, H 

* = 1100, req 
* = 0.28, and 

(ρ c)eq
* = 0.85, obtained by a finite-element simulation and by interpolation. 
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Figure 31. Long-term ftg-function for a field of 4 BHEs with H 

* = 1700, d 
* = 110, and Rb

* = 0.25, 
obtained by a finite-element simulation and by interpolation. 

 

12. Conclusions 

 

Very accurate tables of dimensionless fluid-to-ground thermal response factors, denoted by ftg-

functions, have been provided. By suitable interpolations, these tables allow determining the time 

evolution of the mean fluid temperature of any single-line bore field with up to four BHEs subjected 

to a given time-constant heat load. The working condition considered, namely that of isothermal fluid, 

is very close to the real condition of BHEs fed in parallel with the same inlet temperature. The tables 

are presented as columns of Excel files, where each column corresponds to fixed values of some 

dimensionless parameters. To reduce the number of combinations of the parameters, the ftg-functions 

have been divided into short-term ftg-functions, that hold for values of the dimensionless time 

τ* ≤ τ0
* = 102, and long-term ftg-functions, that hold for τ* ≥ τ0

*. The interval of dimensionless time 

considered is 10-4 ≤ τ* ≤ 106. For a ground with thermal diffusivity equal to 7.5 × 10-7 m2/s and a BHE 

radius rb = 7.5 cm, τ0
* corresponds to a time τ = 7.5 × 105 s ≈ 208.33 h, and the range of τ* considered 

corresponds to 0.75 s ≤ τ  ≤ 7.5 × 109 s ≈ 237.8 years. 

The results have been obtained by finite-element simulations implemented in COMSOL 

Multiphysics, where each BHE is modeled as a one-material cylindrical annulus with the same 

external radius as the BHE, containing a superconductive inner core with radius req and the same 

volumetric heat capacity as the annulus. The thermal conductivity of the cylindrical annulus and the 
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volumetric heat capacity of both the inner core and the annulus are such that the thermal resistance 

of the annulus is equal to the BHE thermal resistance, Rb, and the heat capacity of the cylindrical 

model is equal to that of the BHE. For fields with more than one BHE, the BHEs are thermally 

interconnected by a superconductive bar, that is subjected to the total heat flux. 

The short-term ftg-functions are independent of the number of BHEs, and have been provided as 

functions of the dimensionless BHE thermal resistance, Rb
*, of the dimensionless radius of the 

superconductive core, req
*, and of the dimensionless volumetric heat capacity of the materials of the 

model, (ρ c)eq
*. The long-term ftg-functions have been provided, for each bore field, as functions of 

the dimensionless BHE thermal resistance, Rb
*, of the dimensionless BHE length, H 

*, and, for fields 

with two or more BHEs, of the dimensionless distance between the BHEs, d 
*. The dimensionless 

buried depth of the BHEs has been fixed, equal to 24; for a BHE radius rb = 7.5 cm it corresponds to 

1.8 m, a typical value for temperate climates. 

Each simulation has been performed for the whole interval of dimensionless time. Then, both the 

short-term and the long-term ftg-functions have been slightly modified in a neighborhood of τ0
*, to 

obtain short-term ftg-functions and long-term ftg-functions that depend only on Rb
* at τ0

*. The 

corrections changed only the fourth decimal digit or, exceptionally, also the third decimal digit by 

one unit. 

A precise interpolation method between the columns of the given ftg-functions has been suggested 

and checked. Two Excel files that perform automatically the interpolations, for the short-term and the 

long-term ftg-functions respectively, have also been provided. After entering the dimensionless 

parameters that characterize any single-line BHE field with up to 4 BHEs, these files instantly yield 

a short-term and a long-term ftg-function perfectly joined at the separation instant, and can be 

exploited easily for the design of single-line BHE fields.  

The results have shown that the use of the FLS solution with uniform wall heat flux yields an 

overestimation of the ftg-functions that is negligible for a single BHE, but becomes significant for 

higher numbers of BHEs. For a line of 4 BHEs with H 
* = 1400 and d 

* = 90, the overestimation is 

equal to 2.73% for τ*= 105 and to 4.46% for τ*= 106. 

The main novelties of the study are the characterization of each BHE field by a few dimensionless 

parameters, the improvement of the BHE model presented in Ref. [30], the usefulness, the accuracy, 

and the speed and simplicity of use of the final results. 

The accuracy of the code employed for the single BHE, and of those employed for the fields with 3 

and 4 BHEs, has been checked by comparison with analytical solutions, through slight modifications 

of the codes in order to reproduce the analytical conditions. The comparisons yielded root-mean-

square deviations equal to 0.023%, 0.43%, and 0.49% of the mean value, respectively for 1, 3 and 4 



BHEs. The accuracy of the code employed for the field with 2 BHEs has been checked by comparison 

with the long-term ftg-function obtained for a single BHE, in the limit of an extremely high distance 

between the BHEs. The comparison yielded a root mean square deviation equal to 0.054% of the 

mean value. 

The results apply to single U-tube and double U-tube BHEs, with ratios between length and radius 

from 800 and 2000, i.e., length between 60 and 150 m for rb =7.5 cm, in the absence of appreciable 

effects of groundwater seepage. The extension of the results to cases with considerable effects of 

groundwater seepage and to other BHE-field geometries will be considered in future work. 
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