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ABSTRACT
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make
precision predictions for clustering on cosmologically relevant scales. Here, we use our new
IllustrisTNG simulations to study the non-linear correlation functions and power spectra of
baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We
find that baryonic effects increase the clustering of dark matter on small scales and damp the
total matter power spectrum on scales up to k ∼ 10 h Mpc−1 by 20 per cent. The non-linear
two-point correlation function of the stellar mass is close to a power-law over a wide range
of scales and approximately invariant in time from very high redshift to the present. The
two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky
Survey at its mean redshift z � 0.1, both as a function of stellar mass and when split according
to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass
range of109–1010 h−2 M�. Given this agreement, the TNG simulations can make valuable
theoretical predictions for the clustering bias of different galaxy samples. We find that the
clustering length of the galaxy autocorrelation function depends strongly on stellar mass and
redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ∼ 1.8
at redshift z = 0 to γ ∼ 1.6 at redshift z ∼ 1, beyond which the slope steepens again. We
detect significant scale dependences in the bias of different observational tracers of large-
scale structure, extending well into the range of the baryonic acoustic oscillations and causing
nominal (yet fortunately correctable) shifts of the acoustic peaks of around ∼5 per cent.
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1 I N T RO D U C T I O N

Ever since the discovery of cosmic large-scale structure (Geller &
Huchra 1989; Bond, Kofman & Pogosyan 1996), the clustering of
galaxies has been recognized as one of the most important observa-
tional constraints in cosmology (e.g. Tegmark et al. 2004; Sánchez
et al. 2006). Galaxy redshift surveys have found early on that the

� E-mail: volker.springel@h-its.org

two-point autocorrelation functions of different types of galaxies
are close to power laws at low redshift (Davis & Peebles 1983) and
that they evolve little with time over the range where observational
constraints are available, in stark contrast to the predicted rapid
change of the autocorrelation function of the underlying mass dis-
tribution in cold dark matter (DM) cosmologies (Davis et al. 1985;
Jenkins et al. 1998). Galaxies are thus at best a biased tracer of the
matter fields (Kaiser 1984; Davis et al. 1985; White et al. 1987). In
general, this bias relative to the mass distribution is much larger at
high redshift than in the present epoch (e.g. Springel, Frenk & White
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2006), and it exhibits an interesting scale dependence that recon-
ciles the very different shapes of the matter and galaxy correlation
functions.

The fact that there is a significant galaxy bias on large scales can
be readily understood from the expected clustering signal of DM
haloes when they are associated with the peaks of Gaussian random
fields (Bardeen et al. 1986). Insightful analytic models for the bias
of DM haloes as a function of their mass exist (Mo & White 1996;
Sheth & Tormen 1999), and when combined with a prescription
for how galaxies populate the haloes, approximate forecasts for the
galaxy bias can be obtained. However, the quantitative accuracy of
these predictions is difficult to assess without detailed simulation
models. In addition, on intermediate and small cosmological scales,
the bias becomes scale dependent, something not readily accessible
in simple theories of galaxy bias (see Desjacques, Jeong & Schmidt
2016, for an extensive review of the theory of bias). However,
a precise understanding of galaxy bias is necessary in order to
make optimum use of forthcoming cosmological surveys (e.g. DES,
eBOSS, DESI, or EUCLID), in particular those that target dark
energy. Simply discarding all data on scales that may be polluted
by non-linear bias may severely degrade the constraining power of
these surveys.

To make full use of the observational data and properly under-
stand potential systematic effects due to galaxy bias, it is imperative
to have self-consistent physical models of galaxy formation that link
galaxy properties directly to the evolving matter fields. Such mod-
els encode our best theoretical understanding for how galaxies may
have formed and can also properly account for second-order effects
such as assembly bias (Gao, Springel & White 2005; Wechsler et al.
2006; Yang, Mo & van den Bosch 2006; Wang et al. 2013; Zentner,
Hearin & van den Bosch 2014) or galactic conformity (Kauffmann
2015; Bray et al. 2016).

Semi-analytic models of galaxy formation coupled to sub-halo
merging trees extracted from DM-only simulations (Kauffmann
et al. 1999; Springel et al. 2001, 2005b), have for a long time been
one of the most successful approaches to predict the large-scale
clustering of galaxies (e.g. Guo et al. 2011). Here, a large volume
can be reached, and the parametrization of galaxy formation physics
used in these models has achieved a high degree of sophistication,
matching a large variety of observational data, both at the present
epoch and at high redshift (e.g. Kauffmann, White & Guiderdoni
1993; De Lucia et al. 2006; Somerville et al. 2008; Benson 2012;
Clay et al. 2015; Henriques et al. 2015; Croton et al. 2016; Lacey
et al. 2016; Cattaneo et al. 2017).

Simpler alternatives are sub-halo abundance matching (SHAM)
models (Behroozi, Conroy & Wechsler 2010; Guo et al. 2010;
Moster et al. 2010; Masaki, Lin & Yoshida 2013; Campbell et al.
2017) or, still simpler, halo occupation distribution (HOD) ap-
proaches (Peacock & Smith 2000; Berlind & Weinberg 2002).
While they lack a clear physical basis and are largely empirically
based, they are very popular as a simple means to model large
amounts of galaxy survey data. They do not properly capture ef-
fects such as assembly bias, but efforts have been made to outfit
these empirical techniques with additional environmental depen-
dences to address this deficiency (Hearin et al. 2016). We note
that some of the most recent empiric models for galaxy formation
(Zu & Mandelbaum 2015; van Daalen et al. 2016; Moster, Naab &
White 2017) actually employ galaxy clustering data as an input con-
straint, thereby limiting their ability to predict large-scale structure
observables.

Explicit comparisons between different semi-analytic models and
HOD approaches have shown that they can differ significantly in

their clustering predictions due to the different treatments of orphans
and satellite galaxies (Pujol et al. 2017). Similarly, Chaves-Montero
et al. (2016) have measured the two-point correlation function of
galaxies in the EAGLE simulation (Schaye et al. 2015) in various
mass bins, finding systematic deviations to SHAM models for the
same simulation. By construction, neither the semi-analytic models
nor the empirical SHAM/HOD approaches offer detailed predic-
tions for the clustering of the baryonic matter, nor can they account
for the back-reaction of baryons on the clustering of the DM, which
is associated with strong feedback effects. This omission of an ex-
plicit modelling of hydrodynamical processes thus adds significant
theoretical uncertainty in these models (Guo et al. 2016). Hydrody-
namical simulations are much more constraining and powerful in
this respect, even though they also still need to invoke empirical in-
put to parametrize uncertain feedback physics on small, unresolved
scales.

Early efforts to use hydrodynamical simulations of galaxy for-
mation to predict galaxy clustering (Katz, Hernquist & Weinberg
1999; Weinberg et al. 2004; Nuza, Dolag & Saro 2010) were
severely challenged by the small size of the feasible cosmological
volumes at the time, the comparatively low numerical resolution
that could be achieved, and the still limited understanding of the
feedback physics. Progress has slowly been made over the years
on all of these fronts, but only the advent of a new generation of
hydrodynamic cosmological simulations over the last couple of
years has made this approach a serious competitor to semi-analytic
and empirical galaxy formation models. Projects such as Illustris
(Vogelsberger et al. 2014b; Genel et al. 2014), EAGLE (Schaye
et al. 2015), MassiveBlack-II (Khandai et al. 2015), HorizonAGN
(Dubois et al. 2016), and Mageneticum (Dolag, Komatsu &
Sunyaev 2016) have succeeded in predicting galaxy populations in
reasonable agreement with observational constraints, throughout
quite large cosmological volumes, allowing in principle realistic
clustering predictions. For example, DeGraf & Sijacki (2017) have
studied the clustering of active galactic nuclei in Illustris, including
the bias of the black hole population relative to the DM, and Crain
et al. (2017) considered the clustering of atomic hydrogen sources
in EAGLE.

Still, the enormous cost of these calculations makes it difficult to
simultaneously reach high enough spatial resolution to adequately
track galaxy formation and to have, at the same time, large enough
volume to study galaxy clustering. As a result, the analysis of galaxy
clustering in hydrodynamical simulations has been typically re-
stricted to quite small scales, as in Artale et al. (2017) for EAGLE,
or Khandai et al. (2015) for MassiveBlack-II.

In this work, we aim to make a significant step forwards in this re-
gard. Our new TNG300 simulation employs a refined galaxy forma-
tion model and improved numerical treatments, and it expands the
volume by a factor of 20 with respect to Illustris and EAGLE, while
thanks to the use of 31.125 billion resolution elements it still has
sufficiently high resolution to track galaxy formation substantially
below L�. While our mass resolution in this large-volume simulation
is 8 times lower than in Illustris, it is still more than 20 times better
than, for example, in the Millennium simulation. Through our other
new simulation, TNG100, carried out in a smaller box and with
higher mass resolution (equivalent to Illustris), we can furthermore
explicitly check for numerical convergence and robustness on the
scales that are represented in this smaller, Illustris-like box.

The new TNG simulation model allows us to make interesting
predictions for the clustering of matter, including the gaseous, stellar
and supermassive black hole components, far into the non-linear
regime, and over a wider range of scales than previously explored
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with hydrodynamical simulations. We can directly use the simulated
galaxies to examine the relation of their clustering signal to the
underlying matter distribution, an analysis that is largely free of any
additional modelling assumptions. Finally, we can investigate how
the clustering of haloes and matter is impacted by baryonic effects.
Given that models for halo clustering are often used in analytical
and semi-analytical works in cosmology, even subtle effects here
could be quantitatively very important.

Clustering is most commonly studied either in real space through
the autocorrelation function or in Fourier space by means of the
power spectrum. While both viewpoints are Fourier transforms of
each other and are thus theoretically equivalent, in practice they
entail different measuring challenges and systematic effects. Hence,
they both are useful complementary ways of analysing data and
comparing to theory. We will therefore repeatedly give results both
for the autocorrelation function and the power spectrum, hoping
that this improves the utility of our findings for the community.

This paper is structured as follows. In Section 2, we introduce
our simulation methodology and discuss technical aspects of our
analysis. In Section 3, we present results for the clustering of dif-
ferent matter components, while in Section 4, we extend this to
different galaxy samples. In Section 5, we consider the clustering
of haloes in our simulations and their linear bias on large scales. In
Section 6, we then turn to the bias of galaxies and its dependence
on stellar mass, redshift, and scale. Finally, we discuss our results
and summarize our conclusions in Section 7.

2 M E T H O D S

2.1 Simulation set

The Next Generation Illustris Simulations 1 (IllustrisTNG) stud-
ied here are an ambitious suite of new hydrodynamical simula-
tions of galaxy formation in large cosmological volumes. They
are carried out with the moving-mesh code AREPO (Springel 2010)
and use an updated galaxy formation model described in detail in
Weinberger et al. (2017b) and Pillepich et al. (2018). The most
important physics changes with respect to our previous Illustris
simulation physics model (Vogelsberger et al. 2013) are an updated
kinetic AGN feedback model for the low accretion state (Wein-
berger et al. 2017b), an improved parametrization of galactic winds
(Pillepich et al. 2018), and the inclusion of magnetic fields based on
ideal magneto-hydrodynamics (Pakmor, Bauer & Springel 2011;
Pakmor & Springel 2013; Pakmor, Marinacci & Springel 2014).
There have also been numerous technical advances in the under-
lying simulation code, such as improvements in the convergence
rate of the hydrodynamical scheme (Pakmor et al. 2016) and the
use of a more flexible hierarchical time integration for gravitational
interactions (Springel et al. in preparation).

For the sake of brevity, we refer to the above publications and
references therein for a full description of the galaxy formation
model and the code, and tests carried out for it. We emphasize
that all model parameters of the IllustrisTNG runs have been kept
exactly the same as in our default model described in Pillepich et al.
(2018), and also no adjustments of these parameters are made for
different numerical mass resolutions, except for the gravitational
softening lengths and a sub-linear modification of the number of
neighbouring cells used in the black hole model.

For IllustrisTNG, we have carried out simulations with three dif-
ferent box sizes. TNG300 has a periodic box L = 205 h−1 Mpc =

1 http://www.tng-project.org

302.6 Mpc ∼ 300 Mpc on a side and a particle/cell number of
2 × 25003 at the highest resolution, which translates to a baryonic
mass resolution of 7.44 × 106 h−1 M� and a DM particle mass of
3.98 × 107 h−1 M�. The simulation series TNG100 has a box of
intermediate size, L = 75 h−1 Mpc = 110.7 Mpc ∼ 100 Mpc, and
uses a particle/cell number of 2 × 18203 at its highest resolution,
the same as the Illustris simulation. Finally, TNG50 has a small box
with L = 35 h−1 Mpc = 51.7 Mpc ∼ 50 Mpc and up to 2 × 21603

resolution elements, pushing the baryonic mass resolution down to
5.74 × 104 h−1 M�. This latter simulation is still in progress and
is not analysed in this paper. The gravitational softening lengths for
DM and stars in TNG300, TNG100, and TNG50 are 1.0, 0.5, and
0.2 h−1 kpc, respectively. The softening of the mesh cells is adaptive
and tied to their radii.

Besides carrying out these primary simulation boxes with full
physics at a nominally highest resolution, we have also run lower
resolution versions for each, which can be used to study numer-
ical convergence. We refer to them with an additional resolution
number. For example, ‘TNG300-1’ is our highest resolution level,
‘TNG300-2’ has 8 times fewer resolution elements and two times
worse spatial resolution, while ‘TNG300-3’ degrades the mass res-
olution by another factor of 8 and the spatial resolution by a further
factor of 2 with respect to ‘TNG300-2’. In addition, we have com-
puted DM-only counterparts for all of these simulations. Table 1
gives an overview of the most important numerical parameters of
the simulation set analysed here.

The cosmology has been chosen in accordance with recent Planck
constraints (Planck Collaboration XIII 2016),2 and is given by
�m = �dm + �b = 0.3089, �b = 0.0486, �� = 0.6911, and
Hubble constant H0 = 100 h km s−1Mpc−1 with h = 0.6774. The
initial conditions were prescribed at z = 127 using a linear theory
power spectrum computed for a normalization σ 8 = 0.8159 and
spectral index ns = 0.9667. When we compare to linear theory we
use this input spectrum, evolved to the corresponding redshift with
the linear growth factor. The majority of the literature results on
clustering are expressed in units that retain a dependence on the
Hubble constant through h = H0/(100 km s−1 Mpc−1), with length
units given in h−1 Mpc and stellar mass units given in h−2 M�, a
convention we also retain here for the sake of a simpler compari-
son. Note that the h dependence of the stellar mass unit originates
in the conversion from apparent to absolute magnitudes, whereas
the natural theoretical mass unit, for example for DM haloes, is
h−1 M�.

This paper is one of five introductory studies of IllustrisTNG,
each concerned with a different scientific analysis topic enabled
by the simulations. This work focuses on the galaxy and matter
clustering over a wide dynamic range. The other companion papers
study the colour-bimodality of galaxies (Nelson et al. 2017), the
properties of the predicted magnetic fields (Marinacci et al. 2017),
the stellar mass content of massive groups and clusters of galaxies
(Pillepich et al. 2017), and the chemical enrichment of the elements
magnesium and europium (Naiman et al. 2017).

2.2 Power spectrum measurement

The Fourier modes of the density contrast field for a set of N points
of mass mi in a periodic box of size L can be defined as

δk = 1

M

∑
i

mi exp(i k · xi), (1)

2 This is a change relative to our older Illustris project, which had been based
on WMAP-9 measurements.
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Table 1. Basic numerical parameters of the two primary runs of the IllustrisTNG simulation suite that are used here. We have carried out simulations
in three different periodic box sizes, roughly of size 300, 100, and 50 Mpc on a side, as reflected in the individual simulation names, and analyse the
two larger boxes in this paper. For each box size, we have run different numerical resolutions spaced by a factor of 8 in mass resolution. The runs with
gaseous cells are all full physics simulations that also included tracer particles, and for each of them, we have carried out a corresponding DM-only
simulation as well. The values quoted for mb and mdm give the baryonic (gas cells and star particles) and DM mass resolutions, respectively. The
gravitational softening lengths ε refer to the maximum physical softening length of DM and star particles. The softening of gaseous cells is tied to their
radius and allowed to fall below this value.

Series Run Boxsize Ngas Ndm Ntracer mb mdm ε

(h−1 Mpc) (Mpc) (h−1 M�) (h−1 M�) [h−1 kpc]

TNG300 TNG300(-1) 205 302.6 25003 25003 25003 7.44 × 106 3.98 × 107 1.0
TNG300-2 205 302.6 12503 12503 12503 5.95 × 107 3.19 × 108 2.0
TNG300-3 205 302.6 6253 6253 6253 4.76 × 108 2.55 × 109 4.0

TNG300-DM(-1) 205 302.6 – 25003 – – 4.73 × 107 1.0
TNG300-DM-2 205 302.6 – 12503 – – 3.78 × 108 2.0
TNG300-DM-3 205 302.6 – 6253 – – 3.03 × 109 4.0

TNG100 TNG100(-1) 75 110.7 18203 18203 2 × 18203 9.44 × 105 5.06 × 106 0.5
TNG100-2 75 110.7 9103 9103 2 × 9103 7.55 × 106 4.04 × 107 1.0
TNG100-3 75 110.7 4553 4553 2 × 4553 6.04 × 107 3.24 × 108 2.0

TNG100-DM(-1) 75 110.7 – 18203 – – 6.00 × 106 0.5
TNG100-DM-2 75 110.7 – 9103 – – 4.80 × 107 1.0
TNG100-DM-3 75 110.7 – 4553 – – 3.84 × 108 2.0

where M =∑
imi is the total mass. The periodicity restricts the avail-

able Fourier modes to integer multiples of 2π/L in each dimension.
Following the convention of Peebles (1980), the power spectrum
can then be defined as the mean expected power per mode,

P̂ (k) = 〈|δk|2
〉
, (2)

which can be estimated through averaging the power of all modes
k with a length around a prescribed value of k. The power spectrum
may also be expressed in dimensionless form through

	2(k) = 4πk3P (k)/(2π)3, (3)

where now

	2(k) = dσ 2

d ln k
(4)

gives the variance of the density field per unit ln k.
To obtain the power spectra of different matter components or

galaxy/halo samples, we use fast Fourier transforms (FFTs) similar
to the methods employed in the TreePM gravity solver of the AREPO

code. To this end, the mass points are assigned with cloud-in-cell
(CIC) assignment to a uniform Cartesian mesh, thereby obtaining a
discrete representation of the density fluctuation field. Upon Fourier
transforming the density field, we obtain δk in Fourier space, which
we deconvolve with the smoothing effects of the kernel CIC assign-
ment window. We then measure the mean power per mode in a set
of logarithmically spaced spherical shells in k-space.

As is well known, estimating the power spectrum from a finite
set of random tracers in this way is affected by discreteness effects
(e.g. Colombi et al. 2009). In particular, the power spectrum of a
random uniform distribution of points does not vanish, instead one
obtains so-called shot-noise power. For variable particle masses (as
we have here, especially for the black hole particles, and to a smaller
extent also for the stellar particles and gaseous cells), the shot-noise
power is given by

Pshot = L3/Neff, (5)

where Neff can be viewed as an effective number of tracers, given
by

Neff = M2〈
m2

〉 . (6)

Here, M is the total mass of the tracers and
〈
m2

〉 = (
∑

i m
2
i )/N is

the mean squared mass of the individual tracers, with N being their
total number. For equal mass tracers, Neff = N. If the tracer mass
is dominated by a small number of heavy particles, one can have
Neff � N.

We typically estimate the power spectrum P(k) of the underlying
density field by subtracting the shot-noise power from our raw
estimate, i.e. we use

P (k) = P̂ (k) − Pshot. (7)

On small scales, this is fully adequate for the non-linearly clustered
DM and the stars, which represent Poisson samples of the under-
lying density field. However, we note that DM haloes have a finite
size with some exclusion zone around them, such that the shot-
noise correction for the halo power spectrum is only approximately
correct (see e.g. Smith, Scoccimarro & Sheth 2007). Similarly,
at high-redshift, low-density regions are still in the linear regime
and feature a relatively ‘cold’ and ordered DM particle distribution
where the sampling is sub-Poissonian, so here the shot-noise cor-
rection is generally too large. A small effect of this kind is also
present on small scales for the pressurised gas, leading to a more
regular point distribution than for a Poisson process.

We typically use base grids of size up to 40963 for measuring the
power spectrum. Close to the Nyquist frequency kNyq = πNmesh/L

of the FFT mesh, aliasing effects can create spurious amounts of
excess power, therefore we only consider k < kNyq/8 as reliably
measured. To fully measure the power spectrum with a single mesh
up to the highest resolved spatial frequencies, kmax � 2π/ε, where
ε is the gravitational softening length, we therefore would need a
mesh of size Nmesh � 105, which is infeasible. To extend the dynamic
range, we therefore employ the ‘self-folding’ trick described in
Jenkins et al. (1998) and compute power spectrum measurements
on smaller scales by mapping the box on top of itself using a power-
of-two subdivision ffold of the full box. Effectively, this imposes
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periodicity of the box on a smaller size L/ffold, and a subsequent
measurement of the power spectrum determines only every f 3

fold-th
mode of the full box. Because the number of modes on small scales
is large, this still allows a faithful measurement of the mean power
per mode.

In order to cover the full dynamic range accessible in TNG300,
we actually apply the folding trick twice for a 40963 mesh, once
with a folding factor ffold = 16 and once with ffold = 162. Even when
staying below the Nyquist frequency by a conservative factor of 8,
this then gives an effective dynamic range of ∼130 000 between the
largest and smallest scales that are measured accurately – enough
for TNG300. As an alternative, it would also be possible to use
smaller FFTs and apply the folding trick more frequently (Colombi
et al. 2009).

2.3 Correlation function measurements

We measure the two-point correlation function of a point set in real
space using the classic definition:

ξ (r) =
〈
Npairs

〉
Nmean

− 1, (8)

where Npairs is the average number of other points found around
one of the points in a narrow spherical shell of radius r, and Nmean

is the mean number of points expected in the shell for a uniform
distribution of the points. If the particles have variable mass, the
points found in the shell are weighted by their mass, Nmean is re-
placed by the mean mass in the shell, and the contributions to the
ξ (r) estimate from each selected point are weighted with the central
point’s mass. When measured in this way, ξ (r) is equivalent to the
angle-averaged version of

ξ (r) = 〈δ(x) δ(x + r)〉, (9)

and it also corresponds to the Fourier transform of the power spec-
trum. Note, however, that this estimate for ξ (r) does not require a
shot-noise correction.

To accelerate the pair count, especially for large distances, we
use a tree-based neighbour finding that detects nodes that fall fully
within one of the logarithmic shells set-up for our ξ (r) measurement
and then counts the particles in one go without having to refine the
tree any further. For the large particle numbers, we have for some
of our samples (for example, for measuring the total matter auto-
correlation function in TNG300-1 this is in excess of 30 billion), it
would be overly expensive and unnecessary to determine neighbour
counts for each point. Instead, a random subset is sufficient to obtain
a measurement of ξ (r) that is negligibly affected by sub-sampling
noise. We usually use a limit of Nmax = 105 measurements of neigh-
bour counts to estimate ξ (r), i.e. if the particle number in the set is
smaller than Nmax, all points are considered and the pair counts are
thus complete, otherwise we randomly down-sample the selection
of points by a factor Nmax/N. Our results are not sensitive to the
choice of Nmax if chosen sufficiently high as we do here.

We usually refrain from estimating sample variance errors for our
simulated correlation functions as these errors are typically small
and subdominant compared to systematic effects from finite resolu-
tion and physics modelling. We note that measuring the correlation
function in real-space in this way, as opposed to trying to Fourier-
transform a measurement of the power spectrum, circumvents the
thorny issue of shot-noise corrections and is thus our preferred ap-
proach.

To compare to observational measurements of the correlation
function we usually employ the projected correlation function

wp(rp) = 2
∫ ∞

0
ξ

(√
r2
p + π2 dπ, (10)

which integrates along the line of sight to remove effects from
redshift-space distortions (Davis & Peebles 1983) in observational
determinations of galaxy clustering, where the measured ξ̃ (rp, π)
is a function of both the transverse distance rp and the line-of-sight
separation π (e.g. Fisher et al. 1994), whereas we can directly mea-
sure the spherically symmetric real-space correlation function ξ (r)
appearing in equation (10). We carry out the integration numeri-
cally, extending it to πmax ∼ 80 Mpc. We note that observational
studies, sometimes need to restrict the integration to smaller dis-
tances, especially at high redshifts, which can bias the result low,
for example by about 10 per cent when πmax ∼ 20 Mpc (de la Torre
et al. 2011).

For comparing to the linear theory autocorrelation function, we
compute it from the dimensionless power spectrum through

ξlin(r) =
∫ ∞

0
	2

lin(k)
sin(kr)

kr

dk

k
, (11)

where 	2
lin(k) is the linear theory input power spectrum extrapolated

to the redshift under consideration with the linear growth factor.

2.4 Bias measurement

We also determine the clustering bias of different samples of galax-
ies or haloes with respect to the total matter, both in real space and in
Fourier space. For example, when working in real space, we define
the ratio

b(r) = ξgal(r)

ξ (r)

]1/2

(12)

as the bias of a galaxy sample with measured correlation function
ξ gal(r) relative to the total mass. Here, ξ (r) is the (non-linearly)
evolved correlation function for the total matter as measured from
the simulation. Sometimes the linear theory correlation function is
used instead for defining the bias, but this is expected to amplify
the scale dependence of the bias which then also needs to account
even for mildly non-linear evolution of the clustering of matter.

Similarly, when working in k-space, we define the bias as the
ratio of the power spectra,

b(k) = Pgal(k)

P (k)

]1/2

. (13)

On the largest scales represented in the box, we expect that the
bias factors b(r) and b(k) become equal and constant with scale,
something that we call the linear bias. To measure the linear bias,
we compute the average bias for the largest modes represented
in the simulation box, assuming that scale independence has been
reached there. Where exactly scale-dependent effects set in is one
of the interesting questions that simulation models like TNG should
help to answer.

When measuring halo bias, we define the positions of haloes
through the locations of their potential minima, and their masses
through the spherical overdensity (SO) approach with a density
contrast of 200 relative to the critical density. For comparison with
literature results for the linear bias on the largest scales, we adopt
the often used parametrization of the halo mass in terms of peak
height, ν = δc/σ (M), where δc = 1.686 is the linearly extrapolated
overdensity for top-hat collapse, and σ 2(M) is the variance of the
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linearly extrapolated density field when filtered with a top-hat filter
containing the mass M, i.e.

σ 2(M) = 1

(2π)3

∫
P (k)|WR(k)|24πk2dk, (14)

where WR(k) is the Fourier transform of the top-hat window of
radius R. This filter-scale is set such that a sphere of radius R
contains the mass M of the halo at mean background density ρ, i.e.
M = (4π/3)ρR3.

The simulated galaxy samples we study are based on an iden-
tification of locally overdense, gravitationally bound structures in
the TNG simulations with the SUBFIND algorithm (Springel et al.
2001). We require objects to have at least a DM mass fraction of
10 per cent in order to filter out a small population of bound bary-
onic lumps that appear to be produced by disc fragmentation. We do
not distinguish between central and satellite galaxies in this work.
The stellar masses we assign to the simulated galaxies and which
are used in various cuts to select sub-samples are based on the mea-
sured stellar mass within twice the stellar half-mass radius of each
sub-halo, as described in more detail in the documentation of our
public data release of Illustris (Nelson et al. 2015). We note that
our clustering results are quite insensitive to the adopted definition
of galaxy stellar masses, and hence are also hardly affected by lack
of full convergence of the stellar masses for low mass galaxies in
TNG300.

3 T H E C L U S T E R I N G O F M AT T E R

In Fig. 1, we show the two-point correlation function of different
matter components in the TNG300 simulation at redshifts z = 0, 1,
3, and 7. We include results for the dark matter, the gas distribution,
the star particles (i.e. the stellar mass), the black hole mass, and
the total matter distribution. For comparison, the linear theory two-
point correlation function is given at the corresponding redshifts as
well.

Clear effects of non-linear evolution of the matter correlation
function are visible for r < 1 h−1 Mpc at z = 7, and they propagate
with time to ever larger scales as the matter correlation function
develops a characteristic ‘shoulder’ on small scales. As far as the
DM goes, this can be explained in terms of the halo model (see
Cooray & Sheth 2002, for a review) where the clustering signal on
small scales, below ∼2 h−1 Mpc, is dominated by particle pairs in
the same halo (‘one-halo term’), and the larger scale correlations
come from pairs in different haloes (‘two-halo term’). Note that
at z = 0 the non-linear ξ (r) of the total matter distribution falls
slightly below the linear theory ξ lin(r) at quasi-linear scales around
5 h−1 Mpc. This happens despite the fact that the non-linear power
spectrum is always larger than or equal to the linear power spectrum,
and can occur for a limited range of r due to the oscillatory factor
sin (kr)/kr in equation (11). This effect of non-linear evolution has
already been seen in early N-body simulations (e.g. Ma 1999) and
can be interpreted in physical terms as a reflection of the depletion
of matter on quasi-linear scales due to gravitational infall on to
haloes.

It is interesting that the baryonic gas starts to differ from the DM
in the one-halo regime already early on. At redshift z = 3, the gas is
actually more clustered than the DM on the smallest scales, while
its clustering signal is slightly suppressed on intermediate scales.
This changes qualitatively at low redshift, where the gas becomes
less clustered than the DM also on small scales, and the overall
suppression relative to DM becomes substantially larger. The strong

small-scale clustering of the gas at z = 3, which dominates the matter
power spectrum in this regime, reflects the intense cooling and star
formation rates at this epoch, while the clustering deficit at late times
is caused by the growing population of quenched, gas-poor galaxies
that have depleted their gas reservoirs through star formation and
expelled some of the baryons from their host haloes by feedback
effects. Interestingly, this is at least qualitatively consistent with
observational evidence for galaxies being baryon dominated in their
inner regions at the peak of galaxy formation activity (Genzel et al.
2017).

Another striking result is the very strong clustering of the stellar
mass, which at low redshift is quite close to a power-law correlation
function over a very large dynamic range. This clustering is nearly
invariant in time, and for scales r ≥ 1 h−1 Mpc agrees very well with
the power-law autocorrelation function of the stellar mass inferred
by Li & White (2009) for the data release 7 of the Sloan Digital
Sky Survey (SDSS) at a redshift of z ∼ 0.1, which is reproduced
as a dashed line in all the panels of Fig. 1. Although we find a
clear steepening of the stellar mass autocorrelation towards smaller
scales, this can be viewed as a first indication that the clustering
of our simulated galaxies is in reasonably good agreement with
observations. Also, it readily indicates that the bias of the stellar
mass relative to the DM is large at high redshift, and then declines
with time. This is also illustrated by the projected DM and stellar
density fields shown in Fig. 2 for the TNG300 simulation. The time
evolution from z = 3 to 0 shows the gradual emergence of an ever
more prominent cosmic web out of an initially nearly uniform DM
distribution. In stark contrast, the stellar mass density field is highly
structured already early on and evolves comparatively little with
time.

Fig. 1 further shows that the clustering of the black hole mass
in the simulations follows that of the stellar mass closely at z = 0,
except on small scales, where the black hole two-point correlation
function starts to fall short at ∼200 h−1 kpc and then suddenly drops
to extremely low values for scales below about 20 h−1 kpc. This can
be understood from the rapid merging of black hole pairs in our
simulation model once they occupy the same halo. At the resolution
of our simulations, the sinking of black holes to the potential minima
of haloes due to dynamical friction cannot be followed accurately,
hence we reposition black holes to the potential minimum of their
host halo once they are close to the halo centre. This effectively
assumes that dynamical friction is very efficient in bringing the
black holes together and that black hole binaries are formed quickly
and then merge on a short time-scale. Towards higher redshifts, the
corresponding influence on the clustering of black holes is expected
to occur on slightly smaller scales due to the smaller sizes of haloes
there, consistent with our results. We note that we use the ‘internal’
black hole mass (Springel, Di Matteo & Hernquist 2005a) associated
with the sink particles for computing the clustering signal, not the
sink’s inertial masses. These two can differ at high redshift, where
the seed black hole masses are smaller than our nominal baryonic
resolution.

The clustering signal of the black holes is dominated by the most
massive black holes, which have already grown significantly by
gas accretion, greatly helping to limit the dependence of our black
hole clustering results on the seeding prescription. Interestingly,
the black hole mass exhibits a mild positive bias with respect to
the stellar mass towards high redshift. This can be interpreted as a
signature of top–down growth of black holes, where they first grow
preferentially in more massive haloes than the stars, and hence
end up being more strongly biased with respect to the matter. This
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Figure 1. The matter autocorrelation function for different mass components in our high-resolution TNG300 run at redshifts z = 0, 1, 3, and 7. We show
results for stellar matter, gas, DM, black holes, and all the matter, as labelled. The linear theory correlation function is shown in grey for comparison. The
dashed line gives the autocorrelation function for all the stellar mass estimated by Li & White (2009) for the low redshift Universe using nearly half a million
galaxies from the Sloan Digital Sky Survey. This power law, ξ�(r) = [r/(6.1 h−1 Mpc)]−1.84, is reproduced in all the plots as a reference point.

difference tends to vanish towards the present epoch, at which point
a largely universal ratio between stellar mass and black hole mass
in galaxies is established.

In Fig. 3, we consider the cross-correlation functions between
DM, gas, and stars/black holes3 at z = 0. The measured correlation

3 In this plot, we add the black hole mass to the stellar mass for simplicity.

functions fulfil the relationship

ρ2ξ (r) = ρ2
dmξdm(r) + 2ρdmρgasξdm,gas(r)

+ ρ2
gasξgas(r) + 2ρdmρ�ξdm,�(r)

+ ρ2
� ξ�(r) + 2ρgasρ�ξgas,�(r), (15)

by construction. The measurements demonstrate that all three mass
components generally trace each other well, particularly on large
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Figure 2. Projected DM and stellar density fields in TNG300, at redshifts z = 0, 1, and 3. The slices are 205 h−1 Mpc wide (full width of the box) and
25 h−1 Mpc thick, with the density fields being normalized to the mean density in each panel. The density field of the stars has been smoothed with a Gaussian
filter of width 160 h−1 kpc to make it more volume filling and hence better visible. While the density contrast in the DM distribution progressively increases
with time, the clustering of the stellar matter is already strong at high redshift and evolves little with time.

scales. This can also be explicitly verified by considering a gener-
alized correlation coefficient, such as the ratio

κdm,gas(r) = ξdm,gas(r)

ξdm(r)ξgas(r)
(16)

for DM and gas, and similarly for other pairs of matter compo-
nents, as shown in the lower panel of Fig. 3. For a simple linear
bias, we expect κ ∼ 1, which is indeed achieved for all pairs of
matter components on large scales. On smaller scales, the degree of
correlation between the different fields becomes however weaker.
Interestingly, at z = 0, the stars correlate better with DM than gas on
halo scales and below, probably a reflection of the stronger align-
ment of the centrally concentrated distributions of stars with the DM
cusps.

In Fig. 4, we consider the power spectrum results for the same
set of redshifts as shown in Fig. 1. The qualitative behaviour of
the different mass components is consistent with the real-space
clustering discussed earlier. While the power spectra of the stars,
black holes and the DM show comparatively little evolution between
z = 1 and 0, the gas actually shows a decrease in power at small
and intermediate scales. This implies a non-monotonic evolution of
the gas clustering with time, which can be interpreted as a signature
of strong late-time feedback effects in the gas distribution. These
results should be very informative for attempts to model the non-
linear matter power spectra of stars and the gas phase analytically
through extensions of the halo model (Fedeli 2014; Fedeli et al.
2014).

We examine the resolution dependence of our two-point corre-
lation function estimates for the full physics simulation in Fig. 5,
separately for the stellar, DM, and gaseous mass components. The
clustering signal of the gas, DM, and stars is robustly reproduced
even when varying the mass resolution by a factor of more than
500 between TNG100-1 and TNG300-3, except for an excess of the
clustering of the stars in the lowest resolution TNG300-3 simula-
tion. In this calculation, star formation in low-mass haloes is poorly
resolved and anaemic, so that stars occupy preferentially more mas-
sive and rarer haloes that are more strongly biased. There are also
some small differences between the runs close to the spatial resolu-
tion limits, which are of the expected magnitude. More importantly,
the TNG100 model shows a significant deficit of clustering at very
large scales, already setting in for r > 5 h−1 Mpc. This is due to
the limited box size of this simulation, which clearly affects the
clustering on scales typically probed in galaxy surveys. The im-
pact of the limited box size can be estimated by computing ξ (r)
through equation (11), but restricting the integration to k ≥ 2π/L,
i.e. modes represented in the box. This shows that the linear theory
two-point correlation function of the TNG100 box size is expected
to turn negative by r � 20 h−1 Mpc, whereas the TNG300 simu-
lation is affected only by 10 per cent on this scale, and by much
less on smaller scales. The correlation function of TNG300 turns
negative at a scale of r � 50 h−1 Mpc.

A corresponding analysis of the resolution dependence of the
total matter power spectrum is given in Fig. 6, with the left-hand
panel focusing on our full physics simulations, while the right-
hand panel considers the corresponding DM-only simulations. On
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Figure 3. Matter cross-correlation functions ξab(r) in real space between
different mass components, where a and b stand for stellar mass, DM or gas,
respectively. The autocorrelation functions of stars, DM, and gas (from top to
bottom) are indicated with thin grey lines, for reference. The bottom panel
expresses the three cross-correlation functions in units of the geometric
mean of the autocorrelation functions of the two involved matter fields.
This pseudo-correlation coefficient approaches unity only on large scales,
showing that only there a simple linear bias suffices to describe the relation
between the two fields.

large scales the power spectra agree very well, to better than
1 per cent for scales down to a few times 0.1 h Mpc−1 for the full
physics simulations, and down to ∼10.0 h Mpc−1 for the DM-only
runs.

Given the numerical robustness of the large-scale clustering re-
sults, it is interesting to examine the overall impact of baryonic
physics on the clustering of matter, which is arguably one of the
most interesting effects that can be studied with hydrodynamic
simulations, as highlighted first by van Daalen et al. (2011) and
Semboloni et al. (2011). In Fig. 7, we show the matter power spec-
trum of TNG300 relative to the corresponding one of the DM-only
simulation, at redshifts z = 0, 1, 3, and 7. For comparison, we
also include results for TNG100 and Illustris, as well as for the
EAGLE simulation at z = 0 (Hellwing et al. 2016). At the present
epoch, the total change of the matter power spectrum is described
by a characteristic suppression of power by ∼20 per cent at scales
of k ∼ 10 h Mpc−1, and a strong and rapidly rising enhancement
of power setting in at scales around ∼100 h Mpc−1. The effect we
see in IllustrisTNG is noticeably weaker than in Illustris, where

the suppression extends to considerably larger scales (the scale for
which the power is suppressed by more than 10 per cent is almost
an order of magnitude larger), and is stronger in amplitude, too.
Interestingly, however, the effect in TNG is qualitatively similar to
the EAGLE simulation (Hellwing et al. 2016), although it still is a
bit stronger and extends to slightly larger scales. This is despite the
fact that we use fundamentally different feedback prescriptions and
numerical techniques, suggesting that the size of the expected AGN
feedback impact is surprisingly robust to details of the modelling.

At higher redshifts, there are also some striking differences be-
tween Illustris and IllustrisTNG. Apparently, the modified AGN
model and different wind parametrization in these two simulations
also affects the timing when the suppression of power on inter-
mediate scales develops. In Illustris, this emerges later than in the
IllustrisTNG model.

The modification of the total matter power spectrum in the full
physics simulation is in part due to a redistribution of baryons by
non-gravitational physics, and in part due to a change of the DM
distribution as a result of the gravitational coupling to the baryons.
In Fig. 8, we look at the latter effect in isolation at z = 0. The
modification of the DM distribution alone is sizeable but overall
weaker than that of the total matter, showing that the drastic change
in the baryon distribution relative to the DM brought about by galaxy
formation physics is a primary factor in determining the change of
the total matter power spectrum. Interestingly, the DM clustering not
only shows a damping on intermediate scales of k ∼ 30 h Mpc−1, but
also an enhancement of a few percent on ∼10 times larger scales,
around k ∼ 3 h Mpc−1, where Illustris is still damped. The latter
effect is nearly twice as large in EAGLE than in IllustrisTNG, but
qualitatively the two simulations are relatively similar, and exhibit
a significant difference to the much stronger effects in Illustris.

We can also consider the impact of baryonic effects on the two-
point correlation function (see also van Daalen et al. 2014), which is
shown in Fig. 9 for TNG300 and TNG100 at z = 0. The predictions
of both simulations agree very well, given their substantial reso-
lution and box-size differences. The solid lines report the relative
change of the total matter clustering with respect to the cluster-
ing of the corresponding DM-only simulation. The full physics
simulations show a suppression of the clustering signal by about
20 per cent on scales of 20–100 h−1 kpc, and a mild increase by
about 5 per cent at around 800 h−1 kpc. Part of these changes are
due to a modification of the DM clustering itself, as shown by the
dashed lines, but the relative clustering difference of the baryons is
responsible for the bulk of the effect on small scales. At a distance
scale of 1 h−1 kpc, the clustering of DM is increased by approxi-
mately 40 per cent in the full physics calculations, while the total
clustering strength is already more than twice as strong than in the
corresponding DM-only simulations.

4 T H E C L U S T E R I N G O F G A L A X I E S

IllustrisTNG predicts galaxies directly in terms of gravitationally
bound groups of stars that are identified by the SUBFIND algorithm
(Springel et al. 2001). For each of these galaxies, we have obtained
measurements of basic properties such as stellar mass, luminosity
in different filter bands, morphology, size, or chemical abundances.
Studying these properties of the predicted galaxy population lies
traditionally at the heart of analysing hydrodynamical simulations
of galaxy formation. Much less attention has thus far been given to
analysing galaxy clustering in such simulations, in part due to the
box-size limitations discussed above.
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Figure 4. Matter power spectra for different mass components of the TNG300 simulation at redshifts z = 0, 1, 3, and 7, as labelled. The horizontal dashed
lines in each panel give the formal shot-noise contribution of the corresponding mass component. The shot noise has been subtracted in all cases, and we
continue to plot the obtained estimate for the underlying power spectrum below the shot-noise limit, albeit with a thinner line style to indicate the uncertainty
of this correction due to the fact that some of the tracers do not trace the underlying field in a perfectly Poissonian fashion. The grey lines show the linear
theory power spectra at the corresponding redshifts.

This makes it all the more interesting to consider the cluster-
ing of galaxies selected according to different criteria in our large
volume TNG300 simulation, and to compare it to observational
constraints from galaxy surveys. In Fig. 10, we compare the galax-
ies at redshift z � 0.1 to data from the SDSS, as compiled by
Guo et al. (2010, 2011). The SDSS provides by far the most
accurate characterization of the low-redshift galaxy distribution
(Zehavi et al. 2011), and thus imposes stringent constraints on any
galaxy formation model. We compare six bins of stellar mass to
SDSS, finding in general rather reassuring agreement for the pro-
jected correlation functions, with a match of comparable quality
to that of current physically based semi-analytic models of galaxy

formation (Henriques et al. 2017; Kang 2014) or stochastic HOD
models (Zu & Mandelbaum 2017). Also note that TNG300 and
TNG100 agree rather well, except for large scales, r ∼ 10 h−1 Mpc,
where TNG100 lies noticeably lower (an effect that is however ex-
pected due to the box size limitation of this simulation), and for
the largest stellar mass sample, where we have too few galaxies
in TNG100 to measure the correlation function for small separa-
tions. We are not aware that a similar degree of agreement in the
clustering data over a comparably large dynamic range has ever
been found for another hydrodynamic simulation of galaxy forma-
tion (see Artale et al. 2017, for one of the most successful other
models).
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Figure 5. Convergence of the autocorrelation functions in real space
for stellar matter, DM, and gas. We show measurements for the high-,
intermediate-, and low-resolution runs of TNG300, and also compare to the
highest resolution run of TNG100, which has about eight times better mass
resolution than TNG300-1. The lines extend on small scales to each run’s
gravitational softening length. In the upper panel, the thickest line style
corresponds to the highest resolution TNG300-1 model, with the lower res-
olution versions TNG300-2/3 shown with progressively thinner line styles.
The TNG100 run is displayed with turquoise thick lines. In the lower panel,
we show the relative differences of the simulations relative to TNG300-1,
as labelled. The convergence between TNG100 and the highest resolution
TNG300 run is rather good, even for the autocorrelation function of the stel-
lar mass. For distances beyond ∼5 h−1 Mpc, TNG100 shows a significant
(and expected) deficit of clustering strength due to its limited box size.

We extend this comparison by splitting up the samples in terms
of galaxy colour in Fig. 11, using the cut

g − r = log(M�/[h−1 M�]) × 0.054 + 0.05 (17)

to distinguish between red and blue galaxies. Colours are assigned
using Bruzual & Charlot (2003) stellar populations synthesis mod-
els, assuming a Charbrier IMF. This lies at the bottom of the valley
separating the two populations and is similar to Henriques et al.
(2017), but does not make any attempt to include dust corrections.
The match to the blue galaxies is excellent, essentially for all stellar
masses. The clustering of red galaxies appears slightly overesti-
mated for intermediate stellar masses. We note however that the
detailed size of this discrepancy depends on where the colour split
is taken (see also the companion paper by Nelson et al. 2017), so
we think this difference needs to be taken with a grain of salt. In
general, however, we consider the level of agreement reassuring. It
suggests that the quenching physics that operates in our hydrody-
namical simulations in a self-consistent manner can broadly account
for the observed clustering levels of red and blue galaxies, and their
detailed variations with stellar mass, which is a non-trivial success.
At the same time, the small residual differences can be used in
the future to test extensions or modifications of the physics model
implemented in the simulations.

In Fig. 12, we consider clustering at much higher redshift of
around z ∼ 1, comparing different stellar mass samples of TNG300
to results published for the VIMOS VLT Deep Survey (VVDS;
Meneux et al. 2008) and the DEEP2 galaxy redshift survey (Mostek
et al. 2013). The clustering signal of the simulated galaxies agrees
very well with DEEP2. However, while it appears close in shape to
VVDS, it is clearly somewhat stronger than this survey, a finding
similar to that reported by Meneux et al. (2008) for the Millen-
nium simulation (Springel et al. 2005b), which shows a comparable
excess. We note however that VVDS may be affected by cosmic
variance due to the limited survey volume and that the clustering
lengths reported by the survey lie low compared to other surveys at
similar redshift.

We make this more explicit in Fig. 13, where we show the cor-
relation length r0 (defined as ξ (r0) = 1) for different stellar mass
samples from TNG300 as a function of redshift (left-hand panel),
or for samples at different redshift as a function of stellar mass
(right-hand panel). The latter is also compared to results reported
for various galaxy surveys. Clearly, the clustering strength of the
simulated galaxies is a strong function of stellar mass at any red-
shift. We note that the analysis of small-scale clustering of Artale
et al. (2017) in EAGLE did not find any clear evidence for an in-
crease of clustering strength with stellar mass or r-band luminosity,
in contrast to what we obtain here.

We also find that for a given stellar mass, the clustering length is
a function of redshift, but depending on stellar mass, the evolution
with redshift is not necessarily monotonic. For intermediate stellar
masses, the clustering length first declines towards high redshift
and then increases again, whereas for samples of very massive
galaxies, it only increases towards higher redshift. The correlation
length of the total matter, also included in Fig. 13 (left-hand panel),
behaves very differently and monotonically declines towards high
redshift. Evidently, the bias between galaxies and matter is thus a
strong function of redshift; it is generally high at early times, and
then comes down and approaches values of order unity towards the
present epoch.

It is interesting to compare various observational results for the
clustering length to these simulation predictions, as we do in the
right-hand panel of Fig. 13. We consider data from VVDS (Meneux
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Figure 6. Resolution dependence of the total matter power spectrum in the full physics runs (left-hand panel), and the DM only runs (right-hand panel) at
z = 0. In both cases, we show results for the TNG300-1/2/3 simulations and the TNG100 level-1 simulation. The horizontal lines give the formal shot-noise
limits for variable mass Poissonian tracers of an underlying density field. This shot noise has been subtracted in all measurements. The grey lines indicate the
linear theory power spectrum, for comparison. The bottom panels show the differences to the TNG300-1 run in terms of the natural logarithm of the power
ratio, which allows to easily read off relative differences in per cent. The grey bands in the bottom panels denote differences of 10 per cent (light) and 1 per cent
(dark), respectively.

et al. 2008), the Palomar Observatory Wide-field Infrared Sur-
vey (POWIR Foucaud et al. 2010), VIPERS (Marulli et al. 2013),
the NEWFIRM Medium Band Survey (NMBS Wake et al. 2011),
GOODS-N (Lin et al. 2012), and zCOSMOS (Meneux et al. 2009).
At a given stellar mass, our simulations predict only weak variations
of clustering strength with redshift. For luminous galaxies with stel-
lar mass above 1010 M�, the clustering strength increases towards
higher redshift, a trend that is reversed for lower mass galaxies at
low redshift. We find that our simulation predictions are broadly
consistent with the data, which itself shows relatively large scat-
ter, precluding any strong conclusions at this point about whether
these subtle trends are also seen in the data. The theoretical results
obtained here certainly provide strong motivation to start using the
evolution of clustering length for specific galaxy samples as an
important test of galaxy formation models.

Many observational studies fit power laws to the projected or real-
space correlation functions in order to infer the correlation lengths
and to represent the results in compact form. This is motivated by the
close to power-law shape of the galaxy autocorrelation function at
low redshift. In Fig. 14, we show the power-law slope as a function
of redshift obtained by fitting each of our measured galaxy corre-
lation functions for different stellar mass samples, and at different
redshifts, over the range 1 < r/(h−1 Mpc) < 15. Strikingly, there is
rather little dependence of the slope on stellar mass, at least at low

redshift. The slope is γ ∼ 1.6 at redshift z � 1, and then steepens to
γ � 1.8 at z = 0. At intermediate redshifts, the low-mass stellar mass
samples show somewhat shallower slopes than the galaxy samples
with higher stellar mass, a difference that progressively becomes
larger as they steepen again towards high redshift. When compared
to observations, such as the VIPERS survey analysed in Marulli
et al. (2013), we see that they show a very similar dependence of
clustering slope on redshift. Interestingly, this survey also failed to
detect a significant stellar mass dependence of the slope for fixed
redshift, which is quite consistent with our results.

5 LARGE-SCALE HALO CLUSTERI NG

We now turn to an analysis of halo clustering, which is a central
concept in empirical models for galaxy large-scale structure, such
as HOD models, or more recently in SHAM models. It is generally
believed that galaxies inherit the large-scale bias of their host halo;
hence, understanding halo bias is often used as a way to sidestep the
issue of addressing galaxy bias directly. Recently, Jose, Lacey &
Baugh (2016) formulated a model for the scale dependence of halo
bias which offers the prospect to also extend this to quasi-linear
scales.

It has long been realized that DM haloes more massive than
the characteristic halo mass are positively biased with respect to

MNRAS 475, 676–698 (2018)



688 V. Springel et al.

Figure 7. The ratio between the total matter power spectrum of different full physics runs and the total power spectrum of their DM-only companion runs
at different redshifts, as labelled. We show results for TNG300, TNG100, and the Illustris simulation, and at z = 0 also include a measurement for EAGLE
by Hellwing et al. (2016). We plot the natural logarithm of the ratio to allow easily reading off relative differences in per cent. The light and dark grey areas
indicate relative differences of 10 per cent and 1 per cent, respectively.

the matter, and less massive haloes exhibit a negative bias. This
can be understood based on the clustering of peaks in Gaussian
random fields. Similar to derivations of the halo mass function,
this gives rise to analytic models for halo bias. This is concisely
expressed in the model of Mo & White (1996), which determines the
halo bias in terms of peak height, making the theoretical prediction
in principle universal and independent of redshift. Many N-body
simulations have been used to test this prediction, generally finding
that it works quite well, but with some residual discrepancies that
motivate the development of improved models (e.g. Sheth & Tormen
1999; Pillepich, Porciani & Hahn 2010; Tinker et al. 2010).

The situation is reminiscent of the halo mass function, where
the basic spherically symmetric formulation by Press & Schechter
(1974) provides a decent first order approximation that can be sub-
stantially improved by models of ellipsoidal collapse (Sheth, Mo &

Tormen 2001). However, the latter still shows some discrepancies
compared to N-body simulations, which can be addressed through
empirical fitting functions to the numerical results (e.g. Jenkins et al.
2001).

In Fig. 15, we show the linear halo bias on the largest scales,
as a function of peak height, in the form it has been analysed in
a large number of cold DM simulation studies. We include re-
sults for the full physics run of TNG300 (filled circles) and for the
DM-only version of the same model (open circles). For comparison,
we also show the predictions of Mo & White (1996), Sheth & Tor-
men (1999), and Tinker et al. (2010). The latter provides clearly a
very good fit to our results. The differences between the full physics
simulation and the DM-only results are displayed in the lower panel
of Fig. 15 and are quite small. There are some systematic distortions
in the halo bias of up to 3 per cent induced by baryonic physics. We
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Figure 8. Impact of baryonic physics on the DM power spectrum of differ-
ent full physics runs at z = 0. This is shown through ratios of the DM power
spectrum to the power spectrum of the corresponding DM-only simulation.
We include results for TNG300, TNG100, and Illustris, as well as a mea-
surement for the EAGLE simulation by Hellwing et al. (2016). The light and
dark grey areas denote variations of 10 per cent and 1 per cent, respectively.

Figure 9. Impact of baryonic physics on the total and DM autocorrelation
function in TNG300 and TNG100 at the present day. The measurements
shown compare the full physics correlation function of all the mass (solid)
and of just the DM (dashed) to the correlation function of the corresponding
DM-only simulation.

argue that these changes can be largely explained by a modifica-
tion of the halo masses themselves. For example, when feedback
effects expel gas from a halo, its mass is lowered and its subsequent
non-linear growth can be slowed as well. The associated initial den-
sity fluctuation peak is not changed by this, however. Knowing this
halo mass change quantitatively (which we determine below), we
can predict the expected change of halo bias as a function of peak
height, based on the model of Tinker et al. (2010). The result of
this is shown as a solid line in the lower panel of Fig. 15. While
this does not reproduce the (somewhat noisy) measurements in de-

tail, the predicted effect is of very similar magnitude to the one
measured, suggesting that this is indeed the dominating effect.

This estimate has made use of the results of Fig. 16, where we
show the mass change of haloes due to the inclusion of baryonic
physics. To this end, we compare the M200 masses of haloes at
equal comoving abundance in corresponding pairs of full physics
and DM-only simulations. This is simply achieved by sorting the
haloes by mass in descending order, and then comparing them at
equal rank, a procedure that yields very similar (albeit not identical)
outcomes to cross-matching haloes by the particle-IDs of their DM
content. We include results for TNG300, TNG100, and the Illustris
simulation. In TNG, a particularly strong impact of baryonic physics
occurs for halo masses around 1013 h−1 M�, which is due to the
comparatively sudden onset of strong kinetic-mode AGN feedback,
as can be verified through the increase of the associated energy
input in galaxies of the associated stellar mass (Weinberger et al.
2017a). However, consistent with the reduced impact of baryonic
physics on the power spectra, we find that the TNG model shows
overall a much weaker impact on halo masses than the Illustris
feedback model (see also Vogelsberger et al. 2014b). In particular,
the suppression of halo masses due to AGN feedback sets in at
higher masses, and is restricted to a narrower mass range, with
poor clusters of galaxies already being largely unaffected. On the
other hand, in the halo mass range of 1010–1011 h−1 M�, the TNG
model shows a stronger effect on its halo masses than Illustris,
reflecting its modified wind model. Looking also at the results for
other feedback implementations (Velliscig et al. 2014) is therefore
clear that the variation of haloes masses depends quite sensitively
on the employed feedback model.

6 SC A L E - D E P E N D E N T B I A S

In Fig. 17, we consider the bias of all the stellar mass in our TNG300
simulation relative to the total matter, here in terms of the real-space
clustering. This corresponds to b(r) = [ξ�(r)/ξ (r)]1/2 for the results
in Fig. 1. We clearly see the very large positive bias of about b ∼ 7
at the highest examined redshift, which then progressively comes
down towards the present epoch. At z = 0, the bias of the stellar
mass is still positive with a value of about b � 1.4. Interestingly, the
scale dependence of this bias sets in earlier (i.e. on larger scales) at
high redshift than at low redshift.

A scale-dependent bias can be a great challenge for the inter-
pretation of galaxy redshift surveys. Such a scale dependence will
naturally arise from mild quasi-linear and fully non-linear evolu-
tion, but even when the bias is considered relative to the non-linearly
evolved density field, it is not clear a priori up to which scales galax-
ies can be used as faithful tracers for the mass distribution by simply
invoking the value of the linear bias on the largest scales. Another
complication is that the bias is expected to strongly depend on the
sample selection procedure. Tracers with the same number density
but of different type can exhibit substantially different biases, and
can also be affected to different degrees by scale dependence.

In Fig. 18, we demonstrate the dependence on tracer type explic-
itly by showing the linear bias on large scales as a function of tracer
number density, for three different selection criteria. In particular,
we consider haloes according to their virial mass (M200), galaxies
selected by their stellar mass (M�), and galaxies selected by their
instantaneous star formation rate (Ṁ�). In each case, the objects
are sorted in descending order and included top–down until the
corresponding space density is reached. Remarkably, the galaxies
selected according to their star formation rates show only a very
weak variation of their bias (which is in fact an anti-bias) with
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Figure 10. Comparison of the projected two-point galaxy correlation functions of TNG300 (solid) and TNG100 (dotted) at z = 0.1 to the SDSS in six different
stellar mass ranges. The data are taken from Guo et al. (2011) and Henriques et al. (2017). Overall, the agreement is remarkably good, at about the same level
of the currently best Munich semi-analytic galaxy formation model (Henriques et al. 2017).

tracer density. This shows that these galaxies do not tend to pop-
ulate the most massive haloes – which makes sense because these
haloes are often quenched and hence are not natural hosts of star-
forming galaxies. In contrast, galaxies selected by stellar mass show
a large positive bias that increases strongly towards more luminous
systems. This reflects the trend of higher bias values for rarer and
hence more massive haloes.

We have compared our results in Fig. 18 to a similar analysis
carried out by Angulo et al. (2014) for the Millennium-XXL sim-
ulation (Angulo et al. 2012) on the basis of a semi-analytic galaxy
formation model. There is good qualitative agreement, but our bias
values are systematically higher. Most of the difference can simply
be explained by the higher value of σ 8 = 0.9 adopted in Angulo
et al. (2014). As the clustering pattern of a given tracer evolves com-
paratively little in time, whereas the DM autocorrelation on large
scales grows according to linear theory, we can to first order correct
for this by comparing to an earlier output of Millennium-XXL when
its normalization corresponds to our value of σ 8 = 0.8159. Or sim-
pler still, we can adjust their bias results by a factor of 0.9/0.8159,
thus effectively bringing the MXXL’s DM correlation function to
the less evolved state corresponding to our simulation. This yields
the dotted results in Fig. 18, which are in good agreement with
TNG300.

Instead of just looking at the linear bias on the largest scales, it
is much more interesting to consider the bias of different tracers
also as a function of scale. We do this in Fig. 19 for the real-space
two-point correlation function. Again, we consider tracers with dif-
ferent space densities, with five values ranging from 3 × 10−4 to

3 × 10−2 h3 Mpc−3, using a selection by halo mass, galaxy stellar
mass, instantaneous star formation rate, and current specific star for-
mation rate (Ṁ�/M�). For our TNG300 volume, the samples then
contain 2585 objects at a space density of 3 × 10−4 h3 Mpc−3 and
25 8454 at the highest considered density of 3 × 10−2 h3 Mpc−3. We
note that these space densities cover the range considered in a num-
ber of ongoing or planned large galaxy surveys that target cosmol-
ogy, hence we expect effects of similar magnitude in real galaxy sur-
veys. For definiteness, for the halo samples the limiting M200 values
of the five considered space densities are 9.81 × 1012, 2.91 × 1012,
1.02 × 1012, 2.86 × 1011, and 7.85 × 1010 h−1 M�, respectively.
For the stellar mass samples, the limiting values are 6.84 × 1010,
3.08 × 1010, 1.54 × 1010, 4.39 × 109, and 4.66 × 108 h−2 M�. The
selection according to star formation rate corresponds to limiting
values of 5.25, 3.03, 1.55, 0.468, and 0.066 M� yr−1. Finally, the
specific star formation rate selection is based on cut-off values of
10.28, 4.43, 1.27, 0.492, and 0.212 h Gyr−1.

For the halo samples in Fig. 19, the bias of the two-point correla-
tion functions shows a clear short-range exclusion effect, with the
bias function suddenly dropping precipitously and rapidly towards
short distances. Halo samples dominated by relatively low-mass
haloes show no significant scale dependence for r > 7 h−1 Mpc,
but more massive haloes do. A similar behaviour is found for the
stellar mass samples, except that on scales of r ∼ 1 h−1 Mpc a
mild decrease of the bias is seen, followed by a strong rise towards
small scales. The bias at a given space density for samples selected
by stellar mass is always much higher than for haloes, and also
when galaxies are selected by star formation rate or specific star
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Figure 11. Projected galaxy correlation functions at z = 0.1 split by g − r colour, for TNG300 and the SDSS DR-7. We show results for six different stellar
mass ranges, as labelled, with data points taken from Guo et al. (2011) and Henriques et al. (2017). The agreement for blue galaxies is generally very good.
This is also the case for red galaxies, except in the stellar mass range of 109–1010 h−2 M�, where the simulation model shows a mild clustering excess. No
dust corrections have been applied to the simulated galaxy colours, which could potentially alleviate this discrepancy.

Figure 12. Projected galaxy correlation function of TNG300 in different stellar mass ranges at z = 0.85 (solid thick lines), compared to data from the VIMOS
VLT Deep Survey (VVDS; Meneux et al. 2008) and from the DEEP2 galaxy redshift survey (Mostek et al. 2013). The VVDS covers an extended redshift range,
0.5 < z < 1.2, and we compare to the simulation results at the mid-point of this interval. To give an illustration of the very small variation of the simulation
predictions over this time span, we also include TNG300 results for redshifts z = 0.5 (dotted) and z = 1.2 (dashed). The DEEP2 results are for a characteristic
redshift z � 0.9 and refer to an essentially complete sample of galaxies with log (M�/[h−2 M�]) > 10.16.

formation rate. For the latter two samples, the dip in bias at inter-
mediate scales and the small-scale rise are much more pronounced
than for halo or stellar mass samples.

We now turn to the question of whether such scale-dependent
biases also affect the baryonic acoustic oscillations (BAOs). These
are an important cosmological resource, and in particular, a primary
observational handle to constrain the cosmic expansion history and

thus models of dark energy. Detecting the BAOs not only in the
cosmic microwave background but also in galaxy surveys or quasar
absorption line studies at intervening redshifts is therefore a major
goal in observational cosmology (e.g. Cole et al. 2005; Eisenstein
et al. 2005; Wang et al. 2017).

Our TNG300 simulation box is just large enough to see the BAO
in the total matter power spectrum, but the number of available
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Figure 13. Left-hand panel:Clustering length for different galaxy samples from the TNG300 simulation as a function of redshift. We show results for six
different stellar mass ranges (coloured lines, as labelled). In each case, we define the clustering length as the scale where the real-space correlation function
reaches unity, i.e. ξ (r0) = 1. Deriving this through power-law fits to the real space or projected correlation function over a range 5 h−1 Mpc < r < 20 h−1 Mpc
gives very similar results. We also include the evolution of the correlation length of the total matter correlation function (dashed), which monotonically declines
towards high redshift – quite unlike the galaxy samples which can be equally or even more strongly clustered at high redshift than today. Right-hand panel:
Correlation length as a function of stellar mass for galaxies in TNG300 (solid lines), for different redshifts (colour key). We compare to data points from
different observational surveys (symbols), in particular from VIPERS (Marulli et al. 2013), NMBS (Wake et al. 2011), GOODS-N (Lin et al. 2012), POWIR
(Foucaud et al. 2010), zCOSMOS (Meneux et al. 2009), and VVDS (Meneux et al. 2008). The symbols have been coloured according to the characteristic
redshift of the corresponding observational sample, showing weak systematic trends of clustering strength with redshift at fixed stellar mass.

Figure 14. Slope of the two-point galaxy correlation function as a function
of redshift and stellar mass, for the same simulated galaxy samples of
TNG300 considered in the left-hand panel of Fig. 13. The data points give
results from the VIPERS survey (Marulli et al. 2013) for log [M�/(h−2M�)]
� 10.15, which agrees quite well with the redshift evolution we find here,
and also has not found evidence for a significant stellar mass dependence of
the slope in the low-redshift regime.

large-scale modes over the relevant range is too small to directly
measure the oscillations with the required accuracy for cosmologi-
cal inferences. However, we can still measure the power spectra of
different tracers and determine their bias relative to the non-linear
matter power spectrum. Taking the ratio of the two power spec-
tra eliminates much of the cosmic variance fluctuations due to the
specific realization of our large-scale modes. The result is seen in
Fig. 20, where we show our bias measurements for two different
space densities, 3 × 10−3 and 3 × 10−2 h3 Mpc−3, and for tracers
selected by halo virial mass, galaxy stellar mass, and galaxy star
formation rate. We include results for redshifts z = 3, 1, and 0.

Again, it is evident from the results that the bias depends strongly
on tracer type, redshift, and space density. Interestingly, over the k-
range of the BAOs (indicated as thin yellow lines in Fig. 20), clear
variations of the measured bias values are detected. To quantify
this scale dependence over the range of 0.02 < k/(h Mpc−1) < 1.0,
we fit our measurements with a very simple scale-dependent bias
model of the form

b(k) = b0 + β ln
k

k0

)2

. (18)

Here, b0 represents the large-scale linear bias, while β measures
the strength of the scale dependence. We set k0 = 0.02 h Mpc−1

in our fits so that db(k)/dk = 0 at k = k0. The resulting smooth
bias laws b(k) are shown with thick grey lines in the figure, and the
corresponding fit parameters are given in Table 2. The very good
statistics we have for the full matter distribution also allows us to
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Figure 15. Upper panel:Linear halo bias on large scales as a function of
associated peak height ν. We show results for the full physics (filled circles)
and the DM-only (empty circles) simulations of TNG300, and compare to
the analytic models of Mo & White (1996) and Sheth & Tormen (1999),
as well as to the empirical fit of Tinker et al. (2010) calibrated on a suite
of collisionless N-body simulations. The latter describes our results quite
well. Lower panel: Relative difference in halo bias between the full physics
and DM-only simulations, showing a scale-dependent variation of up to
3 per cent. This systematic difference is of the same order as the one expected
(solid line) from the mass change of haloes due to baryonic effects (see
Fig. 16).

Figure 16. Baryonic physics impact on the virial mass (M200) of haloes, as
a function of the mass of haloes in the corresponding DM-only simulation.
We show results obtained by abundance matching (i.e. rank ordering the
haloes by decreasing mass, and then comparing them in this order) for the
halo populations in TNG300, TNG100, and, for comparison, the Illustris
simulation (Vogelsberger et al. 2014a).

Figure 17. Bias of the stellar mass distribution relative to the total matter in
TNG300 at different redshifts. At z = 0, the bias of the stellar mass becomes
independent on distance for scales larger than ∼1 h−1 Mpc, but it is still non-
zero. At earlier times, the bias is much larger, and scale-dependent effects
are seen out to larger scales.
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Figure 18. Large-scale halo and galaxy bias as a function of tracer number
density for samples selected by stellar mass, halo mass, or instantaneous
star formation rate. We compare our results for TNG300 with an equivalent
analysis by Angulo et al. (2014) for a semi-analytic model applied to the
Millennium-XXL simulation (dashed). Our bias values show very similar
trends but lie consistently higher. When we correct the DM correlation
function of MXXL for its higher normalization (σ 8 = 0.9) relative to TNG
(σ 8 = 0.8159), this difference goes largely away (dotted lines).

reliably measure the ratio [P(k)/Plin(k)]1/2 of the full matter power
spectrum relative to the linear theory power spectrum. This is shown
as black lines in Fig. 20 for redshifts z = 3, 1, and 0, and can be
interpreted as an effective bias that encodes the non-linear clustering
evolution. The bias of a tracer sample relative to the linear theory
power spectrum is then the product of this effective bias with the
intrinsic bias of the tracers.
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Figure 19. Scale-dependent bias (based on real-space correlation functions, b(r) = [ξ tracer(r)/ξdm(r)]1/2) for different space-densities of tracer objects, selected
in a variety of ways. The top left-hand panel shows haloes, with the most massive ones selected according to their M200-mass up to a certain space density,
as labelled. The top right-hand panel selects galaxies according to their stellar mass (M�), the bottom left according to their instantaneous star formation rate
(Ṁ�), and the bottom right according to their specific star formation rate (Ṁ�/M�). All results are given at z = 0 for the TNG300 simulation. Dotted lines are
fits to the region 5 h−1 Mpc < r < 25 h−1 Mpc and are meant to guide the eye only, illustrating the tentative evidence for significant scale dependences of the
bias over this region in some of the samples.

We can use these results to obtain an estimate of the distortion
of the BAO features in the matter power spectrum due to non-linear
evolution and scale-dependent biases. This is shown in Fig. 21,
where we modify the linear theory power spectrum by the effective
bias encoding non-linear evolution, and the scale-dependent bias
for three example tracers from Fig. 20. We show in each case the
estimated evolved power spectrum divided by a smoothed, wiggle-
free linear theory power spectrum, in order to bring out the BAOs
more clearly. We stress that this estimate only accounts for effects
of non-linear evolution at the level of the mean power per mode.

In reality, mode-coupling effects will tend to wash out and broaden
the BAO features, and can even give rise to additional small shifts
in the peak positions. This is not accounted for in our simple illus-
trative analysis shown in Fig. 21, but this effect can be relatively
well understood for the DM density field based on renormalized
perturbation theory (Crocce & Scoccimarro 2008).

Even though we have refrained from including in Fig. 21 the
tracer samples with the strongest scale-dependent biases (which
occur for massive or star-forming galaxies at z = 3) and neglected
mode–mode coupling, the distorting effect on the BAO features
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Figure 20. Bias as a function of wavenumber k (based on power spectrum ratios, i.e. b(k) = [Ptracer(k)/Pmatter(k)]1/2) for different types of tracers and different
space densities, for the TNG300 simulation at z = 0. The shown samples are a subset of those examined in Fig. 19 in terms of real-space clustering and represent
haloes chosen by virial mass (red), galaxies selected by stellar mass (green), and galaxies selected by star formation rate (blue). Different redshifts are shown
as solid, dashed, and dot–dashed lines, respectively, with the left-hand and right-hand panels giving results for different tracer densities. For comparison, we
also show the effective ‘bias’ due to non-linear evolution of the matter density power spectrum relative to the linear theory prediction for the corresponding
redshifts (black lines). The faint yellow lines illustrate the location of the BAOs. Thick grey lines denote best fits according to the scale-dependent bias formula
of equation (18) and best-fitting parameters listed in Table 2.

Table 2. Fit parameters of the scale-dependent bias model described by
equation (18) and shown as grey lines in Fig. 20. We list the values of b0 and
β for three different samples (where M200 stands for a selection by halo virial
mass, M� by stellar mass, and SFR by star formation rate, respectively), two
different number densities n, and for three redshifts z.

n sample z = 0 z = 1 z = 3
[h3Mpc−3] b0 β b0 β b0 β

M200 0.96 − 0.0271 1.60 − 0.0223 3.22 0.0593
0.003 M� 1.36 0.0016 1.95 0.0301 3.45 0.1378

SFR 0.85 − 0.0054 1.67 0.0187 3.38 0.1435

M200 0.72 − 0.0208 1.06 − 0.0118 2.20 0.0178
0.03 M� 1.17 − 0.0007 1.54 0.0097 2.61 0.0493

SFR 0.82 − 0.0149 1.39 0.0017 2.59 0.0543

is substantial. In particular, the k-positions of the local maxima
of the peaks are shifted by several percent, and depending on the
precise tracer or redshift considered, the shift can be both positive
or negative. Superficially, this may sound like very bad news for
the cosmological use of the BAO features. However, these shifts
can be corrected for by fitting the observed BAO features with the
expected signal template (e.g. Seo et al. 2008; Angulo et al. 2014;

Prada et al. 2016). For example, one could use a simple model of
the form

Pobs(k) = (c0 + c1k + c2k
2)Plin(k/α), (19)

where c0, c1, c2, and α are fit parameters. The ci describe a polyno-
mial fit to the scale-dependent bias that is empirically determined
from the data, while α is a stretch factor that is supposed to pick up
a real shift of the acoustic scale, if it exits.

Fitting such a model to the distorted BAOs of Fig. 21 indeed
recovers α values that are very close to unity: in the case of the halo
sample we obtain α − 1 = −0.215 per cent, for the stellar mass
selected galaxies 0.048 per cent, and for the SFR-selected sample
0.089 per cent. The reason why this works so well is that the scale-
dependent bias we detect and the effects of non-linear evolution vary
smoothly with scale. When one knows what to look for, then they
can be taken out very well. And in our case, we have prescribed the
expected linear theory template precisely, without any measurement
errors and without a damping of the higher order wiggles by non-
linear evolution.

For real data, the conditions are not nearly as favourable, making
the possible systematic impact of scale-dependent bias on BAO
studies still an interesting research question. At the very least, it is
to be expected that there will be a small impact on the constraining
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Figure 21. Power spectra estimates relative to the linearly evolved,
smoothed initial power spectrum at different times, over the k-range contain-
ing the BAOs. The dotted lines refer to power spectra obtained by multiply-
ing the linear theory power spectrum by the fitted b2(k)-factors of different
tracers, which are shown in Fig. 20. The solid lines additionally take ef-
fects of non-linear evolution into account, at the level of the change of
the mean power per mode, as encapsulated by the black lines in Fig. 20.
Note that this neglects the damping and broadening of the wiggles due to
mode–mode coupling. Three combinations of tracer type and redshift are
shown with different colours, as labelled, with the relative bias on the largest
scales renormalized to unity, and all for comoving tracer number density
of n = 0.03 h3 Mpc−3. The unperturbed linear theory BAOs are shown as
a black line. The positions of the local maxima in the first three wiggles
have been located and marked with circles and thin vertical lines. The scale-
dependent bias leads to sizeable shifts 	k/k of up to 6 per cent in these
peak positions, but thanks to the smooth variation of the bias with k, this
distortion of the acoustic scale can be largely eliminated by template fitting
of the expected BAO signal.

power of observational surveys (e.g. Amendola et al. 2017). The
ability of our simulation models to make accurate predictions for
galaxy bias should help precise characterisations of such effects.
This however requires a proper modelling of effects such as mode–
mode coupling, redshift space distortions, and observational errors
and selection effects, which is beyond the scope of this paper.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this study, we have analysed the matter and galaxy clustering
in a new suite of high-resolution hydrodynamical calculations of
galaxy formation, the IllustrisTNG simulations. Besides numer-
ous improvements in the treatment of feedback effects and in the
numerical accuracy of the simulations, an important advance of
IllustrisTNG lies in its push to higher volume, allowing a more
faithful sampling of the halo and galaxy distribution including rarer
objects, and in particular, a much better representation of cosmic
large-scale structure. The latter is probed in powerful ways by
current and upcoming galaxy redshift surveys (such as EUCLID,

DES, or eBOSS). The precision with which theoretical galaxy for-
mation models can explain the clustering of galaxies as a function of
stellar mass, colour, star formation, redshift, etc., offers the prospect
to constrain and test such models in interesting ways, as well as lift-
ing possible modelling degeneracies. At the same time, clustering
data is a critical component of modern cosmological constraints,
including those that seek to tie down the cosmic expansion history
and inform about the nature of dark energy. Here, simulation pre-
dictions can inform about possible observational biases and help to
eliminate them.

Thus far, hydrodynamical simulations of galaxy formation have
been severely challenged even by the basic task to reliably predict
the clustering length, simply due to the missing large-scale power
as a result of small simulated volumes. TNG300 is advancing the
state of the art in this regard. At its mass resolution, no other hy-
drodynamical simulation of comparable volume and with a similar
coverage of the physics exists, opening up the possibility for quan-
titative studies of large-scale structure, a regime that was thus far
almost exclusively in the domain of semi-analytic models of galaxy
formation, or empirical approaches such as HOD or SHAM. This
also means that the approximate nature of these treatments can
finally be tested with full hydrodynamical simulations.

We note that the IllustrisTNG simulations not only make extant
predictions for the clustering of point objects such as galaxies and
haloes but also for the distribution of gas and the stellar mass, as
well as, of course, for the total matter. This includes the impact of
baryonic effects on the DM distribution, something that is difficult if
not impossible to forecast with any degree of reliability by (semi-)
analytic models. Predicting these effects reliably is of significant
importance for the analysis of gravitational lensing, for studying
the circumgalactic medium around galaxies, and for interpreting
the population of intrahalo stars.

With TNG300, we have been able to provide accurate measure-
ments of the non-linear matter power spectra and correlation func-
tions of different mass components over a large dynamic range. We
have highlighted the strong bias of the stellar light relative to the
total matter, and the fact that its two-point correlation function is
nearly invariant in time and close to a power law. This prediction ap-
pears to be fairly robust to resolution and likely represents a generic
feature of �CDM cosmologies.

We have also shown that the galaxy distribution predicted by Il-
lustrisTNG clusters very similarly to observations by the SDSS at
low redshift, both as a function of stellar mass and galaxy colour.
This is an important confirmation of the basic validity of our hy-
drodynamical simulation models, and together with the findings
of our companion papers, underlines that IllustrisTNG provides a
powerful, self-consistent model for how galaxies have emerged in
the �CDM cosmology.

With this basic confirmation in hand, we have explored other
clustering predictions from our simulations. The observational pic-
ture of how galaxy clustering measured in terms of clustering length
and slope of the two-point functions depends on redshift and stellar
mass has been somewhat muddled. TNG300 makes clear statements
in this regard, showing that clustering length is a strong function
of stellar mass at all redshifts, whereas the clustering slope is not.
The latter tends to get a bit shallower towards z ∼ 1 and hardly de-
pends on stellar mass over this range at all, just to become steeper
again towards high redshift and also showing again a stellar mass
dependence there.

Our analysis of galaxy and halo bias has shown that our results
on the largest scales are consistent with those obtained from simpler
DM-only simulations. This is reassuring and largely to be expected,
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given that effects of baryonic physics are restricted to show up on in-
termediate and small scales. However, many observational data sets
lose significant power if their analysis is restricted to scales that are
safely unaffected by scale-dependent effects. Such scale-dependent
biases are clearly detected in our simulations, extending out to the
scales of the BAOs. These scale-dependent biases strongly depend
on the type of tracer that is used, the sample selection criterion, the
space-density that is used, and the redshift. They originate from a
complex coupling of weakly non-linear evolution and galaxy for-
mation physics, something that is accounted for naturally in our
simulations. It has yet to be seen how sensitively some of these bias
predictions depend on details of the galaxy formation physics, but
if there is a chance at all to calculate them reliably, it is through
hydrodynamical simulations such as the ones discussed here.

One of the most interesting possible effects of a scale-dependent
bias is that it may impact measurements of the BAOs based on
the low-redshift galaxy distribution. When done in real space, the
baryonic acoustic peak has been shown to be remarkably resilient
to galaxy formation physics effects (e.g. Angulo et al. 2014), but
the BAO features in Fourier-space are more drawn out in scale and
thus potentially more sensitive to distortions from a scale-dependent
bias.

While our TNG300 simulation box is just large enough to cover
the scales of the BAOs in the total matter power spectrum, the
number of available large-scale modes is unfortunately too small to
measure these weak power fluctuations directly. However, measure-
ments of the scale-dependent bias of different tracers on these scales
are much less affected by cosmic variance, as this involves dividing
out the specific realization of the total matter power spectrum. In
this way, we could demonstrate a significant scale dependence of the
bias of different tracers over the range of the BAOs and also quantify
the size of non-linear evolution effects over this region. Combining
both allows an estimate of the BAO distortions in the evolved power
spectrum as seen through the tracers. We have found in this way
significant shifts of the BAO peak positions of up to 6 per cent in k,
but template fitting of the expected wiggle signal appears capable
of eliminating such apparent shifts of the acoustic scale, thereby
preventing being misled in the cosmological interpretation.

Hydrodynamical simulations of still larger volumes will be able in
the near future to substantially improve the statistics of our results on
large scales, circumventing the significant approximations involved
in other approaches to study cosmic large-scale structure and BAO
distortions from biased tracers. This offers the exciting prospect that
detailed hydrodynamical simulations of galaxy formation become
an integral and powerful part of forthcoming cosmological precision
studies.
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Prada F., Scóccola C. G., Chuang C.-H., Yepes G., Klypin A. A., Kitaura
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Weinberg D. H., Davé R., Katz N., Hernquist L., 2004, ApJ, 601, 1
Weinberger R. et al., 2017a, MNRAS, preprint (arXiv:1710.04659)
Weinberger R. et al., 2017b, MNRAS, 465, 3291
White S. D. M., Frenk C. S., Davis M., Efstathiou G., 1987, ApJ, 313, 505
Yang X., Mo H. J., van den Bosch F. C., 2006, ApJ, 638, L55
Zehavi I. et al., 2011, ApJ, 736, 59
Zentner A. R., Hearin A. P., van den Bosch F. C., 2014, MNRAS, 443, 3044
Zu Y., Mandelbaum R., 2015, MNRAS, 454, 1161
Zu Y., Mandelbaum R., 2017, preprint (arXiv:1703.09219)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 475, 676–698 (2018)

http://arxiv.org/abs/1707.03396
http://arxiv.org/abs/1705.05373
http://arxiv.org/abs/1707.03401
http://arxiv.org/abs/1707.03395
http://arxiv.org/abs/1707.03406
http://arxiv.org/abs/1710.04659
http://arxiv.org/abs/1703.09219

