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A B S T R A C T   

In the past few decades, braking systems with carbon discs have become the dominant technology for many 
racing applications, such as in the MotoGP class. Indeed, they provide higher friction coefficients. Moreover, 
thanks to their lightweight materials (with respect to conventional steel brakes), the unsprung masses and the 
gyroscopic effects can be reduced. Therefore, the motorcycle dynamic performance can be significantly 
improved. The usage of carbon brakes requires a very accurate assessment of their thermal behavior. In fact, 
although their operating temperature in real racing conditions may cover a wide range, their optimal braking 
performance can be achieved only within a relatively narrow temperature range. This work focuses on the 
development of the Unscented Kalman Filter (UKF) algorithm as a suitable mathematical tool for assessing the 
temperature gradient of the carbon disc mounted on the motorcycles competing in the MotoGP™ world 
championship. A one-dimensional (1D) finite element (FE) model of the disc is developed to provide the a priori 
state estimate that the filter will combine with the information measured by the temperature sensor available on 
board to compute the optimal posterior temperature estimation. Besides estimating temperature, the UKF is also 
exploited to identify the convection heat transfer coefficient (h) of the disc, which is a fundamental parameter for 
a proper model calibration.   

1. Introduction 

Carbon-based materials can provide to braking systems a combina-
tion of light weight, high thermal conductivity and absence of thermal 
expansion, which is currently hard to achieve with other materials [1]. 
These characteristics result in a high friction coefficient, stable and 
consistent braking effectiveness, and very high heat dissipation. Given 
the higher braking capabilities with respect to the conventional steel 
brakes, carbon brakes are adopted for high-performance applications, 
such as aircraft landing gears, as well as racing cars and motorcycles. 
Indeed, carbon-carbon brakes have become the absolute standard in the 
MotoGP™ world championship. The carbon-carbon composite presents 
both the matrix and the reinforcing fibers made out of carbon, hence 
being usually referred as C/C brakes. 

Whether conventional steel brakes or C/C brakes are adopted, the 
knowledge of the working temperature range at which the disc will 
operate is fundamental to predict the performance in terms of friction 
coefficient [2], wear [3], thermal deformation and brake fluid vapor-
ization [4], and therefore to properly design braking systems as well [5]. 

The Company that supplies the braking systems of the MotoGP™ mo-
torcycles published in a work by Cividini et al. [6] the latest findings 
concerning design methods, simulation procedures, product features 
and manufacturing processes of C/C racing brakes. This study highlights 
how the disc temperature control is fundamental not only for the good 
performance and repeatability of the overall braking system but also for 
the tire temperature control. In fact, due to their position on the vehicle, 
brakes are often employed as a way to better control tire temperature in 
racing application, further contributing to the overall vehicle 
performance. 

MotoGP motorcycles are equipped with an infrared transducer 
(referred to as single-spot sensor hereafter) that detects the disc tem-
perature at a fixed radial distance where the disc-pads contact occurs. 
However, the temperature measured by the single-spot sensor, besides 
being quite noisy, is not representative of the thermal dynamics of the 
braking system, since the disc surface exhibits a high temperature 
gradient. Therefore, additional tools to accurately estimate the transient 
thermal behavior of the disc would be beneficial to assess the actual 
motorcycle braking performance. 

Different solutions can be found in the literature to evaluate the 
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temperature distribution of brake rotors. The majority of works inves-
tigating the thermal dynamics of braking systems deals with conven-
tional (i.e. steel or cast iron) rotors, which accounts for almost 70 % of 
applications [1]. Yevtushenko et al. [7] proposed an analytical model to 
estimate the non-stationary temperature of brake disc and pads, and 
performed numerical analyses for a cast-iron disc in two cases, namely 
constant velocity sliding and constant deceleration. Sheridan et al. [8] 
proposed four different models for conventional rotors, namely a lum-
ped parameter model, a one-dimensional (1D) analytical model, a 
two-dimensional (2D) finite difference model and an three-dimensional 

(3D) finite element (FE) model. The latter was solved in NASTRAN (and 
validated on a test rig with simulated braking sequence) to find the 
transient disc temperature distribution. Yevtushenko et al. [9] investi-
gated numerically the thermal sensitivity of the frictional heating during 
braking for a steel disc, by means of 1D-FE model of the thermal prob-
lem. Talati et al. [10] studied the conduction heat flow of a ventilated 
steel brake disc for cars through numerical simulation with a 2D-FE 
model. Grzes [11] simulated the temperature distribution of a steel 
rotor during an emergency braking maneuver by means of a 2D-FE 
model. McPhee et al. [12] characterized the convective heat transfer 

Nomenclature 

Abbreviations 
C/C Carbon – carbon 
CFD Computational fluid dynamics 
EKF Extended Kalman Filter 
Exp Experimental data 
FE Finite Element 
FWTD friction and wear thermal dynamics method 
HDF heat dynamics of friction 
IMU Inertial measurement unit 
KF Kalman Filter 
NDA Non disclosure agreement 
PDE Partial differential equation 
PF Particle filter 
RMSE Root mean square error 
UKF Unscented Kalman Filter 
1D One-dimensional 
2D Two-dimensional 
3D Three-dimensional 

Symbol 
Acond Conduction matrix 
Aconv Convection matrix 
Ak− 1 Dynamic model matrix at time step k-1 

cv Specific heat 
[

J
kg K

]

Ck Cross-covariance matrix in a non-linear Kalman filter at 
time step k 

dr Infinitesimal width [m] 
ek− 1 Gaussian process noise variance at time step k-1 
f(r) Specific power 

[W
m2

]

fk− 1 Dynamic model function at time step k-1 
g(r,t) Heat source function per unit volume 

[W
m3

]

gk Measurement model function at time step k 
h Convection heat transfer coefficient [ W

Km2] 
href Reference convection heat transfer coefficient [ W

Km2] 
Hk− 1 Measurement model matrix at time step k-1 
Kc Thermal conductivity 

[ W
Km

]

k Time step number 
Kk Kalman gain matrix at time step k 
l(r) Initial temperature distribution on the disc [K] 
mk Predicted mean of a Kalman Gaussian filter at time step k 
m−

k Predicted mean of a Kalman Gaussian filter at time step k 
just before the measurement yk 

M Heat capacity matrix 
n Positive integer referring to the dimensionality of the state 
p Thermal force matrix 
Pk Predicted state covariance matrix of a Kalman Gaussian 

filter at time step k 
P−

k Predicted state covariance matrix of a Kalman Gaussian 
filter at time step k just before the measurement yk 

qk− 1 Gaussian process noise at time step k-1 
Q̇BRK Total instantaneous braking power [W] 
Q̇con Rate of heat flow dissipated by convection [W] 
Q̇fr Rate of heat flow generated with the pads [W] 
Q̇in Rate of heat flow [W] 
Qk− 1 Process noise covariance matrix at time step k-1 
Q̇out Rate of heat flow [W] 
Q̇rad Rate of heat flow dissipated by radiation [W] 
r Generic radius [m] 
rest Disc external radius [m] 
rint Disc internal radius [m] 
rk Gaussian measurement noise at time step k 
Rk Output (measurement) covariance matrix at time step k 
ℝn n-dimensional space of real numbers 
s Thickness [m] 
Sk Innovation covariance of a Kalman/Gaussian filter at time 

step k 
T(r, t) Disc temperature [K] 
Tamb Environmental temperature [K] 
Tnode-i Time dependent nodal temperature [K] 
Tref Reference temperature [K] 
U Internal energy [J] 
Vx Longitudinal velocity 

[m
s
]

Vxref Reference longitudinal velocity 
[m

s
]

W(c)
i Covariance weight of the unscented transform 

W(m)

i Mean weight of the unscented transform 
xk State at the time at time step k [K] 
χ (i)

k− 1 i-th sigma point of the state xk 

χ̂ (i)
k i-th predicted sigma point of the state xk 

χ − (i)
k i-th sigma point of the predicted state xk 

yk Measurement at time step k [K] 
y1:k Set containing the measurement vectors {y1,…, yk} [K] 

Ŷ
(i)
k i-th predicted sigma point of the measurement yk 

zk Normalization constant 
zk− 1 Combined state and parameter dynamic model function 

Greek symbol 
Δt Time step of each iteration [s] 
ε Emissivity [-] 
εk− 1 Gaussian process noise at time step k-1 [ W

Km2] 
λ Parameter of the unscented transform 
μk Predicted mean of measurement yk in a Kalman/Gaussian 

filter at time step k 
ρ Material density [kg

m3] 
σ Stefan-Boltzman constant [ W

K4m2] 

Notational Convention 
N( ⋅ ) Gaussian distribution 
p(x|y) Conditional probability of x given y  
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of vented cast-iron brake discs through experimental measurements on a 
test bench simulating the cooling phase. In general, some simplifying 
assumptions have been considered for both simulations and tests, e.g. 
single braking maneuvers, constant pressure, or constant deceleration. 
Moreover, model validation has been typically performed through 
experimental measurements on test rigs. 

Only few papers dealing with the temperature estimation of C/C 
brakes are available. Chichinadze [13] investigated the possible use of a 
previously developed method, referred to as friction and wear thermal 
dynamics method (FWTD), as an analytical tool to assess the operation 
of tribological couples, possibly including multi-disc aircraft brakes. 
Guo et al. [14] developed a 3D-FE model to perform the thermoelastic 
analysis (namely predicting the coefficients of thermal expansion and 
thermal conductivity) of needled C/C composites in multi-disc aircraft 
brakes. Yevtushenko et al. [15] formulated a 2D heat dynamics of fric-
tion (HDF) system of equations to determine the operational charac-
teristics of a multi-disc aircraft brake. The problem is solved numerically 
by using the FE approach. Meunier et al. [16] established a 1D numerical 
model of a multi-disc aircraft carbon brake to evaluate the heat flux 
exchanged inside the wheel and brake assembly during braking and 
cooling phases. In the proposed model, the heat transfer is supposed to 
be unidirectional in the transverse (i.e. axial) direction and homoge-
neous on the radial axis. It’s worth noting that all the mentioned works 
take into account aircraft brakes, whose main characteristics (typically, 
multiple rotors and stators engaging along a shared rotational axis, and 
thermal behavior more influenced by the brake overall thickness than by 
the disc radius) significantly differ from the ones of motorcycle braking 
systems. To the Authors’ best knowledge, no works dealing with the 
thermal behavior of motorcycle C/C brakes can be found in the 
literature. 

This study aims at developing numerical tools to estimate the 
instantaneous surface temperature distribution in the C/C front brake 
discs of a MotoGP motorcycle in real operating conditions, by using as 
inputs the telemetry signals collected during test sessions with several 
consecutive laps. Having a fast and accurate prediction of the actual 
brake thermal behavior before the race may allow to better assess the 
braking performance in terms of available torque (by evaluating the 
average disc temperature in the disc/pads contact region that determine 
the actual friction coefficient) and to calculate the heat radiated to the 
front tire (that affects grip and wear), hence permitting to optimize the 
motorcycle configuration for the race. The desired tools are not required 
to run in real-time. Indeed, telemetry data are not available in real-time, 
but must be downloaded from an on-board datalogger when the 
motorcycle comes back to the box after a test session. Nonetheless, a low 
computational time is mandatory, in order to leave enough time for 
possible modifications in the motorcycle mechanical setup. Accordingly, 
the desired algorithm for temperature estimation should take about 5 
min for processing all the laps of a race. Moreover, it must be imple-
mented in Matlab environment, in order to be integrated with the other 
existing tools currently adopted for analyzing the telemetry data. 

The thickness of a MotoGP C/C front brake disc is very small with 
respect to its diameter (maximum thickness 8 mm, maximum diameter 
355 mm). Therefore, to possibly achieve a trade-off between high ac-
curacy and low computational complexity, the temperature gradient 
along the disc thickness is considered negligible as a first tentative 
assumption, and the most relevant heat transfer direction is considered 
the radial axis. Accordingly, a 1D-FE thermal model of the disc with 
uniform power distribution in the disc/pads contact region is developed. 
Given the initial temperature of the brake, the instantaneous braking 
power, the speed of the vehicle and the environmental temperature, the 
FE model is able to predict the disc surface temperature as a function of 
the disc radial position and time. However, during the race, the actual 
disc temperature may be affected by many external factors that such a 
simplified model can not take into account, e.g. the presence of a slip 
stream (generated by a preceding motorcycle), and non-uniform pres-
sure distribution in the caliper or pads wearing. In all this cases, the 

actual temperature of the disc may drift away from the simulated results. 
Hence, in light of the limitations of the simplified 1D-FE model, as well 
as of the single-spot sensor measurements, implementing a state 
observer to increase the accuracy in the disc temperature prediction is 
deemed convenient. 

Kalman Filters (KF) are probably the most widespread algorithms 
among the model-based observers, since they permit to manage both 
measurement noise and model approximations. Indeed, many automo-
tive applications involving the estimation of different kinematic and 
dynamic quantities through KF can be found in literature. Romualdi 
et al. [17] achieved a real-time estimation of the roll angle of a motor-
cycle by exploiting an Extended Kalman Filter (EKF) and the signals of 
the vehicle Inertial Measuring Unit (IMU). Teerhuis et al. [18] proposed 
a state estimator of the motorcycle lateral dynamics based on a simpli-
fied analytical model and an EKF. Dakhlallah et al. [19] estimated the 
sideslip angle and the tire/road interactions of a four-wheeled vehicle 
through an EKF. Bogdanski et al. [20] evaluated the use of EKF, Un-
scented Kalman Filter (UKF) and Particle Filter (PF) as possible solutions 
to estimate different state variables of four-wheeled vehicles. Martinez 
et al. [21] presented a very interesting approach, where the temperature 
predicted with a simple lumped parameter model is corrected using an 
Extended Kalman filter (EKF) and the available wheel speed measure-
ments. However, to the authors’ best knowledge, the use of state ob-
servers for C/C braking systems, and specifically for assessing the 
temperature distribution of brake discs, has not been investigated. 

In this work, a UKF is identified as the most convenient observer to 
be combined with the developed thermal model and the available 
measurements. Firstly, a UKF is implemented and exploited to identify 
the convection coefficient of the disc, which is fundamental for a proper 
calibration of the 1D-FE model. Then, the UKF formulation is slightly 
modified to yield the posterior optimal temperature estimation, by 
updating the theoretical temperature prediction performed by the FE 
model with the empirical information coming from the single-spot 
temperature transducer. The developed approach is expected to be 
sufficiently accurate and robust, and to meet the computational effi-
ciency requirements. 

The main merits of the paper can be summarized as follows. In the 
first place, the thermal behavior of C/C brakes for motorcycles is stud-
ied, which is a topic apparently not covered by the literature. In the 
second place, a UKF is combined with a simple 1D-FE model to achieve a 
fast and effective tool to estimate the actual temperature distribution of 
the C/C disc. Finally, the UKF-based algorithm is used also to identify 
the actual convection heat transfer coefficient, to refine the 1D-FE model 
and the final estimation accuracy. The proposed approach (in particular 
the use of a UKF for both parameter identification and state estimation) 
to achieve the dynamic thermal assessment of a braking system has not 
been investigated previously. 

The paper is structured as follows. In Section 2, the experimental 
data available for the study are described. Section 3 goes through the 
development of the finite element model of the disc. The UKF imple-
mentation is presented in Section 4. Both the UKF architectures used for 
the convection coefficient identification and for temperature estimation 
are discussed. The main results provided by the developed algorithm are 
reported in Section 5. Finally, the conclusions are drawn in Section 6. 

2. Experimental tests 

A collaboration with Ducati Corse (a division of Ducati Motor 
Holding S.p.A., Bologna, Italy) was successfully started, allowing to 
conduct this research activity using real data and testing the new 
methodologies more effectively. The dataset was acquired performing 
some track tests in which the single-spot transducer regularly available 
on the front disc was replaced with a multi-spot sensor able to measure 
the disc temperature in four different radial positions, as shown in Fig. 1. 
It is important to note that the third spot of the multi-spot sensor, 
referred to as Spot3, coincides with the position of the single-spot sensor 
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mounted during the race. 
The specifications of the C/C discs employed during tests, which can 

be disclosed in compliance with the NDA, are reported in Table 1. 
The introduction of the multi-spot sensor revealed that the three 

spots placed on the contact patch between the pads and the disc (Spot2- 
4) do not always share similar temperature values (Fig. 2). Indeed, large 
gradients can be generated in the most aggressive braking maneuvers, 
hence the single-spot temperature acquisition being not representative 
of the actual thermal behavior of the system. For instance, it can be 
observed, for time equal to about 90 s, that the temperature in the 
central region of the contact patch (Spot3) can reach a temperature 
remarkably higher than in the adjacent regions (Spot2 and Spot4). 
Reasonably, the observed behavior is ascribable to the combination of a 
non-uniform pressure distribution in the brake caliper and a non- 
uniform wear of the braking pads. However, a repeatable pattern asso-
ciated to the peak amplitudes can not be identified: the disc temperature 
distribution can drastically change not only from corner to corner but 
also for the same braking maneuver in consecutive laps. As a conse-
quence, both these phenomena can not be taken into account by the 
thermal model, and the power dissipated during braking is initially 
assumed to be distributed uniformly along the whole contact patch. 
Normalized results are reported in this chart and hereafter, due to NDA. 
In particular, the normalized temperature is obtained by dividing the 
actual disc temperature, T, by a reference value, Tref. 

The UKF is firstly employed to estimate the convection coefficient of 
the brake, by exploiting all the four temperature measurements. Once 
this parameter is identified, a law for the variation of h with respect to 
the forward velocity of the vehicle is implemented in the FE model 
interpolating the values estimated previously by the UKF. Subsequently 
the actual temperature gradient measured by the multi-spot sensor is 
used to validate both the fully calibrated FE model and the UKF algo-
rithm. In this phase the UKF architecture was modified so that it esti-
mates only the temperature distribution on the disc using the 
measurements of the third spot, simulating the actual input condition 
available during races. The other measurements (i.e. Spot1, Spot2 and 
Spot4) are used for validation purposes only. It is important to remember 
that the multi-spot sensor is not allowed during races and the final goal 
is achieving an offline estimate of the temperature distribution based on 

the onboard (single-spot) sensor measurements. In addition to the 
temperature values, the signals regarding the forward speed of the 
vehicle, the angular velocity of the front wheel and the fluid pressure in 
the braking circuit are acquired and fed to the FE model as inputs. Every 
telemetry signal is filtered and downsampled to 10 Hz in order to reduce 
the algorithm execution time. 

3. One-dimensional finite element model 

Before building the FE model it is necessary to derive the local 
governing equation that describes the heat exchange in the disc. For this 
purpose, a generic infinitesimal ring of radius r and width dr is consid-
ered, as shown in Fig. 3: its temperature can be approximated as uniform 
throughout its whole volume. Note that since the model is 1D, the 
infinitesimal ring presents the same thickness, s, of the original brake 
disc. In this way, temperature changes only along the disc radius and it is 
uniform in the other two directions. Fig. 3 reports the ways heat is 
transferred in the reference volume. Q̇out and Q̇in represent the rate of 
heat flow that flows by conduction to, respectively, the outer and from 
the inner part of the disc: 

Q̇in = − 2πrs⋅Kc⋅
∂T
∂r

(r) (1)  

Q̇out = − 2π(r+ dr)s⋅Kc⋅
∂T
∂r

(r+ dr) (2)  

where Kc is the thermal conductivity. Q̇con and Q̇rad represent, respec-
tively, the rate of heat flow dissipated by convection and radiation: 

Q̇con = 2⋅2πrdr⋅h⋅(T − Tamb) (3)  

Q̇rad = 2⋅2πrdr⋅σ⋅ε⋅
(
T4 − T4

amb

)
(4)  

where h is the convection heat transfer coefficient, Tamb is the environ-
mental temperature, σ is the Stefan-Boltzman constant, ε is the emis-
sivity, and scalar 2 is for accounting both sides of the disc. Since 
temperature is considered uniform throughout the ring circumference 
and thickness, there is no heat conduction along these directions. 
Finally, Q̇fr is the rate of heat flow generated by the friction with the 
pads, 

Q̇fr = 2⋅2πrdr⋅f (r) (5)  

where f(r) is the friction power distribution on the disc contact region, 
which can be expressed as 

Fig 1. Schematic of the multi-spot temperature sensor setup.  

Table 1 
Main specifications of the tested C/C discs.  

Parameter Value 

External radius (rest) 0.340 [m] 
Thickness (s) 0.008 [m] 
Mass (mtot) ≈ 1.000 [kg] 
Nominal lower operating temperature 250 [◦C] 
Nominal upper operating temperature 850 [◦C]  
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f (r) =

⎧
⎪⎪⎨

⎪⎪⎩

wi⋅
Q̇BRK

π⋅(r4
2 − r1

2)
if ri < r < ri+1

0 elsewhere
i = 1,⋯, 3. (6) 

The total braking power, Q̇BRK, is computed as the product of the 
measured wheel angular speed and the braking torque. The latter is 
estimated from the measured brake fluid pressure, by assuming a con-
stant friction coefficient: this leads to high uncertainty affecting the 
value of Q̇BRK, since the actual instantaneous friction coefficient un-
dergoes high variability during each braking maneuver. r1 is the internal 
radius of the pad and r4 = rest. The contact region with the pads has been 
divided into 3 parts, each one corresponding to the circular crown swept 
by the corresponding temperature sensor available in the disc-pads 
contact patch, hence: 

ri+1 − ri =
(r4 − r1)

3
(7) 

In each circular crown the power distribution is assumed to be 
constant, and its value is identified through the weighting parameter wi. 
Any positive value can be selected as long as the following condition 
ensuring the conservation of the total power is met: 

∑3

i=1
π⋅
(
ri+1

2 − ri
2)⋅wi = π⋅

(
r4

2 − r1
2) (8) 

It is worth noting that only in Section 5.2 the power distribution is 
modified to improve the UKF temperature prediction, whereas it is 
considered uniform for all the other applications presented, i.e. w1 = w2 

= w3 = 1. However, also in the latter case, Q̇fr is still a function of the 
radius because its contribution is null outside the disc/pads contact 
region. 

By performing the power balance in Eq. (9), it is possible to derive 
the partial differential equation (PDE) that governs the heat exchange of 
the reference volume, Eq. (10). 

Q̇in − Q̇out = Q̇con + Q̇rad − Q̇fr +
∂U
∂t

(9)  

cvρ
∂T
∂t

−
1
r

∂
∂r

(

Kcr
∂T
∂r

)

+
2h
s
(T − Tamb) = g(r, t) (10)  

where U is the internal energy of the disc, cv is specific heat, ρ is the 
density, and g is a generic function taking into account the heat dissi-
pated by radiation and the one generated by friction. 

The following equations are known as Robin boundary conditions 
and define the heat flux at the boundary: 

Kc
∂T
∂r

(rint, t) = h (T(rint, t) − Tamb) (11)  

Kc
∂T
∂r

(rest, t) = h (Tamb − T(rest, t) ) (12)  

where rint and rest represent the internal and external radius at which 
these conditions are applied, Tamb is the ambient temperature, Kc is the 
thermal conductivity and h is the convection coefficient. For sake of 
simplicity, only convection is simulated at the extremities of the disc 
geometry, corresponding to the inner and outer cylindrical surfaces. 

Fig 2. Normalized temperatures measured at four radial distances with the multi-spot sensor over about two consecutive laps in the race track used for tests.  

Fig 3. Infinitesimal ring of the brake disc.  
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Finally, the initial temperature distribution on the disc is: 

T(r, 0) = l(r) (13) 

The finite element approach reduces the PDE of Eq. (10) into the 
following ordinary differential equation: 

M⋅
d
dt

{
Tnode1

⋮

TnodeN

⎫
⎪⎬

⎪⎭
+ (Acond +Aconv)⋅

⎧
⎪⎨

⎪⎩

Tnode1

⋮

TnodeN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= p (14)  

where M is the heat capacity matrix, Tnode-i represents the temperature 
corresponding to the i-th node of the model, p is the vector that contains 
the heat generated by friction and radiation, Acond is the matrix repre-
senting conduction and Aconv is the one representing convection. Inte-
grating Eq. (14) through time using the Backward Euler method brings 
about the solution of the temperature field on the disc: 
⎧
⎪⎨

⎪⎩

Tnode1,k

⋮

TnodeN,k

⎫
⎪⎬

⎪⎭
=

((
M
t

)

+
(
Acondk− 1 + Aconvk− 1

)
)\

\

⎛

⎜
⎜
⎝

(
M
t

)

⋅

⎧
⎪⎨

⎪⎩

Tnode1,k− 1

⋮

TnodeN,k− 1

⎫
⎪⎬

⎪⎭
+ pk− 1

⎞

⎟
⎟
⎠

(15)  

where Δt is the time step of each iteration. Note that the two matrices 
Aconv and Acond cannot be defined for the current time step because they 
contain some parameters that depend on temperature, such as the spe-
cific heat and the value of thermal conductivity of the disc. Hence, they 
are defined using the results of the previous time step. To avoid the 
introduction of a temperature vector raised to the fourth power, also the 
energy dissipated by radiation is calculated considering the temperature 
of the previous time step and inserted in the known vector p. In this way, 
the continuous temperature gradient along the radius of the disc is 
simplified as a discrete sequence of concentric ring-shaped regions in 
which the temperature varies linearly, as shown in Fig. 4. 

Different mesh sizes are considered for the 1D-FE model, depending 
on the task to be accomplished, i.e. either parameter identification or 
state estimation. As for the first task, i.e. for the convection heat transfer 
coefficient identification process, a finer mesh of 51 nodes equally 
spaced along the disc radius is adopted to discretize the brake disc. 
Indeed, such process is performed only once for each brake configura-
tion, hence higher computational requirements being acceptable. 
Conversely, a coarser mesh of only 10 nodes is implemented in the 1D- 
FE model adopted for temperature estimation, in order to significantly 
reduce the execution time of the algorithm. A justification for the latter 

choice is provided in Section 5.2. 
As for the sampling frequency, the 1D-FE model runs at 10 Hz and its 

integration through time is solved using the Backward Euler method that 
ensures numerical stability. 

The properties of the material (the specific heat capacity and the 
thermal conductivity) were provided by the brake disc manufacturer. 
Therefore, the remaining unknown parameter that is required for the 
complete definition of the thermal model is the overall convection heat 
transfer coefficient of the disc, h. Since h is quite difficult to calculate 
(being affected by multiple factors, such as velocity, steering angle and 
roll angle), it is estimated by the UKF itself (see Section 4.1). 

4. Unscented Kalman Filter implementation 

Kalman filters belong to a category of optimal estimation algorithms 
(called Bayesian recursive filters) that are used for estimating the state at 
the k-th time step, xk, of a time-varying system which is indirectly 
observed through noisy measurements y1, …, yk. Consistently with the 
theory of state observers (e.g. see Sarkka [22]), a dynamic system can be 
represented by using two sets of equations that the filters operates on, 
namely the state–transition, Eq. (16), and the observation or measure-
ment model, Eq. (17): 

xk = fk− 1(xk− 1) + qk− 1 (16)  

yk = gk(xk) + rk (17)  

where xk ∈ ℝn is the state vector, yk ∈ ℝm is the measurement vector, 
qk− 1 ~ N(0, Qk− 1) is the Gaussian process noise that measures the un-
certainty of the physical model prediction (Qk− 1 being the correspond-
ing covariance matrix), rk ~ N(0, Rk) is the Gaussian measurement noise 
which is related to the sensor accuracy (Rk being the corresponding 
covariance matrix), fk− 1 is the dynamic model function, and gk is the 
measurement model function. Therefore, the time evolution of the state 
is represented as a dynamic system which is perturbed by a certain 
process noise, which is used for modeling the uncertainties in the system 
dynamics, Eq. (16). Similarly, the introduction of some measurement 
noise in Eq. (17) prevents the sensor acquisitions from being deter-
ministic functions of the true state of the system. 

Bayesian filters recursively estimate the unknown variables of the 
system combining the series of measurements observed over time with 
the predictions made by the dynamic model. This process requires 
computing the marginal posterior distributionp(xk|y1:k) of the system 
state vector at each time step k given the history of the measurements up 
to the time step k. Recalling the Bayesian inference theory,p(xk|y1:k) can 
be rewritten as: 

p(xk| y1:k) = p(yk| xk)⋅p(xk| y1:k− 1)/zk (18) 

Fig 4. Schematic of the 1D-FE model with equally spaced nodes along the disc radius.  
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where: 

p(xk| y1:k− 1) =

=

∫

p(xk| xk− 1) ⋅p(xk− 1| y1:k− 1)⋅dxk− 1
(19)  

zk =

∫

p(yk| xk)⋅p(xk| y1:k− 1)⋅ dxk− 1 (20) 

Through these recursive equations derived from Bayes’ theorem, it is 
possible to express the posterior distribution of the current state p(xk| 
y1:k) starting from the knowledge of the prior probability p(xk|y1: k− 1) 
and the likelihood function p(yk|xk). The likelihood coincides directly 
with the measurement model, while in Eq. (19), the posterior distribu-
tion from the previous time step is combined with the prediction per-
formed by the dynamic modelp(xk|xk− 1) to generate the current prior 
distribution. Therefore, once the dynamic and measurement models are 
defined, Bayesian inference provides the equations for computing the 
posterior distributions and point estimates for any problem. The Linear 
Kalman filter [22] represents the closed form solution to the Bayesian 
filtering equations when the dynamic and measurement models are 
linear Gaussian, hence when Eqs. (16) and (17) can be rewritten in 
probabilistic terms as: 

p(xk| xk− 1) = N(xk | fk− 1(xk− 1),Qk− 1) =

= N(xk |Ak− 1⋅xk− 1,Qk− 1)
(21)  

p(yk| xk) = N(yk | gk(xk),Rk) =

= N(yk |Hk⋅xk,Rk)
(22)  

where Ak− 1 and Hk are the matrices describing the linearization of 
functions fk− 1 and gk, respectively. Under these assumptions, the 
Bayesian filtering Eqs. (18–20) for the linear filtering model of Eqs. (21, 
22) can be evaluated in closed form. The resulting distributions are 
Gaussian 

p(xk| y1:k− 1) = N
(
xk

⃒
⃒m−

k , P−
k

)
(23)  

p(yk| y1:k− 1) = N
(
yk

⃒
⃒Hk⋅m−

k , P−
k

)
(24)  

p(xk| y1:k) = N((xk|mk,Pk) (25)  

where the superscript “-“ indicates the prior estimation, and the mean 
mk and the covariance Pk of the posterior distributionp(xk|y1:k) can be 
determined by recursively computing the following Kalman filter pre-
diction and update steps: 

Prediction 

m−
k = Ak− 1⋅mk− 1 (26)  

P−
k = Ak− 1⋅Pk− 1⋅AT

k− 1 + Qk− 1 (27) 

Updating 

Sk = Hk⋅P−
k ⋅HT

k + Rk (28)  

Kk = P−
k ⋅HT

k ⋅S− 1
k (29)  

mk = m−
k + Kk⋅

(
yk − Hk⋅m−

k

)
(30)  

Pk = P−
k − Kk⋅Sk⋅KT

k (31) 

In case the dynamic model is not linear, the Linear Kalman filter is 
not appropriate and must be replaced either by the Extended Kalman 
filter (EKF) or the Unscented Kalman filter (UKF). Both the EKF and the 
UKF approximate the filtering distributions as Gaussian so that Eqs. (16, 
17) can be rewritten as Eqs. (21, 22). The EKF approximates the 
nonlinear and non-Gaussian models by linearizing the functions 
fk− 1(xk− 1) with a Taylor series expansion. Conversely, the UKF uses the 

unscented transform to directly approximate the mean and covariance of 
the target distribution. Instead of linearizing fk− 1(xk− 1) in Eq. (16) to 
ensure thatp(xk|xk− 1) in Eq. (21) is linear Gaussian, the UKF draws some 
elements from the prior distribution (called sigma points) and passes 
them directly through the nonlinear function fk− 1(xk− 1), obtaining 
another set of points (called transformed sigma points). Each sigma 
point constitutes a state vector of the system: once they are transformed 
through the nonlinear function, they belong to a new arbitrary distri-
bution. The unscented transform computes the Gaussian that better fits 
the transformed sigma points, approximating the nonlinearly trans-
formed mean and covariance. Finally, these parameters are used to 
calculate the new state estimate as in Eq. (21). Given the filtering dis-
tributions shown in (Eqs. 23–25), the operations performed by the UKF 
at each measurement step to finally calculate mk and Pk are the 
following: 

Prediction  

• Form the sigma points: given a n-order state vector, 2n + 1 sigma 
points are selected around its mean value mk− 1, 

χ (0)
k− 1 = mk− 1 (32)  

χ (i)
k− 1 = mk− 1 +

̅̅̅̅̅̅̅̅̅̅̅
n + λ

√
⋅
[ ̅̅̅̅̅̅̅̅̅

Pk− 1
√ ]

i
(33)  

χ (i+n)
k− 1 = mk− 1 −

̅̅̅̅̅̅̅̅̅̅̅
n + λ

√
⋅
[ ̅̅̅̅̅̅̅̅̅

Pk− 1
√ ]

i
, i = 1, ⋯, n (34)   

where λ is a filter parameter.  

• Propagate the sigma points through the dynamic model: 

χ̂ (i)
k = fk− 1

(
χ (i)

k− 1

)
, i = 1,⋯, 2n (35)    

• Intermediate estimates for the propagated state and covariance 
matrix (predicted mean m−

k and the predicted covariance P−
k ) are 

computed by weighted averages: 

m−
k =

∑2n

i=0
W(m)

i χ̂ (i)
k (36)  

P−
k =

∑2n

i=0
W(c)

i ⋅
(

χ̂ (i)
k − m−

k

)
⋅
(

χ̂ (i)
k − m−

k

)T
+ Qk− 1 (37)   

where the weights are calculated as: 
W(c)

i = W(m)

i = 1/[2(n+λ)], i = 1,…,2n and W(m)

0 = W(c)
0 = λ/(n+λ) . 

Updating  

• Form the sigma points: 

χ − (0)
k = m−

k (38)  

χ − (i)
k = m−

k +
̅̅̅̅̅̅̅̅̅̅̅
n + λ

√
⋅
[ ̅̅̅̅̅̅

P−
k

√ ]

i
(39)  

χ − (i+n)
k = m−

k −
̅̅̅̅̅̅̅̅̅̅̅
n + λ

√
⋅
[ ̅̅̅̅̅̅

P−
k

√ ]

i, i = 1, ⋯, n (40)    

• Propagate sigma points through the measurement model: 

Ŷ
(i)
k = gk

(
χ − (i)

k

)
, i = 0,⋯, 2n (41)  
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• Compute the predicted mean μk, the predicted covariance of the 
measurement Sk, and the cross-covariance of the state and the 
measurement Ck: 

μk =
∑2n

i=0
W(m)

i ⋅Ŷ
(i)
k (42)  

Sk =
∑2n

i=0
W(c)

i ⋅
(

Ŷ
(i)
k − μk

)
⋅
(

Ŷ
(i)
k − μk

)T
+ Rk (43)  

Ck =
∑2n

i=0
W(c)

i ⋅
(

χ̂ − (i)
k − m−

k

)
⋅
(

Ŷ
(i)
k − μk

)T
(44)    

• Finally compute the filter gainKk, the filtered state mean mk, and the 
covariance Pk, conditional on the measurement yk 

Kk = Ck⋅S− 1
k (45)  

mk = m−
k + Kk⋅(yk − μk) (46)  

Pk = P−
k − Kk⋅Sk⋅KT

k (47)   

The above UKF derivation is common to all implementations of state 
and parameter estimation, so the simple substitution of x in the above 
with the actual state vector, used in the applications reported in Sec-
tions 4.1 and 4.2, provides the identifying filter. 

The UKF is based on the idea that approximating a nonlinear 

statistical distribution is easier and more accurate than linearizing a 
nonlinear function, as the EKF does. Indeed, the UKF ensures accurate 
results and, unlike the EKF, it does not require computing the model 
Jacobians, hence being more efficient and easier to implement. Another 
advantage is that the UKF is not based on a linear approximation at a 
single point, but uses further points in approximating the nonlinearity. 
Given the advantages of the UKF with respect to the EKF in case of a 
nonlinear system, the former algorithm has been implemented in this 
study. Even though the UKF manages the nonlinearity of the model and 
it is relatively easy to implement, it can be computationally very 
expensive due to the unscented transform involved in the algorithm. As 
pointed out by Bogdanski et al. [20], as the number of parameters in-
creases, the UKF has more sigma points to process at each time step. 
Therefore, it does not appear suitable for FE models with higher di-
mensions for the problem of interests. In the application proposed in this 
article, the UKF is used for computing the actual temperature distribu-
tion on the disc radius, so that both the measurements and the assumed 
dynamics (FE model of the brake) are taken into account. The UKF is also 
successfully employed to identify the convection coefficient of the 
brake, h: as discussed in Section 4.1, h can be estimated simultaneously 
with the true states of the system by concatenating h to the state vector 
and adapting the filter architecture. 

The flowchart shown in Fig. 5 summarizes the use of the UKF in the 
two consecutive phases of the proposed method (i.e., firstly as a 
parameter identifier for h and then as a state observer for the disc 
temperature), described in Sections 4.1 and 4.2. The UKF has been 
implemented by making the following assumptions:  

• the dynamic model of the disc temperature is given by the 1D-FE 
model and Gaussian noise;  

• the variation model for h is unknown (Gaussian random walk); 

Fig 5. Flowchart describing the UKF implementation for the proposed method.  
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• the measuring model is a linear interpolation of the state vector and 
Gaussian noise. 

4.1. Convection heat transfer coefficient identification 

When the UKF filter is used as a parameter identifier, in addition to 
the temperature values of the nodes, the state vector contains also the 
convection coefficient to be identified. In this scenario the dynamic 
model does not coincide with the 1D-FE model of Eq. (15) and fk− 1(xk− 1) 
is not linear with respect to the augmented state vector. The temperature 
of the nodes depends on the convection coefficient through the matrix 
Aconv,k− 1. By making this dependency explicit, the dynamic model is no 
longer linear with respect to the state vector and the linear Kalman filter 
cannot be used. Therefore, the dynamic model Eq. (13) becomes: 
{

xk
hk

}

=

{
fk− 1(xk− 1, hk− 1)

hk− 1

}

+

{
qk− 1
εk− 1

}

(48)  

where fk− 1 corresponds to the 1D-FE model of Eq. (15), εk− 1 ∼

N(0, ek− 1) and 

xk =

⎛

⎝

Tnode1,k

⋮

TnodeN,k

⎞

⎟
⎟
⎠ (49) 

Essentially, since it is not clear how h can be calculated through a 
proper physical model, Eq. (48) allows h to perform a Gaussian random 
walk between time steps. The dynamic model equation can be brought 
back to a more convenient formulation by including h in the state vector 
x’k. 

x′
k =

⎛

⎜
⎜
⎝

Tnode1,k

⋮

TnodeN,k

hk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= zk− 1
(
x′

k− 1

)
+ q′

k− 1 (50)  

where 

zk− 1 =

{
fk− 1

(
x′

k− 1

)

hk− 1

⎫
⎬

⎭
(51)  

q′
k− 1 =

{
qk− 1
εk− 1

}

(52) 

To ensure an accurate estimate, all the four measurements available 
were used for the identification of the convection coefficient. The 
measurement model is therefore represented by the linear interpolation 
of the node temperatures in the center of the four sensor measurement 
surfaces: 

yk =

⎛

⎜
⎜
⎝

Tspot1,k

Tspot2,k

Tspot3,k

Tspot4,k

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= Hk⋅xk + rk (53)  

where and the matrix Hk performs the linear interpolation of the tem-
peratures corresponding to the two nodes closest to the spots at which 
the measurement is taken. The UKF architecture described by Eqs. (50, 
53) is based on highly reliable temperature measurements, and an ac-
curate thermal model of the disc whose precision is partially hindered by 
the weak mathematical model for h. Through a trial–and–error 

procedure, acting on the covariance matrices of the process and mea-
surement errors (i.e. on Rk, Qk− 1 and ek− 1) it is possible to calibrate the 
model so that every time there is a relevant difference between the 
measured and predicted temperature values, the filter will trust the in-
formation coming from the sensors and will update the prediction per-
formed by the model. Since h is the most unreliable state variable, the 
filter predominantly adjusts its value of a quantity proportional to the 
error generated, so that the temperature difference is reduced. By 
solving this optimization problem, the filter is able to find the parameter 
value that allows the temperature estimated through the thermal model 
to get as close as possible to the measured ones. Since the model is a 
good approximation of the reality, as soon as the measured temperatures 
match the estimated ones the model is likely to converge to the real 
system. Therefore, it can be stated that the parameter that the filter 
estimates is likely to converge to the real one [23]. Once h is identified, a 
law for the variation of h with respect to the forward velocity of the 
vehicle is implemented in the 1D-FE model by interpolating the cloud of 
values estimated with the UKF (see Fig. 6 in Section 5). This interpola-
tion was performed considering only the samples in off-brake condition 
(i.e. in the cooking phase out of the braking maneuver). In fact, the 
differences in the way energy enters the system between the mathe-
matical model (uniformly with the radius) and the reality (which seems 
to be more affected by the pressure distribution in the caliper and the 
pads wear state, as shown in Section 2) lead the UKF to output some 
unreliable values for h during braking. 

4.2. Temperature estimation 

Once the convection coefficient has been identified, the 1D-FE model 
could be used directly to perform the disc temperature estimation. 
However, to account for external factors that are not simulated in the FE 
model, it was deemed convenient to still rely on the UKF for more ac-
curate predictions. Therefore, the UKF architecture is adapted to predict 
the temperature of the nodes. In particular, being the state vector xk 
composed of node temperatures only, this time the dynamic system of 
the filter coincides with the 1D-FE model. It’s important to remark that 
the measurement model must be adapted as well. Indeed, during the 
race, only the measurement of the single-spot sensor is available. Hence, 
yk is no longer a vector. Eqs. (50, 53) become: 

xk =

⎛

⎝

Tnode1,k

⋮

TnodeN,k

⎞

⎟
⎟
⎠ = fk− 1(xk− 1) + qk− 1 (54)  

yk = Hk⋅xk + rk (55)  

where, fk− 1(xk− 1) is equal to Eq. (15), qk− 1 ~ N(0, Qk− 1) is the Gaussian 
process noise,yk = Tspot3,k, rk ~ N(0, Rk) is the Gaussian measurement 
noise and Hk is the measurement model matrix. The latter performs the 
linear interpolation of the temperatures corresponding to the two nodes 
closest to the center of the measurement surface of Spot3. 

Although the filter architecture is changed, the operations performed 
by the UKF at each time step are the same as the one described previ-
ously by Eqs. (32–47). 

5. Results and discussion 

5.1. Assessment of the convection heat transfer coefficient identification 

In absence of power generated by friction (i.e. during the braking 
maneuver) the model is expected to provide a good approximation of the 
reality, hence the estimated values being quite accurate. To assess the 
reliability of the value of h, a comparison with the results obtained 
through CFD simulation is made. In order to keep the simulation as 
simple and fast as possible, it was performed considering only the 
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influence of the forward velocity, Vx, whereas the effects of both the 
steering angle and the roll angle were disregarded. The calculation was 
carried out only at three specific speed values and then the black curve 
shown in Fig. 6 was extrapolated for all the other velocity values. Even 
though the CFD analysis is oversimplified, the result obtained through 
this comparison is crucial to assess the reliability of the estimated con-
vection coefficient and its relevance to reality. 

Fig 6 reports the estimated values of h as a function of the forward 
speed. Both quantities are normalized with respect to reference values 
(namely, href and Vxref, respectively). The low-speed region of the graph 
results quite noisy. This behavior should be ascribable to the uncertainty 
related to the temperature distribution passed to the UKF as initial 
condition at the beginning of the estimation. Conversely, the estimated 
values of h appear highly coherent in the mid/high-speed region. The 
UKF estimates have been interpolated to obtain a curve (solid green line) 
that can be directly compared with the CFD results. In particular, as a 
modification in the trend of the estimated values can be clearly observed 
at a normalized speed Vx of about 0.8, two distinct interpolating curves 
(functions of Vx) have been exploited. For Vx < 0.8, a power function 
has been adopted; for Vx ≥ 0.8, a cubic polynomial has been used; the 
two functions are joined at Vx = 0.8 to achieve a continuous curve. The 
interpolated h curve closely matches the trend of the CFD simulations in 
most of the velocity domain, hence confirming the robustness off the 
proposed parameter identification approach. Discrepancies can be 
observed above a normalized speed of about 0.8, where the values of h 
increase considerably and apparently diverge from the CFD results. The 
source of this phenomenon is still under investigation. Deeper in-
vestigations are being performed through additional CFD simulations, 
by modelling the deformations of the tire cross section as a function of 
the wheel angular velocity (whereas tire deformations had been 
neglected in the first simulations). Indeed, the preliminary results pro-
vided by such analyses showed that the tire deformations beyond a 
normalized Vx of 0.8 might completely expose the disc to the undis-
turbed air flow, thus ensuring a faster cooling of the disc. Hence, these 
results seem to confirm the correctness of the UKF identification 
approach, which was therefore capable of revealing an unexpected 
behavior that went initially unnoticed by the CFD simulation standardly 
adopted by the company for the analysis. 

In the end, the interpolated values of h are implemented in the 1D-FE 
model for a more accurate temperature estimation. 

5.2. Analysis of the 1D-FE temperature estimation performance 

The results obtained with different mesh sizes of the 1D-FE model 
have been investigated in order to determine the optimal number of 
nodes for the final algorithm. The analysis has been performed by 

starting from 150 nodes and reducing the mesh size till a minimum 10 
nodes (which is the limit value to have at least 1 node for each spot of the 
temperature transducer). The results of the analysis for the temperature 
of Spot3 are reported in Table 2 for the most relevant mesh sizes. The 
variation in the estimation of the temperature distribution has been 
evaluated in terms of the Root Mean Squared Error (RMSE) with respect 
to the 150-noded model, over the reference lap. The table also show the 
computational time required for processing the samples of one lap, for 
the 1D-FE alone and for the complete algorithm including the UKF. 

It can be observed that the temperatures predicted by the 10-noded 
model do not differ remarkably from those obtained with a finer mesh, 
in terms of RMSE. Conversely, the increment in the computational time 
appears not negligible. In particular, the UKF can become computa-
tionally very expensive due to the unscented transform. Indeed, as the 
number of parameters increases, the UKF has more sigma points to 
process at each time step. Since every iteration of the UKF requires 
running the 1D-FE model, the resulting algorithm is extremely slow. 

In addition, the trend of the predicted temperature over the reference 
lap is shown in Fig. 7 for some of the tested mesh sizes. It can be 
observed that, despite using more nodes, the temperature peak of Spot3 
remains not accurately reconstructed. Actually, the introduction of a 
finer mesh may even worsen the peak prediction in some cases (due to a 
combined effect of how the nodes approximate each region and how he 
braking power has been defined) 

In light of the above considerations, a 10-noded mesh has been 
selected as the optimal mesh size for the final temperature estimation 
algorithm. 

5.3. Accuracy of the UKF temperature estimate 

Once the convection heat transfer coefficient has been identified, the 
temperature estimation is performed using only the measurement of 
Spot3. The acquisitions made in the other measurement spots are used 
for validation purpose only. 

In Fig. 8 the temperature measured experimentally (black solid line, 

Fig 6. Normalized convection coefficient as a function of the normalized forward speed.  

Table 2 
Performance of the FE model for different mesh sizes.  

Nodes RMSE 
(Normalized T 
Spot3) 

1D-FE computational 
time [s/lap] 

UKF computational 
time [s/lap] 

150 - 1.24 373.24 
100 0.0002 0.84 168.84 
50 0.0009 0.61 61.95 
20 0.0015 0.41 16.95 
10 0.0062 0.33 7.00  
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Exp), the prediction made by the 1D-FE model alone (dashed blue line) 
and the UKF estimation (solid orange line) are compared over one 
reference lap of the race track tests. 

As expected, the 1D-FE model alone appears unable to predict the 
large temperature gradient along the disc radius that may be generated 
during a vigorous braking. This behavior is partially ascribable to the 
uncertainty affecting both the total braking power entering the system in 
the braking phase (Q̇BRK) and the actual power distribution over the 
contact patch, f(r). As for the latter aspect, the possibility of imple-
menting a non-uniform pressure distribution to improve the model 
prediction is currently under investigation. However, as it can be seen in 
Fig. 2, it appears very difficult to identify a regular pattern in the power 
distribution related to the measurement area of each spot. Another 

important consideration is that concentrating the disc mass on one 
single layer of nodes may increase excessively the thermal inertia of the 
system and prevents the 1D-FE model from detecting the temperature 
peaks measured during braking maneuvers. As a result, the 1D-FE model 
underestimates the maximum temperature registered in the third spot 
by 22 %. The significant peak underestimation also leads to a general 
underestimation of the temperature over the entire reference lap. As 
assessing the temperature of the disc is an essential requirement for 
accurately estimating the friction coefficient of the brake and its overall 
performance, such error is deemed not acceptable. Nonetheless, the 
temperature signals are predicted with high accuracy during the off- 
brake phases, hence indicating that the convection coefficient identifi-
cation was successful. 

Fig 7. Measured (Exp) vs. estimated (1D-FE) normalized temperatures.  

Fig 8. Measured (Exp) vs. estimated (UKF & 1D-FE) normalized temperatures.  

F. Bonini et al.                                                                                                                                                                                                                                   



International Journal of Thermofluids 21 (2024) 100547

12

With the introduction of the UKF, the temperature prediction is 
significantly improved. For instance, the discrepancy on the maximum 
temperature of the disc (related to Spot3) is reduced to about 12 %. To 
compensate for the approximation introduced by the simplified 1D-FE 
model that lead to the underestimation of the temperature peaks, the 
weighting parameters, wi, of the power density function f(r) in Eq. (6) 
were adjusted to move part of the braking power from Spot3 to Spot2. In 
particular, the new distribution provides 45 % of the total braking power 
to the nodes related to Spot2 and 20 % to those related to Spot3. By 
concentrating more power in Spot2, the temperature peaks in this region 
are more accurately reproduced by the FE model at the expense of Spot3. 
However, the accuracy for Spot3 is ensured by the presence of the single- 
spot measurement used by the UKF to correct the unbalanced prediction 
of the FE model, thus obtaining an improvement in the temperature 
prediction in most of the disc-pad contact patch. The algorithm appears 
to satisfactorily compensate for the approximations introduced by the 
simplified 1D-FE model. It can be noticed that some of the temperature 
peaks related to the fast transients occurring during the braking ma-
neuvers are not properly reconstructed. In particular, a higher under-
estimation of the peak temperature of Spot3 is generally associated with 
an overestimation of the peaks related to the other spots. This effect, 
clearly observable for the first and the last braking maneuvers of the 
reference lap shown in Fig. 8, is caused by the UKF gain being deter-
mined from the predicted and the measured Spot3 temperatures. Addi-
tional test with different power distributions are still being performed to 
possibly improve the prediction, particularly for Spot4. 

The performance of the proposed UKF-based estimation method has 
been assessed by using the RMSE. The RMSE values (computed with 
respect to the experimental data provided by the multi-spot sensor) for 
the UKF and the 1D-FE estimated temperatures reported in Fig. 8 are 
shown in Table 3. The table also reports the RMSE that would be ach-
ieved by assuming the temperatures of Spot2 and Spot4 equal to the 
measurement provided by the single-spot sensor (Spot3), i.e. the 
approach actually adopted in the past. The UKF reduces considerably the 
error that would be obtained with the 1D-FE model alone, for Spot1-3. In 
particular, for Spot2 and Spot3 the error is reduced of about 27 % and 37 
%, respectively. Conversely, the performance slightly worsens for Spot4. 
This is reasonably ascribable to the fact that, although the temperature 
peaks are better predicted by the UKF, the estimated curve exhibits some 
kind of delay with respect to the measured signal. The UKF also signif-
icantly improves the results for both Spot2 and Spot4 in comparison with 
the use of the single-spot sensor. In particular, the error is reduced by 
almost 50 % for Spot2. Furthermore, the UKF can provide reliable in-
formation on the thermal behavior of the inner region of the disc, 
whereas no meaningful results can be obtained from the single-spot 
sensor: such information may be useful to develop a more comprehen-
sive thermal model of the front wheel assembly, including the tire. 

In order to better appreciate the improvement provided by the pro-
posed UKF-based approach, the instantaneous average temperature of 
the disc/pads contact region can be evaluated. In practice, the simple 
average of the three spots in the disc region of interest (i.e. Spot2-4) is 
computed. Such quantity is essential in order to properly estimate the 
actual friction coefficient and, in the end, the braking performance. The 
average temperature computed for the reference lap, i.e. by considering 
the curves of Spot2-4 shown in Fig. 8, is reported in Fig. 9. In case of 
simply relying on the single-spot sensor, the only measurement would be 
assumed to be representative of the whole disc/pads contact patch. 
Therefore, the corresponding curve shown is Fig. 9 (grey dotted line) 

coincides with the Spot3 measured temperature. The comparison clearly 
shows that the UKF estimate closely match the real average temperature 
(black solid line, Exp). Conversely, the single-spot measurement tends to 
significantly overestimate the real average temperature. 

The corresponding RMSE values (computed with respect to the real 
average temperature) are reported in Table 4. The percentage variation 
of the RMSE with respect to the RMSE value single-spot approach is also 
reported. The comparison proves that the UKF approach significantly 
improves the accuracy of the average temperature estimate. Indeed, the 
reduction in the RMSE is of more than 17 %, which is deemed as a huge 
improvement for a racing application. The 1D-FE model alone is 
confirmed not sufficiently accurate. 

Finally, the UKF approach meets the desired computational re-
quirements. The developed algorithm for temperature estimation can 
process one lap in about 7.5 s (see Table 2). 

6. Conclusions 

This research activity focused on the development of a fast and 
computationally efficient tool for estimating the temperature distribu-
tion of the carbon discs mounted on the racing motorcycles competing in 
the MotoGP world championship, a topic not yet investigated. 

A novel method exploiting an Unscented Kalman Filter for both 
parameter identification and state estimation has been implemented. 
The proposed solution combines the UKF with a simple 1D-FE model of 
the brake, whose convection heat transfer coefficient was completely 
identified by the filter itself. 

The performance of the developed approach has been assessed by 
using experimental data acquired from a motorcycle performing test 
sessions in a real race track. The analysis proved that combining, 
through the UKF, the theoretical prediction performed by the 1D-FE 
model with the empirical information measured by the sensor avail-
able on board makes the algorithm capable of adapting to the external 
factors that might shift the temperature prediction from the actual 
temperature of the disc, thus ensuring a satisfactory trade-off between 
accuracy and execution time. In particular, the following results could 
be achieved.  

• The convection heat transfer coefficient, h, could be successfully 
identified with a satisfactory precision, as confirmed by numerical 
results from CFD simulations. This permitted to interpolate a curve 
describing h as a function of the forward velocity Vx, to tune and 
enhance the 1D-FE model.  

• The temperature distribution of the disc surface could be estimated 
with an acceptable accuracy, with an improvement of nearly 50 % in 
the RMSE for Spot2 and about 10 % for Spot4. While the overall trend 
of the temperature for each disc region is deemed satisfactory, some 
of the temperature peaks appear not properly reconstructed, the 
highest error being associated to the Spot3 (maximum temperature 
underestimated by about 12 %).  

• The implemented tool allowed to better predict the instantaneous 
average temperature of the disc in the disc/pads contact region, 
which is closely related to the actual friction coefficient provided by 
the disc. A reduction of about 17 % in the RMSE of the average 
temperature UKF estimate (with respect to the single-spot measure-
ments) could be obtained.  

• The computational time of the final algorithm meets the desired 
specifications, with less than 7.5 s being required to process the 
samples related to a full lap. 

Therefore, the developed UKF-based algorithm represents a signifi-
cant improvement with respect to the current approach, which simply 
relies on the temperature measurement available from the onboard 
sensor. 

The proposed approach has been included in the data analysis 
package that is routinely used to process telemetry data by the company 

Table 3 
RMSE values of the curves related to the reference lap.   

Spot1 Spot2 Spot3 Spot4 

UKF 0.0095 0.0260 0.0301 0.0349 
1D-FE 0.0123 0.0355 0.0478 0.0311 
Single-spot - 0.0513 0.0 0.0385  
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collaborating to the research. The presented solution is deemed essential 
to estimate the actual braking torque, which heavily depends on the 
actual temperature distribution of the discs. Furthermore, it will repre-
sent a key tool to assess the tire behavior, which is also affected by the 
thermal dynamics of the braking system. 

An improvement of the thermal model is currently under investiga-
tion to better estimate the high temperature peaks occurring in the fast 
thermal transients associated with the hardest braking maneuvers. The 
possibility of rapidly adapting the FE model for assessing the perfor-
mance of different aerodynamic configuration of the brake, such as the 
introduction of a cover for the disc or the usage of ventilated discs, will 
be also investigated. 
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