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Simple Summary: Performing a mitosis count (MC) is essential in grading canine Soft Tissue Sarcoma
(cSTS) and canine Perivascular Wall Tumours (cPWTs), although it is subject to inter- and intra-
observer variability. To enhance standardisation, an artificial intelligence mitosis detection approach
was investigated. A two-step annotation process was utilised with a pre-trained Faster R-CNN model,
refined through veterinary pathologists’ reviews of false positives, and subsequently optimised using
an F1-score thresholding method to maximise accuracy measures. The study achieved a best F1-score
of 0.75, demonstrating competitiveness in the field of canine mitosis detection.

Abstract: Performing a mitosis count (MC) is the diagnostic task of histologically grading canine Soft
Tissue Sarcoma (cSTS). However, mitosis count is subject to inter- and intra-observer variability. Deep
learning models can offer a standardisation in the process of MC used to histologically grade canine
Soft Tissue Sarcomas. Subsequently, the focus of this study was mitosis detection in canine Perivas-
cular Wall Tumours (cPWTs). Generating mitosis annotations is a long and arduous process open
to inter-observer variability. Therefore, by keeping pathologists in the loop, a two-step annotation
process was performed where a pre-trained Faster R-CNN model was trained on initial annotations
provided by veterinary pathologists. The pathologists reviewed the output false positive mitosis
candidates and determined whether these were overlooked candidates, thus updating the dataset.
Faster R-CNN was then trained on this updated dataset. An optimal decision threshold was applied
to maximise the F1-score predetermined using the validation set and produced our best F1-score of
0.75, which is competitive with the state of the art in the canine mitosis domain.

Keywords: artificial intelligence; deep learning; canine Soft Tissue Sarcoma; canine Perivascular Wall
Tumour; digital pathology; object detection; faster R-CNN; mitosis; mitosis detection; pathologists in
the loop; humans in the loop
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1. Introduction

Canine Soft Tissue Sarcoma (cSTS) is a heterogeneous group of mesenchymal neo-
plasms (tumours) that arise in connective tissue [1–6]. cSTS is more prevalent in middle-age
to older and medium to large-sized breeds with the median reported age of diagnosis
between 10 and 11 years old [3,7–10]. The anatomical site of cSTS can vary considerably,
but it is mostly found in the cutaneous and subcutaneous tissues [9]. In human Soft Tis-
sue Sarcoma (STS), histological grade is an important prognostic factor and one of the
most validated criteria to predict outcome following surgery in canines [10–13]. General
treatment consists of surgically removing these cutaneous and subcutaneous sarcomas.
Nevertheless, it is the higher-grade tumours that can be problematic, as their aggressiveness
can reduce treatment options and result in a poorer prognosis. The focus of this study
was on one common subtype found in dogs: canine Perivascular Wall Tumours (cPWTs).
Canine Perivascular Wall Tumours (cPWTs) arise from vascular mural cells and are often
recognisable from their vascular growth patterns [14,15].

The scoring for cSTS grading is broken down into three major criteria: the mitotic
count, differentiation and the level of necrosis [9]. Mitosis counting can be exposed to
high inter-observer variability [16], depending on the expertise of the pathologist; however,
the counting of mitotic figures is considered the most objective factor in comparison to
tumour necrosis and cellular differentiation when grading cSTS [16]. It is routine practise
to investigate mitosis using 40× magnification; however, manual investigation at such
high-powered fields (HPFs) is a laborious task that is prone to error, thus leading to the
previously discussed inter-observer variability phenomenon.

For the purposes of this study, the focus was on creating a mitosis detection model as it
is a significant criterion from the cSTS histological grading system [13] where the density of
mitotic figures is also considered highly correlated with tumour proliferation [17]. Mitosis
detection has been pursued in the computer vision domain since the 1980s [18]. Before
2010, relatively few studies aimed to automate mitosis detection [19–21]. However, since
the MITOS 2012 challenge [22], there has been a resurgence of interest. Mitosis detection
can often be considered as an object detection problem [23]. Rather than categorising entire
images as in image classification tasks, object detection algorithms present object categories
inside the image along with an axis-aligned bounding box, which in turn indicates the
position and scale of each instance of the object category. In the case of mitosis detection,
the considered objects are mitotic figures. As a result, several approaches have used object
detection-related algorithms for mitosis detection. An example of an object detection
algorithm is the regions-based convolutional neural network (R-CNN) [24]. At first, a
selective search is performed on the input image to propose candidate regions, and then the
CNN is used for feature extraction. These feature vectors are used for training in bounding
box regression. There have been many developments on this type of architecture such
as Fast R-CNN [25] and Faster R-CNN [26], which is the primary object detection model
used in this work. One set of authors detected mitosis using a variant of the Faster R-CNN
(MITOS-RCNN), achieving an F-measure score of 0.955 [27].

Several challenges have been held in order to find novel and improved approaches
for mitosis detection [17,22,23,28,29]. Some of these challenges and research on mitosis
detection methods have also been conducted using tissue from the canine domain [30–33].

It was made apparent by the collaborating pathologists that AI approaches for grading
tasks in cSTS were desirable, and so this study aims to tackle one criterion, which is to
develop methods for mitosis detection in a subtype of cSTS: cPWT. To the best of our
knowledge, this is the first work in the automated detection of mitoses in cPWTs.

2. Materials and Methods
2.1. Data Description and Annotation Process

A set of canine Perivascular Wall Tumour (cPWT) slides were obtained from the De-
partment of Microbiology, Immunology and Pathology, Colorado State University. A senior
veterinary pathologist at the University of Surrey confirmed the grade of each case (patient)
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and chose a representative histological slide for each patient. These histological slides were
digitised using a Hamamatsu NDP Nanozoomer 2.0 HT slide scanner. A digital Whole
Slide Image (WSI) was created via scanning under 40× magnification (0.23 µm/pixel) with
a scanning speed of approximately 150 s at 40× mode (15 mm × 15 mm).

Veterinary pathologists independently annotated the WSIs for mitosis using the open-
source Automated Slide Analysis Platform (ASAP) software
(https://www.computationalpathologygroup.eu/software/asap/, accessed on 28 January
2024) [34]. The pathologists used different magnifications (ranging from 10× to 40×) to
analyse the mitosis before creating mitosis annotations. These annotations were centroid
coordinates, which were centered on the suspecting mitotic candidate. Centroid coordinate
annotations can be considered as weak annotations as they are simply coordinates placed
in the centre of a mitotic figure and not fine-grained pixel-wise annotations around the mi-
tosis. In order to categorise a mitotic figure, both pathologist annotators needed to form an
agreement on the mitotic candidate. As these were centroid coordinates, an agreement was
determined when two independent centroid annotations from each annotator were overlaid
on one another. Any centroid annotations without agreement were dismissed from being
considered as a mitotic figure. Table 1 shows the differences between the two annotators
for both training and validation when counting mitotic figures in our cPWT dataset.

Table 1. The differences between the two annotators in regard to mitosis annotations for the train-
ing/validation set. The “Slide” column represents the anonymised set of slides annotated. “Anno
1” and “Anno 2” show the number of mitoses annotated per slide for each annotator. “Agreement”
represents the number of agreed mitoses between each annotator. The “% agreement” for each
annotator represents the percentage of the agreed mitotic count against the respective annotators
mitotic count. “Avg” is the average of every WSI % agreement, which is computed for each annotator.

Slide Anno 1 Anno 2 Agreement % Agreement Anno 1 % Agreement Anno 2

F17-04773 31 31 23 74.19 74.19
F17-03141 69 89 55 79.71 61.80
F17-1261 45 46 41 91.11 89.13
F18-13364 695 517 444 63.88 85.88
F17-02232 331 264 218 65.86 82.58
F17-04911 49 58 37 75.51 63.79
F17-0549 157 142 112 71.34 78.87
F17-011577 27 29 23 85.19 79.31
F17-011777 449 367 290 64.59 79.02
F17-03855 97 87 70 72.16 80.46
F17-04900 91 86 75 82.42 87.21
F18-7832 496 401 346 69.76 86.28
F17-09700 202 187 139 68.81 74.33
F17-02641 59 48 43 72.88 89.58
F17-09926 77 71 62 80.52 87.32
F17-02723 49 52 40 81.63 76.92
F17-05935 55 46 44 80.00 95.65
F17-02120 58 53 43 74.14 81.13
F18-79705 132 99 87 65.91 87.88

Total: 3169 2673 2192 Avg: 74.72 Avg: 81.12

For patch extraction, downsized binary image masks (by a factor of 32) were generated,
depicting tissue from the biopsy samples against background slide glass. A tissue threshold
of 0.75 was applied to 512 × 512 patches for final patch extraction. Therefore, if a patch
contained less than 75% of any tissue, it was dismissed from the dataset. This was to ensure
that the patches contained relevant information for mitosis object detection.

The test set consisted of patches extracted from high-powered fields (HPFs) deter-
mined by the pathologist annotators. To replicate real-world test data, our collaborating
pathologists selected 10 continuous non-overlapping HPFs from each WSI. The size of this

https://www.computationalpathologygroup.eu/software/asap/
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area was determined by loosely following the Elston and Ellis [35] criteria of an area size
of 2.0 mm2. For 20× magnification (level 1 in the WSI pyramid), the width of the 10 HPFs
was 4096 pixels and the height was 2560 pixels. This produced 40 non-overlapping patches
of 512 × 512 pixels, thus producing a dataset of 440 patch images from the 11 hold-out
test WSIs at 20× magnification. Only patches containing mitosis were used for train-
ing and validation, whereas for testing, all extracted patches were evaluated. Details
on the number of mitosis per slide in training/validation and test sets are provided in
Appendix Tables A1 and A2, respectively. Details on the number of patches used for train-
ing/validation and testing for 40× magnification is provided in Appendix Table A3. Details
on the number of patches used for training/validation and testing for 20× magnification is
provided in Appendix Table A4.

2.2. Object Detection and Keeping the Pathologist in the Loop for Dataset Refinement

Mitosis detection is generally considered an object detection problem [23]; For this
study, we used a Faster R-CNN model [26]. We initialised a Faster R-CNN model with
pre-trained COCO [36] weights with the ResNet-50 head pre-trained on ImageNet. The
model was fine-tuned, updating all parameters of the model using our dataset. Preliminary
experiments suggested using a learning rate of 0.01 and SGD to be used as the optimiser.
A batch size of 4 was also used for these experiments. Training was implemented for
30 epochs, where the the model with the lowest validation loss was saved for final evalua-
tion. Faster R-CNN is jointly trained with four different losses; two for the RPN and two
for the Fast R-CNN. These losses are RPN classification loss (for distinguishing between
foreground and background), RPN regression loss (for determining differences between
the regression of the foreground bounding box and ground truth bounding box), the Fast
R-CNN classification loss (for object classes) and Fast R-CNN bounding box regression
(used to refine the bounding box coordinates). Therefore, in our implementation of deter-
mining the lowest validation loss, at every epoch, each loss type was considered equally.
We implemented 3-fold cross-validation at the patient (WSI) level to test the veracity and
robustness of our approach with the training data split into three folds for training and
validation. We also used an unseen hold-out test set for final evaluation and for a fair
comparison of all three folds. The training, validation and hold-out test splits for each fold
are depicted in Appendix Table A5.

Furthermore, as most mitotic figures from the same tissue type are generally of a similar
size (dependent on the stage of mitosis, staining techniques, and slide quality), we opted to use
the default anchor generator sizes provided by the PyTorch implementation of Faster R-CNN.
These sizes were 32, 64, 128, 256 and 512 with aspect ratios of 0.5, 1.0 and 2.0. See Figure 1 for a
depiction of the Faster R-CNN applied to the cPWT mitosis detection problem.



Cancers 2024, 16, 644 5 of 20

Figure 1. Image is inspired by Mahmood et al.’s depiction of Faster R-CNN [37]. A Faster R-CNN
object detection model applied to the cPWT mitosis dataset. An input image of size 512 × 512 pixels
is passed through the model where the feature map is extracted using the Resnet-50 feature-extraction
network. This is then followed by generating region proposals in the Region Proposal Network (RPN)
and finally mitosis detection in the classifier.

During the evaluation inference, non-maximum suppression (NMS) with an IoU value
of 0.1 was applied as a post-processing step to remove low-scoring otherwise redundant
overlapping bounding boxes. This post-processing method is also consistent with other
mitosis detection methods in the literature [38,39].

In object detection, mean average precision (mAP) is typically used to evaluate the
performance of a model depending on the task or dataset [40–43]. However, we opted to
use the F1-score in order to compare our results to mitosis detection approaches in the
literature. The F1-score was computed globally for each fold; thus, it was applied and
determined for the entire dataset of interest. True positive (TP) detections were computed
if there was an IoU of >= 0.5 between the ground truth and proposed candidate detections.
Anything that did not meet the IoU threshold was considered a false positive (FP) detection.
Any missed ground truth detections were considered false negatives (FNs). As a result,
we could also generate the F1-score. The F1-score can be considered the harmonic mean
between the precision and recall (sensitivity). Both precision (Equation (1)) and sensitivity
(Equation (2)) contribute equally to the F1-score (Equation (3)):

Precision =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)

F1 = 2 ∗ Sensitivity ∗ Precision
Sensitivity + Precision

(3)

where TP, FP and FN are true positives, false positives and false negatives, respectively.
The models were implemented in Python, using the PyTorch deep learning framework.

The hardware and resources available for implementation used a Dell T630 system, which
included 2 Intel Xeon E5 v4 series 8-Core CPUs with 3.2 GHz, 128 GB of RAM (Dell
Corporation Limited, London, UK), and 4 nVidia Titan X (Pascal, Compute 6.1, Single
Precision) GPUs.

The mitosis annotation process is an exhaustive and arduous process, and thus the
initial annotation process may be suboptimal due to the vast area annotators needed to
examine mitotic candidates. Taking inspiration from Bertram et al. [33], we used our deep
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learning object detection models from these experiments to refine the dataset (see Figure 2).
We hypothesised that many of the FP candidates may have been incorrectly labelled. Our
collaborating pathologists reviewed all the FP candidates (irregardless of class score) from
each validation fold and the hold-out test set and determined which candidates were
mislabeled. As a result, we were able to formulate additional ground truth mitoses for use
in the final set of experiments.

Figure 2. Keeping humans in the loop: (a) Two pathologist annotators independently review canine
Perivascular Wall Tumour (cPWT) Whole Slide Images (WSIs) and applied centroid annotations
to mitotic figures. (b) After initial agreement of mitoses, this formed the initial dataset of patch
images with annotations. (c) A Faster R-CNN object detector was trained and tested on these data.
(d) Thereafter, false positive (FP) candidates are reviewed again by the pathologist annotators where
misclassified candidates are reassigned as true positives (TPs). (e) These new TPs are added to the
updated dataset. (20× magnification images).

2.3. Adaptive F1-Score Threshold

For this method, the Faster R-CNN object detector was trained on detecting mitotic
candidates using the refined (updated) dataset. The same training hyperparameters as
described earlier were applied; however, we lowered the number of epochs. It was observed
that the models found their optimal validation loss by epoch 7 across all three folds in the
initial experiment runs. Therefore, to ensure optimality, we chose 12 epochs for training,
again using the lowest validation loss as determining the “best” model. The trained Faster
R-CNN model outputs potential mitosis candidates, but it also outputs probability scores
relating to the strength of the object prediction. These scores ranged from 0 to 1, where 1
would highlight the model is 100% certain that the candidate is mitosis and 0.01 would
describe a prediction that is very low in confidence. We optimised our models based on the
F1-score [44–46]. The probability thresholds t ranged from 0.01 to 1, and so choosing the
optimal threshold T for the F1-score F1 can be represented formally as:

T = arg max
t

F1(t) (4)

We determined the optimal F1-score threshold value using the validation set and
applied this threshold value to the final evaluation on the hold-out test set. Figure 3
demonstrates the entire workflow of this method from the creation of the updated mitosis
dataset where the pathologists reviewed all the FP candidates all the way to the adaptive
F1-score thresholds applied to the mitosis candidate predictions.



Cancers 2024, 16, 644 7 of 20

Figure 3. We used 20× magnification images and annotations from the updated mitosis dataset
to train the Faster R-CNN object detection model (details from the Faster R-CNN model are also
shown in Figure 1). Optimal thresholds using Equation (4) were applied on the output candidates
determined from the validation set.

3. Results

The pathologists-in-the-loop approach for dataset refinement was first applied as
demonstrated by Figure 2. In a preliminary investigation, two magnifications (40× and
20×) were used to determine the best resolution for our for our task (see Table 2) .

Tables A6 and A7 show the differences in mitotic candidate numbers before and after
refinement (second review) for the training/validation and test sets, respectively. The first
set of results from the optimised Faster R-CNN approach is depicted in Table 3. This shows
a comparison of performance of the Faster R-CNN trained on the initial mitosis dataset
and the updated refined mitosis dataset. It is apparent that sensitivities have improved for
all folds when using the updated refined dataset; however, in some cases, such as in fold-1
validation, fold-3 validation and fold-3 test, we can see that the F1-score is lower due to a
decrease in precision scores. This could be due to the updated refined dataset containing
more difficult examples for the effective mitosis object detection training. The previous
initial dataset may have contained more obvious mitosis examples and thus was predicting
detections that closely resembled these obvious examples. Table 4 shows the Faster R-CNN
results before and after F1-score thresholding was applied on the models trained using the
updated mitosis dataset. The thresholds were predetermined on the validation set for each
fold using Equation (4) (see Figure 4). When applying the optimal thresholds, we saw large
improvements in the F1-score, which were largely due to an improvement in precision
because of a reduction in FPs. This was seen on the test set with an F1-score of 0.402 to
0.750. However, this increase in precision came at the expense of some sensitivity across
all three folds, where for example on the test set the mean sensitivity for all three folds
reduced from 0.952 to 0.803. Nevertheless, the depreciation in sensitivity does not offset
the increase in precision, where sensitivity decreased by 14.9 % and precision increased
by 45.2 %. This suggests that the majority of TP detections prior to the adaptive F1-score
thresholding are of a high probability confidence compared to the FP detections.
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Table 2. Initial mitosis object detection results for the 40× and 20× magnification patches datasets.
As the difference in performance between the two resolution datasets was of interest, we first present
the initial results for 20× and 40 magnifications for validation and test sets and for all three folds.
Interestingly, although the 40× magnification trained models appeared to produce better F1-scores
for validation, 20× magnification models performed better across all three folds when applied to
the hold-out test set. It appears that with our experimental set-up, the models trained on 20×
magnification generalise across the two evaluation datasets better. As a consequence, and to also
reduce computational requirements, we proceeded further with the 20× magnification extracted
dataset. Results for these initial experiments also suggested that the object detector was highly
sensitive for the test set (at a mean average of 0.918) but not as precise (at a mean average of 0.249 for
the precision measure).

Magnification Fold Set Sensitivity Precision F1-Score TP FP FN

40× 1 Val 0.967 0.720 0.826 590 229 20
40× 1 Test 0.957 0.132 0.232 135 890 6

40× 2 Val 0.922 0.786 0.849 847 230 72
40× 2 Test 0.965 0.173 0.294 136 649 5

40× 3 Val 0.944 0.724 0.819 503 192 30
40× 3 Test 0.957 0.185 0.311 135 593 6

20× 1 Val 0.957 0.484 0.643 582 620 26
20× 1 Test 0.932 0.207 0.338 137 526 10

20× 2 Val 0.895 0.567 0.694 810 619 95
20× 2 Test 0.918 0.221 0.356 135 477 12

20× 3 Val 0.897 0.545 0.678 477 399 55
20× 3 Test 0.905 0.320 0.473 133 282 14

Table 3. A comparison of results of the models trained on the initial annotated dataset and the
updated dataset. Results are shown for both the validation and test sets for folds 1, 2 and 3.

Fold Data Set Sensitivity Precision F1-Score TP FP FN

1 Initial Val 0.957 0.484 0.643 582 620 26
1 Updated Val 0.961 0.452 0.615 610 740 25

1 Initial Test 0.932 0.207 0.338 137 526 10
1 Updated Test 0.954 0.239 0.383 187 594 9

2 Initial Val 0.895 0.567 0.694 810 619 95
2 Updated Val 0.919 0.557 0.694 877 698 77

2 Initial Test 0.918 0.221 0.356 135 477 12
2 Updated Test 0.959 0.281 0.435 188 480 8

3 Initial Val 0.897 0.545 0.678 477 399 55
3 Updated Val 0.935 0.398 0.558 528 798 37

3 Initial Test 0.905 0.320 0.473 133 282 14
3 Updated Test 0.944 0.244 0.387 185 574 11
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Figure 4. Line graphs that show the sensitivity, precision and F1-score calculated for each probability
threshold for the three validation folds. To determine the optimal probability threshold, we choose
the threshold with the highest F1-score as determined via Equation (4). In the above plots, these are
denoted as “best threshold”. For fold 1, this threshold was 0.96, for fold 2, it was 0.84, and for fold 3,
it was 0.91.
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Table 4. Results of the models trained on the updated dataset. The “Thresholds” column de-
pict whether models were optimised using the adaptive F1-score threshold metric described in
Equation (4); filled in values state the probability threshold. It is apparent that the models with
optimised thresholds produced the highest F1-scores across all folds, producing a mean average
F1-score of 0.750 on the test set compared to 0.402.

Fold Threshold Set Sensitivity Precision F1-Score

1 None Val 0.961 0.452 0.615
1 0.96 Val 0.811 0.854 0.832

1 None Test 0.954 0.239 0.383
1 0.96 Test 0.776 0.756 0.766

2 None Val 0.919 0.557 0.694
2 0.84 Val 0.778 0.857 0.815

2 None Test 0.959 0.281 0.435
2 0.84 Test 0.827 0.633 0.717

3 None Val 0.935 0.398 0.558
3 0.91 Val 0.819 0.840 0.830

3 None Test 0.944 0.244 0.387
3 0.91 Test 0.806 0.731 0.767

Average (mean)
None

Val 0.938 0.469 0.622
Test 0.952 0.255 0.402

Optimised
Val 0.803 0.850 0.826
Test 0.803 0.707 0.750

4. Discussion

This study has demonstrated a method for mitosis detection in cPWT WSIs using a
Faster R-CNN object detection model, an adaptive F1-score thresholding feature on output
probabilities and the refinement of a mitotic figures dataset by keeping pathologists in the loop.

Many approaches in the literature use the highest resolution images for their object
detection methods (typically at 40× objective); however, we preliminarily found that 20×
magnification was beneficial for our task and the dataset provided, as shown in Table 2.
Nevertheless, this warrants a further investigation and additional discussions with the
collaborating pathologists, who may provide reasoning as to why certain candidates were
classed as mitosis at different resolutions.

Initially, solely using the outputs from a Faster R-CNN model produced promising re-
sults generating high sensitivities; however, these outputs required further post-processing
to improve precision. Applying adaptive F1-score thresholds, where the optimal values
were predetermined on the validation set and applied to the test set, demonstrated an
effective method of reducing the number of FP predictions. This ultimately resulted in
dramatically increasing the F1-score due to a stark increase in precision. However, this
came at a small expense of sensitivity. Nevertheless, the rate of change of the sensitivity
and the precision are not equal with the latter vastly improving. This suggests that the
majority of FP detections are of lower probability confidence compared to TP detections.

Multi-stage (typically dual-stage) approaches have also become increasingly prevalent
over the years where they typically take the form of selecting mitotic candidates in the
first stage and then apply another classifier in the second stage [32,33,47–49]. Although not
reflected in the main findings of this study, we attempted to use a second-stage classifier
(Figure A1) on mitotic candidates to classify between TP and hard FPs to no avail (see
results of the two-stage approach in Table A8 and its subsequent ROC curves in Figure A2).
Most machine learning methods require large datasets for effective training, which in
this case was not available once optimisation was applied using the adaptive F1-score
threshold method. One could train models using the non-thresholded detections; however,
this would result in a model that is able to distinguish between true positive mitosis and
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mostly obvious FP candidates. By applying the adaptive F1-score thresholding method, we
constrained the dataset and attempted to learn differences between TP and high confidence
hard false positive detections, but we did not provide an adequately large dataset for
training. Figure 5 depicts a 512 × 512 pixel image in the test set, highlighting FN and
FP detection.

Figure 5. An example 512 × 512 pixel image from the test set with a false negative (FN) shown
in the red bounding box and a false positive (FP) detection shown in the yellow bounding box
(32 × 32 pixels). The FP detection provides a probability confidence score of 5.3% and so would
typically be dismissed as a mitosis candidate once the adaptive F1-score threshold is applied.

Different phases and other biological phenomenon could influence the size of the
mitosis region of interest. Going forward, it may also be worth labelling mitosis in regard
to the phases and thus creating a multi-class problem rather than binary, as shown in this
study. As a consequence, the size of the ground truth bounding boxes could also be varied
depending on the target phase being classified. Nonetheless, the models were still able to
predict the vast majority of mitosis in these phases.

It must be further denoted that the methodology is applied to only patches from HPFs
containing mitosis that were annotated by the collaborating pathologists. Therefore, we
propose expanding our dataset to include a broader range of sections, including those not
initially marked by pathologists, to evaluate and enhance our model’s generalisability. The
data should include labels for areas containing tumour and non-tumour tissue to fully
consider the overall impact of this mitosis detection method.

Our focus for this study is on cPWT; however, we could potentially adapt this method
to other cSTS subtypes as well as to other tumour types. An additional study might
explore the application of cPWT-trained models to different cSTS subtypes to assess if
comparable outcomes are achieved. Nevertheless, given that tumour types from various
domains exhibit unique challenges due to their specific histological characteristics, it may
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be necessary to train or fine-tune models using tumour-specific datasets to evaluate the
efficacy of this approach.

While our F1-score demonstrates competitive performance for detecting mitosis in
the canine domain, the clinical relevance and applicability of this metric should be taken
into account. Future work should focus on employing this method as a supportive tool,
assessing its practical effectiveness and reliability in a veterinary clinical setting.

To conclude, by using our experimental set-up, the optimised Faster R-CNN model
was a suitable method for determining mitosis in cPWT WSIs. To the best of our knowledge,
this is the first mitosis detection model applied solely on cPWT data, and thus we consider
this a baseline three-fold cross-validation mean F1-score of 0.750 for mitosis detection
in cPWT.
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Appendix A

Appendix A.1

Table A1. Two WSI magnification resolutions (40× and 20×) were initially investigated for deter-
mining a suitable resolution for mitosis detection using our cPWT dataset. Therefore, two separate
datasets of the two resolutions were extracted. The 10 HPF size at 40× magnification (level 0 of
the WSI pyramid) resulted in a width of 7680 pixels and height of 5120 pixels. In terms of physical
distance, this is a width of 1.753 mm and height of 1.169 mm. When rounded to 1 decimal place,
this approximately represents an aspect ratio of 3:2. When extracting 512 × 512 pixels from this area
of interest, we ended up with 150 patches. This produced 150 non-overlapping patches of 512 ×
512 pixels, producing a test dataset of 1650 patch images from 11 hold-out test WSIs. The details for
the 20× dataset are in text. Presented below are the number of mitosis annotations per Whole Slide
Image (WSI) for both 40× and 20× magnifications in the training/validation set.

Slide Agreement after Threshold (40×) Agreement after Threshold (20×)

F17-04773 21 18
F17-03141 35 38
F17-1261 41 41

F18-13364 437 437
F17-02232 215 216
F17-04911 37 37
F17-0549 110 106

F17-011577 23 23
F17-011777 217 212
F17-03855 69 68
F17-04900 75 75
F18-7832 335 331

F17-09700 138 134
F17-02641 40 41
F17-09926 61 62
F17-02723 38 39
F17-05935 42 41
F17-02120 43 42
F18-79705 85 84

Total: 2062 2045

Table A2. The number of mitosis annotations in 10 continuous high-powered fields (HPFs) from each
Whole Slide Image (WSI) for both 40× and 20× magnifications in the hold-out test set.

Slide Agreement after Threshold (40×) Agreement after Threshold (20×)

F17-06348 12 13
F17-010348 1 1
F17-011490 2 2
F19-03615 54 58
F17-05256 25 35
F17-08570 1 1
F19-7408 3 3
F18-2508 10 11

F17-07510 17 17
F17-08031 5 5
F17-0260 1 1

Total: 131 147
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Table A3. The number of patches per Whole Slide Image (WSI) in the train/validation and test sets
for patches extracted from level 0 (40× magnification) of the WSI.

Set Slide No. of Patches

Train/Val F18-7832 305
Train/Val F17-02232 208
Train/Val F17-011777 206
Train/Val F17-09700 131
Train/Val F17-0549 105
Train/Val F18-79705 81
Train/Val F17-03855 68
Train/Val F17-09926 60
Train/Val F17-1261 41
Train/Val F17-02120 43
Train/Val F17-03141 35
Train/Val F17-05935 37
Train/Val F17-02723 37
Train/Val F17-011577 21
Train/Val F18-13364 401
Train/Val F17-04900 72
Train/Val F17-02641 40
Train/Val F17-04911 37
Train/Val F17-04773 21

Total 1949

Test F17-05256 150
Test F17-02600 150
Test F17-07510 150
Test F17-08031 150
Test F17-011490 150
Test F17-006348 150
Test F19-03615 150
Test F17-010348 150
Test F18-2508 150
Test F17-08570 150
Test F19-7408 150

Total 1650

Table A4. The number of patches per Whole Slide Image (WSI) in the train/validation and test sets
for patches extracted from level 1 (20× magnification) of the WSI.

Set Slide No. of Patches

Train/Val F18-7832 251
Train/Val F17-02232 189
Train/Val F17-011777 179
Train/Val F17-09700 125
Train/Val F17-0549 97
Train/Val F18-79705 76
Train/Val F17-03855 66
Train/Val F17-09926 57
Train/Val F17-1261 40
Train/Val F17-02120 40
Train/Val F17-03141 37
Train/Val F17-05935 35
Train/Val F17-02723 34
Train/Val F17-011577 20
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Table A4. Cont.

Set Slide No. of Patches

Train/Val F18-13364 339
Train/Val F17-04900 71
Train/Val F17-02641 40
Train/Val F17-04911 36
Train/Val F17-04773 18

Total 1750

Test F17-05256 40
Test F17-02600 40
Test F17-07510 40
Test F17-08031 40
Test F17-011490 40
Test F17-006348 40
Test F19-03615 40
Test F17-010348 40
Test F18-2508 40
Test F17-08570 40
Test F19-7408 40

Total 440

Table A5. The training, validation and hold-out test splits for each fold in the dataset.

Slide Fold 1 Fold 2 Fold 3

F17-04773 Val Train Train
F17-03141 Train Train Val
F17-1261 Train Val Train

F18-13364 Val Train Train
F17-02232 Train Train Val
F17-04911 Val Train Train
F17-0549 Train Train Val

F17-011577 Train Train Val
F17-011777 Train Val Train
F17-03855 Train Train Val
F17-04900 Val Train Train
F18-7832 Train Val Train

F17-09700 Train Val Train
F17-02641 Val Train Train
F17-09926 Train Val Train
F17-02723 Train Train Val
F17-05935 Train Val Train
F17-02120 Train Train Val
F18-79705 Train Val Train
F17-06348 Test Test Test
F17-010348 Test Test Test
F17-011490 Test Test Test
F19-03615 Test Test Test
F17-05256 Test Test Test
F17-08570 Test Test Test
F19-7408 Test Test Test
F18-2508 Test Test Test

F17-07510 Test Test Test
F17-08031 Test Test Test
F17-0260 Test Test Test
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Table A6. The updated agreed mitosis between annotator 1 and 2 for the training/validation sets.
The “Agreement” column shows the number of ground truth agreed mitosis annotations for the 20×
magnification dataset before refinement. “Updated Agreement” shows the number of mitosis after
refinement. “Missed Mitosis” shows the difference in numbers of mitosis before and after refinement.
Lastly, “% Missed Mitosis” shows the difference in percentage of mitosis before and after refinement
against the updated agreed mitotic count.

Slide Agreement Updated Agreement “Missed” Mitosis % “Missed” Mitosis

F17-04773 18 18 0 0.00
F17-03141 38 39 1 2.56
F17-1261 41 41 0 0.00
F18-13364 437 460 23 5.00
F17-02232 216 236 20 8.47
F17-04911 37 39 2 5.13
F17-0549 106 112 6 5.36
F17-011577 23 24 1 4.17
F17-011777 212 227 15 6.61
F17-03855 68 71 3 4.23
F17-04900 75 76 1 1.32
F18-7832 331 350 19 5.43
F17-09700 134 138 4 2.90
F17-02641 41 42 1 2.38
F17-09926 62 62 0 0.00
F17-02723 39 39 0 0.00
F17-05935 41 45 4 8.89
F17-02120 42 44 2 4.55
F18-79705 84 91 7 7.69

Total: 2045 2154 109 Avg: 3.93

Table A7. The updated agreed mitosis between annotator 1 and 2 for the hold-out test set. The
“Agreement” column shows the number of ground truth agreed mitosis annotations for the 20×
magnification dataset before refinement. “Updated Agreement” shows the number of mitosis after
refinement. “Missed Mitosis” shows the difference in numbers of mitosis before and after refinement.
Lastly, “% Missed Mitosis” shows the difference in percentage of mitosis before and after refinement
against the updated agreed mitotic count.

Slide Agreement Updated Agreement “Missed” Mitosis % “Missed” Mitosis

F17-06348 13 16 3 18.75
F17-010348 1 5 4 80.00
F17-011490 2 3 1 33.33
F19-03615 58 81 23 28.40
F17-05256 35 39 4 10.26
F17-08570 1 1 0 0.00
F19-7408 3 3 0 0.00
F18-2508 11 16 5 31.25
F17-07510 17 26 9 34.62
F17-08031 5 5 0 0.00
F17-0260 1 1 0 0.00

Total: 147 196 49 Avg: 21.51
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Figure A1. A depiction of the two-stage mitosis detection approach. On the top, in stage 1, 20×
magnification images and annotations from the updated refined mitoses dataset are used to train
a Faster R-CNN model (the model is also presented in Figure 1). Optimal probability thresholds
are applied on the output candidates, which are determined from the validation set (based on
Equation (4)). These selected candidates are then extracted (size 64 × 64 pixels) at 40× magnification
from the original Whole Slide Images (WSIs) and passed into the second stage. On the bottom
shows stage 2 where the extracted patches are fed into a DenseNet-161 ImageNet pre-trained feature
extractor, where the outputs are fed into a logistic regression classifier to determine whether the
candidates are mitosis or difficult false positives.

Table A8. Results from the stage 2 logistic regression model. Across all fold datasets, the sensitivity
has dramatically decreased, and it is offset with a large increase in precision when compared to the
results in Table 4. The mean average F1-scores for the validation and test sets are 0.654 and 0.611,
respectively.

Fold Set Sensitivity Precision F1-Score TP FP FN

1
Val 0.561 0.906 0.693 356 37 279
Test 0.526 0.844 0.648 103 19 93

2
Val 0.487 0.906 0.634 465 48 489
Test 0.592 0.773 0.671 116 34 80

3
Val 0.487 0.920 0.637 275 24 290
Test 0.367 0.857 0.514 72 12 124

Avg. (mean)
Val 0.512 0.911 0.654
Test 0.495 0.825 0.611
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Figure A2. Receiver operating characteristic (ROC) curve plots from the second-stage logistic regression
model results for each cross-validation fold. For each fold, it is evident that the models do not effectively
learn the differences between true positive (TP) and false positive (FP) mitosis detections.
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