
03 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation /
Lattanzi, Luca; Raffaeli, Roberto; Peruzzini, Margherita; Pellicciari, Marcello. - In: INTERNATIONAL JOURNAL
OF COMPUTER INTEGRATED MANUFACTURING. - ISSN 0951-192X. - ELETTRONICO. - 34:6(2021), pp. 567-
597. [10.1080/0951192X.2021.1911003]

Published Version:

Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation

Published:
DOI: http://doi.org/10.1080/0951192X.2021.1911003

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/949565 since: 2024-02-09

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1080/0951192X.2021.1911003
https://hdl.handle.net/11585/949565


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  
 
 
 

Luca Lattanzi, Roberto Raffaeli, Margherita Peruzzini & Marcello Pellicciari (2021) 
Digital twin for smart manufacturing: a review of concepts towards a practical 
industrial implementation, International Journal of Computer Integrated 
Manufacturing, 34:6, 567-597 

The final published version is available online at: 

 https://doi.org/10.1080/0951192X.2021.1911003 

 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1080/0951192X.2021.1911003


ARTICLE

Digital twin for smart manufacturing: a review of concepts towards a practical 
industrial implementation
Luca Lattanzi a, Roberto Raffael b, Margherita Peruzzini a and Marcello Pellicciari b

a”Enzo Ferrari” Department of Engineering (DIEF), University of Modena and Reggio Emilia, Modena, Italy; bDepartment of Sciences and 
Methods for Engineering (DISMI), University of Modena and Reggio Emilia, Reggio Emilia, Italy

ABSTRACT
Latest trends and developments in digital technologies have enabled a new manufacturing model. 
Digital systems can monitor, optimize and control processes by creating a virtual copy of the 
physical world and making decentralized decisions. This paradigm relies on the development of 
a digital counterpart, the Digital Twin, for each production resource taking part to the whole 
manufacturing process. Although real applications of Digital Twin may differ in technical and 
operational details, in the past years, a huge effort has been done in order to identify and define
focal functionalities and properties, as well as main challenges for the practical implementation 
within real factories. This paper is intended to review and analyse principles, ideas and technolo-
gical solutions of the Digital Twin vision for production processes focusing on the practical 
industrial implementation. The purpose of this document is therefore to summarize the current 
state-of-art on Digital Twin concepts, and to draw their up-to-date state for application and 
deployment in real industrial processes. Finally, future directions for further research are discussed.

1. Introduction

Computer integrated manufacturing, digital informa-
tion technologies, data analytics and data-driven ser-
vices, are all examples of solutions that, if properly 
integrated and combined with the actual production 
resources, can improve the production process in 
terms of efficiency productivity and flexibility (Tao 
and Zhang 2017; Schleich et al. 2017; Rosen et al. 
2015). Intelligent production systems are expected 
to cognitively interpret the surrounding environment, 
and to autonomously plan and act strategies to 
achieve the best performance in any condition. In 
this context, Cyber-Physical Systems (CPS) are 
described as intelligent systems that integrates hard-
ware with computational, communication and con-
trol capabilities (Monostori 2018). From a broader 
perspective, policies known as ‘Industry 4.0ʹ were spe-
cifically defined with the aim of accelerating all those 
disruptive technological and organizational changes 
that can potentially create a significative gap of per-
formance in the manufacturing ecosystem (Koh, 
Orzes, and Jia 2019). The Industry 4.0 plan was firstly
outlined by the German Government as a strategy for 
integrating latest advances in technology, as Internet 

of Things (IoT) and CPS, into production processes. 
Industry 4.0 vision enables a new manufacturing 
model, based on the concept of the Smart 
Manufacturing, where digital systems can monitor 
and control physical processes, creating a virtual 
copy of the physical world and making decentralized 
decisions (Chen et al. 2020). The core of the Smart 
Manufacturing model is this tight integration 
between cyber and physical worlds, that permits to 
achieve greater efficienc and competitiveness for the 
manufacturing processes (Davis et al. 2012).

From a practical point of view, the biggest chal-
lenge is about the definition and implementation of 
holistic models and architectures able to effectively
integrate the Industry 4.0 vision into factories shop-
floors. In particular, the main focus is on the techno-
logical enablers for the interconnection and 
cooperation of the different production resources, 
based on computational intelligence and control 
logic, which are no more centralized in a single pro-
duction entry point but distributed all over the net-
work (Rejikumar et al. 2019). The final goal is the 
achievement of higher product quality, higher pro-
duct personalization, real ‘Just in Time’ production, 
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process flexibility and reconfigurability, maximum 
Overall Equipment Effectiveness avoiding downtime 
and failures.

From this context, the notion of Digital Twin comes 
straightforward, meaning a digital replica of a physical 
component, always connected and synchronized with 
it (Negri, Fumagalli, and Macchi 2017). The described 
vision reveals the emerging importance of developing 
a digital complement, i.e. a virtual counterpart, for 
each production resource taking part to the whole 
manufacturing process. In fact, the virtual element is 
the way to achieve the independent management of 
the associated production resource, fundamental fea-
ture to implement the decentralized approach under-
lying the Industry 4.0 philosophy (Kang et al. 2016). 
The virtual element can get access to properties, 
behaviours and rules of the physical entity, using 
this information to monitor its real counterpart, but 
also to continuously evolve itself. It could also record 
historical data and working performances of the phy-
sical counterpart, as well as carry out optimization and 
prediction for it (Barenji et al. 2020).

Thus, Digital Twin concepts have been universally 
acknowledged as a promising and innovative 
research field, as well as a strategical approach for 
improving modern production processes. However, 
up to now, the term Digital Twin has been used with 
different meanings and objectives, most of the time 
declined to the needs of a specific context or 
a particular application domain. For this reason, sev-
eral Digital Twin definitions have been proposed in 
literature, some of them even showing opposing 
ideas (Kritzinger et al. 2018). Indeed, application 
aims are vast and integration levels may differ
considerably.

Therefore, the purpose of this paper is to analyse 
the different ideas and concepts introduced in litera-
ture so far, with special focus on the different meth-
odologies proposed for the implementation of Digital 
Twins in production processes. On the path of 
a research stream that generated a large variety of 
definitions, perspectives and models for the integra-
tion of Digital Twins (as also described by Enders and 
Hoßbach 2019), this review paper picks up the invita-
tion for a possible next step being the analysis of the 
frameworks and architectures proposed in literature 
for correspondences and diversities into real produc-
tion scenarios. This will permit to develop and acquire 
a deeper methodology and knowledge on the 

practical implementation of Digital Twins into manu-
facturing processes, highlighting industrial frame-
works and technologies to achieve effective solutions.

The paper is organized as follows: Section 2 gives 
an introduction on Digital Twin terminology, defin -
tions, notions, and presents a review of the research 
works that can be currently found in literature provid-
ing an overview of the enabling technologies and key 
concepts for the practical implementation of a Digital 
Twin; Section 3 presents an architecture for adoption 
of Digital Twins into real Smart Manufacturing pro-
duction processes, derived by the convergence of the 
models proposed in the literature; finally, Section 4 
describes challenges and open points still to be 
tackled for the effective and prolific adoption of 
Digital Twins.

2. The notion of digital twin

2.1 The evolution of the manufacturing scenario

Highly competitive markets, mass customization of 
products, short time to market and performance 
improvements can be considered the main drivers 
leading the development and adoption of new pro-
duction technologies. In the last decades, the para-
digm has left the traditional serial path of design and 
production activities, linked to rigid and static manu-
facturing systems, to schemes characterized by more 
feedbacks and iterations, as depicted in Figure 1 
(Thilak, Devadasan, and Sivaram 2015).

However, one of the main challenges of modern 
manufacturing processes is the capability of increas-
ing products variety with small production batches. 
Current manufacturing processes require production 
resources able to quickly adapt and react to changes 
in production environment, providing flexibility,
reconfigurability, resistance to disturbances and 
more efficienc to the overall production process. 
Phases such as simulation, code generation, commis-
sioning and testing need to be continuously per-
formed ‘on the fly’, avoiding waste of time which are 
not compatible with continuously changing products 
and relative requirements. Thus, thanks to Industry 
4.0 technologies, such phases are virtualised and 
incorporated in the process itself, being a real-time 
simulation and control counterpart of the physical 
process itself. Therefore, industry is experimenting 
a new scenario, depicted in Figure 2, based on 
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feedbacks from a digital manufacturing layer even 
before production. According to this vision, reactions 
from production refines Digital Twins’ models; opti-
mization algorithms allow on-line reconfiguration;
and virtual commissioning reduces delivery time of 
dedicated manufacturing systems.

2.2 The digital twin concept in the industry

The first well-known definition of Digital Twin was 
given by NASA in their integrated technology road-
map (Shafto et al. 2010), where it was stated that ‘a 
Digital Twin is an integrated multi-physics, multiscale 
simulation of a vehicle or system that uses the best 
available physical models, sensor updates, !eet history, 

etc., to mirror the life of its corresponding !ying twin’. In 
fact, NASA’s Apollo program was the first case in 
history about producing a copy of a product. 
However, the twin ground vehicle remained 
a hardware copy of the space module, not 
a digital one.

Similarly, another form of ‘hardware’ twin is the 
Iron Bird (Airbus Group 2020), a giant ground-based 
test rig developed by Airbus Industries in 2015 used 
to incorporate, optimize and validate vital aircraft 
systems. It allows testing parts and elements in earlier 
development cycles, even when some physical com-
ponents are not yet available and before the aircraft 
actual first flight. Due to the increasing power of 
simulation technologies, in the last years more and 

Figure 1. Different production paradigms adopted so far for manufacturing processes.

Figure 2. The Smart Manufacturing vision characterized by a tight integration of optimization, commissioning and testing in the 
development-production loop enabled by the Digital Twin.
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more physical components have been replaced by 
virtual models in the Iron Bird. Further extending 
this idea, the path leads to a complete digital model 
of the physical system, i.e. the Digital Twin of 
a complete aircraft.

Beyond these two relevant precursors, the Digital 
Twin originates as a virtual element acting as a copy 
of the corresponding hardware resource (Jones et al. 
2020), leveraging the advances in computer technol-
ogies. Extents and targets for Digital Twin technolo-
gies span from virtual replicas of single objects (digital 
representations of mere geometrical assets of 
a product or production equipment), to digital enti-
ties of virtual production resources and equipment 
supporting reconfiguration and flexibility (Zhang et 
al. 2019), to virtual models of the complete produc-
tion process supporting enterprise resource planning 
(Zhang, Zhang, and Yan 2019; Jones et al. 2020).

The Digital Twin can be seen as the next wave in 
simulation technology. The digital models can serve 
for design evaluation and validation before realizing 
the physical artefact, adopted by the ‘Simulation- 
based System Design’ paradigm, mainly exploited in 
R&D and design phases. However, in a more general 
and complete sense, the term Digital Twin implies 
a pairing, or a bridge, between an asset in the real 
physical world and an entity in the digital domain, 
being the two elements closely tied and integrated in 
a reciprocally beneficial interaction (Kritzinger et al. 
2018). Disturbances and uncertainties in the physical 
world or inaccuracies in the virtual space can cause 
differences and inconsistency between the two ele-
ments. Depending on the level of intelligence and on 
the application domain, this information can also be 
used to eliminate disturbances and uncertainties or to 
refine and re-calibrate the virtual element in order to 
get a more accurate and higher-fidelity model.

Digital Twin also provides a platform able to assist 
operators by means of simulation-driven forecasts, as 
well as by calculating control and service decisions. In 
order to achieve this vision, models and parameters 
must be able to evolve in an automatic way over the 
lifetime of the product or system, mirroring at each 
point in time operating and behavioural conditions of 
the real physical twin (e.g. updating model para-
meters of the virtual copy to represent wearing due 
to use). Then, the Digital Twin model is ‘a set of virtual 
information that fully describes a potential or actual 
physical manufactured product from the micro atomic 

level to the macro geometrical level’ (Grieves and 
Vickers 2017). Ultimately, a Digital Twin can be con-
sidered a special virtualization of a physical system, 
built based on the expert knowledge and real data 
collected, that allows accurate simulation at different
time and space scales, becoming a virtual substitute 
of its real-world counterpart.

Functionalities and roles can extend to the com-
plete product lifecycle (Ma et al. 2020; Lim et al. 2020), 
including design, manufacturing (Zhang, Zhang, and 
Yan 2019), service (Aivaliotis, Georgoulias, and 
Chryssolouris 2019), maintenance and end-of-life 
(Wang and Wang 2019; Tao et al. 2019). The large 
number of works targeting the service and mainte-
nance phase, typically referred as ‘Prognostic and 
Health Management’ (PHM) domain, is also proved 
by the need of a sector-specific survey of the different
definitions, features and viewpoints (Xiaodong et al. 
2020). In addition, it can be noticed that so far 
research mainly considered Digital Twins for products 
and tools. As stated by Lu et al. (2020), 85% of prac-
tical Digital Twin applications developed up to now 
refer to manufacturing devices, while only 11% to the 
overall production process and flow

Therefore, the virtual element should not just work 
in an offlin mode. As explained by Negri, Fumagalli, 
and Macchi (2017), the offlin twin could simulate the 
behaviour of the physical product, replicating the 
characteristics of the device in a very accurate way 
(Figure 3). However, for more advanced scenarios, 
relevant in the context of manufacturing systems, 
such as Cyber-Physical Production Systems, the Digital 
Twin is always available to the system, managing 
communication to the physical device. In this sense, 
it acts as a specific and unique ‘entry point’: other 
resources on the network directly communicate with 
the digital counterpart of the production resource, 
and not with its physical part (Snide and Harriman 
2018).

In the Industry, Digital Twin concepts and technol-
ogies have gained, over the years, more and more 
interest, as they could have a significant impact on 
automation systems, eventually providing value to 
businesses throughout the whole product manufac-
turing lifecycle. Digital Twin was cited by Gartner1 

among the Emerging Technologies in 2017 (Figure 4).
In iSCOOP (2020) Gartner predicted that by 2021 

half of large industrial companies will gain a 10% 
improvement in effectiveness thanks to embracing 
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Digital Twin technologies (the report was produced in 
2018). Same importance to Digital Twin technologies 
is confirmed by more recent reports (Gartner 2019a), 
where it is stated that ‘Hyper-automation (Strategic 
Technology Trend #1) often results in the creation of 
a digital twin of the organization’. The mentioned 
prediction seems to be confirmed in a survey by 

Hughes (2018) involving about 300 manufacturing 
companies. Results showed that about 40% of com-
panies had already integrated Digital Twin technolo-
gies in their process or at least in a pilot use-case 
(Figure 5). Considering the active integration in the 
Digital Twin technologies of Product Lifecycle 
Management (PLM) or Industrial IoT platforms, the 

Figure 3. Exchange of data and information by process virtualization (COMSOL 2019).

Figure 4. Gartner Hype Cycle 2017 (Gartner 2017).

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 5



number of adopter grows to about 60%. Also Gartner 
(2019b) agrees on this, stating that ‘24% of organiza-
tions that either have Internet of Things (IoT) solutions 
in production or IoT projects in progress already use 
digital twins; another 42% plan to use twins within the 
next three years’.

2.3 Structures and behaviours

The evolution of concepts and definitions around the 
Digital Twin vision permits to focus on its basic and 
fundamental elements. Basically, a Digital Twin model 
is composed by the following three parts (Grieves 
2014):

a physical product in the real world;

a virtual product in the digital space;

data connection mapping the two spaces together.

The physical part is therefore connected to a high- 
fidelity virtual companion during its whole lifecycle. 
This requires the capability to integrate and combine 
data from multiple sources, e.g. sensor data, model 
data and domain knowledge, to generate more accu-
rate and comprehensive information. Different mod-
els can be developed in the digital space and 
associated to the physical resource, depending on 
the desired objective (Wright and Davidson 2020). In 
particular, a distinction can be made between 
a model with the purpose of a realistic simulation of 
the associated physical asset and a model targeting 
an effective and functional coupling with the physical 
world.

Considering current literature on Digital Twin con-
cepts, a major distinction can be made among the 
terms ‘Digital Model’, ‘Digital Shadow’ and ‘Digital 

Twin’ depending on the degree of integration 
between the physical resource and its virtual copy 
(Kritzinger et al. 2018). Nature and frequency of data 
flow and information exchange between the two 
entities are the fundamental criteria for this classific -
tion (Figure 6). In particular:

a ‘Digital Model’ only permits to exchange data manually, 
and no online status update and synchronization is 
possible between the two objects. This is the typical 
concept associated with the design phase;

in a ‘Digital Shadow’ the automated data flow only hap-
pens in one direction, specifically from the physical 
entity to the virtual one, so no feedback is given to the 
real system from its virtual counterpart. This model is 
adopted at most in service and maintenance phase, to 
track and predict the behaviour of a product in its usage 
phase;

the ‘Digital Twin’ is characterized by a full, automated, bi- 
directional data flow between the physical and digital 
worlds. This vision is the most suitable to manufacturing 
applications, as product quality prediction, production 
planning or human-robot collaboration.

Therefore, the distinctions are not only limited on 
integration level but also on the overall objective. In 
the first two cases, as in a simulation aiming at captur-
ing in the best possible way the physical behaviour, 
the model permits to understand and replicate at 
different detail levels the performance of the product 
from the operational status point of view. For exam-
ple, it can describe the temperature trend, or the 
speed profile of a fluid at each instant of time. In 
this case, the final objective of the Digital Twin is to 
verify and prove the effectiveness of the design, or to 
optimize the working performance, for example, 
adjusting the value of some parameters. Therefore, 

Figure 5. Digital Twin initiatives in industry (Source: Hughes 2018).
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the computational time is not significant because the 
ultimate purpose is the accuracy and completeness of 
the simulation. As an example, an emerging trend in 
the area of ‘Digital Model’ or ‘Digital Shadow’, is repre-
sented by systems for the programming and commis-
sioning of robotic cells (Burghardt et al. 2020; Kousi 
et al. 2019; Pellicciari, Vergnano, and Berselli 2014; 
Pérez et al. 2020). The programming phase can be 
performed in an off-line mode, and the generated 
program can be transferred to the real system at 
a later time (Gadaleta, Pellicciari, and Berselli 2019). 
Same approach is valid for the design of production 
cells, where accurate simulations can drive layout 
definition and support design choices (Bevilacqua 
et al. 2020; Caputo et al. 2019; Gadaleta, Berselli, and 
Pellicciari 2017; Peruzzini et al. 2017).

On the other hand, a ‘Digital Twin’ of the third 
type aims at primarily describing how the asso-
ciated physical product behaves when integrated 
with other elements. The model contains informa-
tion about the interaction towards other systems, 
how the physical resource affects the behaviour of 
the entities it relates to, and how its own beha-
viour is affected by the environment around it. 
According to the Digital Twin vision, the physical 
product or process is connected to an ideally 

high-fidelity virtual companion, able to fully repli-
cate its behaviours and characteristics. Therefore, 
the computational speed becomes a fundamental 
factor, as the virtual element not only has to 
model the internal state of the physical resource 
but also its ‘dynamic’ behaviour, e.g. the ‘reaction 
time’ when a particular event occurs. In this case, 
the main target is the realization of a virtual ele-
ment that can fully replace the physical product, 
behaving according to the same identical patterns 
when interacting with any other resource in the 
physical world (Zheng et al. 2020). If needed, 
simplifications and approximations are adopted 
when defining the internal model in order to 
improve the computational time, as long as 
these simplifications do not affect the digital 
representation of the interactive behaviour of 
the physical object.

Finally, as reported by Talkhestani et al. (2019), 
an additional level is required, enriched with 
Artificial Intelligence, giving to the system auton-
omy, adaptability and self-awareness capabilities. 
The Digital Twin becomes what the authors call 
‘Intelligent Digital Twin’, a system exposing 
advanced elements, bidirectional communication 
and control between the two domains, interfaces 

Figure 6. Data and information flow for Digital Model (a), Digital Shadow (b) and Digital Twin (c) systems (Source: Kritzinger et al. 
2018).
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and services like data analytics and semantic 
models’ descriptions (Figure 7).

2.4 Digital twin for manufacturing in the literature

Literature has provided definitions and visions on 
the Digital Twin, as emerges from several papers 
on the topic The queried databases include Scopus, 
Emarald Insight, Science Direct, and IEEE Xplore. 
Works were collected by searching for the following 
keywords: ‘Digital Twin’, ‘Industry 4.0ʹ, ‘Smart 
Manufacturing’. Only the period between 2010 and 
2020 was considered, since the term ‘Digital Twin’ 
was coined in 2010 in the aforementioned draft 
strategic roadmap of NASA. The keywords were 
identified based on a preliminary review of works 
and researches considered as reference sources in 
the considered domain. A first check on the perti-
nence of the papers to the reference keywords was 
performed by reading titles and abstracts. This per-
mitted to downsize the analysis to a selection of 115 
documents.

Table 1 summarizes the most important Digital 
Twin definitions that have been found in literature, 
together with the lifecycle phase and application level 

they mainly refer to. As can be noticed from the table, 
first notions of Digital Twin already appeared in 2010, 
but the most abundant contributions can be found 
starting from the year 2016. The interest on the sub-
ject can be considered world-wide, as researchers 
from countries all over the world addressed the 
Digital Twin topic.

Several works addressed the task of presenting 
a thorough categorical review on the available litera-
ture about Digital Twin (Kritzinger et al. 2018; Enders 
and Hoßbach 2019; Jones et al. 2020; Melesse, Di 
Pasquale, and Riemma 2020). The high number of 
existing review works attests the increasing interest 
of the research community towards the topic, but on 
the other hand, clearly shows the differences and 
discrepancies about concepts and application 
domains. Kritzinger et al. (2018) categorized papers 
based on their scope, considering four main paper 
typologies: ‘concept’, ‘case-study’, ‘review’, ‘de"nition’. 
Results clearly demonstrated that Digital Twin tech-
nologies and applications were still at their early 
stage, as contemporary publications (year 2018) 
mainly focused on conceptual ideas with very limited 
practical case-studies and industrial applications. As 
Figure 8 shows, up to 2019 literature work mainly 

Figure 7. Schematic architecture for the ‘Intelligent Digital Twin’ (Talkhestani et al. 2019).
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Table 1. Definition and application object of digital twin (Source: Enders and Hoßbach 2019; Rejikumar et al. 2019).

Year Author(s)
Country of 

the research Definition
Addressed 

Phase
Application 

Level

2010 Shafto et al. USA An integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system 
that uses the best available physical models, sensor updates, fleet history, etc., to 
mirror the life of its flying twin (Shafto et al. 2010)

Utilization 
phase

Product

2012 Gockel et al. USA A cradle-to-grave, ultra-realistic model of an aircraft structure’s ability to meet mission 
requirements, which is explicitly tied to the materials and manufacturing 
specifications, controls, and process used to build and maintain the aircraft (Gockel 
et al. 2012)

Design and 
utilization 
phase

Product

2014 Grieves USA The Digital Twin concept model contains three main parts: a) physical products in Real 
Space, b) virtual products in Virtual Space, and c) the connections of data and 
information that ties the virtual and real products together (Grieves 2014)

Lifecycle Product

2015 Rosen et al. Germany Very realistic models of the current state of the process and their own behaviour in 
interaction with their environment in the real world (Rosen et al. 2015)

Production 
phase

Process

2016 Bielefeldt 
et al.

USA Ultra-realistic multi-physical computational models associated with each unique 
aircraft and combined with known flight histories (Bielefeldt, Hochhalter, and Hartl 
2015)

Utilization 
phase

Product

2016 Boschert and 
Rosen

Germany The vision of the Digital Twin itself refers to a comprehensive physical and functional 
description of a component, product or system, which includes more or less all 
information which could be useful in all – the current and subsequent – lifecycle 
phases (Boschert and Rosen 2016)

Lifecycle Product, 
Process, 
System

2016 Schluse and 
Rossmann

Germany Virtual substitutes of real world objects consisting of virtual representations and 
communication capabilities making up smart objects acting as intelligent nodes 
inside the internet of things and services (Schluse and Rossmann 2016)

Design phase Product

2016 Schroeder 
et al.

Brazil Virtual representation of a real product in the context of Cyber-Physical Systems, 
which can monitor and control the physical entity, while the physical entity can 
send data to update its virtual model (Schroeder et al. 2016)

Lifecycle Product

2016 Kraft USA An integrated multi-physics, multi-scale, probabilistic simulation of an as-built system, 
enabled by Digital Thread, that uses the best available models, sensor information, 
and input data to mirror and predict activities and performance over the life of its 
corresponding physical twin (Kraft 2016)

Lifecycle Process

2016 Bajaj et al. USA A unified system model that can coordinate architecture, mechanical, electrical, 
software, verification, and other discipline specific models across the system 
lifecycle, federating models in multiple vendor tools and configuration-controlled 
repositories (Bajaj, Cole, and Zwemer 2016)

Lifecycle Process

2017 Negri et al. Italy The Digital Twin consists of a virtual representation of a production system that is able 
to run on different simulation disciplines that is characterized by the 
synchronization between the virtual and real system, thanks to sensed data and 
connected smart devices, mathematical models and real time data elaboration 
(Negri, Fumagalli, and Macchi 2017)

Lifecycle System

2017 Grieves and 
Vickers

USA The Digital Twin is a set of virtual information constructs that fully describes 
a potential or actual physical manufactured product from the micro atomic level to 
the macro geometrical level. At its optimum, any information that could be 
obtained from inspecting a physical manufactured product can be obtained from its 
Digital Twin (Grieves and Vickers 2017)

Lifecycle Product

2018 Kritzinger 
et al.

Austria Based on the given definitions of a Digital Twin in any context, one might identify 
a common understanding of Digital Twins, as digital counterparts of physical 
objects (Kritzinger et al. 2018)

Utilization 
phase

Product

2018 Demkovich 
et al.

Russia A Digital Twin of a production system is a multi-level digital layout that describes the 
product, processes and resources in the environment of their functioning, i.e. 
allowing to simulate the processes taking place in the real system, as well as 
collecting and displaying in real time data on the status of objects obtained from 
the PLC and sensors installed in the production system both on industrial 
equipment and in its environment (Demkovich, Yablochnikov, and Abaev 2018)

Production 
phase

System

2018 Autiosalo Finland Digital Twin is the cyber part of a Cyber-Physical System (Autiosalo 2018) Utilization 
phase

Product

2018 Tao et al. China A complete Digital Twin should include five parts: physical part, virtual part, 
connection, data, and service (Tao et al. 2018)

Lifecycle Product

2019 Zheng et al. Singapore In a broad sense, the Digital Twin is an integrated system that can simulate, monitor, 
calculate, regulate, and control the system status and process (Zheng, Yang, and 
Cheng 2019)

Utilization 
phase

System

2019 Ding et al. China As the key technology of Cyber-Physical Systems, Digital Twin provides a clear and 
feasible way to realise the functions of Cyber Physical Systems. [. . .] It builds 
a virtual twin of a physical entity (or system) to transparentise the geometrical/ 
physical/behavioural status of the physical entity (or system) and provide the real- 
time simulation optimisation and control of the corresponding performance of the 
physical entity (or system) (Ding et al. 2019)

Production 
phase

Product, 
System

2020 Alexopoulos 
et al.

Greece . . . the DT that represents the virtual model of the physical system or process, it is 
linked with CPS entity through data communication channel and it is capable of 
replicating aspects of the behaviour of the CPS system (Alexopoulos, Nikolakis, and 
Chryssolouris 2020)

Production 
phase

System

(Continued)
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concentrated on production of ‘concept papers’, first
essential step in order to make possible the concrete 
application of Digital Twin in practice. Lu et al. (2020) 
reached the same conclusion, remarking that most of 
the research done up to year 2020 is ‘conceptual work’, 
and concrete implementation into real use–cases is 
still at an early stage. Most recent reviews addressed 
both the theoretical foundations (Jones et al. 2020) 
and applicative domains (Enders and Hoßbach 2019; 
Melesse, Di Pasquale, and Riemma 2020). All the 
reviews highlight the prolific publication activity 
around the topic in the years 2017-2020: year 2017 
registered an increase of about +300% in the number 
of publications with respect to the previous year 
(from 12 in 2016 to 36 in 2017), year 2018 +239% 
(from 36 to 86 in 2018). As mentioned in all the 
reviews, the most common format, around 56% of 
the total papers, is the publication as a Journal article. 
This percentage grows up to more than 60% for works 
on research on theoretical concepts.

Considering the capacity of integration, in the last 
couple of years researchers are more focused on 
Digital Twin scenarios where the connection between 
virtual physical worlds is tightly coupled and informa-
tion exchange is bidirectional and automated. This is 

due on one side to progresses and advances in the 
research fields, with an increasing numbers of pro-
posed novel and innovative frameworks for Digital 
Twin systems (e.g. Damjanovic-Behrendt and 
Behrendt 2019), and on the other side to rapid devel-
opments of suitable digital technologies that made 
more efficien and functional the practical implemen-
tation of the Digital Twin vision (Alexopoulos, 
Nikolakis, and Chryssolouris 2020). In fact, if the 
review of available literature work in the year 2018 
(Kritzinger et al. 2018) showed that only a very low 
percentage of case-studies were related to ‘Digital 
Twin’ integration level (Table 2), a more recent review 
(Enders and Hoßbach 2019) revealed that the number 
of applications at ‘Digital Twin’ integration level has 
rapidly increased, as evident in Figure 9.In conclusion, 
literature review unquestionably demonstrates that 
although Digital Twin development can be still 

Table 1. (Continued).

Year Author(s)
Country of 

the research Definition
Addressed 

Phase
Application 

Level

2020 Jones et al. United 
Kingdom

A complete virtual description of a physical product that is accurate to both micro and 
macro level (Jones et al. 2020)

Lifecycle Product

2020 Melesse 
et al.

Italy DT is a living model of the system or physical asset that can continually adapt to 
operational changes based on the collected online data and information, to forecast 
the future of the corresponding physical twin (Melesse, Di Pasquale, and Riemma 
2020)

Lifecycle System

2020 Lu et al. New 
Zealand

Digital Twin has evolved into a broader concept that refers to a virtual representation 
of manufacturing elements such as personnel, products, assets and process 
definitions, a living model that continuously updates and changes as the physical 
counterpart changes to represent status, working conditions, product geometries 
and resource states in a synchronous manner (Lu et al. 2020)

Lifecycle Product, 
Process

Figure 8. Distribution of DT publications based on scope (left, Enders and Hoßbach 2019) and targeted phase (right, Tao et al. 2019).

Table 2. Distribution of literature work based on scope and 
integration level (Source: Enders and Hoßbach 2019).

Concept Case-Study Review Definition

Undefined 11.90% 4.76% 2.38% 0.00%
Digital Model 14.29% 11.90% 0.00% 0.00%
Digital Shadow 26.19% 7.14% 2.38% 0.00%
Digital Twin 2.38% 2.38% 9.52% 4.76%
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considered at its beginnings, a massive work has been 
done so far from the research community in the de!-
nition of conceptual basis and theory. However, up to 
now, a high number of papers still focuses on concept 
definitions, while manufacturing ‘Digital Twin’ sys-
tems still present research areas to be further devel-
oped and open challenges to be tackled.

In this context, this paper mainly focuses on the 
‘Digital Twin’ integration level, with particular atten-
tion to methodologies and solutions for its effective
implementation in production scenarios. In the fol-
lowing sections, architectures for the Digital Twins 
into a Smart Manufacturing production process will 
be discussed and possible models for the integration 
of Digital Twins into Smart Manufacturing processes is 
proposed. Key elements driving the future vision of 
Digital Twins are derived, and the main challenges to 
this vision are finally presented.

2.5 Main components of a digital twin

The Digital Twin descriptions and classifications given in 
the previous Section permit to identify a set of enabling 
technologies underlying the practical implementation 
and application of the relative concepts to real factory 
shop-floors. Interconnection and interaction capabilities 
between physical and virtual worlds are required, imply-
ing standardization and harmonization of communica-
tion protocols and interfaces. Data processing capabilities 

are needed, e.g. data cleaning, data mining and data 
fusion, as well as computational skills in order to imple-
ment optimization, decision-support and prediction 
about the production behaviour. Finally, data security is 
another fundamental aspect (Rymarczyk 2020) ensuring 
the normal operation of physical and virtual worlds 
against malicious attacks (Gehrmann and Gunnarsson 
2020). In fact, digital ecosystems can only function e"-
ciently if all parties involved can trust in the security of 
their data and communication, as well as in the protec-
tion of their intellectual property.

Nowadays, new developments and advances in 
information technologies in the context of the 
Industry 4.0 offer a prolific and sound base for prac-
tical Digital Twin implementation:

Internet-of-Things (IoT) solutions, in particular Industrial 
IoT, provide ubiquitous sensing ability to collect data 
from different shop-floor resources, factories and 
processes;

Cyber-Physical Systems (CPSs) integrate the computa-
tional and physical capabilities, which make physical 
resources able to compute, communicate and control;

Cloud computing provides powerful computing capabil-
ity for operating sophisticated models;

Edge computing provides computational capabilities to 
decentralized resources, whenever latency, data secur-
ity, and bandwidth issues may hinder the adoption of 
cloud-based solutions;

Figure 9. Distribution of literature work based on targeted integration level (Enders and Hoßbach 2019).

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 11



Big Data and Artificial Intelligence give intelligence to 
entities, models and systems.

Although Digital Twin shares concepts and principles 
with IoT and CPSs, it represents something different
and complementary to them. As Lu et al. (2020) clearly 
highlighted, a Digital Twin mainly lives in a virtual space, 
though it needs a physical product to be associated to. 
CPSs, in contrast, are characterized by a physical entity 
and its digital counterpart, while IoT acts as the connec-
tion and communication space that links together the 
different resources. However, how to integrate these 
assets in a functional, consistent and coordinated ‘intelli-
gent unit’ still represents an open issue. Some work has 
been done on the definition of suitable architectures 
(Talkhestani et al. 2019; Stark, Fresemann, and Lindow 
2019; Damjanovic-Behrendt and Behrendt 2019), but so 
far no Digital Twin integration into real industrial use 
cases based on established frameworks can be found in 
literature.

2.6 A practical example of manufacturing digital 
twin

One of the first applicative cases targeting the imple-
mentation of a Digital Twin at the shop-floor level was 
proposed by SIEMENS in 2015 (Rosen et al. 2015). 
Through a clear and intuitive example, it illustrates 
from a practical standpoint the elements, capabilities 

and the challenges of a Digital Twin for manufactur-
ing contexts. Although the case seems to limit the 
role of the Digital Twin to a scheduler, it still permits 
to infer the potential and the contribution in terms of 
benefits that can be achieved through a deep integra-
tion applying digitalization, modelling and simulation 
concepts to an intelligent production system. In par-
ticular, a Cyber-Physical Production System (CPPS) is 
considered, consisting of four Cyber-Physical 
Production units (Figure 10):

a Robotic Cell performing loading/unloading operations 
with a Carousel Buffer

a CNC Drilling Machine;

a CNC Milling Machine;

a Transport System.

Each production resource can rely on a virtual copy 
that stores general and specific information, e.g. con-
figuration data, current states, functions and capabil-
ities. In addition, a Digital Twin for every single 
product is available, storing relevant information for 
the part production, such as part ID, part program 
files, production history. The Digital Twin can be 
located either on a physical memory integrated into 
the pallet carrying the physical part or on any other 
memory device distributed along the IT infrastructure. 
The complete production process is managed and 

Figure 10. Cyber-Physical Production System example (elaborated from a layout proposed by Rosen et al. 2015).
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controlled by a central Manufacturing Execution 
System (MES).

The Digital Twins of parts and resources allow 
to increase the level of modularity and autonomy: 
the knowledge on the current state of the pro-
duction system resources enables the production 
units to autonomously react to disturbances dur-
ing operation, e.g. respond to new orders or mod-
ify order priorities. In this context, the different
Cyber-Physical Production units can manage and 
supervise the part flow independently from the 
MES, through communication and negotiation 
routines. Each production resource can perform 
queries to the other machines in order to opti-
mize the production flow. They can perform sche-
duling tasks, enriching the job with data and 
information gathered in real-time during the pro-
duction process.

As an example, considering the layout of Figure 10, 
once the milling operation on the part has been 
completed, the Milling Machine can query the pro-
duction units directly involved in the following pro-
duction steps thanks to the fact that the Digital Twin 
of the part contains information on next operations to 
be performed, e.g. drilling. In particular, the Milling 
Machine can send a request to all production units 
having a ‘drilling capability’, in order to continue the 
part production process, since the skills of the produc-
tion units are known thanks to their own Digital 
Twins. Replies are then evaluated according to speci-
fic rules and criteria, e.g. cost vs. time, and the part is 
assigned to the available production resource. Three 
situations could happen as a consequence of the 
Milling Machine query:

the Drilling Machine is available: the Milling Machine 
sends a request to the Transport System, in order to 
bring the part to the Drilling Machine;

the Milling Machine itself gets selected (e.g. the Drilling 
Machine has a long waiting queue): it proceeds with the 
drilling operation on the part;

no production resource gets selected (e.g. the Drilling 
Machine is down and the Milling Machine does not have 
a suitable tool): the Milling Machine sends a request to 
the Transport System, in order to bring the part to the 
Carousel Buffer

Digital Twins also enable effective and robust reactive 
behaviours in case of faults: for example, in the case of 
a breakdown of the Carousel Buffer, the Milling 

Machine can re-configure itself in order to act as 
a temporary buffering unit through its input/output 
legs. This information, stored in the Digital Twin, can 
be accessed by the Transport System: it will move the 
finished parts to the input leg of the Milling Machine 
for buffering, rather than to the Carousel unit. CPPS 
can then go on with production (semi-finished parts 
can still be drilled, as the Drilling Machine is now free), 
and in the meanwhile maybe the Carousel Buffer
could be repaired. Once the Carousel Buffer will be 
operational again, the finished parts waiting in the 
Milling Machine legs can be unloaded and the pro-
duction returns to the normal state.

Despite the convincing and sound approach, the 
proposed concept has not yet been actually applied 
to a real use-case. In fact, the proposed model only 
considers an illustrative case, and only preliminary 
work has been carried out so far for its implementation.

2.7 Standardization of the interface

A promising approach is the adoption and adaptation 
of the ‘Asset Administration Shell’ architecture, pro-
posed in the German government program Industry 
4.0, i.e. the ‘Reference Architecture Model Industrie 4.0 – 
RAMI4.0ʹ (DIN SPEC 91345:2016-04 2016), even if it is 
still under investigation and development. It defines
guidelines and rules for the development of 
a standardized interface, the Administration Shell, 
managing the connection of production resources, 
devices and tools in an Industry 4.0-compliant way. 
Proposing definitions and vocabulary for the related 
production asset, the Administration Shell could also 
represent a defined interface for the Digital Twin 
(Figure 11). Practically, it includes all the relevant 
information for representing the asset and its techni-
cal functionality. As an example, it stores all data and 
information about the asset providing also controlled 
access to them, and it permits network addressing 
and unambiguous asset identification. An asset 
could also be represented by multiple Industry 
4.0-compliant Administration Shells, thus having 
more than one Administration Shell for different pur-
poses. In this case, the different Administration Shells 
must be able to refer to each other. Finally, the 
Administration Shell approach considers the whole 
asset lifecycle stages according to IEC 62890 (Figure 
12). Iñigo et al. (2020) demonstrated the feasibility 
and benefits of the Administration Shell approach, 
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integrating it into a real industrial scenario that con-
sidered a robotic arm and a grinding machine.

Despite all the important and productive work 
done so far, there are still some critical aspects not 
yet covered for the complete adoption of the 

Administration Shell as the Digital Twin reference 
architecture. In particular, it provides no means to 
perform synchronization to the physical asset, trig-
gered by changes in the real world. In addition, the 
two main elements composing the Administration 

Figure 11. Administration Shell structure as defined in the ‘Reference Architecture Model Industrie 4.0 – RAMI4.0ʹ (DIN SPEC 
91345:2016-04 2016).

Figure 12. Different allocations for Administration Shells in an I4.0 network (DIN SPEC 91345:2016-04 2016).
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Shell, the ‘Component Manager’ and the ‘Manifest’, 
only focus on physical asset information storage and 
access, through a service-oriented architecture sys-
tem. ‘Intelligent coordination and supervisory units’ 
(for example, implementing artificial intelligence 
techniques, optimization services, predictive mainte-
nance methods) necessary for the practical realization 
of an ‘Intelligent Digital Twin’ are not considered. 
Security is another aspect not fully covered by the 
Administration Shell approach: as remarked by Iñigo 
et al. (2020), the Administration Shell does not inte-
grate communication security measures, and does 
not offer solutions for their implementation. For this 
reason, its adoption turns out to be still unpractical for 
all those applications where information and data 
security is essential.

2.8 Digital twin for human-centric manufacturing

The so-called ‘Human Digital Twin Computing’ is 
another emerging application area for Digital Twin 
concepts (Saariluoma, Cañas, and Karvonen 2021; 
Kawamura 2019). Several research works can be 
found in literature, addressing ideas and challenges 
related to the creation of digital copies of human 
beings (Truby and Brown 2021; Barricelli et al. 2020). 
From a general point of view, human users are con-
nected, via ambient or wearable sensors and IoT 
transmission technologies, to their digital copy in 
the virtual space, which is not only able to replicate 
movements and actions but also to reproduce states 
and behaviours, and recently to identify individuality 
and emotions (ToshiToshima et al. 2020). With parti-
cular regard to the manufacturing context, the 
Industry 4.0 vision allows new solutions and interfaces 
for the interactions between workers and production 
resources, paving the way to a novel ‘Operator 4.0’ 
(Peruzzini, Grandi, and Pellicciari 2020). The role of 
a Human Digital Twin in industrial environments can 
be beneficial to production and efficienc by addres-
sing, among the others, ergonomics (Greco et al. 
2020; Grandi et al. 2020), layout design (Rueckert, 
Niemann, and Kam 2020) and human-machine colla-
boration (Malik and Brem 2021; Yi, Liu, and Ni 2020). 
Vergnano, Berselli, and Pellicciari (2017) introduced 
the importance of Digital Twin for simulation-based 
training. Big Data and Artificial Intelligence algorithms 
acquire and process human knowledge, creating 
models that can replicate and anticipate human 

intentions, skills and interaction preferences. 
Research on Human Digital Twin is still at its early 
stage, but the potential and possibilities are unques-
tionably clear. However, an important point to be 
addressed and clarified is related to possible ethical 
and legal issues that could arise from digitally cloning 
human data.

3. Industrial implementation

Different understandings of the Digital Twin concepts 
can be observed in industrial practice, with different
targets and implementation strategies, as introduced 
in Section 2.2. Examples can be found in the aircraft 
manufacturing domain, where Digital Twin concepts 
have been applied to the management of aircrafts 
service life (Tuegel et al. 2011), to the monitoring of 
operational state of wings (Li et al. 2017), to the 
simulation of helicopter dynamic systems (Guivarch 
et al. 2019), to the prediction of tire touchdown wear, 
as well as to the prediction of components failure 
probability (Zakrajsek and Mall 2017). However, the 
contribution of Digital Twin ideas to prognostic is not 
only related to aircraft industry: additive manufactur-
ing domain (Knapp et al. 2017), crack paths prediction 
(Cerrone et al. 2014), and fault diagnosis (Reifsnider 
and Majumdar 2013) are just some other examples of 
pioneering works on Digital Twin-driven applications. 
Finally, rare applications have been investigated for 
the end-of-life phase (Wang and Wang 2019).

3.1 Digital twin architecture for shop-floor
integration

In the following, ideas, concepts, guidelines and archi-
tectural models for Digital Twin implementation and 
deployment into factories shop-floors are analysed 
and discussed. Few approaches have been proposed 
at theoretical level, one of these being the ‘Digital 
Twin Shop-!oor’ (DTS) architecture, discussed in Tao 
and Zhang (2017) and in Tao et al. (2017). Similarly, 
the ‘Product Manufacturing Digital Twin’ (PMDT) 
model, proposed by Zhang, Zhang, and Yan (2019), 
targets the application of Digital Twins to the produc-
tion phase. Recently, additional work has been done 
in the definition of suitable architectures targeting 
manufacturing scenarios, such as approaches based 
on a ‘Tri-Model’ definition by Zheng and Sivabalan 
(2020), and on a ‘P4R information model’ by Park 
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et al. (2020). Wu et al. (2020) proposed a five-
dimensional digital twin framework, targeting the 
representation of the complex relationship between 
digital twin objects and their attributes. Xu et al. 
(2020) presented a framework for the application of 
Digital Twin concepts to manufacturing environ-
ments based on Industrial Cloud Robotics (‘Digital 
Twin-Based Industrial Cloud Robotics Framework’– 
DTICR).

Although all the architectures share common foun-
dations and sometimes even structures, some minor 
differences can be identified. Almost all the models 
agree on the definition of the following main 
components:

Physical Shop-!oor: it embraces all the factory produc-
tion resources that exist in the physical world e.g. human 
operators, machines and materials;

Virtual Shop-!oor: it contains the different descriptor 
models, also built in multiple dimensions e.g. geometric 
models, manufacturing attribute models, behaviour rule 
models, data fusion models. It evolves together with the 
Physical Shop-floor, therefore synchronization and con-
sistency between Virtual Shop-!oor and Physical Shop- 
!oor become of fundamental importance. The ‘Product 
Manufacturing Digital Twin model’ proposed by 
Rejikumar et al. (2019) highlights also the role of an 
additional element, the Shop-!oor Network Layer, 
responsible for the communication between the physi-
cal and virtual world;

Shop-!oor Service System: a service platform integrated 
with shop-floor application systems, offering decision 
support services, e.g. job scheduling optimization, real- 
time monitoring of manufacturing resources, quality 
monitoring, material delivery optimization. It combines 
models and algorithms with functions from Enterprise 
Information System (EIS), computer-aided tools, and IT 
network infrastructure. It exposes services for specific
queries and requests from both the Physical Shop-!oor 
and the Virtual Shop-!oor. The Shop-!oor Service System 
element encapsulates the logic that orchestrates and 
manages the whole production process, representing 
the intelligent core of the architecture. It requires con-
nections and interfaces towards all the other elements in 
order to access and exchange data and information. 
Given the wide range of different interfaces (e.g., 
RS232, CAN and ZigBee) and communication protocols 
(e.g., Profibus, TCP/IP and Modbus), the Shop-!oor 
Service System also integrates proper interface modules;

Shop-!oor Digital Twin Data: it includes data from both 
the physical and virtual worlds, e.g. production data, 
tooling data, material data, quality data, cost data.

Data generated from both physical entities and digital 
mirrors, as well as the fused data are used to support 
the activities in the shop-floor. To this aim, the PMDT 
also adds the definition of the virtual elements asso-
ciated to each production resource. In particular, the 
Virtual Shop-!oor is seen as a combination and inter-
action of five different models:

Product De"nition Model: it conveys product design and 
manufacturing information, e.g. geometric tolerances, 
material specifications, bill of material through an inte-
grated 3D model;

Geometric and Shape Model: it describes geometric 
dimensions and shape of the associated Smart Shop- 
floor element, e.g. weight or length;

Manufacturing Attribute Model: it describes the non- 
geometric attributes, e.g. cost, energy consumption;

Behaviour and Rule Model: it includes behaviours and 
rules, e.g. activities, actions of operators, process con-
straints. Different implementations could be possible in 
order to describe behaviours (Uni"ed Modelling 
Language or Petri Nets, for instance), while rules can be 
expressed using different methods (neural networks, 
fuzzy logic, Pareto optimization);

Data Fusion Model: it describes and models relationships 
among production data.

The different models can interact through an appro-
priate communication layer, the so-called ‘Digital 
Thread’ (Figure 13) which permits to keep the syn-
chronization between the physical world and the vir-
tual space, making the PMDT a unique, reversible, 
faithful model of the corresponding ‘Cyber Physical 
Production System’.

Park et al. (2020) proposed a different information 
model, the P4R, that provides abstraction for data at 
‘product’, ‘process’, ‘plan’, ‘plant’ and ‘resource’ level. 
Although the considered architectures define diffe -
ent hierarchical models for the elements (Figure 14), 
and a different number of layers for the architecture, 
they still agree on the general data flow among the 
elements.

In particular, the ‘Digital Twin Shop-!oor’ (Tao and 
Zhang 2017) and the ‘Digital Twin-Based Industrial 
Cloud Robotics Framework’ (Xu et al. 2020) propose 
an interconnected model, where each element is con-
nected with any other. The PMDT, the P4R and the 
‘Tri-model-based’ (Zheng and Sivabalan 2020) models, 
on the other hand, rely on a hierarchical architecture 
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based on 4 or 5 layers, identified by different names 
but with the same operational behaviours. In this 
case, each layer of the architecture can only interact 
with the adjacent layers.

Production data acquired in the Physical Shop-!oor 
layer are managed and stored in the Shop-!oor Digital 
Data layer. Data mainly include factory data, produc-
tion process data and environment data, directly gen-
erated by physical entities without further processing. 
They are made available to the Virtual Shop-!oor layer 
to build, or refine, the descriptor models. The Virtual 
Shop-!oor layer requires access to data to get infor-
mation about model parameters and model opera-
tion states and to store information from simulation, 
evaluation, optimization and prediction.

The Shop-!oor Service System exposes and executes 
‘intelligent’ services implemented through cognitive 
algorithms, e.g. genetic algorithms, differential evolu-
tion algorithms, simulated annealing algorithms, that 
require as inputs virtual data and aim to optimize 
production scheduling and process flow. As an exam-
ple, in the case of a failure of the production plan at 
the Physical Shop-!oor level, e.g. equipment break-
down or material shortage, real-time shop-floor data 

regarding unexpected behaviours are collected and 
transferred to the virtual space, in order to update the 
Virtual Shop-!oor model status. Data are also passed 
to the Shop-!oor Service System layer, where the ‘intel-
ligent’ algorithms refine and optimize again the mod-
els. The optimization results are then analysed and 
evaluated to decide whether a production reschedul-
ing would be required or not. If yes, the new schedul-
ing will be transferred to the physical shop-floor.
Therefore, even if the PMDT and the P4R architectures 
do not provide a direct link between the Shop-!oor 
Service System and the Shop-!oor Digital Data (called, 
respectively, ‘Application Layer’ and ‘Data Layer’ in 
the bottom architecture in Figure 14), they result to 
be connected through the Virtual Shop-!oor layer. 
Services exposed by the Shop-!oor Service System 
can also be supported by various sub-services, like 
data services, algorithm services, model services and 
visualization services.

It must be noticed that data coming from the 
Physical Shop-!oor and the Virtual Shop-!oor elements 
are usually encoded with different protocols and 
communication interfaces. In addition, information 
can also be stored using various formats, types and 

Figure 13. Basic components of a Product Manufacturing Digital Twin (Zhang, Zhang, and Yan 2019).
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structures. For this reason, appropriate interfaces able 
to uniform data access are implemented. These inter-
faces permit to convert the heterogeneous data into 
a unified information model, also applying data clean-
ing and fusion algorithms (e.g. Kalman filter, neural 

network and Bayesian inference). In this way, the uni-
fied physical fused data and the unified virtual fused 
data become coherent and consistent, and can then 
be processed and elaborated by the Shop-!oor Service 
System.

Figure 14. Comparison between ‘Digital Twin Shop-floor’ (above, Tao and Zhang 2017) and other Digital Twin architectures (below, 
Zhang, Zhang, and Yan 2019) architectures.
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The mapping between the physical and the virtual 
worlds will accompany the physical resource through 
its whole lifecycle, e.g. production, maintenance and 
recovery phases, being also used for the dynamic 
optimization of the shop-floor (Zhang, Zhang, and 
Yan 2018). As an example, storing data and informa-
tion about a tool, its lifetime can be optimized by 
predicting the tool wear index. Searching optimal 
solutions by mathematical methods always turns out 
to be a difficul and computational intense problem. 
However, as the virtual equipment provides a digital 
mirror in high fidelity with the physical one, the opti-
mization can be performed in the cyber environment 
through parameters modifications and testing. As the 
virtual equipment can be adjusted with little cost, the 
equipment operation can be validated in the cyber 
environment first, then performed on the physical 
one, which reduces the risks of the actual production 
process.

In conclusion, the definition and identification of 
a reference architecture for the practical implementa-
tion of Digital Twins at shop-floor level is becoming 
paramount. A promising work is the development of 
an international standard, the ISO 23,247 ‘Digital Twin 
Manufacturing Framework’ (ISO23247 ISO23247 2020). 
In particular, Part 2 specifically targets the definition
of a reference framework for the adoption of Digital 
Twin-related technologies into modern manufactur-
ing processes. At present, the standard is still in its 
genesis (DIS ballot phase). Additional work is 
required, considering not only research of architec-
tures for the Digital Twin implementation but also 
collection of feedback and inputs from manufacturing 
companies. This ‘Digital Twin Integration Framework’ 
should act as a reference model providing principles 
and standard definitions but also directions and 
instructions for the proper application of theoretical 
concepts into real-world use-cases. On the other 
hand, it should be general and flexible enough to 
permit customization, so that it could be easily 
adapted and tuned according to specific require-
ments and scopes of different companies with diffe -
ent needs and targeting different integration levels or 
production areas.

3.2 Operational flo

As highlighted in the ‘Digital Twin Shop-!oor’ model 
(Tao and Zhang 2017), the logical flow of Digital Twin 

operations can be decomposed in three main phases: 
before, during and after production (Figure 15).

Before production, the Shop-!oor Service System 
elaborates a production plan, that is passed to the 
Virtual Shop-!oor for validation. and then passed to 
the Physical Shop-!oor for execution. During produc-
tion, simulated data from the Virtual Shop-!oor are 
continuously compared to actual production data 
from the Physical Shop-!oor. If data inconsistency is 
found, a specific service will determine the cause of 
data misalignment: disturbances in the physical 
world, e.g. equipment failure, or inaccuracies in the 
virtual models. In case of disturbances in the Physical 
Shop-!oor, specific services in the Shop-!oor Service 
System will elaborate corrective actions aiming at 
eliminating or reducing them. The ‘recovery strate-
gies’ identified by these services will be first validated 
at the Virtual Shop-!oor level, and then transformed 
into control orders to correct Physical Shop-!oor beha-
viours. If data inconsistency is caused by the virtual 
models, new model calibration will be performed. 
Actual production plan will be then verified again 
and the production process will be adjusted 
accordingly.

It is important to highlight a ‘behavioural diffe -
ence’ between the Virtual Shop-!oor and the Physical 
Shop-!oor when querying services to the Shop-!oor 
Service System: while the output of Virtual Shop-!oor 
queries is directly transmitted to the virtual models, 
the output of Physical Shop-!oor queries is first con-
veyed to the Virtual Shop-!oor layer for verification,
and only then to the physical resource for execution. 
Moreover, a difference in queries content can be also 
noticed. Services invoked from the Physical Shop-!oor 
layer mainly concern production planning and sche-
duling, aiming at solving existing problems quickly 
and preventing possible faults during production. 
On the other hand, queries from the Virtual Shop- 
!oor layer mainly refer to calibration and test, in 
order to support model operation and evolution. It 
must be noted that not all the proposed architectures 
agree on the fact that the Physical Shop-!oor can 
directly query services at the Shop-!oor Service 
System level. For example, the hierarchical organiza-
tion of the PMDT does not allow direct data exchange 
between the two layers (Figure 14).

Once production is completed, history production 
data are stored and archived, expanding the ‘knowl-
edge database’ to be used for models building and 
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calibration. Moreover, the Virtual Shop-!oor could also 
playback the stored historical data, to self-adjust and 
self-optimize its internal models, for instance minimiz-
ing production defects. From this point of view, the 
Digital Twin implementation turns out to be 
a constant evolution process, along with different
production cycles.

3.3 Digital infrastructures and data fusion

The Digital Twin approach can be extended to inte-
grate not only physical production resources that are 
connected through the same local area communica-
tion network but also systems that exhibit cloud con-
nection capabilities. In fact, cloud connection and 

technology provide the Digital Twin architecture 
with high performance infrastructure resource and 
data analytics functionalities (Liu et al. 2019).

Nowadays, off-the shelf cloud IoT platforms are 
available: Mindsphere2 by SIEMENS and Thingworxs 
Kepware3 among the others are examples of ‘plat-
forms as a service’ systems that offer enhanced con-
nectivity services towards automation applications. 
They provide open application interfaces to obtain 
data from production resources and plants. 
Supporting bi-directional data flow between the pro-
duction process and the cloud, they can be consid-
ered important enablers for the practical 
implementation of a Digital Twin for Smart manufac-
turing processes. Vuforia Spatial Toolbox4 is a recent 

Figure 15. Operational mechanism of the ‘Digital Twin Shop-floor’ model (Tao and Zhang 2017).
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research platform to leverage Augmented Reality to 
visualise and help programming connected 
applications.

Several works investigated the cloud-based manu-
facturing system approach (Liu, Jiang, and Jiang 
2020), considering Web Applications hosted in IoT 
platforms and web protocols, e.g. WebSocket, to 
exchange data with the shop-floor. Cheng et al. 
(2020) proposed a cloud-based reference framework, 
the ‘DT-II framework’. It supports the Digital Twin 
integration considering three perspectives: product 
lifecycle level, intra-enterprise level and inter- 
enterprise level. The framework adopts a hierarchical 
architecture similar to the ones presented by Zhang, 
Zhang, and Yan (2019), Zheng and Sivabalan (2020), 

and Park et al. (2020), but the connections between 
the layers are based on a ‘Cloud Service Bus’.

According to the ‘Cloud-based Cyber Physical 
System Architecture’ (C2PS), sensory information col-
lected in the real physical layer is stored in its own 
data store, but it is also transferred to a data store in 
the cloud-based cyber layer (Alam and El Saddik 
2017). Interactions among production resources are 
possible either through direct ad-hoc communication 
in the physical layer, or through the cloud layer adopt-
ing peer-to-peer communications among the hosted 
cyber objects. To keep layers synchronization, data 
transfer and update are fundamental (Figure 16).

The proposed architecture has been successfully 
applied in a telematics-based driving assistance 

Figure 16. Possible interactions between two C2PS resources: physical-physical (a), cyber-cyber (b), and hybrid cyber-physical (c) 
(Source: Alam and El Saddik 2017).
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application. The C2PS framework is used to determine 
whether the vehicle is in a city, village or any other 
areas, and to provide the driver with warnings, such as 
speed-wise possible fines, demerit points or even 
accident statistics of the upcoming road segment. In 
this context, sensors and fusion services permit to 
identify various driving events, based on which driv-
ing-related situational recommendations for drivers 
are inferred. Three possible types of data fusions are 
possible for this situational driving support recom-
mender system. At physical level, sensors only man-
age data related to near real-time driving events 
detection mainly speeding and turn events detection. 
At cyber level, Cloud-based services provide delay- 
tolerant services, e.g. nearby parking or restaurant 
information, as well as accident statistics. However, 
the main key point of the C2PS architecture is the 
possibility to combine and perform data fusion 
among the services hosted in the two physical and 
cyber levels, making available ‘hybrid-sensor’ services. 
As an example, a speeding event detected by sensors 
at the physical layer level can further be fused with 
the location and weather services information avail-
able in the Cloud. As a result, the system can provide 
information on possible fines related to location- 
specific speed limits.

Despite the promising results obtained by the 
application of C2PS approach to assisted driving, its 
efficien implementation into factory shop-floors still 
requires some work and additional effort to adapt the 
architecture to current production processes.

3.4 Examples of implementations in the industry

Companies use Digital Twin to increase the manufac-
turing flexibility and competitiveness, while in some 
other cases, e.g. General Electric, the Digital Twin 
understanding focuses on forecasting the health and 
performance of their products over lifetime. Notably, 
General Electric developed the Digital Twin of a wind 
farm, with the aim of improving its control, operation 
and maintenance (Lund et al. 2016). In a different
domain, General Electric applied the Digital Twin to 
locomotives’ lifecycle monitoring (Miller 2016), and in 
the healthcare sector they developed a Digital Twin 
for bed planning and work allocation optimization in 
a hospital. In addition, General Electric also proposed 
a general-purpose Digital Twin platform called 
PREDIX5 for production asset performance prediction.

SIEMENS commitment is on improving efficienc
and quality in manufacturing and in power genera-
tion plants as well as in wastewater plants (SIEMENS 
2017), whereas TESLA aims at developing a Digital 
Twin for every built car, hence enabling synchronous 
data transmission between the car and the factory 
(Fourgeau et al. 2016). International Business 
Machines Corporation developed a Digital Twin to 
analyse critical parameters, e.g. oil pressure, of their 
automatic vehicles. British Petroleum uses Digital 
Twins for monitoring and maintenance of oil and 
gas facilities located in remote and difficul to reach 
areas (McCannel 2018; AUCOTEC 2017), while Haier 
has integrated the Digital Twin approach in its 
‘Internet Factory’6 in China.

ABB7 and Microsoft (2019) also have developed 
their own software tools and platform, to adapt their 
product portfolio to Digital Twin concepts and vision. 
Always in the manufacturing domain, Digital Twin 
concepts have found applications for simulation, pre-
diction and decision-making in iron and steel manu-
facturing process (Xiang, Zhi, and Jiang 2018).

Moreover, as discussed in Section 2, Digital Twin 
has been nowadays applied in aerospace applications 
for aircraft real-time monitoring, diagnosis and prog-
nosis, maintenance, etc. (Koh, Orzes, and Jia 2019; 
Tuegel et al. 2011; Tuegel 2012). In this context, 
Airbus Group also claims that the digitalization of 
their plants will largely adopt Digital Twin-based solu-
tions (Liu 2017). In 2018 Rolls-Royce introduced their 
‘Open Simulation Platform’, with the aim of creating 
a digital platform for product design (Rolls-Royce 
2018), within their roadmap towards services digitali-
zation (SAE 2019). Finally, Digital Twin application 
scope has also been extended to the monitoring 
and supervision of power system control centres 
(Brosinsky, Westermann, and Krebs 2018) and 
Equipment Energy Consumption Management 
(Zhang, Zuo, and Tao 2018).

3.5 Discussion on practical implementations

Despite the promising and sound foundations of the 
Digital Twin implementation models proposed so far, 
few practical validations into a real-world manufactur-
ing process has been attempted. For instance, the 
‘Digital Twin Shop-!oor’ model has been applied to 
equipment energy consumption monitoring, analysis 
and optimization, aiming at improving energy 
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efficienc of production (Zhang, Zuo, and Tao 2018). 
Work on this point is still ongoing, as some challenges 
and issues related to the practical application of DTS 
concepts have not yet been solved (Tao and Zhang 
2017; Tao et al. 2017).

Also, the PMDT model has only been tested into 
a ‘theoretical use-case’, representing the case of 
a blisk machining application, where the Digital 
Twin acted essentially as a job scheduler. The inter-
connection and interaction between the physical 
and virtual spaces was not implemented, but still 
recognized as an important future step to be 
tackled. In the same way, when Tao and Zhang 
(2017) proposed the ‘Digital Twin Shop-!oor’ archi-
tecture, their main effort was focused at establish-
ing a theoretical model and at providing guidelines 
for its implementation. A convincing architecture 
was thus defined and thoroughly presented, and 
the need to target the practical implementation of 
an effective two-way connection between the 
Digital Twin and the physical shop-floor was clearly 
outlined as a future step.

The ‘Tri-based-model’ was a first step in this direc-
tion: it was developed and tested in a controlled 
laboratory environment, and still some limitations 
were remarked, especially related to communication 
latency. The P4R approach was validated in a real 
manufacturing system, also in this case under con-
trolled operating conditions, and the results achieved 
were really promising, but some open points must 
still be solved in order to fully integrate the Digital 
Twin architecture into the manufacturing process. 
Following this direction, several works tried to imple-
ment a real Digital Twin demonstrator (Rolle, 
Martucci, and Godoy 2020; Židek et al. 2020), showing 
an increasing interest and a slow shift of the research 
community from more theoretical concepts to more 
practical aspects.

4. Future challenges in implementation

The implementation of the Digital Twin vision into 
factories shop-floors can open up opportunities in 
order to achieve a new level of productivity, paving 
the way towards Smart and Intelligent Manufacturing. 
However, the deployment of Digital Twins into cur-
rent production processes still raises questions and 
open points, which can be grouped in four main 

directions (Tao and Qi 2019) as in the following 
sections.

4.1 Communication protocols

A first issue in deploying the Digital Twin vision is 
related to production resources data access. 
Synchronization and consistency between the physi-
cal and the virtual worlds must be ensured. How to 
implement proper two-way communication protocols 
still represents an open issue, strictly related to the 
need for standardized connection and communica-
tion means, so to unify data formats, as well as their 
representation and exchange. OPC Uni"ed 
Architecture (OPC-UA) is a well-known and wide-
spread machine-to-machine communication protocol 
for information exchange among industrial automa-
tion systems and equipment, that targets the defin -
tion of an integral information model for data 
collection and control.

AutomationML is another powerful data format tar-
geting efficien exchange of engineering information, 
that can be extended and adapted to model Digital 
Twins (Schroeder et al. 2016; Zhang, Yan, and Wen 
2020). In the same way, several industrial communica-
tion protocols have been already widely adopted and 
can be roughly divided into three main categories (Lu 
et al. 2020): Fieldbus Networks, Ethernet-based 
Industrial Networks and Industrial Wireless Networks. 
All the three categories rely on the ISO Open System 
Interconnection (OSI), properly modified so to meet 
real-time and reliability constraints of production 
shop-floors. However, to fully cover all the application 
requirements, information models from different
Standards need to be harmonized and integrated. In 
fact, so far, different Industrial Ethernet Standards are 
not compatible with each other. Interesting and pro-
mising research on standard interfaces, modelling 
and simulation (IEEEP1451 IEEEP1451 2020, 
IEEE1516; IEEE1516 2020) is currently ongoing (Song 
et al. 2019).

In conclusion, up to now no solutions that allow 
a completely automated synchronization between 
the physical asset and its virtual counterpart have 
been proposed. Heterogeneity and differences in 
communication interfaces and protocols can hinder 
or even make not feasible the collection of data. 
Therefore, customized access modules must be 
implemented and deployed, through which data 
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from different sources are transformed into a unified
and uniformed interface. At the same time, since data 
may be represented in different formats and types, 
data integration routines including cleaning and for-
mat conversion must be developed. Recently, first
steps towards the definition and development of 
possible semantic models able to support the most 
promising architectures for Digital Twin implementa-
tion into manufacturing shop-floors is appearing in 
the literature (Li et al. 2020).

4.2 Fidelity models generation and integration

The second important issue to be considered is the 
high-fidelity generation and synchronization of mod-
els at Virtual Shop-!oor level. Two main strategies are 
usually adopted: detecting changes in the physical 
asset or taking ‘pictures’ of the asset status at regular 
time intervals. Several methodologies and 
approaches have been proposed in literature, for 
example exploiting multicast functionality of 
EtherNet/IP, but they all turn out to be only partially 
automated (Talkhestani et al. 2019).

Models rules can be built exploiting Artificial
Intelligence techniques, e.g. data mining algorithms; 
independently of the techniques used for model con-
struction, the accuracy of the model must be checked 

and verified through appropriate Verification
Validation and Accreditation (VV&A) routines. How 
to build practically viable Digital Twin models as 
well as how to develop high-fidelity models based 
on data from physical resources, which are affected
by variability, disturbances and uncertainties, are still 
active research topics, and so far no consensus has 
been reached for a unified Digital Twin modelling 
framework. Several well-known Standards already 
exist and can be used for describing physical assets, 
but so far no one of them has reached the full con-
sensus as a reference model for Digital Twins. Figure 
17 shows an overview of the evolution of the most 
popular current standards (Lu et al. 2020). Common 
ontology and semantics must also be defined, as 
a fundamental step towards the development and 
acceptance of a consolidated vocabulary and 
a universal language that could be generally adopted 
to model objects and attributes of a Digital Twin.

ISO technical committees are also working on 
the development of a dedicated standard for the 
definition of a Digital Twin framework for manu-
facturing (ISO23247 ISO23247 2020), including 
terms, principles and vocabulary. At present, 
multi-domain modelling and simulating methods 
mainly consists of software interfaces (Wang 
2003), High-Level Architecture (Pedrielli et al. 

Figure 17. Evolution of standards for Digital Twin in the manufacturing domain (Lu et al. 2020).
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2011) and Uni"ed Modelling Language (UML), 
based on Modelica modelling language (Mattsson 
and Elmqvist 1997). Unfortunately, so far, no 
method is able to fully overcome interface com-
patibility issues between different software appli-
cations. Detail level of models is another major 
challenge: while an excessive simplified model 
may not unveil the full potential of Digital Twin 
applications, a very accurate approach might lead 
to unbearable complexity of electrical equipment 
data, measurement devices and massive amount 
of signals. A possible solution could be repre-
sented by Model Order Reduction techniques, 
which simplify the high-fidelity original model 
preserving all the important model properties, 
making it suitable for fast and close to real-time 
simulation (Hartmann, Herz, and Wever 2018).

Commercial tools able to generate reduced order 
models are so far available (e.g. Ansys software by 
CADFEM8), but they are mainly conceived for linear 
model cases. However, many real-world physical 
effects are described by nonlinear equations and the 
application of standard commercial software to these 
equations results in poor results.

Finally, some other issues on modelling are here 
highlighted. Interdisciplinary model fusion and 
coherence is to be considered: current cross- 
domain analysis techniques are not yet ready for 
direct implementation on a Digital Twin, as they 
still lack fully automated operation. Moreover, the 
ability to correct and adjust virtual model inaccura-
cies based on inconsistencies between virtual 
resources and physical entities is another topic 
that remains still unanswered, despite current 
research efforts carried out in this direction 
(Zipper et al. 2018). The development of novel 
data cleaning and identification methods is also 
still required for treating the corresponding noisy, 
highly oscillatory data as usually collected by sen-
sors in the physical space. The application of 
Digital Twin on early detection and prediction of 
faults raises an additional side challenge related to 
model knowledge: in order for the virtual model to 
be able not only to identify the system state but 
also to diagnose possible faults, the faults them-
selves must be modelled. Therefore, possible faults 
must be known in advance, maybe from experi-
ence, and this represents a crucial limiting factor 
for Digital Twin deployment.

4.3 Different domains integration

The third factor that is deeply related to the 
‘Digital Twin Shop-!oor’ practical deployment is 
about data management and fusion. Shop-!oor 
Digital Twin Data consists of physical data and 
virtual information, that are combined and fused 
together through data comparison, association 
and clustering techniques. Data dimensionality 
reduction plays an important role in making data 
fusion easier, by cleaning massive and redundant 
information. As an example, considering 
a machine tool, wear data retrieved from physical 
space can be combined with simulation data 
about stress and deformation, as well as service 
data about scheduling and maintenance records 
from information systems to form the fused data.

The realization of an effective cyber-physical fusion 
also requires the integration of many different tech-
nologies, such as fusion algorithms and data mining 
aiming at a holistic approach for storage, manage-
ment, examination and validation of Digital Twin 
data. Some preliminary work has been already carried 
out, analysing benefits and positive impacts of com-
plementing Digital Twin with Big Data in order to 
foster the deployment of Smart Manufacturing into 
real-world production scenarios (Qi and Tao 2018). 
From a practical point of view, several platforms are 
already available in the market (e.g. Mindsphere, 
Thingworxs Kepware, Vuforia Spatial Toolbox, etc.), 
offering different functionalities and levels of integra-
tion. These solutions incorporate the IoT vision and 
offer a good starting point for cross-domain data 
integration. On the other hand, the main challenge 
still consists in the harmonized integration into 
a unified platform of different and heterogeneous 
legacy systems.

4.4 Implementation cost analysis

Finally, cost-benefit analysis must be considered, in 
order to guarantee economic and financial interests 
for factories when investing in the infrastructure 
development for the Digital Twin realization. 
Although this issue is not strictly ‘technical’, it is 
worthy to mention it: as for every technology, its 
adoption, dissemination and widespread application 
in production and manufacturing environments can 
only happen if it brings tangible and significant
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improvements and benefits to Capital Expenses 
(CapEx) or Operating Expenses (OpEx) for the final
process (Boehm and Valerdi 2007; Honour and 
Jenkins 2013).

The global maturity level of the company needs to 
be considered, meaning the degree of digitalization 
inside the company, the level of integration among 
different platforms storing the data, but also the inno-
vation capacity of the company organization itself. 
Studies and analyses on benefits and values brought 
by the adoption of Digital Twins in shop-floor envir-
onments (Breillat 2020) turn out to be fundamental in 
order to endorse the development and integration of 
Digital Twin systems into real production scenarios. 
Indeed, the return on costs deriving from investments 
strongly depends on the company’s ability to reap the 
benefits brought by the new technologies.

5. Conclusions

So far, no clear and unanimous view on methods and 
tools to implement Digital Twin concepts into real 
production environments has been identified.
Several issues still need to be overcome as reported 
in the previous section. This discourages companies, 
especially small and medium enterprises, from plan-
ning investments on the adoption and integration of 
Digital Twin-based solutions, even if many machines 
and plants newly acquired incorporates sensors and 
communication capabilities. As highlighted by 
Hughes (2018) in its industrial survey, almost 60% of 
the companies declared their expectations to regain 
their initial investment on Digital Twin technologies 
within 1 year. Considering the early stage of many 
Digital Twin components, this objective looks quite 
unreachable for the moment.

However, Digital Twin is undoubtedly one of the 
major innovation trends which is appearing in the 
design, management and optimization of production 
facilities. The big and widespread efforts posed by the 
research community and industrial players to define
standards, architectures, approaches and deployable 
systems attest the recognized importance given to 
the topic and suggests that the current issues will be 
overcome in a few years.

Notes

1. .https://www.gartner.com/en

2. .https://siemens.mindsphere.io/en
3. .https://www.kepware.com/en-us/products/thingworx- 

kepware-edge/
4. .https://www.ptc.com/en/products/augmented-reality

/vuforia-spatial-toolbox#
5. .https://www.ge.com/digital/iiot-platform
6. .http://factory.haier.com
7. .https://new.abb.com/abb-ability
8. .https://www.cadfem.net/gb/en/our-solutions/cadfem- 

ansys-extensions/model-reduction-inside-ansys.html
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