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Abstract

Recent structural VAR studies of the monetary transmission mechanism have
voiced concerns about the use of recursive identification schemes based on short-
run exclusion restrictions. This paper characterizes the effects on impulse prop-
agation of informational constraints embodying classical Cholesky-type timing
restrictions in otherwise standard DSGE models. We formally show that tim-
ing restrictions can produce non-trivial moving average components of rational
expectations solutions, or even serve as an independent source of model-based
nonfundamentalness, thereby hampering impulse response analysis via VAR pro-
cedures. We then derive population conditions for existence of VAR representa-
tions of DSGE economies exhibiting timing restrictions, and numerically explore
their bearing on shock identification in a range of monetary models of the busi-
ness cycle. Our analysis reveals that dynamic New Keynesian models admit
invertible equilibrium representations as well as fast-converging VAR coefficient
matrices under empirically tenable parameterizations. This alleviates concerns
about identification and lag truncation bias: low-order Cholesky-VARs do well
at retrieving the true aggregate effects of monetary policy shocks in a Cholesky
world.
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1 Introduction

Recursive identification schemes based on short-run exclusion restrictions have tradi-

tionally been used to identify the macroeconomic effects of monetary policy shocks

(e.g. Sims (1980), Christiano et al. (1999)). Making the recursive scheme operative

in the VAR context is accomplished by generating a Cholesky decomposition of the

variance-covariance matrix associated with the reduced-form residuals, with the policy

rate placed between slow and fast moving variables, e.g. Kilian (2013). Albeit empiri-

cally appealing, the Cholesky approach calls for a conceivable structural interpretation

of the enforced recursive ordering.1

The lack of conformity between the conventional timing in structural macroeconomic

frameworks and the identifying assumptions in Cholesky-VARs has also spurred interest

in the development of dynamic stochastic general equilibrium (DSGE) models exhibiting

some degree of recursiveness, e.g. Rotemberg and Woodford (1997), Christiano et al.

(2005), Boivin and Giannoni (2006), Altig et al. (2011). While resorting to peculiar

(and often overly restrictive) assumptions on the timing of decisions, these studies do

not engage in a thorough investigation of the DSGE-VAR mapping in the presence of

Cholesky-type restrictions.

The present paper fully characterizes conditions for existence of causal VAR rep-

resentations of general, multivariate DSGE models featuring informational constraints

that embody classical Cholesky-timing restrictions; and explores the relevance of these

conditions for empirical VAR-based exercises aimed at identifying the monetary trans-

mission mechanism or rather at validating/estimating DSGE models via the use of

impulse-response analysis. Formally, we show that information-based timing restric-

tions enlarge a model’s equilibrium state space and modify rational expectations cross-

equation restrictions (CERs), opening room to the emergence of (i) nonfundamental

VARMA representations for any set of observables, or (ii) invertible non-trivial MA

equilibrium components vis-à-vis their counterparts free of timing restrictions. As a

result, even when impulse responses are rightly constrained by the Cholesky scheme to

be an exact match to the theoretical ones on impact, a finite order Cholesy-VAR may

still prove an inaccurate approximation of the true VARMA structure that shapes the

endogenous adjustment paths to monetary policy shocks.

It is well-known that identifying a given DSGE model’s structural shocks via VAR

analysis require that the observed variables contain sufficient information to recover the

1The performance of Cholesky-VARs has recently been shown to be competitive with that of alter-
natives such as traditional sign restrictions in a Monte Carlo context (Wolf, 2020).
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unobserved state variables which are assumed to produce the observables. In particular,

if the model’s solution does not admit an invertible (or fundamental) representation

for the observables, then there exists no (linear) invertible mapping from the VAR

innovations to the structural shocks, see e.g. Alessi et al. (2011).

Our first contribution is to uncover a novel invertibility issue in theoretical macroe-

conomic models that conform with a Cholesky-type structure. Differently from dynamic

structures with persistently dispersed information (e.g. Kasa (2000), Kasa et al. (2014)),

the specification of information-based timing restrictions does not involve an infinite

regress of expectations, and the underlying model’s representation will generically be

finite dimensional. However, while being fundamental in terms of the innovations to

agents’ information sets, this representation can prove nonfundamental, with respect

to any set of observables, in terms of the structural shocks. We isolate conditions for

existence of fundamental equilibrium representations of restricted DSGE models, that

solely rely on the imposed information structure and the reduced-form coefficients of

the model’s solution under conventional (unrestricted) timing. In the same spirit of

Fernández-Villaverde et al. (2007), the procedures to check for fundamentalness and to

characterize the finite-order VAR equilibrium representation of restricted DSGE mod-

els are cast in a straightforward algorithmic form, that can be used very broadly in

structural macroeconomic modeling, well beyond the applications discussed next.2

Even when warranting invertibility, timing restrictions can enforce VARMA equilib-

rium representations that exhibit slowly converging VAR polynomial matrices at fairly

longer horizons. In principle, this might prevent low-order VARs, of the type required

by actual data availability, from being informative about the dynamic effects of mon-

etary shocks, even though the identification scheme correctly reflects the structure of

the model that generates the observables, e.g. Ravenna (2007) and Poskitt and Yao

(2017). To investigate this issue, we set up a series of controlled Monte Carlo experi-

ments on the assumption that the true data generating process (DGP) belongs to the

class of restricted DSGE economies. Specifically, we rely on several specifications of

two fully-fledged models of monetary policy transmission in the New Keynesian tradi-

tion. The first one is the sticky-price framework with consumption habits and inflation

inertia advanced by Boivin and Giannoni (2006) for their quantitative exploration of

the effectiveness of monetary policy in the U.S. post-WWII macroeconomic history.

The second is the three-equation monetary business cycle model with lagged expec-

2We will henceforth use the labels “unrestricted model” and “model without timing restrictions”,
as well as the labels “restricted model” and “model with timing restriction”, interchangeably.
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tations employed by Guerron-Quintana et al. (2017) to exemplify the properties of

impulse-response matching estimators for DSGE models. We leverage the flexibility

of Kormilitsina (2013)’s perturbation approach to solving restricted DSGE models in

order to bring the above mentioned frameworks in closer conformity with the Cholesky-

VAR recursive structure. We then submit the properly restricted models to our formal

test for VAR representability, and explore what the practical consequences of failing

this test are for the impulse response functions of interest.

We show that both dynamic New Keynesian (DNK) models admit a causal (pos-

sibly infinite order) VAR representation under empirically tenable parameterizations,

thus validating the use of VAR-based approaches to evaluation of monetary impulse re-

sponses. Inspection of the evolution of the coefficients of the theoretical VAR(∞) further

reveals that they rapidly decay towards zero, mitigating concerns about lag truncation

bias arising from the adoption of low-order VAR systems. We then scrutinize the ability

of Cholesky-VARs to uncover the true aggregate effects of monetary shocks through the

lens of our model laboratories; and also assess the relative performance of the Cholesky

scheme vis-à-vis the agnostic sign restrictions procedure, popularized by e.g. Canova

and De Nicolo (2002) and Uhlig (2005). Our simulation results convincingly suggest

that Cholesky-VARs, per se and as opposed to the competing identification scheme, are

likely to provide tight and reliable inference about the monetary transmission mech-

anism in restricted DNK structures, no matter how long-lasting the dynamic effects

of timing restrictions are. Sign restrictions, by contrast, may fail to correctly unveil

the true size of the monetary impulse responses for they prove sensitive to the relative

volatility scale of structural disturbances; a finding in line with e.g. Paustian (2007)

and Castelnuovo (2016). Finally, an application to the estimation of restricted DSGE

models via IRF matching techniques is also proposed.

A last remark about the scope of our analysis is in order. While we focus on the

DSGE-VAR mapping in the presence of structural Cholesky-type restrictions that arise

from ever-binding informational constraints, a large strand of literature has rather ex-

plored alternative approaches to shock identification that do not rely on the ordering

of the variables in the VAR and thereby comply with the standard (non-recursive) tim-

ing protocol of DSGE models, such as the use of external instruments (e.g. Gertler

and Karadi (2015), Stock and Watson (2018), Angelini and Fanelli (2019)), the het-

eroskedasticity in the data (e.g. Bacchiocchi and Fanelli (2015), Kilian and Lütkepohl

(2017)), the independence and non-Gaussianity of the shocks (e.g. Lanne et al. (2017)),

or direct coefficient restrictions on monetary policy rules (e.g. Arias et al. (2019)). We
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of course acknowledge the relevance of these research avenues, whether or not associated

with the empirical validation of shocks’ transmission mechanisms of DSGE frameworks.

The specific questions we address and the answers we provide are not to be read as an

endorsement of classic exclusion restrictions against competing alternatives for iden-

tification purposes; rather, they are meant to warn applied researchers against the

potential emergence of econometric issues inherent in the reduction of restricted DSGE

models into VAR form.

The paper proceeds as follows: Section (2) presents a simple example that illus-

trates the potentially harmful consequences of information-based timing restrictions

on the VAR-based analysis of DSGE models. Section (3) formally discusses how to

construct first-order approximate solutions to general DSGE economies featuring tim-

ing restrictions. Section (4) provides easy-to-check conditions under which restricted

DSGE models admit a fundamental (of possibly finite-order) equilibrium representation

for the observables. Section (5) lays out the DNK model laboratories, that are next

used (Section (6)) to assess the ability of classical short-run exclusion restrictions to

unveil the model-implied monetary transmission mechanism, and to document the rela-

tive performance of Cholesky-VARs versus a sign restrictions-type of approach. Section

(7) offers concluding remarks.

1.1 Literature review

We are of course not the first to formally introduce timing restrictions in otherwise

standard DSGE environments. Previous work in the field – e.g. Rotemberg and Wood-

ford (1997), Christiano et al. (2005), Boivin and Giannoni (2006), Altig et al. (2011) –

formalizes the recursiveness assumption by positing that slow moving non-policy vari-

ables (such as consumption, wages and prices) are fixed at least one period in advance,

and expectations on the future evolution of such variables are conditioned on lagged

information sets that fail to include current realizations of the whole set of the model’s

variables (endogenous and exogenous).3

While guaranteeing that the model’s responses to a monetary innovation are zero

on impact, this is actually not an implication of the Cholesky-timing assumptions for

the latter in principle allow, in structural settings, non-monetary shocks to hit these

variables on impact as well as to influence the formation of expectations (and of the

endogenous forecast revisions, e.g. Sims (2002)) about the future unfolding of the

3Keating (1996) derives a set of general recursiveness conditions on a structural VAR model under
which the Cholesky decomposition succeeds in identifying structural shock responses.
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model’s variables.

A relatively more conservative approach, capable of perfectly aligning a given DSGE

model’s structure with the Cholesky-VAR, has been put forward in Kormilitsina (2013)

and generalized in Sorge (2020). It acknowledges the fact that it is not the date at

which expectations are formed that matters, but rather the date and the structure of

the information set upon which expectations are framed. Accordingly, this approach

formalizes timing restrictions in the form of fictitious informational sub-periods char-

acterized by increasing sequences of heterogeneous (across rational decision-makers)

information sets and of the ensuing framing of expectations and timing of decisions.

Most importantly, being rooted in the theory of perturbation of non-linear systems, Ko-

rmilitsina (2013)’s approach works directly with the non-linear equilibrium conditions

of a given DSGE model by specifying, for each variable and/or equation, informational

sub-periods (sequences of observables and conditioning information sets) and associated

expectation operators; approximated (up to second-order) optimal decision rules can

then be derived on the basis of the imposed information structure.

Our analysis adds to a rapidly growing strand of literature that has explored the

DSGE-VAR mapping in controlled model laboratories. Canova and Pina (2005) and

Carlstrom et al. (2009) both exploit small-scale DSGE models as data generating pro-

cesses in order to inspect the identifying properties of short-run exclusion restrictions

in the VAR realm. Relying on calibrated versions of a limited participation framework

and a sticky price-sticky wage economy, Canova and Pina (2005) report evidence of se-

vere mis-identification in estimated dynamic responses to monetary policy disturbances

as well as in variance decomposition outcomes. Carlstrom et al. (2009) theoretically

explore the mapping from the true parameterization of DNK models to the impulse pre-

dictions of Cholesky-type VARs when it comes to estimating macroeconomic reactions

to a monetary policy shock. They document the extent to which the Cholesky scheme

is likely to produce spurious price and output puzzles under small perturbations of the

model’s parameters, that leave the theoretical impulse responses almost unchanged.4

Castelnuovo (2016) contributes to the debate by proposing a formal comparison

of impulse response functions (IRFs) generated by a recursively identified VAR esti-

mated on real-world data vis-à-vis the IRFs associated with recursively identified VAR

estimated on artificial series produced by an estimated medium-scale DSGE model.

Upon controlling for typical issues of the VAR framework (e.g. sample size, lag order

4Results in Carlstrom et al. (2009) depend on neither small sample length nor truncation bias (the
DNK model admits a finite second order VAR representation and the econometrician is assumed to
select the same lag order and to precisely estimate all the autoregressive coefficients).
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selection and model specification), the author concludes that the documented close-

to-muted monetary shock responses over the Great Moderation period are an artifact

of the Cholesky-style identification scheme rather than an actual feature of the data

generating process.5

Relative to the mentioned studies, we offer additional insights by devising easy-to-

check (necessary and sufficient) conditions for DSGE models with timing restrictions to

admit a VAR representation, and implementing them in the context of DNK models.

In the presence of nonfundamentalness, a direct comparison of the DSGE’s and VAR’s

impulse response may be misleading; even non-existence of finite-order VAR represen-

tations may complicate statistical inference (Alessi et al., 2011). Our simulation results

indicate that, irrespective of whether timing restrictions deeply affect the sign, the mag-

nitude and the persistence of dynamic adjustment paths to a monetary policy surprise,

low-order Cholesky-VARs perform remarkably well in unraveling structural content in

a truly Cholesky world.6

Our paper also speaks to the rapidly increasing literature on imperfect information

in dynamic RE models. On the one hand, scholars have been interested in explor-

ing the role of imperfect information in fueling the propagation of structural shocks

in otherwise standard stochastic environments – e.g. Nimark (2008), Nimark (2014),

Angeletos and La’O (2013), Acharya et al. (2017). On the other, attention has been

focused on the conditions under which small perturbations to full information generate

stable RE equilibria that prove least-squares learnable (Rondina and Walker (2016))

as well as conditions under which imperfect information qualifies as a mechanism that

supports self-fulfilling sunspot beliefs in economies that would rather exhibit a determi-

nate equilibrium in the presence of perfect and symmetrically shared information – e.g.

Lubik et al. (2020). As emphasized in Sorge (2020), information-based timing restric-

tions naturally embed an informational asymmetry across economic agents, which in

turn affects how beliefs are formed with respect to the stochastic unfolding of economic

variables. While requiring rather specific mutual consistency conditions for the beliefs

of asymmetrically informed agents to coordinate into an RE equilibrium, differential

information processing in this setting generically preserves the saddle-path properties

of the underlying model economy: if the unrestricted model displays a determinate

5See Wolf (2020) for similar remarks on what short-run exclusion restrictions are likely to identify
in VAR models, when the data generating process is the equilibrium representation of a structural
macroeconomic model.

6This is in line with the experiments run in Altig et al. (2011), who document the good performance
of Cholesky-VARs in identifying monetary impulse responses in a three-shock business cycle model
featuring a lagged transmission mechanism.
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equilibrium, so will its restricted analogue. Timing restrictions can however produce

nonfundamental or close to nonfundamental (in the time series sense) equilibrium rep-

resentations, thereby calling for a careful analysis of the mapping between restricted

DSGE structures and VAR models.7

2 An illustrative example

Answering the question of whether the structural shocks of a given multivariarate

macroeconomic model can be recovered from a VAR analysis requires understanding if,

and under what conditions, such a model can be represented as a reduced-form VAR. To

build intuition on how timing restrictions influence the mapping from the DSGE struc-

ture to its equilibrium representation, let us consider the following simple bi-variate RE

system

E [y1,t − αy1,t+1 − y2,t − x1,t|I1,t] = 0, α > 0, (1)

E [y2,t − βy2,t+1 − x1,t − x2,t|I2,t] = 0, β > 0, (2)

x1,t = ρ1x1,t−1 + ε1,t, |ρ1| < 1, (3)

x2,t = ρ1x2,t−1 + ε2,t, |ρ2| < 1, (4)

ε1,t ∼ NID(0, 1), ε2,t ∼ NID(0, 1) (5)

where yt = (y1,t, y2,t)
′ are endogenous (control) variables, xt = (x1,t, x2,t)

′ are exogenous

(state) variables, εt = (ε1,t, ε2,t)
′ are structural innovations, and E [·|Ii,t] denotes the

expectation operator accounting for potential informational constraints embedded in the

conditioning sets Ii,t, i = 1, 2 (all variables are defined on a common filtered probability

space).

In the unrestricted case, I1,t and I2,t both coincide with the smallest closed linear

subspace It spanned by the semi-infinite history of all the model’s variables up to time

t, i.e. It = Vt(y
t) ∨ Vt(x

t) where yt ≡ {yt, yt−1, yt−2, . . .} and xt ≡ {xt, xt−1, xt−2, . . .}.
7It should be stressed that DSGE models with timing restrictions do not involve any kind of pa-

rameter variation, either exogenous or endogenous; time-invariant structures will then dictate optimal
linearized decision rules featuring time-invariant coefficients for the enlarged set of state variables. See
Kulish and Pagan (2017) for a method for constructing and estimating solutions for linearized models
with (actual or perceived) structural changes; and Canova et al. (2020) for an exploration of inferential
issues related to time-varying structural macroeconomic models.
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Letting Et[·] = E [·|It], the RE system (1)-(5) can be cast in the conventional form

yt = AEt [yt+1] +Bxt, (6)

xt = Cxt−1 + εt (7)

where

A =

(
α β

0 β

)
, B =

(
2 1

1 1

)
, C =

(
ρ1 0

0 ρ2

)
(8)

When α, β ∈ (0, 1), the number of explosive roots associated with A−1 equals the

number of jump variables, and thus the model features a locally unique (determinate)

equilibrium of the form(
y1,t

y2,t

)
=

(
2−βρ1

(1−αρ1)(1−βρ1)
1

(1−αρ2)(1−βρ2)
1

1−βρ1
1

1−βρ2

)(
x1,t

x2,t

)
(9)

which generically admits a finite-order VAR representation.8

Suppose now the control variable y1,t is optimally set prior to the realization of the

exogenous variable x2,t. This information-based timing restriction is simply captured by

letting I1,t = Vt(y
t
1, y

t−1
2 ) ∨ Vt(x

t
1, x

t−1
2 ) ⊂ I2,t = Vt(y

t) ∨ Vt(x
t). Provided α, β ∈ (0, 1),

the restricted model will exhibit the same determinacy properties as its unrestricted

counterpart – see Sorge (2020). Notice however that, in contrast with the unrestricted

case, the endogenous variable y1,t varies with the shock process x2,t (and functions of

it) only with delay, and yet immediately adjusts in reaction to the optimal estimate of

the latter on the basis of information contained in I1,t; this implies that, generically,

E [y2,t|I1,t] 6= y2,t.

A straightforward application of the method of undetermined coefficients reveals

that the RE solution under timing restrictions has the following representation

(
y1,t

y2,t

)
=

(
2−βρ1

(1−αρ1)(1−βρ1)
0 ρ2

(1−αρ2)(1−βρ2)
1

1−βρ1
1

1−βρ2 0

) x1,t

x2,t

x2,t−1

 (10)

8Specifically, provided the square coefficient matrix in (9) is non-singular, the determinate solution
is in VAR(1) form, see Morris (2016).
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which admits the factorized MA form

yt = M1(L) ·M2(L)εt, (11)

M1(L) =

(
2−βρ1

(1−αρ1)(1−βρ1)
ρ2

(1−αρ2)(1−βρ2)
· L

1
1−βρ1

1
1−βρ2

)
, (12)

M2(L) =

(
(1− ρ1L)−1 0

0 (1− ρ2L)−1

)
(13)

Existence of a causal VAR representation of the RE model obtains when the deter-

minant of the filter M1(L) only vanishes within the unit circle. For some parametric

configurations of the RE system (1)-(5) this will be the case, and yet the inversion of

the MA filter will result in VAR polynomial matrices whose coefficients slowly decline

toward zero as the lag counter increases. As an example, when α = 0.8, β = 0.69,

ρ1 = 0.45 and ρ2 = 0.84, the evolution of the coefficients of the theoretical VAR ma-

trices with and without timing restrictions at different lags is markedly different, see

Figure (1). Under these circumstances, the true DGP is a VARMA with a non-trivial

MA component, and fitting a finite-order VAR to data generated from the restricted RE

model, albeit correctly identified, may produce highly inaccurate estimates of impulse

responses, for they involve non-linear (at horizons larger than one) functions of biased

estimates of the truncated VAR coefficients.
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Figure 1: Evolution of coefficients of the theoretical V AR representation of the RE model
(1)-(5) with and without timing restrictions.

Nonfundamentalness is also an issue here. In fact, for generic parametric configura-
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tions, such as e.g. β ≥ α = 0.8, ρ1 ∈ (0.1, 0.3), ρ2 ∈ (0.9, 0.99), there exists no (linear)

invertible mapping from the empirical VAR innovations to the structural shocks of the

RE model. As a result, the theoretical impulse responses to shocks εi,t (i = 1, 2) cannot

be retrieved from the history of observables yt, no matter which identification strategy

is adopted.

To shed further light on the relevance of this novel source of nonfundamentalness

bias, we next compute the error measure put forward in Soccorsi (2016) – called d∞

– for two parameterizations of the simple RE model. This measure quantifies the dis-

tance between the nonfundamental representation of the data providing the structural

shocks and its unique Wold representation, and therefore represents the limit lower

bound of the error one incurs into when approximating the true (nonfundamental)

VARMA structure with a finite-order VAR. The nonfundamentalness bias is accord-

ingly expressed in terms of percentage error relative to the zero threshold that the

fundamental MA representation achieves by construction. As reported in the Table

(1), when the model’s parameterization supports a fundamental equilibrium represen-

tation under timing restrictions, the bias is null. For a different parameterization that

enforces nonfundamentalness, such a bias is by contrast quite substantial (i.e. 278%

percent error); in this case, impulse-response analysis based on structural VAR models

of whatever lag length, albeit correctly identified, would be invalid.9

Nonfundamentalness
d∞ α β ρ1 ρ2

0 0.80 0.69 0.45 0.84
2.78 0.80 0.80 0.20 0.95

Table 1: Soccorsi (2016)’s measure of nonfundamentalness bias. Here d∞ = ||Σu−v ||
||Σu|| , where

|| · || denotes the Euclidean norm for square matrices, Σu is the covariance matrix of the
vector of the true residuals ut of the nonfundamental equilibrium representation, and Σu−v
denotes the covariance matrix of the vector difference between these residuals and the Wold
innovations vt for the observables.

9Forni et al. (2019) put forward a measure of informational deficiency of small-scale VARs for the
identification of specific economic shock, or a subset of shocks, of interest. While close in spirit to the
distance metric proposed in Soccorsi (2016), unlike the latter it provides a shock-specific indication for
the informational deficiency of a given set of observables. See also Canova and Hamidi Sahneh (2018)
and Beaudry et al. (2019) for alternative testing procedures for the relevance of nonfundamentalness
in structural VARs.
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3 Environment: DSGE models with timing restric-

tions

Once reduced to its optimality conditions, DSGE models under RE are typically de-

scribed by a system of nF expectational stochastic difference equations of the form

Etf (yt+1, yt, xt+1, xt;σ) = 0 (14)

where the random processes (yt) and (xt) are defined on the same probability space, and

Et is the standard (conditional) expectation operator associated with the underlying

probability measure. The ny-dimensional vector y collects the model’s endogenous jump

variables, whereas the nx-dimensional vector x contains n1
x endogenous predetermined

variables as well as n2
x exogenous states (n1

x+n2
x = nx). Finally, the scalar σ ≥ 0 is used

to scale the size of aggregate uncertainty surrounding the economy, see Schmitt-Grohé

and Uribe (2004).

3.1 Unrestricted model

To ease notation, let the prime superscript denotes one-step ahead variables. In the

standard unrestricted case, policy functions for all the endogenous variables depend on

all the state variables x. Time-invariant, analytic solutions to (14) are in the form

y = g(x, σ), x′ = h(x, σ) + σε′ (15)

where the elements of the nx-dimensional vector ε are i.i.d. zero-mean, unit variance

innovations (e.g. structural shocks).

As shown in Schmitt-Grohé and Uribe (2004), up to first order certainty equiva-

lence holds generically, and therefore σ does not enter the linearly perturbed model’s

dynamics for endogenous variables, i.e. one has

y = gxx, x′ = hxx+ σε′ (16)

where gx and hx are conformable matrices of first-order derivatives of the maps g(x, σ)

and h(x, σ) with respect to x, evaluated at the non-stochastic steady state (ȳ, x̄) that

solves (14) when σ = 0.
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3.2 Restricted model

In the presence of information-based timing restrictions, the general form of the multi-

variate RE model is

Et [f (yt+1, yt, xt+1, xt;σ)] = 0 (17)

where Et denotes the collection of (conditional) expectation operators accounting for

informational constraints embedded in the conditioning information sets, i.e.

Et [f(yt+1, yt, xt+1, xt;σ)] =



E
[
f

(y,x)
1 (yt+1, yt, xt+1, xt;σ) I1,t

]
E
[
f

(y,x)
2 (yt+1, yt, xt+1, xt;σ) I2,t

]
...

E
[
f

(y,x)

ny+n1
x
(yt+1, yt, xt+1, xt;σ) Iny+n1

x,t

]
f

(x)
1 (x2

t+1, x
2
t ;σ)

f
(x)
2 (x2

t+1, x
2
t ;σ)

...

f
(x)

n2
x

(
x2
t+1, x

2
t ;σ
)


where f

(y,x)
k (k ≤ ny+n1

x) is the model’s equation used to pin down the k-th endogenous

variable (y, x1), conditional on the equilibrium values for the other endogenous variables

and the relevant states, for which model-consistent expectations (optimal projections)

at date t are determined on the basis of the restricted (and in principle different across

these equations) information set Ik,t, k ≤ ny; and f
(x)
j (j ≤ n2

x), is the possibly nonlinear

equation that governs the dynamics of j-th exogenous state variable xj.

We next consider the most basic case where any given time period is split into two

informational sub-periods, according to the timing of the model’s variables. Formally,

the control and state vectors are accordingly partitioned as

y = [yu; yr] , x = [xu; xr] (18)

where the nxu-dimensional vector xu consists of endogenous predetermined as well as

exogenous variables which materialize in the beginning of the first subperiod, xr con-

tains nxr exogenous variables with realizations in the second subperiod, yu is the nyu-
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dimensional vector of fully endogenous jump variables, i.e. endogenous variables which

are conditioned on all the state variables x. Finally, the nyr -dimensional vector yr

collects partially endogenous variables, which are decided upon in the first subperiod,

when realizations of only a subset of state variables are known. To apply Kormilitsina

(2013)’s solution approach, the RE system (14) is partitioned as follows

f =
[
f 0; f 1; fxr

]
(19)

so that the sub-system f 0 includes nyr equations determining endogenous variables

yr, the sub-system f 1 includes nyu equations that determine endogenous variables yu

and nxu equations determining the dynamics of the states xu, and the sub-system fxr

describes the evolution of exogenous shocks xr, represented as a first-order stationary

autoregressive process

x′r = Pxr + σε′xr , εxr ∼ i.i.d.N(0, Vεxr ) (20)

where P is a stable square matrix of autoregressive coefficients, and ε′xr collects the nxr

shocks associated with the states xr.

The recursive solution to the restricted RE model is in the general form

yu = ĝ(xu, xr, xr,−1, σ), yr = ĵ(xu, xr,−1, σ), x′u = ĥ(xu, xr, xr,−1, σ) + σε′xr (21)

Notice that endogenous (jump) variables in yr only react to the conditional forecast

of states in xr (a function of previous period variables xr,−1), as the latter do not belong

in the first subperiod information set. By the same token, endogenous (jump) variables

in yu are a function of yr – a state variable in the second informational subperiod – and

thus of lagged states xr,−1. Notice that the timing restrictions only involve exogenous

variables xr which are uncorrelated with other exogenous variables in x; also, all the xr

variables are not observed in the first subperiod, hence the filtering problem does not

require using the variance-covariance matrix of the εxr shocks in order to compute an

optimal (in the mean-square sense) estimate of unobserved states.

As established in Kormilitsina (2013), linearly perturbed DSGE models with tim-

ing restrictions comply with the certainty equivalence principle, so that the first-order
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approximation to (21) is

yu = ĝxuxu + ĝxrxr + ĝxr,1xr,−1,

yr = ĵxuxu + ĵxr,−1xr,−1, (22)

x′u = ĥxuxu + ĥxrxr + ĥxr,−1xr,−1 + σε′xu

or in more compact form

y = ĝx

 xu

xr

xr,−1

 , x′ = ĥx

 xu

xr

xr,−1

+ σε′ (23)

where

ĝx =

(
ĝxu ĝxr ĝxr,−1

ĵxu 0nyr×nxr
ĵxr,−1

)
, ĥx =

(
ĥxu ĥxr ĥxr,−1

0nxr×nxr
P 0nxr×nxr

)
(24)

Provided the rank condition characterized in Sorge (2020) is fulfilled, the solution to the

restricted model can be readily constructed via uniquely defined linear transformations

of (16), however computed (e.g. Klein (2000); Christiano (2002); King and Watson

(2002); Sims (2002)).

Upon partitioning the equilibrium coefficient matrices (gx, hx) in (16) as follows

gx =

(
gxu gxr

jxu jxr

)
, hx =

(
hxu hxr

0 P

)
(25)

we can easily map the full information coefficient matrices into those appearing in (23),

i.e.

ĝx =

(
gxu gxr +

(
∇(f 1)−1f 1

yrjxr
)
nyu

−
(
∇(f 1)−1f 1

yrjxrP
)
nyu

jxu 0nyr×nxr
jxrP

)
, (26)

ĥx =

(
hxu hxr +

[
∇(f 1)−1f 1

yrjxr
]
nxu

[
−∇(f 1)−1f 1

yrjxrP
]
nxu

0 P 0

)
(27)

where ∇(f 1) denotes the Jacobian of the sub-system f 1 with respect to the vector

[x′u, yu], f
1
yr is the matrix of partial derivatives of f 1 with respect to the partially en-

dogenous variables collected in the vector yr, and [M ]m is used to denote the selection
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of the first (or last) m rows of some matrix M .10

4 Timing restrictions and VAR representation of

DSGE models

The foregoing arguments clarify that the information-based timing restrictions engender

an enlarged state space as well as an increased degree of backward dependence in policy

functions. Since all the non-zero eigenvalues of the companion matrix

h†x =


hxu hxr +

[
∇(f 1)−1f 1

yrjxr
]
nxu

[
−∇(f 1)−1f 1

yrjxrP
]
nxu

0 P 0

0 I 0

 (28)

are those of hxu and P , the first-order approximate solution under timing restrictions is

dynamically stable (Sorge, 2020). The ensuing equilibrium MA representation for (all)

the endogenous variables included in the y vector is

yt = C(L)xt = C(L) (I − A(L))−1 σεt = B(L)εt (29)

where L stands for the conventional lag operator and

C(L) =
(
ĝxu , ĝxr + ĝxr,−1L

)
, A(L) =

(
ĥxu , ĥxr + ĥxr,−1L

)
(30)

Recall that the IRFs of the elements of yt to a unit shock in one of the elements of εt

occuring at some time t = s are given by the sequences of corresponding MA coefficients

in (29) from time s onward. These coefficients functionally depend on those entering

the C(L) filter, which in turn depends on the elected structure of timing restrictions as

embodied in the partition-based Jacobian ∇(f 1). As a consequence, theoretical IRFs

associated with a DSGE model under timing restrictions generically differ from those

implied by its unrestricted counterpart over all time horizons.

The equilibrium MA representation (29) may in principle fail to invert into a causal

autoregressive one, thereby preventing VAR methods from recovering the truly struc-

tural economic shocks. Non-fundamentalness is known to be a generic issue in square

10To facilitate reading, we relegate to the Appendix the computational details of the solution algo-
rithm developed in Kormilitsina (2013), and apply it to the illustrative example discussed in Section
(2).
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systems, i.e. when ny = nx, e.g. (Alessi et al., 2011).

The reduced form of the general model (14) under timing restrictions will be non-

fundamental (and thus non-invertible in the past) if and only if the determinant of the

filter B(L) vanishes within the unit circle. By virtue of the stability property of A(L),

an easy-to-check condition for fundamentalness of the first-order approximate solution

can be stated as follows11

Condition 1 (Fundamentalness). Let ny = nx. Then, for any given informational

partition (18)-(19), the equilibrium representation under timing restrictions is funda-

mental if and only if

Det

(
gxu gxr +

[
∇(f 1)−1f 1

yrjxr
]
nyu
−
[
∇(f 1)−1f 1

yrjxrP
]
nyu
· z

jxu jxrP · z

)
= 0 =⇒ |z| ≥ 1

(31)

Even when fundamentalness is warranted by the model’s parameterization, the equi-

librium dynamics (29) need not admit a finite-order (causal) VAR representation, open-

ing room to lag truncation bias in IRFs estimation exercises, e.g. Chari et al. (2008)

and Soccorsi (2016). As is known, approximating VAR(∞) representations with finite-

order VAR systems may severely distort estimation the structural IRFs, whatever the

identification strategy adopted by the researcher (Ravenna (2007), Poskitt and Yao

(2017)). Notice that the state space representation

yt = C(L)A(L)xt−1 + C(L)σεt, (32)

xt = A(L)xt−1 + σεt (33)

is tied directly to the CERs of the RE model under timing restrictions and thus in-

volves the state vector xt of the smallest dimension possible for replicating the dynamic

properties of the reduced form equilibrium process for the observables. The following

condition will therefore fully characterize existence of a finite order VAR representation

for the observables in the square case (Franchi and Vidotto, 2013)

Condition 2 (Finite order VAR representation). Let ny = nx and define the

11See Rozanov and Rozanov (1967) for a comprehensive discussion of fundamentalness and invert-
ibility properties for stationary random processes.
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matrices

I◦ =

(
Inx×nx

0nxr×nx

)
, (34)

g†x =

(
gxu gxr +

[
∇(f 1)−1f 1

yrjxr
]
nyu

jxu 0nyr×nxr

)
, (35)

g◦x =

(
gxu gxr +

[
∇(f 1)−1f 1

yrjxr
]
nyu

−
[
∇(f 1)−1f 1

yrjxrP
]
nyu

jxu 0nyr×nxr
jxrP

)
· h†x (36)

Then, provided g†x is non-singular, for any given informational partition (18)-(19), a

finite order VAR equilibrium representation under timing restrictions exists if and only

if the (nx + nxr)-dimensional square matrix

F := h†x − I◦ ·
(
g†x
)−1 · g◦x (37)

is nilpotent – i.e. all its eigenvalues are equal to zero.

We emphasize that both conditions (1) and (2) are expressed in terms of the reduced

form coefficients of the RE solution to the unrestricted model (14), and can thus be

checked whatever the solution algorithm employed, once the informational partition

(19) has been devised.12

5 Model laboratories

To run our Monte Carlo experiments, we borrow the small-scale DNK models of mone-

tary policy transmission from Boivin and Giannoni (2006) and Guerron-Quintana et al.

(2017). As mentioned, both these frameworks feature overly restrictive assumptions

about the timing of decisions and expectations formation, relative to those enforced by

the Cholesky scheme. As a consequence, and for our purposes, we shall first show how

to rework the timing of the two models via Kormilitsina (2013)’s methodology.

12Notice that, given that the state space representation (32) is in minimal form, a necessary and
sufficient condition for the process for yt to admit an infinite order causal VAR representation is that F
be a stable matrix, i.e. its eigenvalues are all strictly below one in modulus, see Fernández-Villaverde
et al. (2007) and Franchi and Paruolo (2015).
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5.1 Boivin and Giannoni (2006)’s model

Building upon Rotemberg and Woodford (1997), Boivin and Giannoni (2006) develop

a stylized structural macroeconomic in which private agents (households and produc-

ers) must optimize their representative objective function on the basis of information

regarding the state of the economy two periods (for consumption decisions) or one pe-

riod earlier (for pricing decisions). This prevents consumption (and, in equilibrium,

output) and the inflation rate from reacting to current exogenous demand and supply

disturbances, while also forcing forward-looking expectations on these variables not to

adjust in response to changes in any of the exogenous variables, as well as in the policy

instrument (the short-term nominal interest rate). What is more, the intertemporal

investment-savings equation features lagged expectations (formed at date t− 2) of the

one-step ahead (log-linearized) output and of the marginal utility of additional income,

which by construction do not reflect knowledge of current inflation, for the latter is

determined at time t on the basis of information available at time t− 1.

Formally, Boivin and Giannoni (2006)’s model comprises the following log-linearized

equilibrium conditions13.

� Dynamic IS equation (here yt stands for aggregate output, λ̂t is the log-

linearized Lagrangian multiplier on the representative household’s intertemporal

budget constraint, i.e. the household’s marginal utility of nominal income at time

t, πt is the inflation rate and it is the short-term nominal interest rate)

yt = ηyt−1 + βηEt−2yt+1 − ψEt−2λ̂t + gt, (38)

λ̂t = Et

[
λ̂t+1 + it − πt+1

]
(39)

� Aggregate supply equation (here ŝt is the log-linearized cross-firm average real

marginal cost)

πt = γπt−1 + κEt−1ŝt + βEt−1 [πt+1 − γπt] , (40)

ŝt = ωyt − λ̂t − qt, ω > 0 (41)

� Monetary policy rule

it = ρ1it−1 + ρ2it−2 + φππt + φyyt + εt, (42)

13All variables are expressed as percentage deviations from the model’s non-stochastic steady state,
in equilibrium output is equal to consumption plus government expenditure.
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where the exogenous demand shock gt and supply shock qt are functions of first- and

second-order derivatives of the utility function evaluated at steady-state as well as

past expectations of the preference shock that enters the functional specification of the

consumption utility and the output production disutility.

Consistent with the Cholesky-timing assumptions about monetary policy surprises,

we rather submit the NK structure to information-based timing restrictions under which

(i) the monetary policy shocks are orthogonal to the non-policy variables (yt, πt) and (ii)

these non-policy variables are thus predetermined with respect to the nominal interest

rate, while sensitive to non-monetary shocks that occur in the same time period. Letting

Et = E(·|It) and

It = {yt−j, πt−j, it−1−j, gt−j, qt−j, εt−1−j; j ≥ 0}

we obtain

� Dynamic IS equation

yt = ηyt−1 + Et

[
βηyt+1 − ψ

∞∑
j=t

(ij − πj+1)

]
+ ĝt, (43)

� Aggregate supply equation

πt =
γ

1 + βγ
πt−1 +

β

1 + βγ
Et [πt+1] +

κ

1 + βγ

[
ωyt − q̂t − Et

[
λ̂t

]]
, (44)

� Monetary policy rule

it = ρ1it−1 + ρ2it−2 + φππt + φyyt + εt, (45)

Notice that, since It contains current realizations of non-monetary shocks (as well

as of all t-dated variables except for the policy instrument it and the monetary shock

εt), it is generically the case that Et−1(·) 6= Et(·), gt 6= ĝt and qt 6= q̂t; this is relevant for

our Monte Carlo exercises based on artificial data generated by the model, since – for

a given model – different informational assumptions typically produce different CERs

in equilibrium representations; and non-monetary shocks can account for a relatively

large share of the variance in non-policy variables.

We adopt two simplifying assumptions relative to Boivin and Giannoni (2006), with

no loss of generality: first, we assume away government expenditure (since it only scales
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up the composite exogenous disturbance by a multiplicative constant, see Rotemberg

and Woodford (1997)); second, we stick to a simple inertial Taylor-type feedback rule

for monetary policy, by which the nominal interest rate is set on the basis of current

deviations of inflation rate and aggregate output from policy targets, as well as its

own lags. By the same token, we specify the stochastic properties of demand and sup-

ply shocks (along with the monetary policy one), in order to assess whether timing

restrictions might induce nonfundamental equilibrium representations for the three ob-

servables (output, inflation, nominal interest rate) generated by the model. Formally,

we posit14

gt = ξ1
t , ξ1

t = ρξ1ξ
1
t−1 + ε1t , ε

1
t ∼ N.i.d.(0, σ1), ρξ1 ∈ (0, 1) (46)

qt = −ξ2
t , ξ2

t = ρξ2ξ
2
t−1 + ε2t , ε

2
t ∼ N.i.d.(0, σ2), ρξ2 ∈ (0, 1) (47)

εt = ρεεt−1 + τt, τt ∼ N.i.d.(0, στ ), ρε ∈ (0, 1) (48)

5.2 Guerron-Quintana et al. (2017)’s model

Focusing on the prototypical three-equation NK framework, Guerron-Quintana et al.

(2017) assume that households and firms both form their expectations about the future

evolution of endogenous variables (output gap, inflation rate and nominal interest rate)

on the basis of past information relative to the current date. Formally, the model’s

equilibrium is described by the following equations15

� Dynamic IS equation (here gt is the output gap, πt is the inflation rate, and zt

is a demand shock process)

gt = Et−1[gt+1]− σ(Et−1[it − πt+1]− zt) (49)

� NK Phillips curve

πt = βEt−1[πt+1] + κgt (50)

14To make the analysis of nonfundamentalness in restricted DSGE models meaningful, we assume
that the preference shock to the disutility of producing output, call it ξ2t , is different from the preference
shock affecting the utility from consuming produced goods, call it ξ1t , both shifting up the marginal
utility of consumption/disutility of output production.

15All variables are expressed as log-deviations from the model’s non-stochastic steady state, in
equilibrium consumption is equal to output.
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� Monetary policy rule

it = ϕiit−1 + (1− ϕi) [ϕππt + ϕggt] + ξt (51)

� Exogenous processes for demand and monetary shock

zt = ρzzt−1 + σzεzt , εzt ∼ N.i.d.(0, 1) (52)

ξt = σiεit, εit ∼ N.i.d.(0, 1) (53)

Letting Et = E[·|It] and It = {gt−j, πt−j, it−1−j, zt−j, qt−j, ξt−1−j; j ≥ 0}, the NK

model is brought in closer conformity with the Cholesky-timing assumptions as follows:

� Dynamic IS equation

gt = Et[gt+1]− σ(Et[it − πt+1]− zt) (54)

� NK Phillips curve

πt = βEt[πt+1] + κgt + qt (55)

� Monetary policy rule

it = ϕiit−1 + (1− ϕi) [ϕππt + ϕggt] + ξt (56)

� Exogenous processes for demand, supply and monetary shocks

zt = ρzzt−1 + σzεzt , εzt ∼ N.i.d.(0, 1) (57)

qt = ρqqt−1 + σqεqt , εqt ∼ N.i.d.(0, 1) (58)

ξt = σiεit, εit ∼ N.i.d.(0, 1) (59)

where a first-order autoregressive supply shock process qt (e.g. a cost-push shock) has

been appended to the Phillips curve (55) to make the analysis of nonfundamentalness

meaningful.16

16In fact, Guerron-Quintana et al. (2017)’s model involves thre endogenous variables and only two
shocks; if the former (as we assume in our numerical experiments) are observable, then the ensuing
equilibrium MA representation is non-square and tall. Fundamentalness in tall systems is known to
be a generic property in absence of measurement errors, that we explicitly rule out for our purpose of
focusing exclusively on model-implied nonfundamentalness.
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Again, given that It contains the current realization of the demand shock zt (as well

as of all t-dated variables except for the policy instrument it and the monetary shock

εt), it is generically the case that Et−1(·) 6= Et(·).

6 Numerical experiments

6.1 Cholesky-VARs and the monetary transmission mecha-

nism

Our first experiments are aimed at comparing DNK model-implied impulse responses

to those produced by a VAR in (possibly a subset of) the model’s endogenous vari-

ables, in which the monetary policy shock is identified by a Cholesky decomposition of

the variance-covariance matrix of the reduced-form residuals. Specifically, we consider

a VAR specification involving three observables generated by each of the two DNK

models described above – real output or the output gap, inflation and the policy rate

– and adopt the Cholesky identification approach by restricting the monetary policy

shocks not to have a contemporaneous impact on non-policy variables; since the policy

instrument is allowed to react on impact to other structural disturbances, the equation

for the nominal interest rate is placed last in the VAR ordering. Notice that, differ-

ent from Carlstrom et al. (2009), our Cholesky-VAR econometrician is not assumed to

know the exact VAR representation of the DNK model generating the data, and is thus

concerned with the estimation of the VAR matrix coefficients; parameter identification

may thus contaminate the inference on the monetary impulse responses as identified

via short-run exclusion restrictions. Lag length selection is data-driven and appeals to

the Bayesian information criterion (BIC), see e.g. Lütkepohl (2005).

In order to generate artificial time series for the observables (our DGPs), we first

fix the models’ parameters at the estimated values from Boivin and Giannoni (2006)

and the specification reported in Guerron-Quintana et al. (2017), respectively. Then,

artificial data samples are generated by simulating the model’s determinate solution

when shock realizations are independently drawn from the assumed densities at any

given period. For each simulation a Cholesky-VAR is specified, its lag length selected via

the BIC and autoregressive coefficients estimated by a standard Maximum Likelihood

technique; estimated IRFs to a normalized monetary policy shock are finally computed

and stored.

All our Figures below report estimated average Cholesky-VARs monetary impulse
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responses and 90% Monte Carlo confidence bands, and plot them against the DGP-

consistent IRFs. Operationally, we use K = 1000 repetitions, H = 15 as the IRF

horizon, and T = 1000 as length of the artificial data sample, with a burn-in of 200

observations.17 Figures (2) and (5) portray our estimation results for the baseline

parameterization. We also re-run the above described numerical exercises by varying

structural parameters that govern the degree of endogenous inertia and/or shock persis-

tence – hence, the strength of the internal propagation mechanism (Figures (3), (4) and

(6)), or other key characteristics of the underlying model economy – e.g. the average

price duration in a sticky-price setting (Figure (7)).

Tables (2) collects all the parameter choices for the DNK economies under scrutiny.

For all of these empirically plausible specifications, condition 1 is fulfilled, whereas

condition 2 is not: thus, lag truncation bias will necessarily arise when employing a

finite-order VAR specification to estimate the equilibrium infinite-order VAR represen-

tation of the DNK model with timing restrictions.

Boivin and Giannoni (2006)
β ω ψ η κ γ φπ φy ρ1 ρ2 ρξ1 ρξ2 ρε

Fig. 2 0.99 0.47 0.667 0.5 0.008 1 1.5 0 0.602 -0.055 0.9 0.9 0.9
Fig. 3 0.99 0.47 0.667 0 0.008 0 1.5 0 0.602 -0.055 0.9 0.9 0.9
Fig. 4 0.99 0.47 0.667 0.5 0.008 1 1.5 0 0.602 -0.055 0.9 0.9 0.1

Guerron-Quintana et al. (2017)
β σ ϕπ ϕg ρi ρz ρq κ σz σq σi

Fig. 5 0.99 1 1.5 0.125 0.75 0.9 0.9 0.0245 0.3 0.1 0.2
Fig. 6 0.99 1 1.5 0.125 0.2 0.1 0.1 0.0245 0.3 0.3 0.2
Fig. 7 0.99 1 1.5 0.125 0.75 0.9 0.9 0.085 1 1 1

Table 2: Alternative parameterizations for Boivin and Giannoni (2006) and Guerron-
Quintana et al. (2017)’s DNK models.

We argue, however, that truncation effects on the approximating VAR performance

17Of course, short data samples and measurement errors can undermine the precision of estimates
IRFs as in any other inferential problem. Given our focus on the ability of Cholesky-VARS in correctly
identifying the true monetary impulses responses when timing restrictions re-shape a model’s internal
propagation mechanism, we endow our econometrician with a sufficiently large sample to perform her
task. Further investigation of these issues (available on request) suggests that (i) a small sample size
produces a standard downward bias and yet does not affect the ability of Cholesky-VARs to closely
reproduce the essential shape of the true IRFs generated by restricted models, and (ii) measurement
errors generates attenuation effects on point estimates of impulse-response coefficients, lowering all else
equal the power of significance tests against the null of a zero response.
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are moderate, for two main reasons. First, truncation does not induce an identification

error due to functional dependencies of the identifying matrix relating structural shocks

and reduced-form innovation on the VAR coefficients, for zero restrictions are imposed

on impact coefficients rather than long-run effects (e.g. Ravenna (2007)). Second, the

estimated VAR matrices in the finite-order empirical specification will be less prone to

pure truncation bias for the theoretical VAR(∞) representation of both DNK models

features fast decaying coefficients at relatively short horizons. These in fact asymp-

totically converge to zero as a function of the largest (in modulus) eigenvalue of the

F matrix defined in (37), see e.g. Ravenna (2007): for all the employed models and

the chosen parameterizations, this eigenvalue is never larger than 0.00002. A truncated

VAR model can therefore lend itself as a reasonably good approximation of the true

equilibrium reduced form of the restricted DNK model. Figures (2) to (4) contrast the

model-implied monetary impulse responses (solid blue line) with those estimated via

Cholesky-VARs (solid red lines), when Boivin and Giannoni (2006)’s model is used the

DGP. The BIC suggests adopting VAR systems with at most three lags to approximate

the true DGP dynamics. Inspection of Figure (2) and (3) reveal clear patterns. First,

notwithstanding the presence of an approximation error, the Cholesky-identified IRFs

are correctly signed and similar in shape to their theoretical counterparts, with fairly

precisely estimated effects at short to longer horizons. Second, this near-perfect iden-

tification is attained irrespective of whether the DSGE structure features a relatively

weaker internal propagation mechanism that spread the effects of structural distur-

bances within the model and over time; this is apparent from Figure (3), which is based

on the reduction of Boivin and Giannoni (2006)’s model to the one of Rotemberg and

Woodford (1997), where no inertia in the endogenous behavior of households (via the

formation of consumption habits) and firms (via price indexation to past inflation) is

allowed for. Thus, when identification is valid, the VAR methodology does very well

in retrieving the transmission of monetary policy shocks. Figure (4) finally illustrates

that a markedly larger degree of serial correlation in the non-monetary structural shock

processes (ρξ1 = ρξ2 = 0.9) relative to the monetary one (ρε = 0.1) does not induce any

distortion in the estimates of the adjustment paths of the model’s endogenous variables

to an unexpected shift in the policy rate.
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Figure 2: Impulse response functions (IRFs) to a monetary shock for the Boivin and Gian-
noni (2006)’s model. See Table 2 for details.

0 20 40

-0.15

-0.1

-0.05

0
In.ation: 0it ! :t

0 20 40
-1.5

-1

-0.5

0
Output gap: 0it ! gt

restricted DSGE
identified VAR - restricted DSGE

0 20 40
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Nominal rate: 0it ! it

Figure 3: Impulse response functions (IRFs) to a monetary shock for the Boivin and Gian-
noni (2006)’s model. See Table 2 for details.
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Figure 4: Impulse response functions (IRFs) to a monetary shock for the Boivin and Gian-
noni (2006)’s model. See Table 2 for details.
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Compared to Boivin and Giannoni (2006)’s, the benchmark DNK model in Guerron-

Quintana et al. (2017) exhibits a considerably lower degree of backward dependence.

In fact, both the dynamic IS equation (54) and the NK Phillips curve (55) entail no

inertial components, and the only mechanism producing endogenous persistence is rep-

resented by the partial adjustment of the current policy rate to its own lags (interest

rate smoothing). This specification is not sufficiently rich to strongly propagate the ef-

fects of the serially uncorrelated monetary shock across the private sector, with impulse

responses fading out at relatively short horizons; all else equal, the lower the degree of

monetary policy inertia (here captured by the coefficient ρi) and the autocorrelation of

non-monetary shocks (ρj, j = z, q), the faster the output gap and the inflation rate will

revert back to their steady state levels – Figure (5) versus Figure (6). For these first

two model’s specifications, the signs and patterns of the model-based dynamic effects

of the monetary shock are closely captured by the Cholesky-VAR, and yet there is no

strong evidence that the point estimates are statistically different from zero across all

the horizons.

The slope of the New Keynesian Phillips curve (55) too influences impulse response

dynamics in general, and the relative response of non-policy variables to an unantic-

ipated deviation from the systematic component of the monetary rule, in particular.

This key parameter measures the sensitivity of inflation to changes in the output gap,

and is a decreasing function of the degree of price-stickiness. While reduced-form es-

timation approaches appear to suggest that the pass-through of marginal costs into

inflation is fairly limited, thereby pointing to flat Phillips curves, a wide set of esti-

mates – ranging from 0 to 4 – for the slope coefficient have been reported in the DSGE

model-based econometric literature (e.g. Schorfheide (2008)). As Figure (7) shows,

a steeper Phillips curve engenders a markedly deeper drop in inflation relative to the

baseline case ((5)); and the effects of the monetary shock are all more precisely esti-

mated at short to medium horizons even in the presence of higher volatility for the

structural disturbances (σj, j = q, z, i.)
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Figure 5: Impulse response functions (IRFs) to a monetary shock for the Guerron-Quintana
et al. (2017)’s model. See Table 2 for details.
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Figure 6: Impulse response functions (IRFs) to a monetary shock for the Guerron-Quintana
et al. (2017)’s model. See Table 2 for details.
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Figure 7: Impulse response functions (IRFs) to a monetary shock for the Guerron-Quintana
et al. (2017)’s model. See Table 2 for details.
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6.2 Cholesky-VARs vs. sign restrictions

Conducted in a Monte Carlo context, Wolf (2020)’s analysis shows that commonly

adopted minimal assumptions underlying sign-based approaches to the identification

of aggregate effects of monetary shocks may mis-identify monetary impulses as linear

combinations of non-monetary structural shocks, that do lie in the identified set and

yet produce a counterfactual upsurge in measures of real activity. In a similar context,

Castelnuovo (2016) offers simulation evidence suggesting that VAR models identified

via sign restrictions work well in uncovering the monetary transmission mechanism

provided the true monetary shock accounts for a sufficiently large share of the variance

in the variables whose dynamic responses the econometrician is interested in.18

When the true DGP complies with the same exact zero impact restrictions as en-

forced by the Cholesky scheme, it is reasonable to conjecture that Cholesky-VARs

would not under-perform vis-à-vis sign restriction-VARs. In order to offer support to

this conjecture, we exploit again Boivin and Giannoni (2006)’s model as DGP in the

exact same Monte Carlo setup as described in Section (6), except for the fact that the

candidate impact matrix for shock identification is not chosen to be the Cholesky factor

of the covariance matrix of the reduced-form VAR residuals, but rather from one of its

rotations performed via post-multiplication by random orthonormal matrices, provided

they fulfill a given set of a priori sign restrictions – see e.g. Fry and Pagan (2011) for

a thorough discussion of the procedure.19

A (positive) monetary shock is identified by imposing weak sign restrictions, in the

spirit of Uhlig (2005), that constrain the response of the policy rate to be positive

and the response of inflation to be negative, keeping the sign of the output response

unrestricted. We run two distinct experiments, one in which Boivin and Giannoni

(2006)’s baseline parameterization is retained and the other where, keeping all the

other parameters fixed, the monetary shock is assumed to exhibit significantly lower

volatility (standard deviation equal to 0.1 against 1 in the baseline model) as opposed

to non-monetary disturbances.

Figure (8) shows that, when the three structural shocks are equally volatile (same

unconditional variance), this competing identification scheme points to monetary im-

pulse responses that nearly perfectly reproduce the theoretical ones in both qualitative

18See Paustian (2007) for a formal result.
19The reduced-form VAR coefficients and covariance matrix are here estimated via OLS. Since sign

restriction-VARS are only set identified, we compute the monetary impulse responses as Monte Carlo
averages of the pointwise median responses enforced, for each repetition, by one of the admissible
rotations.
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Figure 8: Impulse response functions (IRFs) to a monetary shock for the Boivin and Gian-
noni (2006)’s model; same parameterization as in Figure (2), all structural shocks N.i.d. with
zero mean and unit variance.
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Figure 9: Impulse response functions (IRFs) to a monetary shock for the Boivin and Gi-
annoni (2006)’s model; same parameterization as in Figure (2), non-monetary shocks N.i.d.
with zero mean and unit variance, monetary shock N.i.d. with zero mean and variance equal
to 0.1.

(sign, shape) and quantitative (magnitude, persistence) terms. When the monetary

shock variance, by contrast, is relatively low, the sign restriction-VAR dramatically

over-estimates the negative short- to medium-run effects of unexpected increases in the

policy rate on both inflation and real output, while otherwise uncovering qualitative

features of the monetary transmission mechanism in restricted DNK environments. As

far as our specific DGP is concerned, the Cholesky-VAR model appears to be immune

to this volatility scaling issue, doing remarkably better than its competitor.
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6.3 Impulse response matching estimation

Our analysis has clarified the key differences between our information-based approach to

modeling timing restrictions in DSGE settings, as a way to bring the latter in close con-

formity to the mechanics of recursive identification, and earlier proposals (e.g. Boivin

and Giannoni (2006). Here we illustrate how the so-amended models can be safely used

to derive econometric inference about the structural parameters of DSGE models via

IRF matching techniques, whose goal is that of minimizing a suitably weighted average

of the distance between model-implied and Cholesky-VARs impulse responses. Specif-

ically, we replicate the impulse-response matching estimation exercise run in Guerron-

Quintana et al. (2017) exploiting our restricted version of their NK model (54)-(57).

As mentioned, nonfundamentalness of the theoretical MA polynomials or non-existence

of a finite-order VAR representation may engender several complications in the direct

comparison of theoretical and empirical impulse responses. While timing restrictions

do no cause invertibility issues in Guerron-Quintana et al. (2017), they do induce an

infinite order VAR representation of the model’s equilibrium. In order to treat the

empirical data and the model economy symmetrically, Guerron-Quintana et al. (2017)

truncate the true VAR(∞) representation to the same finite order as the one used in

the empirical VAR model, and generate the population values for the impulse responses

to be matched from the so-approximated VAR.20

To allow for comparability, we closely follow Guerron-Quintana et al. (2017)’s ex-

perimental design: first, theoretical IRFs are derived from a VAR(p) approximation

of the infinite order equilibrium representation of the restricted model, with the same

(arbitrary) selection of the lag order p as in the empirical VAR; second, 500 artificial

data sets of length T ∈ {100, 232} for inflation and the interest rate are generated from

the model being evaluated at the true parameter values (fixed at the baseline parame-

terization, see Table (2)); third, a truncated VAR(p) model for inflation and the interest

rate is fit to each of the data set and the four structural impulse response functions

are estimated at horizons 0, . . . , H (consistent with the Cholesky timing assumptions,

we impose that the inflation rate does not react contemporaneously to the shock or-

dered last in the VAR, which it therefore identified as the monetary policy one); finally,

impulse responses from the empirical VAR are estimated and point estimates for the

20A different (indirect inference) approach could be adopted instead, that replaces the true model-
based IRFs with average IRFs that are obtained by repeatedly simulating data from the underlying
model (for a given pick of the parameter values) and estimating a structural VAR on simulated data, to
be then contrasted with the monetary IRFs generated by the Cholesky-VAR which is rather estimated
on the actual sample analog.
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parameter α (the probability of a firm not to be allowed to adjust their price, which

enters the slope κ of the Phillips curve) are derived by minimizing a weighted average

of the distance between the model-based impulse responses and those generated by the

VAR, where the weighting matrix is chosen to be the inverse of the bootstrap covariance

matrix estimator of the structural impulse responses. As in Guerron-Quintana et al.

(2017), all the other structural parameters are assumed to be known in the estimation

exercise.21

Reported in Table (3), our simulation evidence is largely in line with Guerron-

Quintana et al. (2017)’s, with slightly lower Figures for the mean bias. As expected,

a larger sample size enhances the precision of the point estimates, all else equal; on

the other hand, for a fixed impulse horizon, a higher lag order for the empirical VAR

system (hence for the approximating finite-order VAR representation of the structural

model) does not generally improve on the estimation bias and the associated standard

error.

T p H α̂ bias: α̂− α0 s.e.(α̂)
100 2 2 0.7514 0.0014 0.0309
100 4 2 0.7538 0.0038 0.0311
100 2 4 0.7546 0.0046 0.0355
100 4 4 0.7548 0.0048 0.0327
232 2 2 0.7511 0.0011 0.0286
232 4 2 0.7533 0.0033 0.0295
232 2 4 0.7510 0.0010 0.0353
232 4 4 0.7525 0.0025 0.0325

Table 3: T denotes the sample size, p the VAR lag order, and H the maximum horizon of
the impulse response functions.

7 Concluding remarks

This paper assesses Cholesky-VARs against model-based data generating processes in

controlled DSGE environments. When the building blocks of structural macroeco-

nomic models prove inherently at odds with Cholesky-timing restrictions, the ensuing

discrepancy between theoretical and Cholesky VAR-implied dynamic responses can be

21We would like to refer the reader to Guerron-Quintana et al. (2017) for further details on the
bootstrap version of the minimum distance estimators based on impulse-response matching.
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remarkable, and likely impossible to phase out via the impulse response matching pro-

cedure.

What happens then, when one feeds a given DSGE model with the set of timing

restrictions which reproduce those of Cholesky-VARs? We show that such restrictions

may stand as a source of non-trivial VARMA equilibrium representations as well as of

model-based nonfundamentalness, making inference from VAR systems unreliable. Our

analytical results in this respect have an explicit operational content, as they can be

readily applied for the formal construction of recursive (informationally constrained)

model structures that admit causal VAR representations.

Adopting a model-based perspective, we then provide simulation evidence on the

presence of fundamentalness and lag truncation bias in restricted DNK models of the

monetary transmission mechanism. The results of our numerical experiments invariably

provide support to the view that Cholesky-VARs succeed in identifying the actual

monetary impulse responses in DNK structures, no matter whether timing restrictions

display long-lasting effects and/or predict substantially different response patterns (in

terms of sign, shape and magnitude) relative to the unrestricted benchmark case.

It shall be stressed once more that the line of research pursued herein relies on

aligning DSGE settings with the timing protocol enforced by Cholesky-VARs. The

natural question that arises is then whether the so-amended DSGE models are actually

consistent with the mechanics of recursive identification. On the flip side, the rapidly

increasing literature in structural macroeconomic modeling has also favored the devel-

opment of alternative sVAR identification approaches – such as sVAR-IV methods and

direct coefficient restrictions on policy rules – that tend to restore compatibility with

the standard timing of prototypical DSGE frameworks, and can therefore be fruitfully

exploited for the identification of the aggregate effects of monetary policy shocks, see

e.g. Wolf (2020).
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Appendices (intended for online publication only)

A.1 Solution algorithm for DSGE models with tim-

ing restrictions

The first-order approximate solutions (and their minimal state space representation)

to the general DSGE mode under informational constraints can be obtained via the

following algorithm – see Kormilitsina (2013) and Sorge (2020).

Step 1. Compute the steady state (ȳ, x̄) of the unrestricted RE modelEtf (yt+1, yt, xt+1, xt;σ) =

0;

Step 2. Arrange variables in y and x in vectors [yu, yr] and [xu, xr]. Sort the equilibrium

conditions into vectors f 0, f 1 and fxr , and arrange them into the partition f =

[f 0; f 1; fxr ] accordingly;

Step 3. Obtain matrices gx and hx for the unrestricted RE model, and partition them as

follows

gx =

(
gxu gxr

jxu jxr

)
, hx =

(
hxu hxr

0 P

)
(60)

where gxu is (nyu × nxu)-dimensional, gxr is (nyu × nxr)-dimensional, jxu is (nyr ×
nxu)-dimensional, jxr is (nyr × nxr)-dimensional, hxu is (nxu × nxu)-dimensional

and hxr is (nxu × nxr)-dimensional;

Step 4. Set

ĝxu = gxu , ĵxu = jxu , ĥxu = hxu , (61)

ĝσ = 0, ĵσ = 0, ĥσ = 0; (62)

Step 5. Compute the partial derivatives f 1
y′ , f

1
x′u
, f 1
yu , evaluate them at the steady state

(x̄, ȳ) and check invertibility of the square matrix

∇(f 1) =
[
f 1
y′gxu + f 1

x′u
, f 1

yu

]
.
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Then compute (
ĥxr,−1

ĝxr,−1

)
= −∇(f 1)−1f 1

yrjxrP (63)(
ĥxr

ĝxr

)
=

(
hxr

gxr

)
+∇(f 1)−1f 1

yrjxr (64)

ĵxr,−1 = jxrP (65)

Step 6. Derive the minimal state space representation under timing restrictions as follows x′u

x′r

xr

 =

 ĥxu ĥxr ĥxr,−1

0nxr×nxu
P 0nxr×nxr

0nxr×nxu
Inxr×nxr

0nxr×nxr


 xu

xr

xr,−1

+ σ

(
εxu

εxr

)
(66)

(
yu

yr

)
=

(
ĝxu ĝxr ĝxr,−1

ĵxu 0nyr×nxr
ĵxr,−1

) xu

xr

xr,−1

 (67)

A.2 Solving the bi-variate example

Consider again the model

E [y1,t − αy1,t+1 − y2,t − x1,t|I1,t] = 0, α > 0, (68)

E [y2,t − βy2,t+1 − x1,t − x2,t|I2,t] = 0, β > 0, (69)

x1,t = ρ1x1,t−1 + ε1,t, |ρ1| < 1, (70)

x2,t = ρ1x2,t−1 + ε2,t, |ρ2| < 1, (71)

ε1,t ∼ NID(0, 1), ε2,t ∼ NID(0, 1) (72)

under the assumption I1,t = Vt(y
t
1, y

t−1
2 ) ∨ Vt(x

t
1, x

t−1
2 ) ⊂ I2,t = Vt(y

t) ∨ Vt(x
t). This

timing restriction involves the following assignment of the model’s variables

yu = [y2], yr = [y1] (73)

xu = [x1], [xr] (74)
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and thereby the following informational partition

f 0 = (y1,t − αy1,t+1 − y2,t − x1,t) (75)

f 1 =

(
y2,t − βy2,t+1 − x1,t − x2,t

x1,t+1 − ρ1x1,t − ε1,t+1

)
(76)

fxr = (x2,t+1 − ρ2x1,t − ε2,t+1) (77)

Recall that the determinate solution (9) to the unrestricted model can be partitioned

as follows:

jxu = 2−βρ1
(1−αρ1)(1−βρ1)

, jxr = 1
(1−αρ2)(1−βρ2)

, (78)

gxu = 1
1−βρ1 , gxr = 1

1−βρ2 , (79)

hxu = ρ1, hxr = 0, P = ρ2 (80)

It is easily seen that f 1
yr = [0, 0]′ and thus ĥxr,−1 = ĝxr,−1 = 0, ĥxr = hxr , ĝxr = gxr ,

and finally ĵxr,−1 = jxrρ2. This leads to the equilibrium representation

y1,t =
2− βρ1

(1− αρ1)(1− βρ1)
x1,t +

ρ2

(1− αρ2)(1− βρ2)
x2,t−1, (81)

y2,t =
1

1− βρ1

x1,t +
1

1− βρ2

x2,t (82)

which is in the same form as (10).

A.3 Indeterminacy and timing restrictions: The ex-

ample revisited

Our analysis is conducted on the assumption that the DSGE model exhibits equilibrium

determinacy. Since timing restrictions are generically neutral with respect to the deter-

minacy/indeterminacy properties of the RE equilibrium (the restricted model simply

inherits those of its unrestricted counterpart), any identification and/or estimation is-

sues that might arise when data are generated by a restricted DGP are unrelated to the

appearance of arbitrary reduced form components (such as non-structural parameters

and/or sunspot shocks) of the model’s equilibrium representation, and can therefore be

ascribed entirely to the different timing of decisions and expectations formation.

Allowing for equilibrium indeterminacy dramatically changes this picture. Perhaps
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surprisingly, timing restrictions can just cease to matter for an arbitrarily large set

of indeterminate solutions, and thereby play no role in shaping patterns of impulse

propagation over time.

To see this, let us revisit the stylized bi-variate RE system (1)-(5). Recall that in

the conventional, unrestricted setting, the RE model has the form

yt = AEt [yt+1] +Bxt, (83)

xt = Cxt−1 + εt (84)

where

A =

(
α β

0 β

)
, B =

(
2 1

1 1

)
, C =

(
ρ1 0

0 ρ2

)
(85)

Let α, β > 1, then A−1 is a stable matrix and the RE model features an indetermi-

nate equilibrium of the form

yt = A−1yt−1 − A−1Bxt−1 + ηt (86)

where ηt = [η1,t, η2,t]
′ is the vector of (endogenous) forecast errors η1,t = y1,t−Et−1 [y1,t]

and η2,t = y2,t−Et−1 [y2,t]. By construction, no stability condition is required to restrict

the forecast errors, which thus can be arbitrarily chosen within the family of covariance-

stationary martingale difference sequences. Following Lubik and Schorfheide (2003), let

ηt be specified as a linear function of the structural shocks εt and a conformable vector

of reduced form sunspot shocks ζ∗t satisfying Et−1[ζ∗t ] = 0

ηt = M̃εt + ζ∗t (87)

where M̃ is a square, arbitrary coefficient matrix. Multiple RE equilibria in the in-

determinacy region of the model’s parameter space are thus indexed by the arbitrary

selection of M̃ (parametric indeterminacy) and of the stochastic features of the sunspot

shocks ζ∗t , provided these are orthogonal to the information set at date t− 1 (stochastic

indeterminacy).

As a result, the full set of RE solutions under indeterminacy can be written in

VARMA-type form

(
I − A−1L

)
yt =

(
M̃ − A−1B (I − CL)−1 L

)
εt + ζ∗t (88)
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where L is the standard lag operator. Notice that, since sunspot variables enlarge the

(already infinite and uncountable) set of equilibrium-consistent endogenous forecast

errors, they do not produce yet only amplify the indeterminacy issue. For the sake

of clarity, let us focus attention on the parametric indeterminacy case (assuming e.g.

ζ∗t = 0 almost surely for all t); the previous system can then be equivalently written in

the following state-space form

yt = Gst, (89)

st = Fst−1 +Hεt, (90)

where st = [yt−1, xt]
′ is the expanded state vector and

G =
(
A−1 M̃ (I − CL)− A−1BL

)
, F =

(
A−1 −A−1BL

0 C

)
, H =

(
M̃L

I

)

Now, in order to pin down a specific solution in the (parametrically) indeterminate

set, most of the literature adopts the so-called orthogonality assumption M̃ = 0, ac-

cording to which the component of the forecast errors due to the structural shocks is

orthogonal to the contribution of the sunspot shocks (Lubik and Schorfheide (2003)). In

the present setting, both structural shocks εt would not affect the endogenous variables

contemporaneously if M̃ = 0. On the other hand, for any lower triangular M̃ matrix

(e.g. M̃ = I2×2), timing restrictions do not affect the dynamic properties of the RE

solution under indeterminacy. To see this, let

M̃ =

(
m̃1 0

m̃3 m̃4

)
,

and notice that from the matrix G in the state-space representation (23)-(24) we obtain

M̃ (I − CL)− A−1BL =

(
m̃1(1− ρ1L)− α−1L 0

m̃3(1− ρ1L)− β−1L m̃4(1− ρ2L)− β−1L

)
,

Lower triangularity of this matrix implies that, for any arbitrary choice of the

coefficients (m̃1, m̃2, m̃3), the endogenous variable y1,t does not move with the state

x2,t contemporaneously. Intuitively, for this whole family of indeterminate solutions,

backward-looking dynamics prevail, thereby removing the incidence of the unobserved

state filtering problem that the decision-maker controlling y1,t faces in the presence of
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timing restrictions. As a result, these restrictions add no further constraint on the

equilibrium dynamics for such a variable and, a fortiori, for the informationally uncon-

strained one (y2,t): these indeterminate solutions can thus exhibit a fundamental MA

representation no matter whether informational constraints would cause their determi-

nate counterpart to display nonfundamentalness.22

A.4 VARs and Cholesky identification

Let an ny-dimensional vector of observable variables be represented as a canonical VAR

of order k

yt = A1yt−1 + . . .+ Akyt−k + ut, E[ut] = 0, E [utu
′
t] = V (91)

where k is a non-negative integer (capturing the number of lags) and the innovations

ut are assumed to be uncorrelated with all variables dated t− 1 and earlier.

To uncover the dynamic response functions of yt to fundamental (structural) eco-

nomic shocks εt, researchers usually assume existence of a linear relationship between

the latter and the VAR innovations, i.e.

B0ut = εt, (92)

with B0 being a square, full-rank matrix. The VAR (91) thus admits the structural

representation

B0yt = B1yt−1 + · · ·+Bkyt−k + εt, Bi := B0 · Ai, i = 1, . . . , q (93)

which makes clear that the impulse response of any component of the yt vector to a

transitory, unit shock in some component of εt is a function of entries of matrices Bi,

i = 0, . . . k. Absent restrictions on B0, the identification of structural shocks εt requires

additional restrictions, for data will only provide information about the response of yt

to innovations ut. Since E[εtε
′
t] = Iny×ny = B0V B

′
0, and upon recognizing that V can

be consistently estimated from (91) and thus treated as known, the B0 matrix will be

completely identified by imposing ny(ny + 1)/2 identifying constraints.

22There of course exist further solutions in the indeterminacy set – e.g. sunspot-free ones that are
indexed by non-triangular M̃ coefficient matrices, and/or those emerging when Ã−1 displays only one
stable eigenvalue – for which this invariance property fails to hold. Which of the continuously infinite
solutions prevails as the true DGP is ultimately an empirical question.
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According to the Cholesky scheme, identification is achieved by orthogonalizing the

innovations ut via a Cholesky decomposition of its variance covariance matrix of the

form PP ′ = V (where P is a conformable, lower triangular matrix with real and positive

diagonal entries) and then simply imposing B−1
0 = P . This reveals that the Cholesky

scheme amounts to restricting the impact reactions of some variables to structural

shocks, i.e. by setting selected elements of B−1
0 to zero for a given ordering in yt.

A.5 Additional DGP: Leeper and Leith (2016)

Based on the standard DNK structure, Leeper and Leith (2016)’s model considers a

representative agent cashless economy featuring monopolistic competition in the goods

market and nominal rigidities (staggered price setting). One-period nominal bonds Bt

sell at price 1/it, where it is also the monetary policy instrument; bonds maturity is

measured by the rate of decay ρ ≥ 0 (ρ = 0 means one period maturity). Government

purchases are zero and the primary government surplus st is assumed to evolve exoge-

nously (reflecting the presence of lump-sum taxes). Monetary and fiscal policies are

subject to structural disturbances, in addition to shocks to the dynamic IS equation

and the NKPC, as in Wolf (2020). Once linearly approximated around the zero in-

flation non-stochastic steady state, the model dynamics are described by the following

equations

gt = Et[gt+1]− σ(it − Et[πt+1]) + ωgt (94)

πt = βEt[πt+1] + κgt + ωπt (95)

it = ϕππt + ϕggt + ωit (96)

Pm
t = −it + βρEt[P

m
t+1] (97)

bmt = β−1bmt−1 + (ρ− 1)Pm
t + (1− β−1)st − β−1πt (98)

ωjt = ρjω
j
t−1 + εjt , |ρj| < 1, j = g, π, i (99)

st = ρsst−1 + εst , |ρs < 1 (100)

where (97) is no-arbitrage condition linking bond prices to the one-period nominal

interest rate and (98) is the flow Government budget identity. The shocks εgt , ε
π
t , ε

i
t and

εst are taken to be mutually independent white noise sequences.

Following Leeper and Leith (2016) and Wolf (2020), we focus attention on the

passive monetary - active fiscal policy regime. The system then delivers RE equlibria
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for the endogenous variables gt (output gap), πt (inflation rate), it (nominal interest

rate), Pm
t (bond price) and bmt (real face value of outstanding debt); determinacy of the

RE equilibrium is warranted when e.g. ϕπ ∈
[
0, 1− 1−β

κ
ϕg
)
.

As shown in Leeper and Leith (2016), monetary policy shocks that raise the nominal

interest rate and depresses output in the short-run can bring about a rise in inflation,

whose magnitude and persistence vary non-monotonically with the strength of reaction

of the policy rule to fluctuations in the inflation rate. In the passive monetary-active

fiscal regime, higher nominal interest rates trigger strong inflationary expectations that

overtake the deflationary push flowing from lower output through the Phillips curve

(wealth effect). This positive inflation impact response to monetary surprises is pro-

nounced for relatively short debt maturities (ρ equal or close to zero) for they enhance,

all else equal, the market value of debt.

Under the conventional Cholesky-timing assumption, we observe that (i) the mon-

etary policy shocks are orthogonal to the non-policy variables (gt, πt), and (ii) these

non-policy variables are thus predetermined with respect to the nominal interest rate.

Valuation of debt is also taken not to reflect unexpected changes in the nominal interest

rates. This feature, together with the presence of long debt and of high persistence of

structural shocks other than the cost-push one, generates a significant (although de-

layed) contraction in both the inflation rate and the output gap, that eventual rise when

the real interest rate and bond prices start declining at longer horizons.

All the Figures below report average Cholesky-VARs monetary impulse responses

and plot them against the DGP-consistent IRFs, for both the restricted and the un-

restricted version of the DNK model under scrutiny. Operationally, we use K = 100

repetitions, H = 15 as the IRF horizon, and T = 1000 as length of the artificial data

sample, with a burn-in of 200 observations.

Figures (10) to (12) report the DNK-implied monetary impulse responses against

Cholesky-VARs identified ones, when Leeper and Leith (2016)’s model is used as the

underlying DGP. As before, in all the Figures the solid red lines are the true IRFs in the

unrestricted model; the solid green lines are the true IRFs in the restricted model; the

dashed blue lines are the IRFs identified using Cholesky-VARs when the DGP is the

unrestricted model; the solid yellow lines are the IRFs identified using Cholesky-VARs

when the DGP is the restricted model. Again, adoption of the lag length selection

information criterion results in the estimation of VAR(p) systems with p ≤ 2.

Figures (10) and (11) reinforce our claim about the good approximating perfor-

mance of Cholesky-VARs when applied to a DGP exhibiting a Cholesky-style recursive
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structure.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

unrestricted DSGE
restricted DSGE
identified VAR - unrestricted DSGE
identified VAR - restricted DSGE

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 10: Impulse response functions (IRFs) to a monetary shock for the Leeper and Leith
(2016)’s model with ρ = 0.
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Figure 11: Impulse response functions (IRFs) to a monetary shock for Leeper and Leith
(2016)’s model with ρ = 0.95.
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Figure 12: Impulse response functions (IRFs) to a monetary shock for Leeper and Leith
(2016)’s model with ρ = 0.95 and ρπ = 0.

47



Most remarkably, Figure (12) shows that information-based timing restrictions dra-

matically alter the true monetary impulse responses relative to the model’s unrestricted

counterpart: while both inflation and output gap jump on impact above their long-run

values and then remain positive over shorter horizons (up to four periods), they stay in

the negative territory when restricted not to react contemporaneously to an unexpected

change in the nominal interest rate; and these dynamic adjustment patterns then flip

sign at medium to long horizons in the convergence process to steady state.

This strikingly different behavior of the unrestricted and restricted versions of the

same underlying DNK structure dramatically impact the ability of Cholesky-VARs to

uncover the true monetary impulse responses: estimated IRFs are almost flat at zero

for the unrestricted model, whereas are closely replicated if generated by the restricted

model.23

23This observation also qualifies the results in Wolf (2020) as it points to the possibility of severe mis-
identification of monetary IRFs in cases where a standard Cholesky identification scheme is imposed
on data generated by a non-recursive model of monetary-fiscal policy interaction. We obtain similar
findings (available on request) in the context of Benati and Surico (2009)’s hybrid NK framework, once
information-based timing restriction are properly introduced in the model.
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