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Abstract

This paper studies the Type I error, false positive rates, and power of four versions of

the Lagrange Multiplier test to detect measurement non-invariance in Item Response

Theory (IRT) models for binary data under model misspecification. The tests

considered are the Lagrange Multiplier test computed with the Hessian and

cross-product approach, the Generalized Lagrange Multiplier test and the Generalized

Jackknife Score test. The two model misspecifications are those of local dependence

among items and non-normal distribution of the latent variable. The power of the tests

is computed in two ways, empirically through Monte Carlo simulation methods and

asymptotically, using the asymptotic distribution of each test under the alternative

hypothesis. The performance of these tests is evaluated by means of a simulation study.

The results highlight that, under mild model misspecification, all tests have good

performance while, under strong model misspecification, the tests performance

deteriorates, especially for false positive rates under local dependence and power for

small sample size under misspecification of the latent variable distribution. In general,

the Lagrange Multiplier test computed with the Hessian approach and the Generalized

Lagrange Multiplier test have better performance in terms of false positive rates while

the Lagrange Multiplier test computed with the cross-product approach has the highest

power for small sample sizes. The asymptotic power turns out to be a good alternative

to the classic empirical power because it is less time consuming. The Lagrange tests

studied here have been also applied to a real data set.
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Use of the Lagrange Multiplier test for assessing measurement invariance under model

misspecification

Introduction

Item Response Theory (IRT) models are used in psychological and educational

research for measuring unobserved constructs, also known as factors or latent variables,

from correlated observed variables/items. The main assumptions and features of an IRT

model are i) local independence among items conditional on the latent variable(s), ii) it

is usually a parametric model for the probability of responding ‘correctly/positively’ to

an item given the latent variable(s) also known as response category probability and

item characteristic curve (ICC) and iii) normal distribution for the latent variable(s)

(Bartholomew, Knott, and Moustaki 2011). As with any statistical model, some of the

above assumptions may be violated. The Likelihood-Ratio, the Wald, and the Lagrange

Multiplier or score (LM) test statistics (Cox and Hinkley 1979) check model fit and

they are asymptotically equivalent. Differently from the Likelihood-Ratio and the Wald

test, the LM test only requires the computation of the restricted estimator (model

under the null hypothesis). The LM test can be very convenient in IRT models, where

multiple model violations (e.g. local dependence, non-normality of latent distribution,

etc.) can occur (Fox and Glas 2005). The LM test does not need the estimation of an

alternative model for each one of these violations. Moreover, there is model violation,

such as differential item functioning (DIF), that requires testing items sequentially

(Glas 1998). The LM test does not require new parameter estimates for every tested

item, making it computationally less intensive, especially in long tests. For these

reasons, the LM test is used in IRT to detect DIF (Glas 1998, Fox and Glas 2005), local

dependence (LD) (Glas 1999, Glas and Falcón 2003, Fox and Glas 2005, Kim, De Ayala,

Ferdous, and Nering 2011, Liu and Thissen 2012, Liu and Maydeu-Olivares 2013, Liu

and Thissen 2014, van der Linden and Glas 2010, Oberski, van Kollenburg, and

Vermunt 2013) and deviation from the parametric model (i.e. ICC) (Glas 1999, Glas

and Falcón 2003, Ranger and Kuhn 2012).

The LM test depends on the Fisher information matrix. Different approximations
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of this matrix lead to different test performances. Accurate results for the LM test can

be obtained by considering the expected Hessian and cross-product matrix, as shown in

Liu and Maydeu-Olivares (2013), but they are unfeasible in long tests. For this reason,

the observed versions of these matrices are preferred for the computation of the LM

test. Some authors (Glas 1998, Oberski et al. 2013) use the observed Hessian matrix,

that we denote with LM(H), and others (Liu and Maydeu-Olivares 2013, Liu and

Thissen 2012, Liu and Thissen 2014) the observed cross-product matrix, that we denote

with LM(CP). Falk and Monroe (2018) compare both approaches. The LM(CP) test

shows more inflated Type I error rates than the LM(H) test, especially with long tests

and small sample size, but it is fast to compute (Liu and Thissen 2012, Liu and

Maydeu-Olivares 2013, Liu and Thissen 2014, Falk and Monroe 2018). In some works,

the LM test statistic is applied in the case of model misspecification under the null and

the alternative hypotheses, showing a good performance when the amount of model

misspecification is overall small (Glas and Falcón 2003, Falk and Monroe 2018,

Guastadisegni, Cagnone, Moustaki, and Vasdekis forthcoming). Different versions of the

LM test are also derived under model misspecification (White 1982, Boos 1992). White

(1982) proposes the Generalized Lagrange Multiplier (LM(S)) test, whose expression

involves the sandwich variance and covariance matrix. Similarly Boos (1992) derives a

Generalized Score (GS) test for least squares, robust M-estimation, and quasi-likelihood

estimation methods that is equivalent to the LM(S) test when maximum likelihood

(ML)-based methods are used. The Generalized Jackknife Score (GS(J)) test is a

version of the GS test, derived under model misspecification, where the covariance

matrix of the score is computed using the Jackknife estimates (J. Rao, Scott, and

Skinner 1998). The GS(J) test has not been studied in the IRT context. As far as we

know, the LM(S) test is studied only by Falk and Monroe (2018) and Guastadisegni et

al. (forthcoming). Falk and Monroe (2018) compare the performance of the LM(S),

LM(CP), and LM(H) tests for a single omitted cross-loading and Guastadisegni et al.

(forthcoming) compute the empirical and asymptotic power of the LM(S) and LM(H)

tests to assess measurement invariance under misspecification of the latent variable
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distribution, without studying the Type I error/false positive rates of these two tests.

Differently from these works, we assess measurement invariance considering a more

general framework, where the model misspecification is due to local dependence among

items and different non-normal latent variable distributions.

In the case of a one factor model, an item is measurement invariant if the

conditional distribution of the item given the latent variable is independent of group

membership identified by an external group variable (e.g. sex, age, country)

(Mellenbergh 1982,1983). An item is measurement non-invariant (also known as DIF),

if it measures different abilities for different group memberships. In this case, the

expected score of the item differs in the subgroups for the same level of the latent

variable. Measurement invariance can be studied either in a multiple-group analysis

setup (Jöreskog 1971) or with the Multiple Indicator Multiple Causes (MIMIC) model

(Jöreskog and Goldberger 1975). The model allows direct and indirect effects of a

binary group covariate on the probability of giving a ’correct/positive’ response to an

item and on the latent variable respectively.

The contribution of this paper is twofold. First, we assess item measurement

invariance under model misspecification, using four versions of the LM test. The four

versions differ in the form of the covariance matrix of the estimators. Mainly, the

Hessian estimator (LM(H)), the cross-product estimator (LM(CP)), the sandwich

estimator (LM(S)), and the Jackknife estimator (GS(J)) are discussed and studied here.

Second, we compute the power of the LM(H), LM(CP), and LM(S) tests in two ways,

empirically through Monte Carlo simulation methods and asymptotically using the

distribution of each test under the alternative hypothesis, which depends on a

non-centrality parameter often difficult to compute (Gudicha, Schmittmann, and

Vermunt 2017). The non-centrality parameter is approximated using the procedure

derived by Gudicha et al. (2017) for the Wald and Likelihood-Ratio tests and it is

applied in Guastadisegni et al. (forthcoming) to the LM(H) and LM(S) tests under

misspecification of the latent variable distribution. We extend this method to the case

of local dependence and to the LM(CP) test.
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Through an extensive simulation study, we compare the performance of the

different versions of the LM tests in terms of Type I error rate, false positive rate, and

empirical and asymptotic power, varying the type and the misspecification level and

considering single and multiple parameter hypotheses tests for measurement invariance.

Moreover, we illustrate the use of these tests to a real data set.

The paper is organized as follows. First, we present the MIMIC model with

covariate effects. Second, we describe the four versions of the LM tests and the

procedure to estimate the asymptotic power for the LM(H), LM(CP), and LM(S) tests.

Next, we present a Monte Carlo simulation study and the results from the real data

analysis. Finally, some concluding remarks are presented and discussed.

The MIMIC model for binary data

Let us denote by y1, ..., yp a set of observed binary variables/items, by z the latent

variable, and by x a binary variable such as sex, country, or any other group variable.

Given n individuals, the i-th subject belongs to either the focal or the reference group

when xi = 1 or xi = 0 respectively. To test for item(s)’ measurement invariance, we

consider the MIMIC model with the group variable x affecting both the item(s) y and

the latent variable z. Group differences can be present only on the item intercept

(uniform-DIF) or simultaneously on the item intercept and slope (non-uniform DIF)

(Glas 1998, Fox and Glas 2005). The response probability for the i-th individual to the

j-th item is modelled using a logistic model (measurement model) where the model for

the latent variable is a linear model (structural model) defined by:

P (yij = 1|zi, xi) = πij(zi, xi) = exp (α0j + α1jzi + γ1jxi + γ2jxizi)
1 + exp (α0j + α1jzi + γ1jxi + γ2jxizi)

zi = βxi + εi ε ∼ N(0, 1)
(1)

where i = 1, ..., n and j = 1, ..., p. Under non-uniform DIF, the intercept and factor

loading parameters are (α0j, α1j), and (α0j + γ1j, α1j + γ2j) for the reference and focal

groups respectively (Glas 1998). The parameter β allows the mean of the latent variable

z to be different in the two groups, although it is set to N(0, 1) in the reference group
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for identification purposes. For a random sample of size n the log-likelihood is:

l(y,θ) =
n∑
i=1

ln f(yi,θ) =
n∑
i=1

ln
∫ p∏

j=1
πij(zi, xi)yij (1− πij(zi, xi))1−yijφ(zi | xi)dzi, (2)

where θ is the vector of the unknown parameters and the model assumes

conditional/local independence among the items. Equation (2) is maximized using

either an expectation–maximization (EM) algorithm (Bock and Aitkin 1981) or a direct

maximization, such as the Newton-Raphson algorithm (Skrondal and Rabe-Hesketh

2004).

Uniform and non-uniform DIF for an item yj is assessed by testing the statistical

significance of the parameters γ1j and (γ1j,γ2j) respectively. We consider situations

where the parameters γ1j or (γ1j, γ2j) are fixed to zero and to constants different from

zero under the null hypothesis. Moreover, the performance of the LM tests is assessed

under violations of local independence and normality distribution of the latent variable.

Lagrange Multiplier tests

The classical Lagrange Multiplier test

The LM test (C. R. Rao 1948) evaluates the statistical significance of imposed

restrictions on model parameters. We consider a sample y1, ...,yn from a model f(y,θ).

The true parameter vector is denoted by θ0. Let θ0 be divided into two sub-vectors

θ′0 = (θ′01,θ
′
02). θ01 includes the intercept parameters (α0j, j = 1 . . . , p) and factor

regression coefficients (α1j, j = 1 . . . , p). When uniform-DIF is assessed, θ02 includes the

parameters γ1j and when non-uniform DIF is assessed, θ02 includes γ1j and γ2j, where

j = 1 . . . , p. The hypotheses H0 and H1 can be formalized as follows:

H0 : θ′02 = c vs H1 : θ′02 6= c, (3)

where c is a vector of constants.
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The LM statistic is (C. R. Rao 1948):

LM = S(θ̃)′An(θ̃)−1S(θ̃), (4)

where θ̃′ = (θ̃′1, c) denotes the restricted maximum likelihood estimates of the

parameters θ, S(θ̃) = ∂ ln l(y,θ)
∂θ

is the vector of score functions evaluated at θ̃, and

An(θ̃) = −E
[
∂2l(y,θ)
∂θ∂θ′

]
is the Fisher information matrix evaluated at θ̃. Given that the

part of the score vector evaluated in θ̃01 is 0, the LM statistic given in (4) is reduced to:

LM = S2(θ̃)A22
n (θ̃)−1S2(θ̃), (5)

where S2(θ̃) is a subset of S(θ̃) that corresponds to the parameters θ02 evaluated at θ̃

and A22
n (θ̃) is a block of the partitioned Fisher information matrix computed as (Engle

1984)

A22
n = An22 − An21A

−1
n11An12, (6)

and evaluated at θ̃. The partition of An into An22, An21, An11, An12 is derived from the

partition of θ′0 into (θ′01,θ
′
02).

Two different versions of the LM test are studied here depending on which matrix

is used for estimating An(θ̃). The Hessian approach (LM(H)), uses the observed

Hessian matrix given by

Ân(θ) = −
n∑
i=1

∂2li(yi,θ)
∂θ∂θ′

(7)

whereas the cross-product approach (LM(CP)), uses the observed cross-product matrix

B̂n(θ) =
n∑
i=1

∂ ln li(yi,θ)
∂θ

∂ ln li(yi,θ)
∂θ

(8)

Under correct model specification, Ân(θ) = B̂n(θ) (White 1982) and the LM(H) and

LM(CP) tests are equivalent.

Under a correctly specified likelihood and under H0, the LM test statistic,



LM TESTS FOR ASSESSING MEASUREMENT INVARIANCE 9

computed with the Hessian and cross-product approaches, is asymptotically distributed

as a χ2
r, with degrees of freedom (r) equal to the dimension of θ02.

To compute the local asymptotic power of the LM test, a standard approach is to

consider a set of local alternatives close to the null value for large n, H1 : θ02 = c+ ξ√
n
,

where ξ is an arbitrary vector with the same dimension of θ02 (Boos and Stefanski

2013). When the model defined under H1 is true, the LM test is asymptotically

distributed as a non-central chi-square that depends on two parameters, namely the

degrees of freedom (equal to the dimension of θ02), and a non-centrality parameter λ

given by (Cox and Hinkley 1979):

λ = 1
n
ξ′A22

n (θ0)ξ (9)

The asymptotic power is computed as P (χ2
r(λ) > χ2

r(1− α)).

Approximation procedure for the asymptotic power. The asymptotic

distribution of the LM test as a non-central chi-square with non-centrality parameter in

equation (9) holds when the model defined under the set of local alternatives is true, i.e.

when the model under the null hypothesis is barely incorrect for large n (see Agresti

2002, Reiser 2008). In practice, it is often reasonable to adopt an alternative hypothesis

for fixed and finite n (Agresti 2002), as H1 : θ02 = c+ ξ , or to use hypotheses as in (3)

(Gudicha et al. 2017). Here, we consider the approximation procedure for the

asymptotic power derived by Gudicha et al. (2017) for the Likelihood-Ratio and the

Wald tests. This procedure is extended to the LM(H) test in Guastadisegni et al.

(forthcoming). The method can also be used for the LM(CP) test and can be

summarized in the following steps:

1. From the model defined under the alternative hypothesis, create a large data set

(e.g. N = 10000 observations).

2. Fit the model under H0 to the data generated under step 1.

3. Take the value of the LM(H)/LM(CP) statistic as the estimate of the

non-centrality parameter λ (Satorra 1989, Bollen 1989).
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4. Compute the non-centrality parameter for a sample of size 1 equal to λ1 = λ
N
.

5. The non-centrality parameter for a sample of size n is λn = nλ1.

The asymptotic power of the LM(H)/LM(CP) test can be determined by comparing the

λn obtained in step 5 with the tabled values of the non-central chi-square with df

corresponding to the number of parameters constrained under H0 and significance level

α (Bollen 1989).

The Generalized Lagrange Multiplier test

Consider a sample y1, ...,yn from a model with true density g(y), that assumes

either local dependence among the items or a non-normal distribution of the latent

variable. The model with density f(y;θ), which assumes both local independence

among the items and a normal distribution of the latent variable, is erroneously

assumed to be the true model for the data and it is used for ML analysis. If the

assumptions A1-A6 (pp: 2-6, White 1982), that ensure the existence, consistency,

asymptotic normality, and identifiability of the Quasi-ML estimator, are fulfilled, the

parameter vector θ̂n, which maximizes the log-likelihood function based on model

f(y;θ), converges in probability to θ∗, the parameter vector that minimizes the

Kullback-Leibler information criterion. Moreover, the covariance matrix of θ̂n, based on

n observations, is the so-called sandwich estimator given by

Ĉn(θ̂n) = Â−1
n (θ̂n)B̂n(θ̂n)Â−1

n (θ̂n), where the matrix Ân and B̂n are the observed

Hessian matrix and the observed cross-product matrix defined in formulas (7) and (8)

respectively and evaluated at θ̂n.

Under model misspecification, the null and the alternative hypotheses are now

specified in terms of θ∗. Let θ∗ be divided in two sub-vectors θ′∗ = (θ′∗1,θ′∗2). To test for

uniform and non-uniform DIF, the parameters θ′∗1,θ′∗2 are grouped as in The classical

Lagrange Multiplier test section. The hypotheses in (3) can be formalized as follows:

H0 : θ′∗2 = c vs H1 : θ′∗2 6= c, (10)
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where c is a vector of constants.

The Generalized Lagrange Multiplier test is defined as (White 1982, Engle 1984):

LM(S) = S2(θ̃n)′Â22
n (θ̃n)−1Ĉn22(θ̃n)−1

Â22
n (θ̃n)−1S2(θ̃n), (11)

where Â22(θ̃n) is computed as in (6) replacing An with Ân, evaluated at θ̃n and

Ĉn22(θ̃n) is the part of the matrix Ĉn corresponding to θ′∗2, evaluated at θ̃n. Under H0,

LM(S) is distributed as a χ2
r, with degrees of freedom r equal to the dimension of θ∗2. If

the model is correctly specified, the statistic LM(S) is equal to the LM test, computed

both with the Hessian or the cross-product approach (White 1982).

As before, the local asymptotic power of the LM(S) test is obtained by considering

a set of local alternatives given by H1 : θ∗2 = c+ ξ√
n
, where ξ is an arbitrary vector of

dimension θ∗2. Under H1, LM(S) converges in distribution to a χ2
r(λ), with degrees of

freedom r equal to the dimension of θ∗2 and λ is the non-centrality parameter given by

(Bera et al. 2020):

λ = 1
n
ξ′A22′

n (Bn22−An21A
−1
n11Bn12−Bn21A

−1
n11An12 +An21A

−1
n11Bn11A

−1
n11An12)−1A22

n ξ (12)

where An11, An12, An21 are the blocks of the expected Fisher information matrix An and

Bn11, Bn12, Bn21, Bn22 of the expected cross-product matrix Bn, derived from the

partition of θ′∗ into (θ′∗1,θ′∗2). A22
n is computed as in (6). All matrices in formula (12)

are evaluated at θ∗. The asymptotic power estimation method described in the

Approximation procedure for the asymptotic power section is used here to estimate the

asymptotic power for the LM(S) test. In step 3, the LM(S) statistic is taken as the

estimate of the non-centrality parameter (the proof of this result can be found in Satorra

1989). Moreover, the model fitted under H0 at step 2 is assumed to be misspecified.

Under correct model specification the LM(S) and the LM(H)/LM(CP) tests have the

same non-centrality parameter and, consequently, the same asymptotic power.
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The Jackknife Generalized Score test

When ML-based methods are used, the LM(S) test derived by White (1982) is

equivalent to the GS test derived by Boos (1992) under model misspecification and valid

under different types of estimation methods, such as least squares, quasi-ML, and robust

M-estimation. The Generalized Score test for the hypothesis testing given in (10) is:

GS = S2(θ̃)′V −1
S2 (θ̃)S2(θ̃), (13)

where S2(θ̃) and θ̃ are defined similarly as in The Generalized Lagrange Multiplier test

section, but S2 does not necessarily come from the derivative of a log-likelihood because

it depends on the estimation method chosen. Vs2(θ̃) is the covariance matrix of S2,

evaluated at θ̃.

When likelihood-based methods are used, Vs2(θ̃) is equal to Â22
n (θ̃)Ĉn22(θ̃)Â22

n (θ̃)

and formulas (13) and (11) are equivalent. Under H0, the GS test is distributed as a χ2
r,

where r are the df equal to the dimension of θ∗2.

J. Rao et al. (1998) proposed a version of the Generalized Score test in a general

estimating equations framework (Godambe and Thompson 1986) for a stratified

multistage sampling design, based on a consistent Jackknife estimator of VS2(θ̃). We use

the test proposed by J. Rao et al. (1998), for independent and identically distributed

(i.i.d.) observations and maximum likelihood estimation methods and we refer to this

test as the Jackknife Generalized Score (GS(J)) test. The GS(J) test is given in formula

(13), where VS2(θ̃) is estimated with the delete-1 Jackknife method as:

V̂s2(θ̃n) = n

n− 1

n∑
i=1

(S̃2(i) − S̃2)(S̃2(i) − S̃2)′. (14)

S̃2(i) is the score function computed by removing the i-th observation and evaluated at

θ̃n(i), (i.e. the ML estimate obtained by maximizing the score function without the i-th

observation), and S̃2 is the score function of the original sample evaluated at θ̃n. Shao

(1992) proved the consistency of the Jackknife method for a parameter estimator θ for

i.i.d. responses, while J. Rao et al. (1998) gave a sketch of the proof of the consistency
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of the Jackknife score variance estimator for basic survey weights.

Simulation study

We study the performance of the LM(H), LM(CP), LM(S), and GS(J) test

statistics under no misspecification and misspecification either due to local dependence

or in the latent variable distribution. Since the main focus of this work is the case of

model misspecification, the results under correct model specification are reported in the

Supplementary material. Under a correct model specification, data are generated from

the two-Parameter Logistic (2-PL) model (Birnbaum 1968) with a linear structural

model. When the model is correctly specified, we find results in line with the literature.

In particular, the LM(CP) test shows inflated Type I error rates whereas the LM(H)

and LM(S) tests have simulated Type I error rates quite close to the nominal level α

and similar power. Moreover, the power of the tests increases with the sample size and

the number of items. Similar results are found by Liu and Maydeu-Olivares (2013), Liu

and Thissen (2014), and Falk and Monroe (2018).

In the Violation of local independence and the Misspecification of the latent

variable distribution sections, uniform and non-uniform DIF are studied in the

simulation as well as single and multiple parameter hypotheses. The performance of the

GS(J) test is evaluated in a separate simulation study in The study on the GS(J) test

section.

We consider the following simulation conditions: number of items (p = 10, 20) ×

sample size (n = 200, 500, 1000)× test statistic (LM(H), LM(CP ), LM(S)). To

evaluate the asymptotic behaviour of the tests, in some of the cases, n = 5000 is

considered. In some cases, the asymptotic power is computed in addition to the

empirical power. Direct maximization through the Newton-Raphson method is used to

obtain the ML-estimates under the null hypothesis and numerical derivatives are used

to compute the Hessian and cross-product matrices.

The optimization is conducted in R with the function “optim”, and numerical

derivatives are obtained with the “NumDeriv” R package. In all the simulation
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scenarios, N = 500 replications are considered and the nominal level α is fixed to 0.05.

Only for the results under correct model specification, and reported in the

Supplementary Material, do we consider N = 200.

Under model misspecification, in hypothesis testing we should account for the true

data generating value θ0 and for the parameter value θ∗ as follows:

• when H0 : θ∗ = c, provided that θ0 = c and θ∗ = c, the Type I error rate is

obtained. The null hypothesis is true under model misspecification and the

parameter is correctly fixed to its data generating value.

• when H0 : θ∗ = c, provided that θ0 = c and θ∗ 6= c, the false positive rate is

obtained. The null hypothesis is not true under model misspecification, but the

parameter is correctly fixed to its data generating value. Some authors, such as

Green, Thompson, and Babyak (1998), consider the rejections of parameter fixed

to its data generating value as Type I error instead of false positive rate, even

under model misspecification. For this reason, we expect the tests to have false

positive rates close to the nominal level α if they have good performance.

• when H0 : θ∗ = c, provided that θ0 6= c and θ∗ 6= c, the power is obtained. The null

hypothesis is not true under model misspecification and the parameter is not fixed

to its data generating value.

• the case H0 : θ∗ 6= c, provided that θ0 6= c and θ∗ = c, is not examined in this

study.

To estimate the unknown parameters θ∗, we fit the unconstrained model under

hypothesis H1 to a sample of 5000 observations generated from the true model. Under

model misspecification we always study the false positive rates instead of the Type I

error rates (θ0 6= θ∗). Non-valid statistics, for example negative statistics, are excluded

from the analysis. The Type I error, false positive, and power rates are computed as

p̂ = ∑Nv
l=1

I(Tl≥c)
Nv

, where Nv is the number of valid statistics out of the number of

replications, I is an indicator function, Tl is the value of the test statistic evaluated in

the l-th replication and c is the theoretical asymptotic critical value corresponding to
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the 95th percentile of the χ2
df distribution, with degrees of freedom equal to the number

of constrained parameter(s) under H0. The confidence interval (CI) of each rate p̂ is

computed as p̂± 1.96
√

0.05(1−0.05)
Nv

.

Violation of local independence

Conditional dependence among certain items is introduced in the data generating

model via a common individual specific random variables u in the logistic measurement

model. Data are generated from the following model:

logit(πij) = α0j + α1jzi, i = 1, ..., n j = 1, ..., d, 1 ≤ d ≤ p

logit(πiJ) = α0J + α1Jzi + ui, J = d+ 1, ..., p u ∼ N(0, σ2
u)

zi = βxi + εi ε ∼ N(0, 1)

(15)

Both for p = 10 and for p = 20, the intercept parameters are generated from a

multivariate log-normal distribution with mean 0 and standard deviation (SD) 0.1, the

slope parameters are generated from a multivariate log-normal distribution with mean 0

and SD 0.5, the values of the covariate x are generated from a Bernoulli distribution

with success probability equal to 0.7, and the residuals ε are generated from a standard

normal distribution. The parameter β is fixed to 0.9. The random effects u induce the

local dependence among the items yd+1, ..., yp. The percentages of local dependent items

considered in the simulations are 20% and 50%. For example, when LD = 20% and

p = 10, two items are local dependent. Also, σ2
u influences the amount of

misspecification in the simulation study. The random effects are generated from a

normal distribution with mean 0 and three different values of σ2
u, 0.25, 1, and 2.25. In

the data generating model there is absence of uniform and non-uniform DIF.

To test for non-uniform DIF under model misspecification, we consider the
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following unconstrained model:

logit(πij) = α0j + α1jzi, i = 1, ..., n j = 1, 2, ..., K 1 ≤ k ≤ p

logit(πij) = α0j + α1jzi + γ1jxi + γ2jxizi, j = k + 1, ..., p

zi = βxi + εi, ε ∼ N(0, 1),

(16)

where items (k + 1, ..., p) are tested for measurement invariance. In the case of uniform

DIF, equation (16) does not include the parameter γ2j on the items k + 1, ..., p.

In our simulations, the model fitted to the data is given in (16) with parameters

γ1j and γ2j fixed to constant values. The false positive rates are studied using

hypotheses A, B, and C and the empirical power using hypotheses D, E, and F. The

asymptotic power is studied for scenario D.

A H0 : γ1j∗ = 0 vs H1 : γ1j∗ 6= 0,

This implies that one item is tested for uniform DIF.

B H0 : γ ′1∗ = 0 vs H1 : γ ′1∗ 6= 0,

where γ ′1∗, is a 5× 1 vector (i.e. five items are tested for uniform DIF).

C H0 : (γ1j∗, γ2j∗) = 0 vs H1 : (γ1j∗, γ2j∗) 6= 0,

One item is tested for non-uniform DIF.

D H0 : γ1j∗ = 0.7 vs H1 : γ1j∗ 6= 0.7,

One item is tested for uniform DIF.

E H0 : γ ′1∗ = c vs H1 : γ ′1∗ 6= c, where c = (0.7, 0.7, 0.7, 0.7, 0.7),

Five items are tested for uniform DIF.

F H0 : (γ1j∗, γ2j∗) = c vs H1 : (γ1j∗, γ2j∗) 6= c, where c = (0.7, 1),

One item is tested for non-uniform DIF.

Table 1 presents the false positive rates for the LM(H), LM(CP), and LM(S) tests

under local dependence for scenarios A,B, and C.
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In the majority of cases, we can see that when the variance of the random effect is

low (σ2
u = 0.25), the false positive rates of the LM(H) and LM(S) tests are quite close to

the nominal level α = 5%, while the LM(CP) test rejects more often than expected.

With the increase of model misspecification (σ2
u = 1 and LD = 50%, σ2

u = 2.25 and

LD = 20%, 50%) the false positive rates increase with the sample size and there are no

significant differences in tests behaviour between 10 and 20 items. It is evident that the

false positive rates are dramatically affected by the variance of the random effect and

the number of items that are conditionally dependent. Moreover, the LM(CP) test has

the most inflated false positive rates under all conditions of the study, while no

improvement has been found when using the LM(S) test. Both LM(S) and LM(H) show

a very similar behaviour under all scenarios.

Table 2 presents the empirical and asymptotic power for the LM(H), LM(CP),

and LM(S) tests under local dependence for scenario D.

Overall, there are some numerical differences between the asymptotic and

empirical power that decrease with the increase in the number of items and the sample

size. It is worth noting that the behaviour of the empirical and asymptotic power is the

same. Indeed, according to both methods, LM(CP) has the highest power and LM(H)

and LM(S) have a very similar power under all conditions. The empirical and

asymptotic power increases with both the sample size and the number of items. Since

there are no substantial differences between the two procedures, only the empirical

power is computed for scenarios E and F . Table 3 presents the empirical power for the

LM(H), LM(CP), and LM(S) tests under local dependence for scenarios E and F .

Under the multiple parameters scenarios (E and F ) and small sample sizes

(n = 200), the LM(S) test has the lowest power. Moreover, under all scenarios and for

small sample size, LM(H) and LM(CP) have similar power whereas, in the majority of

cases for large sample sizes, all tests reach the same power. Thus, the power seems less

affected by the degree of local dependence compared to the the false positive rate and it

increases with both the sample size and the number of items. Moreover, in terms of

power, LM(CP) has the best performance because it has the highest power under most
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simulation conditions and it produces valid results for all replications. It is worth noting

that, under scenarios E and F , in some cases the LM(H) test produces non-valid

results, ranging from 0.2% to 22.4% of the replications, where the highest percentages

correspond to small sample sizes, σ2
u = 2.25 and LD = 50%.

Misspecification of the latent variable distribution

The data are generated from the following model:

logit(πij) = α0j + α1jzi

zi = βxi + εi, i = 1, ..., n j = 1, 2, ..., p
(17)

Three different distributions are assumed for the latent variable. Namely, the error term

is generated from a mixture of normals as ε ∼ f(ε) = 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) and

also from a skew-normal distribution with parameter κ = 1, 3. The probability density

function of a skew-normal with skewness parameter κ is the following (Azzalini 1985):

φ(ε;κ) = 2φ(ε)Φ(ε;κ)

where φ and Φ are the standard normal density and distribution function, respectively.

The parameter κ can take values from −∞ to +∞ and for κ = 0 reduces to a standard

normal distribution.

Intercepts (α0j), factor coefficients (α1j), regression coefficient (β), and group

variable x are generated as in the Violation of local independence section. Similarly

here, we consider the model in equation (16) as the unconstrained model. The

simulation scenarios of the Violation of local independence section are considered here

to study the false positive rates and the empirical power of the tests. As before, the

asymptotic power is studied for scenario D.

Table 4 reports the false positive rates for the LM(H), LM(CP), and LM(S) tests

under misspecification of the latent variable distribution for scenarios A,B, and C.

The misspecification of the latent variable distribution in the case of a mixture of
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normals does not affect the false positive rates of the LM(H) and LM(S) tests, whereas

the LM(CP) test has inflated false positive rates, especially under scenarios B and C.

When ε ∼ SN(1), only the LM(S) test never shows inflated false positive rates, even if

it rejects less than it should for small sample sizes and 10 items. The performance of

the tests deteriorates with the increase of skewness from κ = 1 to κ = 3. For some of

our simulation scenarios, the LM(H) and the LM(CP) tests have inflated false positive

rates and the LM(S) test rejects less than expected. When ε is distributed as a

skew-normal under all scenarios, the LM(H) test produces a considerable number of

non-valid results, ranging from 0.2% to 43.4% of the replications. The number of

non-valid LM(H) statistics increases with the skewness of the latent variable

distribution and for small sample sizes.

Table 5 presents the empirical and asymptotic power for LM(H), LM(CP), and

LM(S) tests under misspecification of the latent variable distribution for scenario D.

Overall, the numerical differences between the asymptotic and empirical power are

small. As in the case of local dependence, the empirical and asymptotic power give the

same information. For scenario D and large sample sizes, the power of all tests is not

affected by the latent variable having a mixture of normal distributions. When

ε ∼ SN(1), LM(CP) has the highest power while LM(H) and LM(S) have a very similar

power. When ε ∼ SN(3), the power is lower for all tests, especially for LM(S) and small

sample sizes, and LM(H) produces a considerable number of non-valid results for small

sample size (11.6% of the replications). Since there are no substantial differences

between the two procedures, only the empirical power is computed for scenarios E and

F .

Table 6 presents the power for LM(H), LM(CP), and LM(S) tests under

misspecification of the latent variable distribution for scenarios E and F .

Similarly to the false positive rates study, the power of all tests studied here is not

affected by the latent variable having a mixture of normal distributions and it is lower

for small sample sizes. Interestingly, when ε ∼ SN(1), the LM(CP) test has the highest

power whereas, when ε ∼ SN(3), the power is lower for all tests, particularly for LM(S)
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in the case of small sample sizes. However, the power, even for κ = 3, increases with the

increase of sample size and number of items. When ε is distributed as a skew-normal,

the LM(H) test produces non-valid results in some of the simulation scenarios, ranging

from 0.2% to 30.2% of the replications and, as in the previous setting, the number of

non-valid LM(H) statistics increases with the skewness of the latent variable

distribution and decreases as the sample size increases.

The study on the GS(J) test

The GS(J) test is computationally expensive compared to the other tests. Indeed,

in each replication of a sample of size n, the Jackknife score covariance matrix given in

(14) requires n times the ML-estimates of the parameters. To reduce the time

complexity for this method, a faster model estimation is obtained by using the “ltm” R

package, which uses a combination of the E-M algorithm and direct maximization. As

before, numerical derivatives for the Hessian and cross-product matrix are obtained

with the “NumDeriv” R package. We conduct a small-scale simulation to compare the

performance of the LM(H), LM(CP), and LM(S) tests with the GS(J) test under no

misspecification, misspecification due to local dependence, and misspecification of the

latent variable distribution. All models considered here will only have a measurement

model and no structural model. We consider the following simulation conditions:

number of items (p = 10) × sample size (n = 200, 500, 1000) × test statistic

(LM(H), LM(CP ), LM(S), GS(J)) and 500 replications for each scenario. To study

the Type I error/false positive rates, we consider three data generating models (DGM):

i) under a correct model specification, data are generated from the 2-PL model

(Birnbaum 1968), ii) under local dependence from the model given in equation (15),

and iii) under misspecification of the latent variable distribution from the model given

in equation (17). To study the power, we set the parameter γ1j equal to 0.5 and 2, on

the last item of the three data generating models (2-PL, (15), (17)). For all of them, the

covariate x does not affect the latent variable (β=0) and intercepts, factor loadings, and

the values of the group variable x are generated as in the Violation of local
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independence section. When data are generated from (15), we consider σ2
u = 1 and

LD = 20%. For data generated from (17), we assume ε ∼ SN(3). We consider the

model in equation (16), without the structural model, as the unconstrained model.

Under scenario A, γ1j is fixed to 0 under the null hypothesis. Scenario A is used to

study the Type I error/false positive rate, because all items in the data generating

models are measurement invariant, and to study the power, because a uniform-DIF

parameter is introduced on the last item of all data generating models. Table 7 reports

the Type I error/false positive rates of the GS(J), LM(H), LM(CP), and LM(S) tests

under correct model specification, local dependence, and misspecification of the latent

variable distribution, for scenario A.

The GS(J) test and the LM(S) test perform similarly under all conditions. In

general, all tests have good performance and only the LM(CP) test shows inflated false

positive rates under some conditions.

Table 8 presents the empirical power for the GS(J), LM(H), LM(CP), and LM(S)

tests under correct model specification, local dependence, and incorrect distribution of

the latent variable, for scenario A.

Under all conditions for small sample size, the power of the GS(J) test is always

equal to or lower than the one of the LM(S) test. When the sample size increases, the

two tests reach the same power. Similarly to the Type I error/false positive rate study,

the performance of the GS(J) test is never superior to that of the other tests. For this

reason, and for its high computational cost, we do not use the GS(J) test in the real

data analysis.

An application to a real data set

In this section we assess measurement invariance under model misspecification

through the LM(H), LM(CP), and LM(S) tests on a real data set, taken from Miller,

Swanson, and Newcomb (1984). We select the same sample of observations and items

analysed by Duncan (1979). In 1953, in the Detroit Area, the following questions

regarding sex role expectations were asked to a sample of 257 women: “Here are some
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things that might be done by a boy or a girl. As I read each of these to you, I would

like you to tell me if it should be done as a regular task by a boy, by a girl, or by both:

(1) Shoveling walks, (2) Washing the car, (3) Dusting furniture, (4) Making beds”.

Responses of “boy” to items 1 and 2 and “girl” to items 3 and 4 are coded as “0” and

refer to traditional answers. Responses of “both” for all items are coded as “1” and

refer to “egalitarian” answers. For the same sample of women, in addition to the four

binary items, we consider a group variable, that we call “Work”, taken from the original

data set (Miller et al. 1984). The following question was asked to the sample of mothers

“What is your occupation? What kind of business is that in?” The possible responses

were the following: “Professional, technical, and kindred workers”, “Managers, officials

and proprietors, except farm”, “Clerical and kindred workers”, “Sales workers”,

“Operatives and kindred workers”, “Private household workers, service workers”,

“Laborers, except farm and mine”, and “Not in labor force”. We group these responses

into two classes:

• Class coded as “0”, which includes only answers “Not in labor force”. This class

includes the group of non-working women (n0 = 199).

• Class coded as “1”, which includes all the other responses. This class includes the

group of working women (n1 = 58).

The percentages of “egalitarian” answers among the group of non-working women are

31%, 31%, 29% and 42% to items 1-4, respectively. The percentages of “egalitarian”

answers among the group of working women are 43%, 29%, 50% and 55% to items 1-4,

respectively. Women in the working group give more “egalitarian” answers than women

in the non-working group, especially to items 3 and 4. The data set is analysed by

Mavridis and Moustaki (2009) and Irincheeva (2011). They show that the classical

unidimensional IRT model with the latent variable distributed as a standard normal has

a poor fit on this data set. Irincheeva (2011) estimates a semi-nonparametric (SNP)

unidimensional IRT model to the data, that allows for more flexibility in the shape of

the latent variable distribution, and gives a better fit of the proposed model to the data
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compared with the classic unidimensional IRT model. Moreover, the results found by

Irincheeva (2011) suggest that the shape of the true latent variable is right skewed or

even more complex.

Starting from these results, in this study we consider a unidimensional IRT model

for binary data based on the assumption of standard normal latent variable distribution

under the null hypothesis, that we know to be misspecified. Measurement invariance on

the intercept of each item is tested through H0 : γ1j∗ = 0 vs H1 : γ1j∗ 6= 0, where γ1j∗ is

the effect of the group variable “Work” on the item intercept. Measurement invariance

on the item slope of each item is tested through H0 : γ2j∗ = 0 vs H1 : γ2j∗ 6= 0, where

γ2j∗ is the effect of the group variable “Work” on the item slope. Rejecting the null

hypothesis implies that the item intercept, or slope, is measurement non-invariant. Due

to the small sample size and low number of items, we avoid considering multiple

parameter hypothesis testing. The p-values of the tests are computed in two ways,

using the asymptotic distribution of the tests under the null hypothesis and bootstrap

hypothesis testing (Efron and Tibshirani 1994). As observed in the Simulation study

section, under high misspecification of the latent variable distribution, the LM tests do

not match their theoretical distributions under the null hypothesis. In particular, the

LM(H) and LM(S) tests have the worst performance in terms of power under small

sample sizes. The bootstrap hypothesis testing does not depend on the asymptotic

distribution of the test statistic under the null hypothesis and can be a good alternative

under model misspecification (Lu and Young 2012).

The first step of the bootstrap hypothesis testing procedure is to generate B

bootstrap samples, or simulated data sets, indexed by h, that should satisfy the null

hypothesis (Efron and Tibshirani 1994). We consider a parametric bootstrap, where the

bootstrap samples are generated from a classical unidimensional IRT model with the

latent variable distributed as a standard normal and parameter estimates obtained

fitting the same model to the original sample of observations. Under the null

hypothesis, the group variable “Work” has no effect on the intercept and slope of each

item. For this reason, the values of the group variable in each bootstrap sample are
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randomly drawn from a Bernoulli variable with success probability estimated on the

original sample of observations. The parametric bootstrap can be used even when the

model under the null hypothesis is misspecified (Lu and Young 2012). The bootstrap

hypothesis testing is composed using the following steps (Efron and Tibshirani 1994):

1. Calculate the statistic τ̂ (the LM(H), LM(CP) and LM(S) tests) in the original

sample of observations.

2. Calculate the statistic τ in each bootstrap sample, called τ ∗h .

3. Compute the bootstrap p-value as p̂∗(τ̂) = 1
B

∑B
h=1 I(τ ∗h >τ̂), where I is the

indicator function.

4. Reject the null hypothesis if p̂∗(τ̂)< α.

When τ is pivotal, that is its distribution does not depend on unknown parameters,

and the number of bootstrap samples B is such that α(B + 1) is an integer, the

bootstrap hypothesis testing procedure can yield exact test (Dwass 1957). We choose

B = 999, which is usually a good choice for the number of bootstrap samples to be used

in hypothesis testing (MacKinnon 2002).

Table 9 presents the p-values for the LM(H), LM(CP), and LM(S) tests based on

their theoretical distributions (TD) under the null hypothesis and on bootstrap

hypothesis testing (BH) for measurement invariance on the item intercept and slope.

For all tests, TD and BH do not reject the null hypothesis of intercept and slope

invariance for items 1, 2, and 4. This is consistent with the simulation results, in which

the false positive rates are less affected than the power of the tests by the

misspecification of the latent variable distribution. However, BH and TD disagree for

item 3. Interestingly, only the LM(CP) test produces similar results to the BH p-values

of the LM(S) test, rejecting the null hypothesis of measurement invariance on the

intercept and slope. This is consistent with the simulation results, where the LM(CP)

test has the highest power for small sample sizes under misspecification of the latent

variable distribution. The bootstrap hypothesis testing procedure for the LM(S) and

LM(CP) tests turns out to be a good instrument to make a clearer decision on the
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acceptance or rejection of the null hypothesis, especially when these tests show

contradictory results. By contrast, the LM(H) test gives negative statistics in the real

data set and in a large number of bootstrap replications, as in some simulation

scenarios under high misspecification of the latent variable distribution and small

sample size. This makes it difficult to interpret results and worsens the performance of

the bootstrap hypothesis testing procedure. Indeed, for measurement invariance on the

intercept of item 3, the TD and BH p-values of the LM(H) test cannot be computed

because the statistic calculated in the real data set is negative. Moreover, in the

measurement invariance testing of the slope of item 3, the result of the BH p-value of

LM(H) test is not stable because in 11.5% of the bootstrap replications we obtain

non-valid statistics that have been excluded from the BH p-value computation.

Discussion

In this work, we evaluated the performance of the LM(H), LM(CP), LM(S), and

GS(J) tests to assess measurement invariance under both correct model specification

and different types of model misspecification by means of a wide simulation study and

in a real data analysis. Moreover, we computed the empirical and asymptotic power of

the LM(H), LM(CP), and LM(S) tests, using for the latter the asymptotic distributions

of the statistics under the alternative hypothesis.

Under model misspecification, there are some differences between the three tests

due to the type and the strength of the model misspecification. Under low local

dependence, and when the latent variable is generated from a mixture of normals or

from a moderate skew-normal, all tests have good performance in terms of false positive

rates and power for large sample sizes. Only the LM(CP) test shows inflated false

positive rates in some cases. For this reason, under mild model misspecification, we

discourage the use of the LM(CP) test due to its inflated false positive rates. When the

misspecification is high, the tests performance deteriorates. Indeed under high local

dependence the false positive rates for all tests are seriously inflated while, when the

latent variable is highly skewed, with 10 items and for small sample sizes, the LM(H)
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and LM(S) tests have very low power. Under high model misspecification, the LM(CP)

test has the highest power for small sample sizes. It is worth noting that the LM(S)

test, although derived under model misspecification, does not have better performance

than the LM(H) test, particularly in terms of power but it always produces valid

statistics. Under all types of misspecification considered, we do not find significant

differences in the tests’ behaviour between the case of measurement invariance on the

intercept and that on the intercept and slope, both in single and multiple parameter

hypothesis testing.

The simulation study highlights that there are small numerical differences between

the asymptotic power, computed through the approximation method for the

non-centrality parameter, and the empirical power. However, the results given by the

two procedures are coherent and the asymptotic power can be a valid alternative to

obtain the power of a test, since it allows us to reduced the time complexity compared

to the empirical power.

Concerning the GS(J) test, it is never superior to the other tests and, due to its

high computational cost, we do not recommend the use of this test to assess

measurement invariance under model misspecification.

Consistently with the simulation results, in the real data analysis the LM(CP)

test has the highest power to detect item measurement non-invariance under high

misspecification of the latent variable distribution. The bootstrap hypothesis testing

procedure turns out to be a good instrument under model misspecification. Indeed, it

helps to make a clearer decision on the acceptance or rejection of the null hypothesis

when the asymptotic tests provide contradictory results.

For further studies on the performance of the LM tests under model

misspecification, different types of estimation methods could be considered. Moreover,

we found that when data are generated assuming a skew-normal distribution for the

latent variable, parameter estimates are seriously biased with respect to the true

parameters’ values. Further research should be devoted to exploring misspecified models

where the parameter estimates are consistent with respect to the true parameter values.
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In these cases, the LM tests should have a better performance.
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Table 1

False positive rates of the LM(H), LM(CP), and LM(S) tests under scenarios A, B and

C, p = 10, n = 200, 500, 1000, 5000

σ2
u = 0.25 σ2

u = 1 σ2
u = 2.25

SC p LD n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
A 10 20% 200 0.05 0.066 0.052 0.044 0.066 0.034 0.044 0.082 0.052

500 0.072 0.08 0.074 0.072 0.084 0.078 0.086 0.104 0.088
1000 0.064 0.076 0.07 0.05 0.054 0.052 0.09 0.112 0.104
5000 0.046 0.05 0.048 0.092 0.098 0.094 0.23 0.246 0.246

50% 200 0.042 0.078 0.044 0.044 0.08 0.052 0.092 0.168 0.112
500 0.072 0.082 0.074 0.116 0.148 0.134 0.256 0.298 0.282
1000 0.076 0.08 0.072 0.152 0.184 0.17 0.412 0.458 0.446

20 20% 200 0.04 0.094 0.05 0.056 0.09 0.056 0.06 0.118 0.068
500 0.044 0.06 0.048 0.058 0.078 0.07 0.092 0.108 0.096
1000 0.046 0.054 0.052 0.076 0.088 0.078 0.152 0.174 0.162

50% 200 0.052 0.11 0.06 0.074 0.13 0.088 0.15 0.242 0.178
500 0.052 0.076 0.058 0.132 0.168 0.148 0.334 0.388 0.358
1000 0.054 0.07 0.064 0.188 0.224 0.212 0.58 0.622 0.604

B 10 20% 200 0.1 0.122 0.052 0.092 0.106 0.036 0.074 0.112 0.044
500 0.062 0.07 0.042 0.066 0.082 0.054 0.076 0.088 0.058
1000 0.064 0.064 0.048 0.046 0.066 0.05 0.094 0.094 0.086

50% 200 0.062 0.124 0.036 0.11 0.190 0.078 0.394 0.386 0.148
500 0.05 0.092 0.044 0.236 0.298 0.226 0.796 0.71 0.61
1000 0.068 0.096 0.08 0.492 0.456 0.426 0.978 0.954 0.942

20 20% 200 0.03 0.162 0.032 0.06 0.194 0.05 0.082 0.208 0.068
500 0.048 0.074 0.048 0.06 0.09 0.056 0.144 0.114 0.08
1000 0.04 0.054 0.046 0.082 0.084 0.066 0.246 0.16 0.132

50% 200 0.036 0.178 0.04 0.11 0.26 0.098 0.288 0.442 0.214
500 0.058 0.096 0.066 0.206 0.244 0.18 0.648 0.608 0.518
1000 0.064 0.096 0.072 0.418 0.384 0.34 0.946 0.916 0.886

C 10 20% 200 0.06 0.104 0.04 0.058 0.094 0.046 0.066 0.112 0.046
500 0.068 0.092 0.068 0.056 0.08 0.054 0.06 0.118 0.08
1000 0.064 0.068 0.056 0.042 0.06 0.052 0.086 0.128 0.112

50% 200 0.062 0.102 0.036 0.056 0.122 0.05 0.094 0.214 0.086
500 0.062 0.086 0.062 0.084 0.14 0.098 0.2 0.278 0.22
1000 0.058 0.08 0.068 0.11 0.154 0.142 0.34 0.398 0.364

20 20% 200 0.056 0.156 0.052 0.056 0.138 0.06 0.062 0.172 0.066
500 0.072 0.092 0.07 0.05 0.098 0.074 0.06 0.11 0.07
1000 0.048 0.068 0.052 0.06 0.09 0.072 0.122 0.17 0.146

50% 200 0.064 0.16 0.058 0.052 0.17 0.068 0.124 0.286 0.146
500 0.064 0.086 0.062 0.112 0.172 0.112 0.256 0.36 0.284
1000 0.064 0.078 0.07 0.132 0.172 0.156 0.494 0.538 0.52

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval
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Table 2

Empirical power (EP) and asymptotic power (AP) of the LM(H), LM(CP), and LM(S)

tests under scenario D, p = 10, 20, n = 200, 500, 1000, 5000

σ2
u = 0.25 σ2

u = 1 σ2
u = 2.25

SC p LD n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
D 10 20% 200 EP 0.308 0.398 0.32 0.38 0.452 0.388 0.484 0.55 0.494

AP 0.459 0.506 0.485 0.473 0.514 0.493 0.543 0.584 0.562

500 EP 0.702 0.724 0.71 0.776 0.806 0.798 0.864 0.878 0.872
AP 0.836 0.877 0.859 0.849 0.884 0.867 0.905 0.930 0.917

1000 EP 0.936 0.942 0.938 0.97 0.974 0.974 0.994 0.994 0.994
AP 0.985 0.993 0.990 0.988 0.994 0.991 0.996 0.998 0.997

5000 EP 1 1 1 1 1 1 1 1 1
AP 1 1 1 1 1 1 1 1 1

50% 200 EP 0.324 0.44 0.356 0.49 0.57 0.516 0.637 0.706 0.624
AP 0.497 0.552 0.527 0.586 0.649 0.621 0.723 0.777 0.739

500 EP 0.752 0.774 0.758 0.888 0.898 0.89 0.956 0.96 0.956
AP 0.870 0.911 0.893 0.931 0.959 0.948 0.981 0.990 0.984

1000 EP 0.952 0.956 0.952 0.992 0.994 0.992 1 1 1
AP 0.992 0.997 0.995 0.998 0.999 0.999 1 1 1

20 20% 200 EP 0.382 0.528 0.392 0.484 0.606 0.484 0.574 0.66 0.582
AP 0.473 0.506 0.492 0.523 0.557 0.542 0.570 0.603 0.588

500 EP 0.824 0.858 0.83 0.886 0.910 0.889 0.94 0.946 0.936
AP 0.849 0.877 0.866 0.891 0.914 0.904 0.922 0.939 0.932

1000 EP 0.982 0.986 0.982 0.994 0.994 0.994 1 1 1
AP 0.988 0.993 0.991 0.995 0.997 0.996 0.997 0.998 0.998

50% 200 EP 0.416 0.558 0.42 0.59 0.68 0.592 0.74 0.832 0.742
AP 0.497 0.531 0.517 0.624 0.668 0.649 0.752 0.794 0.772

500 EP 0.844 0.866 0.846 0.962 0.97 0.964 0.992 0.994 0.992
AP 0.870 0.896 0.886 0.949 0.966 0.959 0.986 0.992 0.989

1000 EP 0.992 0.994 0.994 1 1 1 1 1 1
AP 0.992 0.995 0.994 0.999 1 0.999 1 1 1
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Table 3

Empirical power of the LM(H), LM(CP), and LM(S) tests under scenarios E and F ,

p = 10, 20, n = 200, 500, 1000, 5000

σ2
u = 0.25 σ2

u = 1 σ2
u = 2.25

SC p LD n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
E 10 20% 200 0.449 0.58 0.37 0.502 0.606 0.412 0.538 0.624 0.432

500 0.9 0.926 0.902 0.934 0.948 0.928 0.966 0.974 0.958
1000 0.998 1 1 0.996 0.998 0.998 0.998 1 0.998

50% 200 0.518 0.606 0.364 0.730 0.716 0.372 0.858 0.779 0.3
500 0.948 0.954 0.926 0.994 0.984 0.968 0.998 0.998 0.978
1000 1 1 0.998 1 1 1 1 1 1

20 20% 200 0.742 0.876 0.722 0.802 0.856 0.692 0.834 0.866 0.722
500 0.994 0.996 0.994 1 0.998 0.994 1 1 0.994
1000 1 1 1 1 1 1 1 1 1

50% 200 0.814 0.906 0.966 0.9 0.934 0.818 0.966 0.962 0.894
500 1 1 0.998 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1

F 10 20% 200 0.660 0.632 0.416 0.674 0.662 0.486 0.743 0.758 0.598
500 0.957 0.946 0.898 0.978 0.976 0.944 0.992 0.99 0.98
1000 0.998 0.998 0.998 1 1 1 1 1 1

50% 200 0.637 0.61 0.388 0.641 0.636 0.398 0.662 0.617 0.381
500 0.945 0.932 0.902 0.951 0.94 0.91 0.940 0.926 0.894
1000 0.998 0.998 0.996 1 0.998 0.998 1 1 1

20 20% 200 0.807 0.848 0.666 0.860 0.888 0.756 0.896 0.91 0.802
500 0.992 0.996 0.982 0.996 0.996 0.996 1 1 0.998
1000 1 1 1 1 1 1 1 1 1

50% 200 0.803 0.844 0.664 0.852 0.872 0.696 0.823 0.862 0.682
500 0.992 0.996 0.984 0.996 0.996 0.992 0.991 0.996 0.99
1000 1 1 1 1 1 1 1 1 1
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Table 4

False positive rates of the LM(H), LM(CP), and LM(S) tests under scenarios A, B and

C, p = 10, 20, n = 200, 500, 1000

ε ∼ 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) ε ∼ SN(1) ε ∼ SN(3)
SC p n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
A 10 200 0.048 0.066 0.042 0.046 0.076 0.024 0.089 0.132 0.008

500 0.046 0.052 0.04 0.05 0.066 0.042 0.076 0.07 0.022
1000 0.048 0.052 0.05 0.06 0.062 0.056 0.06 0.058 0.042

20 200 0.054 0.082 0.056 0.054 0.116 0.044 0.06 0.112 0.026
500 0.05 0.058 0.05 0.054 0.066 0.058 0.056 0.07 0.044
1000 0.042 0.04 0.038 0.052 0.07 0.066 0.054 0.06 0.054

B 10 200 0.06 0.10 0.046 0.134 0.156 0.016 0.198 0.242 0.002
500 0.058 0.066 0.048 0.112 0.09 0.032 0.195 0.082 0.004
1000 0.066 0.066 0.058 0.086 0.06 0.042 0.196 0.066 0.002

20 200 0.058 0.140 0.042 0.066 0.222 0.04 0.119 0.293 0.002
500 0.044 0.064 0.034 0.056 0.102 0.044 0.066 0.114 0.016
1000 0.064 0.076 0.054 0.042 0.064 0.05 0.072 0.09 0.042

C 10 200 0.07 0.118 0.048 0.065 0.164 0.026 0.133 0.216 0.012
500 0.066 0.072 0.036 0.05 0.078 0.042 0.075 0.092 0.032
1000 0.062 0.068 0.056 0.066 0.068 0.052 0.076 0.084 0.026

20 200 0.076 0.154 0.046 0.062 0.218 0.042 0.087 0.235 0.02
500 0.05 0.094 0.044 0.044 0.084 0.046 0.046 0.09 0.03
1000 0.068 0.084 0.056 0.044 0.064 0.042 0.07 0.098 0.048

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval

Table 5

Empirical power (EP) and asymptotic power (AP) of the LM(H), LM(CP), and LM(S)

tests under scenario D, p = 10, 20, n = 200, 500, 1000

ε ∼ 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) ε ∼ SN(1) ε ∼ SN(3)
SC p n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
D 10 200 EP 0.316 0.396 0.324 0.195 0.28 0.15 0.129 0.186 0.03

AP 0.425 0.459 0.443 0.307 0.326 0.301 0.226 0.208 0.170

500 EP 0.684 0.71 0.7 0.424 0.462 0.406 0.235 0.244 0.094
AP 0.772 0.799 0.835 0.632 0.664 0.623 0.480 0.440 0.354

1000 EP 0.95 0.958 0.952 0.748 0.762 0.75 0.406 0.402 0.328
AP 0.977 0.986 0.982 0.902 0.921 0.895 0.771 0.725 0.611

20 200 EP 0.38 0.488 0.382 0.292 0.414 0.282 0.197 0.299 0.092
AP 0.385 0.400 0.392 0.397 0.421 0.391 0.232 0.237 0.218

500 EP 0.76 0.804 0.768 0.596 0.64 0.586 0.406 0.464 0.354
AP 0.751 0.770 0.759 0.766 0.794 0.759 0.492 0.502 0.461

1000 EP 0.98 0.98 0.978 0.902 0.906 0.898 0.662 0.692 0.644
AP 0.961 0.968 0.965 0.967 0.976 0.964 0.783 0.794 0.749
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Table 6

Empirical power of the LM(H), LM(CP), and LM(S) tests under scenarios E and F ,

p = 10, 20, n = 200, 500, 1000

ε ∼ 0.3N(−1.5, 0.2) + 0.7N(1, 0.4) ε ∼ SN(1) ε ∼ SN(3)
SC p n LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S) LM(H) LM(CP) LM(S)
E 10 200 0.516 0.614 0.402 0.218 0.446 0.124 0.100 0.313 0.02

500 0.926 0.93 0.91 0.627 0.756 0.632 0.347 0.408 0.09
1000 0.998 0.998 0.998 0.946 0.972 0.962 0.642 0.7 0.312

20 200 0.674 0.853 0.646 0.524 0.782 0.456 0.385 0.642 0.076
500 0.992 0.996 0.99 0.946 0.968 0.946 0.739 0.81 0.488
1000 1 1 1 1 1 1 0.974 0.98 0.954

F 10 200 0.588 0.547 0.318 0.356 0.484 0.188 0.223 0.462 0.158
500 0.916 0.89 0.838 0.834 0.844 0.722 0.585 0.772 0.532
1000 0.99 0.988 0.988 0.974 0.982 0.972 0.867 0.966 0.882

20 200 0.449 0.48 0.174 0.713 0.787 0.52 0.608 0.783 0.434
500 0.826 0.784 0.7 0.988 0.986 0.97 0.921 0.984 0.952
1000 0.978 0.97 0.952 1 1 1 0.958 1 1

Table 7

Type I error/ false positive rate of the GS(J), LM(H), LM(CP), and LM(S) tests under

scenario A, p = 10, n = 200, 500, 1000

Data generating model SC p n GS(J) LM(H) LM(CP) LM(S)
2-PL A 10 200 0.042 0.048 0.064 0.046

500 0.06 0.06 0.072 0.06
1000 0.062 0.062 0.062 0.062

(15) A 10 200 0.034 0.042 0.054 0.034
500 0.056 0.058 0.064 0.056
1000 0.056 0.058 0.064 0.058

(17) A 10 200 0.036 0.044 0.072 0.036
500 0.044 0.048 0.058 0.044
1000 0.048 0.052 0.056 0.048

Note 1: Values in boldface indicate that the nominal level α is not included in their confidence interval
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Table 8

Empirical power of the GS(J), LM(H), LM(CP), and LM(S) tests under scenario A,

p = 10, n = 200, 500, 1000

Data generating model SC p γ1j n GS(J) LM(H) LM(CP) LM(S)
2-PL A 10 0.5 200 0.23 0.292 0.296 0.238

500 0.488 0.53 0.52 0.494
1000 0.754 0.778 0.772 0.758

2 200 0.962 0.98 0.982 0.962
500 1 1 1 1
1000 1 1 1 1

(15) A 10 0.5 200 0.176 0.236 0.234 0.186
500 0.394 0.434 0.422 0.396
1000 0.67 0.686 0.676 0.67

2 200 0.956 0.978 0.978 0.962
500 1 1 1 1
1000 1 1 1 1

(17) A 10 0.5 200 0.11 0.200 0.196 0.13
500 0.344 0.414 0.392 0.344
1000 0.62 0.678 0.634 0.622

2 200 0.634 0.893 0.903 0.732
500 0.996 1 0.998 0.996
1000 1 1 1 1

Table 9

Theoretical distributions (TD) and bootstrap hypothesis testing (BH) p-values of the

LM(H), LM(CP), and LM(S) tests for measurement invariance on the item intercept

and slope

Parameter tested Item Method LM(H) LM(CP) LM(S)
γ1j∗ 1 TD 0.387 0.390 0.391

BH 0.397 0.404 0.398

2 TD 0.107 0.082 0.097
BH 0.114 0.102 0.105

3 TD - 0.014 0.059
BH - 0.023 0.020

4 TD 0.78 0.795 0.801
BH 0.800 0.811 0.811

γ2j∗ 1 TD 0.399 0.351 0.353
BH 0.393 0.346 0.337

2 TD 0.116 0.112 0.131
BH 0.124 0.118 0.114

3 TD 0.048 0.038 0.098
BH 0.101 0.049 0.031

4 TD 0.050 0.118 0.223
BH 0.083 0.163 0.172

Note 1: Values in boldface indicate p-values less than the nominal level α


