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A B S T R A C T 

We present a sample of 16 likely strong gravitational lenses identified in the VST Optical Imaging of the CDFS and ES1 fields 
(VOICE surv e y) using convolutional neural networks (CNNs). We train two different CNNs on composite images produced by 

superimposing simulated gravitational arcs on real Luminous Red Galaxies observed in VOICE. Specifically, the first CNN is 
trained on single-band images and more easily identifies systems with large Einstein radii, while the second one, trained on 

composite RGB images, is more accurate in retrieving systems with smaller Einstein radii. We apply both networks to real data 
from the VOICE surv e y, taking advantage of the high limiting magnitude (26.1 in the r band) and low PSF FWHM (0.8 arcsec 
in the r band) of this deep surv e y. We analyse ∼21 200 images with mag r < 21.5, identifying 257 lens candidates. To retrieve
a high-confidence sample and to assess the accuracy of our technique, nine of the authors perform a visual inspection. Roughly 

75 per cent of the systems are classified as likely lenses by at least one of the authors. Finally, we assemble the LIVE sample 
(Lenses In VoicE) composed by the 16 systems passing the chosen grading threshold. Three of these candidates show likely 

lensing features when observed by the Hubble Space Telescope . This work represents a further confirmation of the ability of 
CNNs to inspect large samples of galaxies searching for gravitational lenses. These algorithms will be crucial to exploit the full 
scientific potential of forthcoming surv e ys with the Euclid satellite and the Vera Rubin Observatory . 

Key words: gravitational lensing: strong – galaxies: elliptical and lenticular, cD. 
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 I N T RO D U C T I O N  

ravitational lenses are astrophysical systems created when the
pace–time warp around foreground astrophysical objects (the
enses) deflects light rays from distant background sources. In the
resence of a massive object (e.g. a galaxy or a galaxy cluster),
ne defines strong gravitational lensing that produces multiple
mages of a distant source (when the source is a point-like object)
r gravitational arcs (when the background is an extended object,
uch as high- z galaxy), as predicted by Zwicky ( 1937 ). The main
bservables of strong lensing (i.e. position and shape of the lensed
E-mail: fabrizio.gentile3@unibo.it (FG); gio vanni.co vone@unina.it (GC)
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mages) strongly rely on two factors: the angular diameter distances
n volving the observer , lens, and source, and the mass distribution
baryons plus dark matter) of the lens (Schneider, Ehlers & Falco
992 ; Bartelmann 2010 ). For these reasons, strong gravitational
ensing is suitable for a wide range of astrophysical and cosmological
tudies, among which the estimation of the Hubble constant (see
.g. Refsdal 1964 ; Wong et al. 2020 ) and the measure of the dark
atter fraction in early-type galaxies (e.g. Treu & Koopmans 2004 ;
ovone et al. 2009 ; Tortora et al. 2010 ; Auger et al. 2010b ; Spiniello
t al. 2011 ). Strong lensing has also been used to constrain the
nitial mass function in early-type galaxies (e.g. Treu et al. 2010 ;
uger et al. 2010a ; Barnab ̀e et al. 2013 ; Sonnenfeld et al. 2019 ),

o identify dark matter substructures (e.g. Mao & Schneider 1998 ;
alal & Kochanek 2002 ; Koopmans 2005 ; Vegetti et al. 2014 ), and
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o constrain cosmological models (e.g. Chae 2003 ; Cao et al. 2012 ).
or a more detailed re vie w of strong lensing applications, please
efer to Treu ( 2010 ) and Blandford & Narayan ( 1992 ). All these
nalyses, ho we ver, require large samples of observed and modelled 
trong lenses. Unfortunately, due to the limited cross-section, strong 
ensing is a rare phenomenon (Schneider, Ehlers & Falco 1992 ). 
raditionally, visual inspection used to be the main approach to lens 
nding (see e.g. Le Fevre & Hammer 1988 ; Sygnet et al. 2010 ),
ften preceded by a spectroscopic or photometric selection of the 
ost promising candidates (e.g. Browne et al. 2003 ; Bolton et al.

006 ; Faure et al. 2008 ). Ho we ver, next-generation surveys with
orthcoming facilities such as the Euclid satellite (Laureijs et al. 
011 ), the Vera Rubin Observatory (LSST Science Collaboration 
t al. 2009 ), and the Chinese Space Station (Gong et al. 2019 ) are
 xpected to retriev e ∼10 5 strong lenses in ∼10 9 observ ed galaxies
Collett 2015 ). The high number of strong lenses identified in these
urv e ys will allow new statistical studies about the strong lensing
henomenon (see e.g. Oguri, Rusu & Falco 2014 ; Sonnenfeld & 

autun 2021 ). A complete re vie w of the possible applications of large
amples of strong lenses can be found in the White Papers provided
y the LSST collaboration (LSST Science Collaboration et al. 2009 ) 
nd the Euclid Collaboration (Bergamini et al. in preparation) 

It is then clear that we need more efficient methods to analyse
he large amounts of data produced by these facilities, reducing the 
eed for visual inspection (a time-consuming procedure and prone to 
ultiple biases). In the last years, several alternative methods have 

een developed. These spanned from crowd science (e.g. Marshall 
t al. 2016 ) to automated source extraction (e.g. More et al. 2012 ).
mong these, machine learning-based algorithms appeared to be the 
ost efficient and reliable (see, e.g. the results of the first strong

ens finding challenge ; Metcalf et al. 2019 ). Convolutional neural 
etworks (CNNs; LeCun et al. 1998 ; LeCun, Bengio & Hinton 
015 ) represent a special class of these algorithms. These networks 
re designed to resemble animal and human visual cortex and are 
urrently the state of the art in image recognition and classification 
see e.g. Russako vsk y et al. 2015 ). CNN-based lens-finders have
lready been employed to search for g alaxy–g alaxy strong lenses in
ev eral wide sk y surv e ys such as the Kilo-Degree Survey (KiDS;
etrillo et al. 2017 , 2019a , b ; Li et al. 2020 , 2021 ), the Dark
nergy Survey (DES; Jacobs et al. 2019a , b ), the Pan-STARRS survey

Canameras et al. 2020 ), the DESI survey (Huang et al. 2020 ), and
he Canada–France–Hawaii Telescope Legacy Survey (CFHTLS; 
acobs et al. 2017 ). 

While a large amount of work has been done in analysing wide
nd shallow surv e ys, little interest has been devoted to smaller and
eeper surv e ys. Surv e ys with longer e xposure times and fainter
imiting magnitudes are expected to retrieve more easily lenses with 
aint lensing features, increasing the number of identified strong 
enses per square degree (Collett 2015 ). The samples of systems
etrieved in these deep surv e ys will hav e higher mean redshifts (for
oth lenses and lensed sources). This will allow several applications 
o be extended to higher redshifts (see e.g. Treu & Koopmans 2004 ;
 oopmans 2005 ; T reu et al. 2010 ; Vegetti et al. 2014 ). Both the Euclid

atellite and the Vera Rubin Observatory will have, in fact, a deep
urv e y besides their wide surv e ys (LSST Science Collaboration et al.
009 ; Laureijs et al. 2011 ). Testing machine learning techniques on
ata from deep surv e ys is therefore crucial to exploit the full scientific
otential of these forthcoming facilities. 
In this paper, we employ the two CNNs developed in Petrillo et al.

 2017 , 2019a ) to search for strong gravitational lenses in the VST
ptical Imaging of the CDFS and ES1 fields (VOICE surv e y; Vaccari

t al. 2016 ). Both netw orks were already successfully emplo yed to
earch for gravitational lenses in the KiDS surv e y (Petrillo et al. 2017 ,
019a , b ) and in the Fornax Deep Survey (FDS; see the preliminary
esults in Cantiello et al. 2020 ). Applying these CNNs to a smaller but
eeper surv e y than KiDS, as VOICE, which has a r -band limiting
agnitude at 5 σ for point-like sources of 26.1 (i.e. 1 mag deeper

han KiDS; Kuijken et al. 2019 ), we expect to identify a larger
umber of lenses per square degree than in the KiDS surv e y (Petrillo
t al. 2019b ; He et al. 2020 ; Li et al. 2020 ). Furthermore, since the
imiting magnitude of VOICE in the r band is comparable with the
ne expected for the Euclid deep surv e y ( ∼26.4 at 10 σ for extended
ources in the VIS band; Laureijs et al. 2011 ), our results will be
seful to predict the performances of machine learning algorithms 
ike CNNs on these future observations 

This paper is organized as follows. In Section 2, we briefly
ntroduce the VOICE surv e y and describe the data employed to train
he CNNs and to search for strong lenses. In Section 3, we describe
he two lens finding algorithms and the procedure followed to create
he training set. In Section 4, we assess the performances of the
NNs by applying the networks to a validation set. In Section 5,
e describe the application of the algorithms to real data from the
OICE surv e y. In Section 6, we present and analyse the LIVE sample
 Lenses In VoicE ), comparing its size and properties with the expected
umber of lenses estimated with LENSPOP (Collett 2015 ) and with
he results found by Petrillo et al. ( 2019b ). Finally, we summarize
ur conclusions in Section 7. 

 DATA  F RO M  T H E  VO IC E  SURVEY  

he VOICE surv e y (PIs: Gio vanni Co vone and Mattia Vaccari;
accari et al. 2016 ) is a deep optical surv e y performed with the
LT Survey Telescope (VST) during the INAF Guaranteed Time of 
bservation. The VST (Capaccioli & Schipani 2011 ) is a 2.6-m
ptical telescope located at the ESO Paranal Observatory (Chile). Its 
ain scientific instrument is a wide-field imager called OmegaCAM 

Kuijken 2011 ), which consists of a 32 CCDs grid, each made up
f 4k × 2k pixels, with a field of view of about 1 deg 2 and a pixel
ize of 0.214 arcsec pixel −1 . The VOICE survey, once completed,
ill observe in the four photometric bands ugri a sky area of
8 de g 2 ev enly split between the Chandr a Deep Field South (CDFS;
iacconi et al. 2001 ; Tozzi et al. 2001 ) and the European ISO Field
 (ES1; Oliver et al. 2000 ; Rowan-Robinson et al. 2004 ). Several
acilities already observed these regions, collecting data in different
avelengths from radio to X-rays, providing a unique set of ancillary
ata for these two fields (Vaccari et al. 2016 ). This paper focuses on a
.9 deg 2 area in the CDFS (RA: 3 h 32 m 32 s , Dec.: −27 ·48 

′ 
30 

′′ 
) whose

ST observations took place between 2011 and 2015 and are now
oncluded.

The surv e y observing strate gy consists of splitting each field in
our tiles of about 1 deg 2 . Each tile is observed several times (more
han 100 exposures were taken for the r- band observations, ∼50
or the other bands), reserving best observing conditions (lower 
eeing and darker moon phases) for the r- band imaging. Single
xposure times are 360 s for the r and g bands, and 400 s for
he i band, respectively. Since observations co v ered about four
ears, image quality is not constant throughout the exposures. The 
SF FWHM spans from 0.4 to 1.5 arcsec with a median value of
.85 arcsec. Images analysed in this work are obtained stacking 
elected exposures with PSF FWHM < 1.1 arcsec. The averaged PSF
WHMs in the final images are 0.8 arcsec for the r and i bands, and
.6 arcsec for the g band, respectively. The total exposure time of
he coadds in the r band spans from 11.3 to 14.2 h (Table 1 ). Such
ong exposure times allowed us to reach a 5 σ limiting magnitude for
MNRAS 510, 500–514 (2022) 
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Table 1. Total exposure times (in hours) of the four VOICE-CDFS fields in 
the three photometric bands gri selecting only the best exposures with PSF 
FWHM < 1.1 arcsec. 

g r i 

CDFS-1 2.4 12.0 6.3 
CDFS-2 2.8 11.3 3.7 
CDFS-3 2.3 14.2 6.0 
CDFS-4 2.4 12.5 6.1 

Mean seeing (arcsec) 0.6 0.8 0.8 
Limiting magnitude 25.4 26.1 25.2 

Note . The mean seeing and the mean limiting magnitude at 5 σ for point-like 
sources are reported in the last rows for each band (Section 2). 
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Figure 1. The g − J versus J − K diagram for the objects with correct 
photometry and SEXTRACTOR ’s MAG AUTO r < 21.5. The star/galaxy 
separation is performed trough the 2DPHOT SG index. In the highlighted 
area, there are the selected Luminous Red Galaxies. To generate this plot, 
we employ NIR photometry from the VIDEO surv e y (Jarvis et al. 2013 , 
Section 2.1). 
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oint-like sources of 26.1 in the r band, 25.4 in the g band, and 25.2
n the i band. These deep observations were used for weak-lensing
tudies (Fu et al. 2018 ; Liu et al. 2018 ), while the multi-epoch
maging of the CDFS allowed variability selection of supernovae
Cappellaro et al. 2015 ) and AGN (De Cicco et al. 2015 ; Poulain
t al. 2020 ). 

In this work, we use VOICE data to search for strong gravitational
enses in the CDFS. There are two main reasons why these data are
articularly suitable for this research. First, the faint limiting mag-
itude makes it easier to identify strong lensing features (which are
enerally faint). Secondly, the low value of the PSF FWHM makes
t possible to resolve lenses with small values of the Einstein Radius
i.e. the typical angular separation between arcs and deflectors) of
he order of the arcsecond. This kind of lenses is generally harder to
dentify, but is also the most common (Collett 2015 ). Furthermore,
he CDFS will be co v ered by the forthcoming LSST deep surv e y
LSST Science Collaboration et al. 2009 ), providing a multi-epoch,
igh-resolution follow-up for our lens candidates. Finally, VOICE
ata are similar to the data from the KiDS (Kuijken et al. 2019 ),
hich have been already analysed by the CNNs employed in this
ork (Petrillo et al. 2017 , 2019a , b ). This will allow an interesting

omparison (Section 6.2). 

.1 Sample selection 

he full VOICE catalogue contains 736 518 detected sources. Many
f these are stars and low-mass galaxies that have a negligible
trong lensing cross-section (Schneider et al. 1992 ). Furthermore,
pirals represent a small portion of the strong lenses population
 ∼20 per cent; M ̈oller, Kitzbichler & Natarajan 2007 ; Oguri &

arshall 2010 ) and, due to their morphology, are harder to identify
ince the spiral arms can easily be mistaken for strong lensing
eatures. Supplying these images to the CNN lens-finders could
roduce a highly contaminated candidate sample and increase
etwork confusion during the training. We thus select galaxies with
 higher probability of being strong lenses. Before operating any
ut in magnitude or colour, we cross-match the VOICE catalogue
ith ancillary data from the VIDEO surv e y (Jarvis et al. 2013 ),
btaining photometry in the two NIR photometric bands J and K .
e then remo v e from the VOICE catalogue all the objects with

orrupted photometry in the photometric bands griJK and exclude
tars employing the 2DPHOT SG index (La Barbera et al. 2008 ).
his index is particularly efficient in performing the star–galaxy
eparation, as can be seen in Fig. 1 . The full catalogue is thus reduced
o 172 316 objects. Then, we assemble two subsets as follows: 

(i) Bright galaxies sample : Lensing cross-section increases with
he square of the mass of a galaxy, and therefore with luminosity
NRAS 510, 500–514 (2022) 
Schneider et al. 1992 ). To select galaxies likely to be strong lenses,
e select all the objects with Kron-like magnitude MAG AUTO r
rovided by SEXTRACTOR (Bertin & Arnouts 1996 ) brighter than
1.5. The final BG sample consists of 21 216 galaxies. 
(ii) Luminous red galaxies sample : LRGs are thought to represent
ost of the strong lens population (Eisenstein et al. 2001 ; Oguri

t al. 2006 ). These galaxies are generally selected using the criteria
f Eisenstein et al. ( 2001 ). Ho we ver, such selection would limit our
ample to too few objects to successfully train the CNN. We thus
mploy a slightly modified version of the colour cut presented in
ortora et al. ( 2018 ). Starting from the BG sample ( r < 21.5), we
elect galaxies in the colour range, {
g − J > 2 . 6 
J − K > 0 . 2 

, 

hown in Fig. 1 . We choose this g − J threshold through a visual
nspection of the sample to qualitatively assess the fraction of blue
nd star-forming galaxies. The chosen threshold results to be higher
han the one adopted in Tortora et al. ( 2018 ). The final LRG sample
onsists of 3450 galaxies. 

 M E T H O D S  

n this section, we briefly introduce the CNNs employed to search
or strong gravitational lenses in the VOICE surv e y. We describe
he procedure followed to create the training set, to simulate mock
ravitational lenses, and to train the CNNs. 

.1 Convolutional neural networks 

rtificial neural networks (ANNs; e.g. LeCun et al. 1998 ) are among
he most popular supervised machine learning algorithms. Their
rchitecture reflects the natural neural networks, centre of animal
and human) learning process. ANNs look for the highly complex
elationship between input data (e.g. galaxy images) and the target
alue (e.g. the probability of being a strong gravitational lens).
ccording to the Universal Approximation Theorem (Hornik 1991 ),
NNs try to approximate this relationship applying several non-

inear functions to the input data. In classic ANNs, the input data
ass through different layers. Each layer is made up of multiple

art/stab3386_f1.eps
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eurons, each of which takes as input a vector x i from the previous
ayer and returns a scalar y given by 

 = f 

( 

N ∑
i= 0

x i · w i + b 

) 

. (1) 

he non-linear function f is called activation function , w i are free
arameters called weights , and b is the bias . During the training
hase, an ANN inspects labelled (i.e. pre-classified) examples and 
earns the classification scheme. Learning is achieved gradually 
djusting the weights w i and the bias b to minimize the difference
etween predicted and actual target value (Rumelhart, Hinton & 

illiams 1986 ). This difference is measured, for example, through 
 loss function such as binary cross-entropy (e.g. Goodfellow, 
engio & Courville 2016 ): 

 = −t log ( p) − (1 − t) log (1 − p) , (2) 

here t is the target value and p is the predicted one. Convolutional
eural networks (CNNs; e.g. LeCun, Bengio & Hinton 2015 ) are a
oteworthy subclass of ANNs. These algorithms use convolutional 
ernels to extract features, maintaining the 2D topology of input 
ata. Thanks to this property, CNNs are usually employed in 
mages classification problems where they can achie ve e ven higher 
ccuracy than humans (He et al. 2015a ; Russakovsky et al. 2015 ; see
etcalf et al. 2019 and Becker et al. 2021 for some astrophysical

xamples). 
In this work, we use the two CNNs developed in Petrillo et al.

 2017 , 2019a ) that implement a ResNet -like architecture 1 with four
esidual blocks of two convolutional layers (He et al. 2015b ). Further
etails on the architecture of the CNNs can be found in Petrillo et al.
 2019a ). The first CNN ( single-band CNN hereafter) takes as input
nly r- band images. We choose this photometric band because of its
etter image quality (see Section 2) that simplifies identifying strong 
ensing morphological features. The second CNN ( three-band CNN ) 
akes as input composite images obtained combining gri data trough 
he HUMVI opensource library 2 (Marshall et al. 2016 ). The three-band 
NN , analysing RGB images, can recognize gravitational lenses 

rough the colour gradient between the redder deflecting galaxy and 
he bluer alleged gravitational arc. 

Both CNNs take as input 101 × 101 pixels 2 stamps (equi v alent
o 20 × 20 arcsec 2 ) and give as output a single value p (the score ,
ereafter) in the range [0,1], related to the probability that the object
n the image is a strong gravitational lens (Saerens, Latinne & 

ecaestecker 2002 ). As already done in Petrillo et al. ( 2017 ), we
hoose the size of the stamp to be small enough to speed up
raining phase, to exclude environment galaxies that could confuse 
he network, but large enough to include the largest Einstein radius
xpected for g alaxy–g alaxy lensing (Collett 2015 ). The CNNs are
mplemented in PYTHON 3.7 using the opensource libraries KERAS 3 

Chollet et al. 2015 ) and TENSORFLOW 

4 (Abadi et al. 2015 ). Both
etworks minimize the binary cross-entropy (equation 2) using the 
DAM optimizer (Kingma & Ba 2014 ). 

.2 Creating the training set 

rom a machine learning perspective, identifying strong gravitational 
enses is a two-classes classification problem. We can success- 
 https:// github.com/CEnricoP/ cnn strong lensing 
 https:// github.com/drphilmarshall/ HumVI 
 https:// keras.io/ 
 https://www .tensorflow .org/

S

5

ully address such issue using ANNs through appropriate training. 
raining these algorithms requires feeding examples from the two 
lasses (i.e. lenses and non-lenses) to the ANNs. To successfully 
rain our CNNs (each having ∼10 7 free parameters to estimate) we
eed a vast pre-classified training set. However, strong gravitational 
ensing is a rare phenomenon. Currently, the Sloan Lens A CS Surve y
SLACS; Bolton et al. 2006 ) provides the largest catalogue of
onfirmed strong lenses comprising just 118 objects (Shu et al. 2017 ).
arger data bases (e.g. the MasterLens project 5 ) reach up to ∼700

enses, but many of them still require high-resolution follow-up or 
pectroscopic confirmation. Furthermore, all these samples do not 
o v er homogeneously the lensing parameter space, resulting thus 
nsuitable for training a CNN-based lens finder to detect all possible
trong lensing configurations. With a few exceptions (e.g. Huang 
t al. 2020 ), training this kind of classifiers requires strong lensing
imulations. 

.2.1 Simulating strong lenses 

o simulate strong gravitational lenses, we can follow two different 
trategies: We can simulate both deflectors and gravitational arcs 
e.g. Pourrahmani, Nayyeri & Cooray 2018 ; Metcalf et al. 2019 )
r we can simulate the arcs and superimpose them on real galaxy
mages (e.g. Petrillo et al. 2017 ; Li et al. 2020 ). In this work,
e follow the second strategy. By doing so, we obtain realistic

mages (Fig. 2 ) without having to simulate sky and instrument noise
or the nearby environment or line-of-sight structures around the 
ens galaxy. We produce simulations using the software described 
n Chatterjee ( 2019 ). We model the mass distribution of the lens
alaxies (deflectors) using a Singular Isothermal Ellipsoid model 
SIE; Kormann, Schneider & Bartelmann 1994 ; Gavazzi et al. 
007 ) with external shear (Keeton, Kochanek & Seljak 1997 ). The
arameters of the model are sampled in the range used in Petrillo
t al. ( 2019a , b ) and summarized in Table 2 . 

We choose a uniform sampling for the axial ratio, inclination, shear 
trength, and shear angle, while we employ logarithmic sampling for 
he Einstein radius. By doing so, we train our CNN to identify more
asily systems with small Einstein radii that are generally harder 
o detect but also more common (Collett 2015 ). We also simulate
ackground lensed galaxies: we use a S ́ersic brightness profile (S ́ersic
963 ) with parameters sampled from the range in Table 2 . Similarly,
e choose uniform sampling for the axial ratio, inclination, and 
 ̀ersic index, while we employ logarithmic sampling for ef fecti ve
adius. To add additional structures to the matter distribution, as in
etrillo et al. ( 2019a ), we add a Gaussian Random Field in the lens
lane (Hezaveh et al. 2016 ) and from one to five S ́ersic components in
he brightness distribution of the lensed source, to crudely mimic star-
orming regions (Chatterjee & Koopmans 2018 ). These perturbations 
ere shown to increase the accuracy of CNN-based lensfinders 

Petrillo et al. 2019a , b ) Further details on our simulation strategy
an be found in Petrillo et al. ( 2019a ) and Chatterjee ( 2019 ). 

.2.2 Positive training set 

or the single-band CNN , we produce mock strong lenses following
 slightly modified version of Petrillo et al. ( 2019a ) strategy: 

(i) We randomly select deflectors from the LRG sample (see
ection 2.1). 
 mast erlens.ast ro.utah.edu/

MNRAS 510, 500–514 (2022) 
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Figure 2. Examples of mock strong gravitational lenses simulated to train the three-band CNN . All images are created superimposing a simulated gravitational 
arc on a real LRG observed in the VOICE survey. All images have a 20-arcsec side. Further details in Section 3.2.1. 

Table 2. Range of parameters used to simulate mock gravitational arcs 
according to Petrillo et al. ( 2019a ). 

Parameter Range Units 

Lens (SIE) 
Einstein radius 1.0–5.0 (log) arcsec 
Axis ratio 0 to 3–1.0 –
Major-axis angle 0–180 degrees 
External shear 0–0.05 –
External shear angle 0–180 degrees 

Source (S ́ersic) 
Ef fecti ve Radius R e 0.2–0.6 (log) arcsec 
Axis ratio 0 to 3–1.0 –
Major-axis angle 0–180 degree 
S ́ersic Index 0.5–5.0 –

S ́ersic Blobs (1 up to 5) 
Ef fecti ve radius 1–10 R e arcsec 
Axis ratio 1.0 –
Major-axis angle 0 degrees 
S ́ersic Index 0.5–5.0 –

Note . We perform uniform sampling for all parameters except for Einstein 
radius and source ef fecti ve radius that are sampled logarithmically (Sec- 
tion 3.2.1). 
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(ii) We simulate 101 × 101 pixels 2 stamps of gravitational arcs
ith the same pixel scale as the VST. We convolve them with an

veraged PSF obtained by applying the PSFEX software (Bertin 2011 )
o the r -band VOICE tiles. Differently from Petrillo et al. ( 2019a ),
e directly simulate gravitational arcs during the training phase to

ncrease the number of strong lensing configuration examined by the
NN. 
(iii) We normalize gravitational arcs to the deflector maximum

rightness multiplied by an α-factor in the range [0.02,0.3]. This
actor accounts for the expected luminosity gradient between deflec-
or and arc. 

(iv) We coadd the two images, applying a square root stretching
o enhance lensing features, 

(v) Finally, we normalize all pixel values to the maximum bright-
ess in the image. 

We create images to supply to the three-band CNN through the
ame procedure, with a few differences: 

(i) We simulate three copies of each arc, one for each photometric
and. We convolve each arc with the corresponding averaged PSF. 
(ii) We ‘colour’ gravitational arcs using synthetic photometries

f late-type galaxies (LTG) from the COSMOS templates in the
EPHARE library (Arnouts et al. 1999 ). These are synthetic models
sed to estimate photometric redshifts of galaxies in the COSMOS
elds (Ilbert et al. 2006 ). The full library contains 31 templates in
NRAS 510, 500–514 (2022) 
otal, for elliptical/S0 galaxies (8 models), spirals (11 models), and
tar -b ursting galaxies (12 models). We select photometries of LTG
nd star -b ursting galaxies (template index > 19) and redshift them
o different values of z up to z = 3. We employ later-type templates
han Petrillo et al. ( 2019a ) to increase the colour gradient between
eflectors (i.e. LRGs) and lensed sources. This choice is shown to
ecrease the number of environment galaxies erroneously classified
s arcs. 

(iii) To homogeneously sample colour space and to account for
ossible errors in the photometry, we add a random term in the range
 − 0.1, 0.1] to LEPHARE magnitudes. We also add a colour-excess
erm A x = R x E ( B − V ) to account for extinction. In this relation, x
s the SDSS filter considered and R x factors are taken from Yuan,
iu & Xiang ( 2013 ). 
(iv) We combine the three images using the HUMVI opensource

ode (Marshall et al. 2016 ) that applies the Lupton’s algorithm
Lupton et al. 2004 ), performing a sin h stretching instead of a more
tandard square-root one. 

.2.3 Negative training set 

 good lens-finder is required to produce a pure candidate sample.
e thus need to teach the CNN how to recognize and exclude

ontaminants. Several studies (e.g. Petrillo et al. 2017 , 2019a , b ; Li
t al. 2020 ) reported how some objects (e.g. spirals, merging galaxies,
olar rings) can easily confuse CNN-based classifiers because of their
orphology and colour gradient. To limit such effects, we populate

ur ne gativ e training set ( ∼40 per cent of the full set) with the bluest
ources in the BG sample with g − J < 2.6 (i.e. the ones with a higher
robability of being spirals or star-forming galaxies). We populate the
emaining 60 per cent with other random galaxies in the BG sample
30 per cent) and LRGs from the homonymous sample (30 per cent).
s highlighted by Petrillo et al. ( 2017 , 2019a ), we cannot exclude

hat a few real lenses are present in our ne gativ e sample, but their
xpected low number (less then 1 in a 1000) should not strongly
ffect our training. 

.3 Training phase 

nce the training set has been created, we train our CNNs using
he mini-batc h stoc hastic gr adient descent technique. Each mini-
atch is made up of 64 images (32 strong gravitational lenses and
2 contaminants). Our CNNs minimize the binary cross-entropy
equation 2) using the ADAM optimizer (Kingma & Ba 2014 ) (see
ection 3.1). We initially set ADAM ’s learning rate to 10 −2 , gradually

owering it up to 10 −5 during the training phase to fine-tune the
eights. As done in He et al. ( 2015b ), we initialize the CNNs weights
 i following a normal distribution with μ = 0 and σ = 1/ n , where n is

art/stab3386_f2.eps
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Figure 3. Distribution of single-band CNN (panel a) and three-band CNN (panel b) scores for mock gravitational lenses and contaminants in the validation set. 
Further details are in Section 4. 
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he number of inputs of each unit. To increase the training set size and
o teach the CNNs rotational, scaling, and translational invariance, 
e employ data augmentation (Simard, Steinkraus & Platt 2003 ). 
his is a common strategy in machine learning, consisting of feeding 
everal copies of the same image to the CNNs. Each copy is 

(i) rotated by an angle between 0 ◦ and 360 ◦;
(ii) translated in the horizontal and vertical direction by N pixels,

ith N in the range [ −4, 4]; 
(iii) reflected on the vertical and horizontal axis with a 50 per cent

robability; 
(iv) rescaled by a factor in the range [1/1.1, 1.1].

We directly perform data augmentation during the training phase 
sing the opensource PYTHON library SCIKIT-IMAGE (van der Walt 
t al. 2014 ). Comparing to other analogous experiments, we employ 
 more limited-size training set. To prevent overfitting, we use cross-
alidation on the 25 per cent of the training set, constantly monitoring
alidation loss and accuracy. We stop the training when the validation 
ccuracy reaches its maximum at ∼ 90 per cent . The CNN performs 
 v erall ∼40 000 weights updates, examining ∼10 6 examples in total.

 TESTING  T H E  P E R F O R M A N C E  O F  T H E  

N N S  

efore applying the CNNs to real data searching for strong gravita- 
ional lenses, we need to assess their performances. We thus apply 
oth CNNs to a validation set made up of mock gravitational lenses
nd contaminants. We produce mock lenses following the same 
rocedure as discussed in Section 3.2.2, while we select contaminants 
hrough the same distribution as described in Section 3.2.3. Each 
NN assigns a score p between 0 and 1 to all images, related to the
robability of being a strong gravitational lens. We show the score 
istributions for mock lenses and contaminants, where the ground 
ruth is known, in Fig. 3 . An ideal classifier would assign p = 1 to
ll lenses and p = 0 to all contaminants. We thus need statistical
ndicators (i.e. ‘metrics’) to measure the difference between our lens 
nder and an ideal one. 

.1 Confusion matrix 

 confusion matrix is a table containing four values: true pos-
tive rate (TPR), false positive rate (FPR), true negative rate 
TNR), and false negative rate (FNR). They are defined as 
ollows: 

 P R = 

T P 

T P + F N 

, (3) 

 NR = 

T N 

T N + F P 

, (4) 

 P R = 

F P 

T N + F P 

= 1 − T NR, (5) 

 NR = 

F N 

F N + T P 

= 1 − T P R, (6) 

here FN, FP , TP , and TN are, respectively, the number of false
e gativ es, false positiv es, true positiv es, and true ne gativ es. All these
alues are computed once a threshold value ( p Th ) is chosen, and
onsidering all objects with p ≥ p Th as valid lens candidates. An
deal classifier would have TPR = TNR = 1 or, equi v alently, FNR
 FPR = 0 for all possible threshold values that are not exactly 0

r 1. Fig. 4 represents our CNN’s confusion matrices for different
alues of p Th . As expected, for both networks the fraction of false
ositives decreases towards higher p Th , while the fraction of false
e gativ es increases. F ollowing Petrillo et al. ( 2019a , b ), we choose
n intermediate threshold value of 0.8 to get a fair trade-off between
urity (i.e. a low number of false positives) and completeness 
i.e. a low number of false ne gativ es) for the resulting candidate
ample. 

.2 Recei v er operating characteristic 

 receiver oper ating c har acteristic curv e (or ROC curv e) is produced
omputing TPR and FPR for all possible threshold values and 
lotting them against each other. An ideal classifier would provide 
n ROC curve passing by the point (TPR = 1, FPR = 0), while
 random one would produce a ROC curve lying on the bisector
f the TPR–FPR plane. Fig. 5 represents our CNNs’ ROC curves.
o quantitively measure the performances of a classifier, we can 
ompute the AUROC ( Area under the ROC curve ) that is equal
o 1 for an ideal classifier and to 0.5 for an untrained one. Our
ingle-band CNN produces an AUROC = 0.98, while the three-band 
NN produces an AUROC = 0.96. Both metrics are similar to other
nalogous CNN-based lens finders (see, e.g. the results of the first
trong lens finding challenge ; Metcalf et al. 2019 ). 
MNRAS 510, 500–514 (2022) 
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Figure 4. Confusion matrices for the single-band CNN (top row) and three-band CNN (bottom row). All the metrics are computed applying the lens-finders to 
the validation set and choosing different values of the threshold. Analysing the different matrices, we choose a threshold value of 0.8 (Section 4). 

Figure 5. ROC curve for the two CNNs built during cross-validation. The 
plot is in a semi-logarithmic scale to better show low FPR values and to show 

the little difference between the two curves. On the plot are reported different 
values of the threshold value p Tresh (Section 4.2). 
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.3 F β

e employ a third metric called F β (Baeza-Yates & Ribeiro-Neto
000 ). This metric, commonly employed to measure performances
f classification algorithms, was also used to rank the entries in the
econd edition of the strong lens finding challenge (Metcalf et al.
n preparation). It is defined as a weighted geometric average of the
recision and recall of the CNN: 

 β = (1 + β2 ) 
P × R 

β2 P + R 

, (7) 

here 

 = precision = 

T P 

T P + F P 

, (8) 
NRAS 510, 500–514 (2022) 
 = recall = 

T P 

T P + F N 

= T P R. (9) 

arying the β-factor, we can differently weight precision and recall.
ince in real data non-lenses are much more abundant than lenses,
e prefer having a highly pure candidate sample rather than a highly

omplete one. We thus use a β2 = 0.001, as in Metcalf et al. (in
reparation). An ideal classifier would have a maximum F β = 1. Our
ingle-band CNN reached a maximum F β = 0.9994, while the three-
and CNN reached a maximum F β = 0.9993. As before, these values
re similar to other analogous CNN-based lens finders (Metcalf et al.
n preparation). 

.4 Further Analyses 

t is interesting to measure performances as a function of lens
arameters such as the α-factor (which describes the brightness of
he source versus the lens; see Section 3.2.2) or Einstein radius.
ig. 6 shows our results. As expected, the FNR decreases towards

arger α-factors and thus towards gravitational arcs with higher
rightness. It is worth noting that the two CNNs react differently
o different Einstein radii. Lenses with smaller Einstein radius often
av e unresolv ed gravitational arcs. These are harder to detect using
nly r- band images. On the contrary, the three-band CNN can more
asily recognize the colour gradient between the deflector and the
ravitational arc, producing a lower FNR. Conversely, lenses with
arger Einstein radii more easily confuse the three-band CNN : Distant
ravitational arcs are often mistaken for blue galaxies in the lens
nvironment. Single-band CNN , thanks to better image quality, can
ore easily detect the arc because of its morphology. 

.5 Final considerations 

nalysing the different metrics, we conclude that the two CNNs
re complementary (an analogous result was found by Petrillo et al.

art/stab3386_f4.eps
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Figure 6. FNR as a function of the luminosity ratio between arc and deflector (panel a) and as a function of Einstein radius (panel b). FNRs are computed 
applying both CNNs to the validation set (Section 4.4). 
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019a , b ). In particular, the single-band CNN performs slightly better
hen global metrics (i.e. the ROC curve and the F β index) are

onsidered. This result can be quite counter-intuitive, since the colour 
nformation is generally useful for a human inspector in recognizing 
 gravitational lens. Ho we ver, analysing the confusion matrices 
Fig. 4 ), it can be seen how the lower performances of the three-
and CNN can be explained by the larger fraction of false positives
eported by the network. As discussed in the previous paragraph, 
lue galaxies in the environment of non-lensing objects can be easily 
istaken for gravitational arcs. Never the less, the three-band CNN is

hown to produce a more complete candidate sample for the chosen 
hreshold score (i.e. a lower number of real lenses wrongly classified 
s contaminants, see Fig. 4 ). Finally, analysing Fig. 6 (b), it can be
een that the three-band CNN attains lower FNR for smaller Einstein
adii (which are the most common; see Collett 2015 ). We thus decide
o use both CNNs to search for strong gravitational lenses in real data
roduced by the VOICE surv e y. 

 RESULTS  

aving assessed the performances of the two CNNs, we apply both 
lgorithms to real data from the VOICE surv e y. This step has a
ouble importance. On one hand, it allows us to assemble a sample
f likely strong gravitational lenses in the CDFS. On the other hand,
t represents a further confirmation of the ability of the CNNs to
dentify strong gravitational lenses in real astronomical images. Since 
e trained the networks only on simulated arcs, applying the CNNs

o real data helps us to exclude any possible bias in the simulation
rocedure. 

.1 Application to real data 

ifferently from analogous experiments (e.g. Petrillo et al. 2019a , b ),
pplying the CNNs to a smaller surv e y, we are able to search for
trong lenses in a larger fraction of observed galaxies than just in the
RG sample (Li et al. 2020 ). We analyse all the ∼21 200 galaxies in

he Bright Galaxies Sample (see Section 2.1) passing their 101x101 
ixels 2 stamps in the gri photometric bands, or only in r , to the
wo CNNs. Both algorithms give as output two values ( p 1 for the
ingle-band CNN and p 3 for the three-band CNN ) in the range [0,1].
hoosing a threshold value p Th = 0.8 (Section 4.1) and considering 
ll the images with p > p Th as lens candidates, we assemble two
amples: the single-band lens-candidate sample (103 systems with 
 1 > 0.8) and the three-band lens-candidate sample (161 systems 
ith p 3 > 0.8), which we finally join in a combined candidate sample

 CNNs sample hereafter). The full CNNs’ sample consists of 257
alaxies with at least one score abo v e the chosen threshold (7 of
hich have both scores above the threshold), ∼ 1 per cent of the full
G sample. 

.2 Visual Inspection 

e do not expect the CNNs to retrieve a completely pure candidate
ample (see Section 4 and Fig. 4 ). We expect slightly lower perfor-
ances passing from the validation set (made up of simulations) to

eal data. To further clean the final sample from false positives, we
erform a visual inspection of the images retrieved by the CNNs.
ine of the authors (the graders hereafter) inspected all the 257

mages in the CNNs’ sample . Each grader could choose three different
uality values for each image: 

(i) A : sure lens ;
(ii) B : maybe lens ;
(iii) C : not lens.

To combine the different rankings, as in Petrillo et al. ( 2017 ,
019a , b ), we assign a numerical value to each grading (10 to A, 4 to B,
nd 0 to C). This choice allows us to weight more the sure lens grade
han the maybe lens when combining the rankings. Although a visual
nspection is still necessary to identify false positives, it is still prone
o several biases. The first is the subjectivity of the visual inspection:
s in other studies (see e.g. Petrillo et al. 2017 , 2019a , b ), also in our

ample, there are objects graded from different authors as ‘ sure lens ’
nd ‘ no lens ’. To mitigate the effects of subjectivity, we involved
ore than one grader and choose a threshold value smaller than 90

i.e. nine classifications as ‘ sure lens ’). In doing so, we include in
he final sample also candidates without unanimous ranking as ‘ sure
ens ’. The second possible bias is the inter-dependence of the graders.
o mitigate this effect, all graders independently rank the images 
sing a specially-designed grading software. This also accelerates 
he inspection phase and a v oids any accuracy loss due to a time-
onsuming, tedious procedure. The results of the visual inspection 
re summarized in Fig. 7 , where the sum of the visual scores of all
he graders is considered for each candidate. 

At the end of the visual inspection, 194 of the 257 images
 ∼75 per cent) attain at least one classification as ‘ maybe lens ’.
mong the most common objects with unanimous classification as
MNRAS 510, 500–514 (2022) 
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Figure 7. Results of the visual inspection performed on the 257 candidates 
accepted by the CNNs. We choose a threshold score of 36 to consider a system 

as a lens candidate. Further details are in Section 5.2. 
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M

 not lens ’ there are spirals, merging galaxies, polar rings, and galaxies
ith close companions (see some examples in Fig. 8 ). Although the
umber of false positives is low in our candidate sample, these objects
ould represent a problem for the future applications of the CNNs.
ncluding a higher percentage of these objects in the ne gativ e training
et could impro v e the quality of future trainings. 

Analysing the results, we decide to accept as lens candidates
bjects with a total visual score ≥36. This value corresponds to
n unanimous classification of ‘ maybe lens ’, but includes in the final
ample systems with some ‘ not lens ’ grades balanced by some ‘ sure
ens ’ grades. We thus assemble the ‘LIVE’ sample, made up of 16
ikely strong gravitational lenses. RGB stamps of the systems in the
ample are shown in Fig. 9 and listed in Table 3 . 

 T H E  LIV E  SAMPLE  

n this section, we analyse the gravitational lens candidates in
he LIVE sample, assembled in the previous section. Among
hose systems, seven candidates were identified by the single-
and CNN and ten by the three-band CNN (Table 3 ). Only one
bject (LIVE-1, attaining the highest score in the visual inspection)
assed the score threshold for both CNNs. This result confirms
he expected performances of the CNNs discussed in Section 4.
he three-band CNN was indeed expected to retrieve a more
omplete candidate sample (i.e. to identify a larger fraction of
eal lenses), while the single-band CNN was expected to retrieve
 purer one (i.e. with a smaller fraction of contaminants). Ho we ver,
e highlight that, in the final candidate sample, there are objects
ith one score nearly close to zero (LIVE-5 for the single-band
NN and LIVE-11 for the three-band CNN ). This represents a

urther confirmation of the complementarity of the two algorithms
Section 4). 

Among the systems in the LIVE sample, there is a previously
isco v ered gravitational lens (LIVE-5; Blakeslee et al. 2004 ). It is
orth noting that this object did not attain a unanimous classification

s ‘ sure lens ’ during the visual inspection, albeit it did not obtain
ny ‘ not lens ’ classification. This confirms the possible biases in the
isual inspection (Section 5.2) and e x emplifies the dependence of the
lassification on the image quality and the signal-to-noise ratio (S/N;
ig. 11 ). Furthermore, it is interesting to note that this real lens has
 1 below the chosen threshold. This can be explained by the higher
NR of the single-band CNN at lo wer v alues of the Einstein radius
Section 4 and Fig. 6 ). Through research in the current literature,
NRAS 510, 500–514 (2022) 
e retrieve one more lens previously identified in the CDFS (DES
0329 −2820; Nord et al. 2016 ). Ho we ver, since this system has a
 -band magnitude of 22.4, it is too faint to be part of the BG sample
Section 2.1), and thus it is not analysed by the CNNs. Never the
ess, we manually pass its image to the CNNs, obtaining both scores
elow the chosen threshold ( p 1 = 0.6 and p 3 = 0.5). This result
an be explained by the large value of the Einstein estimated by
ord et al. ( 2016 ) for this system ( θE = 7.8 arcsec ± 1.4 arcsec;

ee Fig. 10 ). This value is well outside the range of Einstein radii on
hich we trained our algorithms and in which we expect the CNNs to
e accurate. To further support this hypothesis, we re-train the CNNs
mploying only simulated lenses with 5 < θE < 10 arcsec. By passing
he image of DES J0329 −2820 to the algorithms, we obtain p 1 =
.85 and p 3 = 0.79. Hence, with a different training the lens would be
art of the candidate sample produced by the algorithms. Moreo v er,
hen applied to the whole BG sample, the re-trained CNNs manage

o detect 8 out of 16 candidates in the LIVE sample (i.e. with θE 

 5 arcsec), even though in a candidate sample characterized by
 larger fraction of false positives. This demonstrates that these
pecialized CNNs have some abilities to extrapolate their knowledge
eyond the parameter space they are trained on, even though
hese are not sufficient to provide a complete and pure candidate
ample. 

Furthermore, for four of the objects in the LIVE sample, we
etrieve high-resolution imaging from the Hubble Space Telescope
e gac y Archiv e (HLA 

6 ). One of the objects is LIVE-5 (previously
isco v ered, Fig. 11 ). Other two objects, LIVE-11 and LIVE-12, show
ikely lensing features when observed with HST . On the contrary,
igh-resolution data for LIVE-3 makes it possible to identify a likely
piral structure, revealing a non-lens nature for this candidate. 

Continuing the analysis, we emphasize that six of the candidates in
he LIVE sample satisfy the colour cut we introduced in Section 2.1
nd are thus part of the LRG sample (see Table 3 and Section 2.1). In
ontrast, none of the systems satisfies the criteria espoused by Eisen-
tein et al. ( 2001 ) to select LRGs. Hence, using these criteria to select
he input sample for the CNNs (as done in analogous studies; e.g.
etrillo et al. 2017 , 2019a , b ) we would therefore have missed all these
andidates. 

Finally, to fully characterize our set of candidates, we retrieve
pectroscopic and photometric redshifts for most of the systems in
he LIVE sample. These values are summarized in Table 3 . The
hotometric redshifts are computed using the METAPHOR algorithm
Cavuoti et al. 2017 ), previously applied to the galaxies in the
OICE surv e y. The spectroscopic redshifts are retrieved from the
izieR archive 7 (Ochsenbein, Bauer & Marcout 2000 ) querying the
atalogues from previous spectroscopic surv e ys of the CDFS (Eales
t al. 2009 ; Cowie, Barger & Hu 2011 ; Cooper et al. 2012 ; Cool et al.
013 ). 

.1 Comparison with LENSPOP 

e employ the lens-statistics code LENSPOP to assess the reliability of
he LIVE sample. LENSPOP is a software introduced by Collett ( 2015 )
nd able to simulate a realistic population of strong gravitational
enses. By opportunely tuning its parameters, LENSPOP can predict
he number of lenses observable in a given survey, and their global
roperties. LENSPOP defines as ‘observable’ all the lenses satisfying
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Figure 8. Some examples of contaminants wrongly classified as lenses by the CNNs and with visual score = 0. Among the most common misclassified objects 
there are spirals, merging, galaxies with close companions, and peculiar objects. All images have a 20-arcsec side; the north corresponds to the upper side and 
the east to the left-hand side of the stamps. Further details are in Section 5.2. 
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hese criteria: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

θ2 
E ≥ x 2 s + y 2s

θ2 
E ≥ r 2 s + ( s/ 2) 2

μTOT r s > s, μTOT > 3 
S / N ≥ 20 

, (10) 

here x s , y s , and r s represent, respectively, the coordinates and the
ize of the unlensed source. θE represents the Einstein radius, μ the 
agnification, S/N the signal-to-noise ratio, and s the mean seeing of

he image (Collett 2015 ). Besides these properties, we require that {
mag r < 21 . 5 
1 < θE < 5 arcsec 

. (11) 

he first property requires the galaxy being in the BG sample 
and, thus, being analysed by the CNNs; Section 2.1). The second 
roperty considers that, since we trained our algorithms on lenses 
ith Einstein radii between 1 and 5 arcsec (Table 2 ), we do not expect
ur CNN to be accurate outside this range (Petrillo et al. 2019a , b ).
ENSPOP predicts that 10 strong lenses are observable in the 4.9 deg 2 

f the CDFS co v ered by the VOICE surv e y. Assuming a Poissonian
oise on the code prediction, we estimate a confidence interval of
0 ± 3. Comparing this value with the size of the LIVE sample, we
xpect the latter to be nearly complete, but not entirely pure. This
esult agrees with the likely spiral galaxy identified in the sample 
sing the HST data (Section 6). The lens population simulated by 
ENSPOP is predicted to have a mean redshift of 0.4 with a standard
eviation of 0.2. Using the spectroscopic and photometric redshifts 
etrieved in the previous section for the LIVE sample, we estimate a
ean redshift of 0.5 with a standard deviation of 0.2. Finally, using

ENSPOP , we predict a mean value of the Einstein radii for the lenses
bservable in the VOICE surv e y equals to 1.4 arcsec with a standard
eviation of 0.3 arcsec. Visually estimating the Einstein radii for the 
enses in the LIVE sample as half the distance between the alleged

ultiple lensed images, 8 we obtain a mean value of 1.5 arcsec with a
tandard deviation of 0.4 arcsec. Both the redshifts and the Einstein
adii are consistent, within 1 σ error, with the predictions made by 
ENSPOP , representing a further confirmation of the reliability of the 
andidates in the LIVE sample. 

.2 Comparison with KiDS 

he CNNs employed in this work were previously applied to data 
rom the KiDS (Kuijken et al. 2019 ) by Petrillo et al. ( 2017 , 2019a , b ).
t is interesting to compare those results with ours, to investigate what
 This estimate is not completely accurate for strongly asymmetric lenses; a 
omplete modelling would be required for a better accuracy. 

9

1

erformances the same CNN architectures can achieve when applied 
o different data, although both produced by the same telescope, 
nd thus similar. The images passed to the CNNs for VOICE and
iDS have the same pixel size (0.2 arcsec pixel −1 ) and a comparable
ean value of the PSF FWHM (0.8 arcsec for VOICE r band, and

.7 arcsec for the same band in KiDS; section 2 in Kuijken et al.
019 ). Ho we ver, KiDS is a wide and shallow survey (about 900 deg 2 

bserved in the fourth data release with a 5 σ limiting magnitude in
he r band of 25.0; Kuijken et al. 2019 ). VOICE, on the contrary, is
 smaller but deeper surv e y (4.9 de g 2 observ ed with a 5 σ limiting
agnitude in the same band of 26.1; see Section 2). In Petrillo et al.

 2019b ), the CNNs analysed 88 327 LRGs selected using the criteria
spoused by Eisenstein et al. ( 2001 ). The LRG sample co v ered less
han 0.01 per cent of the full KiDS catalogue. Adopting the same
hreshold used in this paper ( p Th = 0.8), the CNNs retrieved a
ample of 3500 systems (about 4 per cent of the LRG sample) with
t least one score abo v e the threshold. Finally, performing a visual
nspection of the selected candidates similar to the one presented in
his paper (with seven graders and three possible grades), the authors
ssembled the LinKS (Lenses In KiDS) sample 9 composed by 1983 
ikely strong gravitational lenses with at least one score abo v e the
hreshold and at least one classification as ‘ maybe lens ’ or ‘ sure lens ’.
f those candidates (the ‘ bona fide ’ sample), 89 attained a visual

core ≥28, 10 equi v alent to our threshold of unanimous classification
s ‘maybe lens’ (considering seven inspectors instead of our nine, 
ee Section 5.2). In comparing the results from the two studies,
e must consider two main differences between the surv e ys: the
igher number of galaxies observed in KiDS and the higher S/N
and fainter limiting magnitude) of VOICE. Since we w ork ed on a
maller surv e y, we could relax the criteria of Eisenstein et al. ( 2001 )
or the selection of the galaxies to analyse. The BG sample inspected
y the CNNs co v ered a larger fraction of the galaxies observed in
he VOICE surv e y (about 3 per cent against the 0.01 per cent of
iDS). Ho we ver, the fractions of systems retrie ved by the CNNs

re quite similar (1 per cent of the BG sample in VOICE, 3 per cent
f the LRG sample in KiDS). Performing the visual inspection, we
ould independently assess the contamination rate of the candidate 
amples. In Petrillo et al. ( 2019b ), ∼57 per cent of the candidates
ttained at least one classification as ‘ maybe lens ’ or ‘ sure lens ’.
his fraction is higher in our case ( ∼75 per cent, see Section 5.2).
his result can be explained by the fainter limiting magnitude reached 
y the VOICE surv e y. This allows the CNNs to identify more easily
aint characteristics (e.g. spiral structures), revealing the contaminant 
ature of some lens candidates. This point can be studied in detail,
 https:// www.astro.rug.nl/lensesinkids/ 
0 Petrillo et al. ( 2019b ) used the same numerical values given in Section 5.2. 
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Figure 9. RGB stamps of lens candidates in the LIVE sample. Each image contains the two scores from the single-band CNN (red) and three-band CNN (blue). 
The systems are ordered from the top to bottom according to the final score obtained from visual inspection (grey box). All stamps have a 20-arcsec side and 
are produced using the HUMVI library. The north corresponds to the upper side and the east to the left-hand side of the stamps. Further details are in Section 5.2. 
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ince the KiDS and VOICE fields o v erlap in a region of ∼2 deg 2 .
n particular, six lens candidates in the LinKS sample (but with
isual score < 28, i.e. not part of the ‘bona fide sample’) are also in
he BG sample analysed by our CNNs. KiDS and VOICE cutouts
or these systems are shown in Fig. 12 . The higher S/N and better
mage quality of VOICE reveal the contaminant nature of all these
ystems. Five of these objects obtained both scores under the chosen
hreshold from our CNNs. Only the object with LinKS ID = 68
the first system in Fig. 12 ) obtained p 1 = 0.9 from our single-
NRAS 510, 500–514 (2022) 
and CNN . This candidate, ho we ver, attained a visual score of
2 during our visual inspection, well below the chosen threshold
f 36. 
The fainter limiting magnitude (and the consequent higher S/N),

ombined with more flexible criteria to select the galaxies to analyse,
s also responsible for the higher number density of lenses found by
ur CNNs. In fact, according to equation (10), the higher S/N reached
y a deep surv e y augments the number of strong lenses retrie v able in
 given area (Collett 2015 ). To assess quantitatively this property, we
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Table 3. Results of the visual inspection performed on the systems in the CNN sample (Section 5.1). 

LIVE ID Name RA Dec. r photo-z a spec-z p 1 p 3 Score LRG 

1 VOICE J520934 −282157 52.1595 −28.3658 21.24 0.56 0.48 ( b ) 0.99 0.87 72 
2 VOICE J522422 −284602 52.4060 −28.7672 20.92 0.56 0.92 0.69 66 
3 VOICE J531403 −273933 53.2342 −27.6592 20.33 0.57 0.62 c 0.52 0.99 66 
4 VOICE J534529 −270652 53.7581 −27.1145 21.47 0.57 0.97 66 � 

5 VOICE J530933 −275654 53.1592 −27.9482 20.51 0.61 0.61 c 0.07 0.8 60 
6 VOICE J524537 −275130 52.7603 −27.8585 19.14 0.43 0.34 d 0.79 0.89 60 � 

7 VOICE J532836 −274052 53.4766 −27.6811 21.38 0.83 0.37 0.92 58 
8 VOICE J532701 −270801 53.4504 −27.1337 20.38 0.27 0.98 56 
9 VOICE J533716 −275300 53.6210 −27.8833 20.64 0.57 0.94 0.11 56 � 

10 VOICE J514601 −284848 51.7670 −28.8133 20.84 0.75 0.25 0.85 54 
11 VOICE J525404 −274159 52.9012 −27.6998 18.94 0.14 0.07 c 0.87 0.04 48 
12 VOICE J530605 −280115 53.1013 −28.0207 21.39 0.63 0.62 c 0.99 0.07 42 � 

13 VOICE J521812 −280115 52.3033 −28.0375 20.27 0.55 0.54 e 0.29 0.9 40 � 

14 VOICE J520548 −282538 52.0968 −28.4273 21.38 0.64 0.65 b 0.91 0.28 40 � 

15 VOICE J515150 −272926 51.8638 −27.4905 21.09 0.55 0.85 0.23 40 
16 VOICE J534638 −271022 53.7771 −27.1727 20.76 0.29 0.98 36 

Notes . For all the candidates with score ≥ 36, the LIVE ID, the coordinates, the r -band magnitude, the redshift, the scores from the CNNs, and the visual 
score are pro vided. Moreo v er, we report the IAU designation of each object employing the standard J ±DDMMSS convention.The last column reports if the 
candidate is part of the LRG sample or not (Section 2.1). Further details are in Section 5.2. a Photometric redshift estimated with METAPHOR (Cavuoti et al. 
2017 ). 
b Spectroscopic redshift retrieved from the PRIMUS survey (Cool et al. 2013 ). 
c Spectroscopic redshift retrieved from the ACES survey (Cooper et al. 2012 ). 
d Spectroscopic redshift retrieved from Cowie, Barger & Hu ( 2010 ). 
e Spectroscopic redshift retrieved from the BLAST survey (Eales et al. 2009 ). 

Figure 10. RGB stamp of the gravitational lens DES J0329 −2820 previously 
disco v ered by Nord et al. ( 2016 ) observed in the VOICE surv e y. The system 

has r > 21.5; thus, it is not part of the BG sample. We manually pass its image 
to the CNNs, receiving both scores below the chosen threshold. The high 
value of the Einstein radius (7.8 arcsec ± 1.4 arcsec) can explain this result. 
Further details in Section 6. 
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an consider the ∼2 deg 2 area observed in both surveys. While the
bona fide’ LinKS sample contains no lens candidates in this area, 
he LIVE sample contains six candidates (LIVE IDs: 1, 5, 6, 12, 13,
nd 14) retrieved by our CNNs in this region. 

Finally, a further interesting comparison between KiDS and 
OICE concerns the mean redshift of the retrieved lens candidates. 
he systems in the LinKS sample have a mean redshift of 0.3

Petrillo et al. 2019b ), while the systems in the LIVE sample have a
ean redshift of 0.5 (Section 6). Identifying strong lenses at higher 

edshift is crucial for extending many analyses on a larger scale (see
.g. Treu & Koopmans 2004 ; Koopmans 2005 ; Treu et al. 2010 ;
egetti et al. 2014 ). All these results justify the increasing interest

n the forthcoming deep surv e ys conducted with the Euclid satellite
Laureijs et al. 2011 ) and the Vera Rubin Observatory (LSST Science
ollaboration et al. 2009 ).
 C O N C L U S I O N  

n this paper, we presented a sample of 16 likely strong gravitational
enses identified in the CDFS. We analysed the data from the VOICE
urv e y (Vaccari et al. 2016 ) using two CNNs. 

Both algorithms were previously developed by Petrillo et al. ( 2017 ,
019a ) and employed to search for strong lenses in the KiDS (Kuijken
t al. 2019 ) by Petrillo et al. ( 2017 , 2019a , b ) and the FDS (Iodice
t al. 2016 ) by Cantiello et al. ( 2020 ). We trained the CNNs on
omposite images obtained by superimposing simulated gravitational 
rcs on real LRGs observed in VOICE (Section 3.2.2). The first
NN, single-band CNN , analysed images in the r photometric band,
hile the second one, three-band CNN , inspected composite RGB 

mages obtained combining the data in the gri bands with the
UMVI library. Once the algorithms have been trained, we assessed 

heir performances by applying them to a validation set consisting 
f both simulated lenses and real contaminants (Section 4). The 
erformances of both networks (i.e. the FPR and the TNR) are
omparable to the previous applications in Petrillo et al. ( 2019a , b ).
oreo v er, we found that the three-band CNN can identify more

asily systems with smaller Einstein radii, where the colour gradient 
an help to recognize unresolved gravitational arcs. On the contrary, 
he single-band CNN shows a better accuracy in identifying systems 
ith larger Einstein radii. In this case, ho we ver, high- z groups of star-

orming galaxies can be more easily mistaken for distant gravitational 
rcs. 

Concluding that the two CNNs are complementary, we applied 
oth networks to real data from the VOICE surv e y. The CNNs
nalysed in total ∼21 200 galaxies with mag r < 21.5, retrieving
 sample of 257 lens candidates with at least one score abo v e the
hosen threshold of 0.8 (Section 5.1). To impro v e the purity of the
andidate sample, we performed a visual inspection with nine graders 
udging the systems in a blind way (Section 5.2). About 75 per cent
f the candidates attained at least one classification as ‘ maybe lens ’
r ‘ sure lens ’. 
MNRAS 510, 500–514 (2022) 
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Figure 11. Systems LIVE-5, LIVE-12, LIVE-11, and LIVE-3 observed by the Hubble Space Telescope (top row) and in the VOICE surv e y (bottom row). The 
HST images are part of the GEMS surv e y ( HST observing program 9500; Rix et al. 2004 ) and are retrieved from the Hubble Legacy Archive. All the images 
have a 20-arcsec side. LIVE-5 is a previously discovered strong gravitational lens (Blakeslee et al. 2004 ). LIVE-12 and LIVE-11 show likely lensing features, 
while LIVE-3 shows a likely spiral structure. Further details in Section 6. 

Figure 12. Six lens candidates found in the KiDS surv e y (top row) by Petrillo et al. ( 2019b ) and observed in the VOICE survey (bottom row). The higher S/N 

of VOICE reveals the non-lensing nature of all these candidates and makes it easier for the CNNs to reject these systems. For all the systems, we show the 
LinKS ID (white box) and the two scores obtained by the single-band CNN (red box) and the three-band CNN (blue box). All the stamps have a 20-arcsec side; 
the north corresponds to the upper side and the east to the left-hand side of the stamps. Further details are in Section 6.2. 
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Finally, we assembled the ‘LIVE sample’ consisting of 16 likely
trong gravitational lenses with at least one score abo v e the threshold
nd a visual score ≥36. To fully characterize the final set, we
etrieved spectroscopic and photometric redshifts for most of the
ens candidates. We also retrieved high-resolution data from the
ubble Le gac y Archiv e for four of the systems (Section 6). The

ntire process described here allowed us to identify a gravitational
ens previously disco v ered in the CDFS (Blakeslee et al. 2004 ) and
t least two very high-probability candidates when observed by HST
Fig. 11 ). To assess the reliability of the LIVE sample, we compared
ts global properties with the ones predicted by the lens-statistics
oftware LENSPOP (Collett 2015 ). We concluded that our sample is
ikely to be complete albeit not totally pure, while its global properties
ully encompass the code predictions (Section 6.1). Finally, we
ompared our results with the ones presented in Petrillo et al.
 2019b ), obtained using the same CNNs applied to the KiDS surv e y.
NRAS 510, 500–514 (2022) 
ince we applied the algorithms to a smaller but deeper surv e y, we
ere able to retrieve a less contaminated candidate sample, with a
igher number density of lens candidates and a higher mean redshift
Section 6.2). 

Although the probability to be confirmed as lens is high for most
f the objects in the LIVE sample, we stress that an unambiguous
alidation requires a high-resolution and/or a spectroscopic follow-
p (see e.g. Bolton et al. 2006 ; Anguita et al. 2018 ; Lemon et al.
020 ; Spiniello et al. 2019a , b ), which will be provided by the Vera
ubin Observatory deep surv e y that will observ e the CDFS in the
ear future (LSST Science Collaboration et al. 2009 ). 

In conclusion, this work represents a further confirmation of
he ability of machine learning algorithms like CNNs to analyse
fficiently large amounts of data searching for strong gravitational
enses. These algorithms will reach their full scientific potential in the
nalysis of forthcoming large sky surveys such as the one performed
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ith the ESA’s Euclid satellite (Laureijs et al. 2011 ), the Vera Rubin
bservatory (LSST Science Collaboration et al. 2009 ), and the 
hinese Space Station (Gong et al. 2019 ). These surv e ys are indeed
 xpected to retriev e ∼10 5 strong gravitational lenses in a data set of
10 9 observed galaxies. Solely visually inspecting all the galaxies

etrieved by these forthcoming facilities would require several years
nd would be prone to several biases (Section 5.2), even applying
ome a priori cut to select only galaxies with a high lensing cross-
ection. Ho we ver, e ven applying CNNs to select the most promising
ens candidates, a low contamination rate is still crucial to reduce 
he need for a visual inspection. This goal can be achieved, on one
and, by employing the latest CNN architectures available (see e.g. 
hollet 2016 ; Szegedy et al. 2016 ), and thus taking advantage of

he latest results in machine learning and computer vision. On the 
ther hand, training these algorithms requires reliable strong lensing 
imulations to a v oid possible biases in the training phase. This is
he reason why, in the last few years, some collaborations started to
nvestigate possible alternatives to the supervised-learning paradigm. 
nsupervised learning (requiring no training set or a small one just

or labelling (see e.g. Cheng et al. 2020 ) or self-supervised learning
requiring smaller data sets, e.g. Abul Hayat et al. 2020 ) can allow
raining based only on real observed strong lenses. 

Finally, it is worth noting that the large amount of lenses retrieved
rom these forthcoming large surv e ys will pose the non-trivial 
roblem of ho w ef ficiently one can then analyse and model these
ystems to constrain structural parameters of the lens to be used 
or scientific purposes.The computational cost of classical bayesian 
echniques (e.g. Jullo et al. 2007 ; Birrer & Amara 2018 ; Nightingale,
ye & Massey 2018 ) and their need for a human intervention, make

hese algorithms unfit to model large samples of lenses. Machine 
earning algorithms like CNNs have already been applied to the fast
utomated analysis of strong gravitational lenses (Hezaveh, Perreault 
e v asseur & Marshall 2017 ; Madireddy et al. 2019 ; Pearson, Li &
ye 2019 ; Schuldt et al. 2020 ). This represents a future perspective
f this w ork, tow ards a full exploitation of the scientific potential of
orthcoming f acilities lik e Euclid , the Vera Rubin Observatory , and
he Chinese Space Station . 
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