
23 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Towards Pulverised Architectures for Collective Adaptive Systems through Multitier Programming / Aguzzi
G.; Casadei R.; Pianini D.; Salvaneschi G.; Viroli M.. - STAMPA. - (2021), pp. 33.99-33.104. (Intervento
presentato al convegno 2nd IEEE International Conference on Autonomic Computing and Self-Organizing
Systems Companion, ACSOS-C 2021 tenutosi a DC, USA nel 27 September 2021 - 01 October 2021)
[10.1109/ACSOS-C52956.2021.00033].

Published Version:

Towards Pulverised Architectures for Collective Adaptive Systems through Multitier Programming

Published:
DOI: http://doi.org/10.1109/ACSOS-C52956.2021.00033

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/875832 since: 2022-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ACSOS-C52956.2021.00033
https://hdl.handle.net/11585/875832

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Aguzzi, R. Casadei, D. Pianini, G. Salvaneschi and M. Viroli, "Towards Pulverised

Architectures for Collective Adaptive Systems through Multi-Tier Programming,"

2021 IEEE International Conference on Autonomic Computing and Self-Organizing

Systems Companion (ACSOS-C), DC, USA, 2021, pp. 99-104

The final published version is available online at

https://dx.doi.org/10.1109/ACSOS-C52956.2021.00033

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ACSOS-C52956.2021.00033

Towards Pulverised Architectures for Collective

Adaptive Systems through Multi-tier Programming

Gianluca Aguzzi∗, Roberto Casadei∗, Danilo Pianini∗, Guido Salvaneschi† and Mirko Viroli∗

∗ ALMA MATER STUDIORUM—Università di Bologna, Cesena, Italy

Email: {gianluca.aguzzi, roby.casadei, danilo.pianini, mirko.viroli}@unibo.it

†University of St.Gallen: St.Gallen, Switzerland

Email: guido.salvaneschi@unisg.ch

Abstract—Engineering large-scale Cyber-Physical Systems –
like robot swarms, augmented crowds, and smart cities – is
challenging, for many issues have to be addressed, including
specifying their collective adaptive behaviour and managing
the connection of the digital and physical parts. In particular,
some approaches propose self-organising mechanisms to actually
program global behaviour while fostering decentralised, asyn-
chronous execution. However, most of these approaches couple
behavioural specifications to specific network architectures (e.g.,
peer-to-peer), and therefore do not promote flexible exploitation
of the underlying infrastructure. Conversely, pulverisation is
a recent approach that enables self-organising behaviour to
be defined independently of the available infrastructure while
retaining functional correctness. However, there are currently
no tools to formally specify and verify concrete architectures
for pulverised applications. Therefore, we propose to combine
pulverisation with multi-tier programming, a paradigm that
supports the specification of the architecture of distributed
systems in a single code base, and enables static checks for
the correctness of actual deployments. The approach can be
implemented by combining the ScaFi aggregate computing tool-
chain with the ScalaLoci multi-tier programming language,
paving the path to support the development of self-organising
cyber-physical systems, addressing both functional (behaviour)
and non-functional concerns (deployment) in a single code base
and modular fashion.

Index Terms—Pulverisation, Aggregate Computing, Multi-tier
programming

I. INTRODUCTION

Current socio-technical developments foster a vision of

worlds populated by large-scale Cyber-Physical Systems

(CPSs)—such as robot swarms, crowds of augmented peo-

ple, and ecosystems of smart devices. Such systems are

typically required to act as coordinated collectives and to

be able to adapt to dynamic environmental conditions and

inputs—i.e., they are meant to be Collective Adaptive Systems

(CASs). However, engineering CASs is a challenging task.

Generally, reliance on a centralised device is not allowed,

and the system is expected to reach global goals based on

the coordinated (inter-)actions of the individual entities that

compose the system. Practical solutions, such as the Buzz

language [?], use a so-called “meet-in-the-middle” method by

which developers can use individual and global viewpoints

(through swarm operator) as needed. Recent approaches such

as aggregate computing [1], [2], DEECo [3], SmartSociety [4],

and attribute-based coordination [5], foster the adoption of

global-to-local techniques, by which the behaviour of the

ensemble of devices is designed top-down, and interactions

among devices (i.e., protocols) are generated automatically and

implicitly. However, the generated interaction scheme depends

on assumptions on how devices communicate with each other;

in other words, the approach often dictates how the network

should be structured. In turn, this creates a tension between

the network structure the language reasons upon and the actual

way devices communicate. Since in CASs the challenging case

in which no controllers exist must typically be supported, a

purely peer-to-peer (P2P) network is usually considered the

paradigmatic setup. However, real-world networks are usually

structured hierarchically, and the ability to target multiple in-

frastructural setups can help to achieve non-functional benefits.

Pulverisation [6] is an approach proposed for aggregate

computing (but in principle applicable to other frameworks)

to neatly separate behavioural and deployment concerns. In

short, it decomposes the concept of a logical device, which is

the target for which the behaviour is programmed, into micro-

components that can be deployed independently and whose

internal communication protocol is defined at deployment

time. This technique de-facto relieves the behaviour designer

from the duty to consider multiple possible deployments in

different networks, allowing them to write the behaviour for

the most generic case, and have the program functionally

behave as designed regardless of the actual final deployment.

However, pulverisation does not directly provide ways for

specifying and deploying components in a safe and meaningful

fashion: it proposes a methodology to cleanly separate be-

havioural and deployment concerns that need to be addressed

at some point. The definition of the deployment strategy and its

execution is thus a very relevant and challenging engineering

issue on its own: ideally, such a specification should be

declarative and possibly guided and checked by static analysis

to lower the risk of failures at runtime.

This work discusses the initial research effort to fill the gap

between a pulverised system and its actual deployment and

execution on multiple different network structures, by leverag-

ing a recent approach known as multi-tier programming [7]. In

multi-tier programming, a distributed system is declaratively

described, in terms of components and admissible interactions

in a single code base. In particular, in type-level multi-tier

programming, the specification leverages the type system of

the language to ensure the correctness and coherence of the

architecture; moreover, it also relieves the developer from low-

level concerns by offloading to the compiler the responsibility

of breaking the computation into deployment units enforcing

the contract defined in the code.

The remainder of this paper is as follows: Section II intro-

duces the current state of the art, discussing pulverisation in the

context of aggregate computing and multi-tier programming;

Section III discusses the possible integration of pulverised

aggregate computing systems and multi-tier programming and

shows initial experiments leveraging the ScaFi and ScalaLoci

Scala domain-specific languages (DSLs); Section IV exposes

and discusses the short and long term implications of this

integration; finally, Section V concludes and discusses the next

research steps.

II. BACKGROUND

A. Pulverised aggregate computing

At the core of pulverisation [6] is the idea that the functional

behaviour of a distributed application is fundamentally orthog-

onal to the actual deployment of the services that compose

it. Thus, through a classic divide-and-conquer approach, in a

pulverised system, any logical device (of the many composing

the CAS) is broken down into five components acting as

units of deployment: 1) Sensors (S), encapsulating the ability

to retrieve information from the environment; 2) Actuators

(A), responsible for acting upon the environment; 3) State

(K), providing persistence of knowledge; 4) Behaviour (B),

modelling the actual execution of the application business

logic; and 5) Communication (C), which provides means to

interact with other logical devices. These pulverised com-

ponents can be deployed to different physical nodes of the

network: as far as they can communicate with each other and

the target execution protocol is respected, the functionality

should not be affected. Then, a concrete development approach

will expose abstractions with a well-defined mapping to such

a partitioning schema. So, an application designer can focus

on functional requirements while delaying all the deployment

and communication concerns (which may well affect non-

functional properties of the system) to a later moment.

This strategy is especially well-suited to adapt approaches

designed to work with a flat (non-layered) network structure

(e.g., peer-to-peer, mesh, and ad-hoc networks) to arbitrary

network architectures—to exploit a broader range of deploy-

ments, e.g. for efficiency or reliability. Consider, for instance,

the simple case of Figure 2a: there is a 1:1 mapping between

logical and physical devices, and direct communication among

devices (actually, among their C pulverised components) must

be possible. This is typically not the case in many Internet

applications, however: let us consider the case in which the

same application should be deployed in an IoT scenario where

end devices are thin, equipped with sensors and actuators,

but battery-powered and equipped with a microcontroller with

minimal computational capabilities (for instance, LoRaWAN

or Sigfox motes [8]). These devices cannot host the actual

computation of the program (component B), which must

necessarily be offloaded to the edge or the cloud. This change

in the deployment would typically imply a re-writing of the

functional logic of the program, as end devices cannot be

considered computation-capable nodes any more. Instead, with

pulverisation, they retain their existence as logical devices with

some of their pulverised components hosted on different phys-

ical nodes as depicted in Figure 2c. Crucially, this makes the

original application work on a different network architecture

without any functional logic changes.

Aggregate computing [1], [2] is a global-level functional

programming model for CAS where a single program ex-

presses the collective adaptive behaviour of a distributed

system as a whole. Also, aggregate computing is a naturally

pulverisable approach: its semantics can be expressed as a

purely functional manipulation of state, messages, and sensor

readings [2], providing a straightforward mapping into pul-

verised components. Indeed, initial experiments [6] showed

that aggregate programs deployed on pulverised infrastructures

retain their original functional behaviour onto different deploy-

ments. Nevertheless, pulverisation is not a silver bullet: the ap-

proach is fundamentally an engineering pattern to encapsulate

a non-functional concern (network structure and deployment),

allowing for the business logic to work across deployments,

but it does not specify how a pulverised architecture should

be described and verified so that it can be operated correctly

at runtime.

B. Multi-tier programming and ScalaLoci

The concrete architecture of a distributed system is usu-

ally multi-tier, i.e., it comprises multiple layers, each one

encapsulating some specific functional concern (e.g. data

management, application and presentation logic, etc.) each

physically separated from the others. Historically, distinct

tiers and crosscutting functionalities that belong to multiple

tiers are developed into several compilation units (often using

different programming languages), raising development and

maintenance costs.

A recent trend trying to tackle these issues is multi-tier

programming [7], by which a distributed architecture is defined

in a single compilation unit with a single language. Once the

program is declaratively specified, the compiler (or the run-

time, depending on the language of choice) is responsible for

splitting the computation among different peers. Depending on

the specific multi-tier programming language, different kinds

of constraints may be imposed. For instance, in Links [9],

applications must follow a client-server architecture, while

other languages allow for more freedom of choice.

One interesting language that lets the designer specify ar-

bitrary deployments is ScalaLoci [10]–[12], a type-safe multi-

tier language hosted in Scala language. The structure of a

ScalaLoci application is defined through peers and ties. Peers

abstract over locations and represent the components of an

application, whereas ties define the connections between peers.

Only tied peers can communicate with each other.

The following code depicts a simple controller-worker

architecture. Annotation @multitier denotes the

BookingApp as a ScalaLoci object.

/* Defines an application with the peers 'Controller' and

* and 'Worker' and a 1:n connection between them */

@multitier object BookingApp {

@peer type Controller <: {

type Tie <: Multiple[Worker]

}

@peer type Worker <: {

type Tie <: Single[Controller]

}

on[Controller]{ print("I am a Controller") }

on[Worker]{ print("I am a Worker") }

}

A declared @peer type can have multiple instances that

execute the peer’s logic, e.g., multiple worker instances. In

this example, the logic is replaced with simple prints. An in-

stance of the controller peer may connect to multiple workers,

whereas a worker instance is tied to one controller. The sample

compiles two executables representing the controller and the

worker, whose instances can be deployed and executed on

different physical nodes.

/* accessible for workers. */

val requests: Event[Request] on Controller = placed {...}

// Name of the worker @Worker accessible for Controller.

val name: String on Worker = placed {...}

/* not accesible for workers. */

val tokens : Local[Map[Long]] on Controller =

placed {...}

/* Access allowed: Worker observes events

emitted on Controller. */

on[Worker]{ requests.asLocal.observe{...} }

// Error: no access to tokens outside of the Controller.

on[Worker]{ tokens.asLocal.observe{...} }

Asynchronous multi-tier reactives like signals and events

are used to compose non-blocking data flows that span across

multiple peers. Data from remote peers are accessed using

ScalaLoci’s .asLocal expression variants, and the visibil-

ity of placement types for remote peers can be regulated.

A @multitier module can capture the controller-worker

schema:

@multitier trait ControllerWorker[T] {

@peer type Controller <: {

type Tie <: Multiple[Worker]

}

@peer type Worker <: {

type Tie <: Single[Controller]

}

def run(task: Task[T]): Future[T] on Controller =

// run task on some selected worker

on(selectWorker()) // (`selectWorker` is left out)

.run.capture(task) { task.process() }.asLocal

}

The run method has return type as the placement type

Future[T] on Controller 1, effectively placing run on

1Scala enables infix use of binary type constructors; i.e., A on B refers

to the same type as on[A,B] .

the Controller peer. The Task type is parametrised over

the type T of the value, which a task produces after execution.

Running a remote task remotely results in a Future to

account for processing time and network delays and potential

failures. The remote block is executed on the worker, which

starts processing the task. The remote result is transferred back

to the controller as Future[T] using asLocal . A single

worker instance in a pool of workers is selected for processing

the task via the selectWorker method.

The module can be used to implement an application

where a server offloads work to the connected clients. In the

following code, we specialise the clients to be workers and

the server to be a controller:

@multitier trait VolunteerProcessing {

val m: ControllerWorker[Int] // ref to another module

// augmenting the peers in this module

@peer type Client <: m.Worker

// with the controller/worker functionality

@peer type Server <: m.Controller

on[Server] { m.run(new Task()) }

}

III. MULTI-TIER PULVERISED AGGREGATE COMPUTING

The contribution of this work is an architecture for multi-

tiered deployment strategies in pulverised systems, along with

a prototypical implementation using aggregate programming

and ScalaLoci. Using multi-tier abstractions, we:

1) map the overall logical system into a multi-tiered module,

building the concept of pulverised device into ScalaLoci

(see Figure 1b);

2) define the functions associated with each pulverised com-

ponent;

3) characterise the possible kinds of network nodes (e.g.,

cloud, edge, thin end device);

4) decide the network structure in terms of possible connec-

tions among network node kinds;

5) detail the deployment by assigning each pulverised com-

ponent to a network node kind.

Ultimately, this architectural design allows us to spec-

ify functional behaviour independently of deployment (via

pulverised aggregate programming), then declaratively define

multiple deployment schemes and their related communication

constraints (thanks to multi-tier programming), and finally,

statically enforce the respect of the expressed constraints

(as a consequence of the robust type programming system

introduced by ScalaLoci).

A. Pulverised architecture in ScalaLoci

As a first step, we need to formalise what a pulverised

architecture is in ScalaLoci, by defining all the pulverised

components and binding them together into the concept of

logic node. Figure 1 shows a possible ScalaLoci implementa-

tion (Figure 1b) of a pulverised device (Figure 1a): LNode

represents the logical device, LogicalSystem encloses the

concept of pulverised system into a multi-tier module. The

logical node

B

behaviour

C

communication

K state/knowledge

S

sensors

A

actuators

neighbour node

C B

K

S A

(a) A pulverised logical device, split into sub-components, and one
of its neighbours.

@multitier trait LogicalSystem {

// A logical node, connected to other logical nodes

@peer type LNode <: { type Tie <: Multiple[LNode] }

}

// Partitioning of a logical node into sub-components

@multitier trait PulverisedSystem extends LogicalSystem {

@peer type SensorComponent <: LNode // S

@peer type ActuatorComponent <: LNode // A

@peer type StateComponent <: LNode // K

@peer type BehaviourComponent <: LNode // B

@peer type CommunicationComponent <: LNode // C

}

(b) ScalaLoci code describing a pulverised logical system. (See
Section III-C for more details.)

Fig. 1: Pulverisation model and corresponding ScalaLoci specification.

logical device and all its pulverised components are mapped

on abstract peers.

Once all components are modelled, their contract must

be specified to characterise them and define their behaviour.

This is done by placing the available computations on the

components that will effectively host them. For instance, if our

system has the notion of Sensor[V] , representing a generic

sensor that upon access returns values of type V , we can

enforce the requirement that the SensorComponent must

be able to read values from sensors via something like:

def sense[V](id: SensorID): V on SensorComponent = ...

This strategy decouples the structural definition of components

participating in the system from their behavioural specifica-

tion.

B. Definition of deployment kinds

Once the definition of components is complete, we can

begin describing the actual deployments. These can be ex-

pressed rather concisely with the proposed design, as depicted

in Figure 2, where we show three possible definitions of

very different architectures. In Figure 2a, we define a system

where logical and physical devices coincide. This structure

is typical of opportunistic network structures (P2P overlays,

tactical networks, etc.). Figure 2b, shows a hybrid edge-cloud

system supporting the computation of thick end devices (e.g.,

smartphones). The infrastructure hosts the communication

components, de facto enabling network communication among

end devices (this is a typical situation in usual WiFi networks,

where end devices are “hidden” a router performing network

address translation). A practical example of this architecture

could be a multi-broker MQTT system, with brokers deployed

either on the edge (for better performance with closely located

devices) or on the cloud. Finally, in Figure 2c, we replicate a

similar system, but with thin end devices. Namely, end devices

do not possess enough computational capacity to host their

associated computation and thus need to operate as remote

sensors and offload all calculations to an external device.

This situation is typical of WAN sensing networks (e.g.,

LoRaWAN), where end devices are equipped with minimal

memory and very low power microcontrollers and are expected

to run on battery for years. To summarise, different network

architectures can be specified by following two steps: 1) defi-

nition of the physical devices involved in the architecture and

how they are tied together; and 2) allocation of the pulverised

components on the kinds of devices that can host them.

The resulting system can then be instanced by selecting a

communication protocol and a serialisation framework. For

example, in the following snippet, we show how this could be

done for the system in Figure 2b, assuming communication

via TCP and serialisation via the uPickle library.

import loci.serializer.upickle._ // Serialization logic

import loci.communicator.tcp._ // Communication protocol

object Broker extends App { // Peer instatiation

val tie = listen[BrokerBased.Peer](TCP(port))

multitier.start(new Instance[BrokerBased.Broker](tie))

}

object Peer extends App {

val tie = connect[BrokerBased.Broker](TCP(host, port))

multitier.start(new Instance[BrokerBased.Node](tie))

}

C. Integration with Aggregate Programming

The design described so far is entirely independent of the

specific aggregate programming language of choice: due to

pulverisation, the way the logic is expressed only concerns

the behavioural component (B). Currently, there are three

choices for practical aggregate programming: Protelis [13],

a stand-alone, JVM-hosted domain-specific language (DSL);

FCPP [14], a high-performance, low-memory footprint C++

implementation; and ScaFi [?], a Scala internal DSL that can

run on the JVM or in the browser [16]. Among the three, we

S C

AB

K

C A

SB

K

S A

CB

K

S A

BC

K

@multitier object P2P extends PulverisedSystem {

// Definition of device kinds and possible network connections

@peer type Node <: { type Tie <: Multiple[Node] }

@peer type SensorComponent <: Node

// Pulverised component allocation on devices

@peer type ActuatorComponent <: Node

@peer type StateComponent <: Node

@peer type BehaviourComponent <: Node

@peer type CommunicationComponent <: Node

}

(a) Peer-to-peer: 1-to-1 mapping between logical and physical devices.

S A

KB

C

S A

KB

C

S A

KB

C

@multitier object BrokerBased extends PulverisedSystem {

// Definition of device kinds and possible network connections

@peer type Node <: { type Tie <: Single[Broker] }

@peer type Broker <: { type Tie <: Multiple[Node] with Multiple[Broker] }

// Pulverised component allocation on devices

@peer type SensorComponent <: Node

@peer type ActuatorComponent <: Node

@peer type StateComponent <: Node

@peer type BehaviourComponent <: Node

@peer type CommunicationComponent <: Broker

}

(b) Multi-broker: the communication is offloaded in part to the edge, and in part to the cloud.

S A

CB

K

S A

CB

K

S A

C B K

@multitier object IoTSystem extends PulverisedSystem {

// Definition of device kinds and possible network connections

@peer type Thin <: { type Tie <: Multiple[Thick] }

@peer type Thick <: { type Tie <: Multiple[Thick] with Multiple[Thin]}

// Pulverised component allocation on devices

@peer type SensorComponent <: Thin

@peer type ActuatorComponent <: Thin

@peer type StateComponent <: Thick

@peer type BehaviourComponent <: Thick

@peer type CommunicationComponent <: Thick

}

(c) IoT with thin clients: end devices only host sensors and actuators, other components are offloaded either to the edge or the cloud.

Fig. 2: Examples of pulverised architectures. Thick boxes represent physical devices, dashed boxes represent pulverised

components, and different logical devices are identified by colour (red, green, and blue). A pulverised component is hosted

on the physical device in which it is contained. Communication among different logical devices that imply communication

among physical devices is depicted with a dashed red line.

picked ScaFi for our prototype, mainly because it shares the

language of choice with ScalaLoci, and thus it could be the

foundation stone of a unified framework living in the Scala

ecosystem. A full account of ScaFi can be found in [15].

In order to perform a collective computation, ScaFi requires

to define an AggregateProgram (i.e. an object containing

the aggregate application logic) and a Context (i.e., the set

of information required to evaluate an AggregateProgram ,

such as the previous state, sensors’ data, and messages re-

ceived from neighbours). ScaFi’s Context s in a pulverised

architecture are embedded in the State component. Con-

sequently, the glue code required to execute ScaFi aggregate

code over a pulverised network is minimal:

def compute(

deviceIdentifier: Id,

state: State

): State on BehaviourComponent = {

val context = new ContextImpl(

deviceIdentifier,

export = state.exports,

localSensor = state.sensors,

neighbourSensor = state.neighbourSensor

)

val program : AggregateProgram = ... // business logic

// actual execution; returns the new State

program.round(context)

}

IV. IMPLICATIONS

The construction of a pulverised platform for aggregate

computing through multi-tier programming has several inter-

esting applications that we analyse in this section.

Programmability and compile-time safety of deployment

architectures for pulverised systems: A type-annotated defini-

tion of a pulverised system deployment can be used to stat-

ically enforce consistency between the intended architecture

and its deployment implementation. Access to data that cannot

be reached by a certain component will not be possible as it

will be checked by the compiler. Indeed, engineering should

only concern about functional aspects of the application —

namely, write an aggregate computing program. We note that

this research direction could be seen as a part of a larger

effort to encapsulate the functional part of the application

(i.e., writing the aggregate computing program), isolating non-

functional concerns and tackling them separately, possibly

through dedicated techniques and languages.

Opportunistic deployment and reconfiguration of pul-

verised systems: As a matter of principle, the pulverisa-

tion approach supports self-adaptive application deployment.

Indeed, nothing prevents moving components of a logical

device across physical nodes (e.g. B component can be placed

into the cloud if the device has a low battery level). This

direction, however, is not currently supported by ScalaLoci,

which assumes static data placement. The influence of our

design could lead to an extension of the languages in which

the placed type could be moved data between peers, while still

leaving the system specification type-safe.

Placement types in aggregate programming: Currently,

ScalaLoci and ScaFi had been intentionally combined in such

a way that the aggregate program is completely agnostic about

the usage of a multi-tier language for deployment. A different

yet intriguing research direction would be to understand if and

how placement types (along with the other concepts introduced

by the peculiar interpretation of multi-tier programming in

ScalaLoci) could be leveraged in an aggregate setting. At the

moment, the implications of manipulating placement types at

the aggregate computing level are unclear, but we glimpse

some potential for the definition of evolving networked sys-

tems that are worth exploring.

V. CONCLUSION

In this article, we propose an approach to bridge pulverised

architectures and verified deployment of aggregate systems,

leveraging multi-tier programming to foster declarativity, ex-

pressiveness, and safety. In particular, we show how a pul-

verised architecture could be specified in ScalaLoci, and then

mapped onto a concrete deployment. Finally, we show how

aggregate computations can be easily soldered into the infras-

tructure, by drafting the implementation of the behavioural part

of the system using the ScaFi aggregate computing toolkit.

Even though the present work is preliminary, we show that

the approach is general enough to support different deployment

architectures: we exemplify peer-to-peer and IoT edge-cloud

architecture with thick or thin end devices, but of course,

the design space in this context is huge. We believe that

the integration between multi-tier programming and pulverised

aggregate programming is a promising approach for the design

and implementation of collective adaptive systems that can

execute independently of the underlying infrastructure, pre-

serving the business logic.

Acknowledgements

This work has been supported by the MIUR PRIN 2017

Project N. 2017KRC7KT “Fluidware”.

REFERENCES

[1] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things.” [Online]. Available: https://doi.org/10.1109/MC.
2015.261

[2] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and
D. Pianini, “From distributed coordination to field calculus and
aggregate computing.” [Online]. Available: https://doi.org/10.1016/j.
jlamp.2019.100486

[3] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil, “DEECO: an ensemble-based component system.” [Online].
Available: https://doi.org/10.1145/2465449.2465462

[4] O. Scekic, D. Miorandi, T. Schiavinotto, D. I. Diochnos, A. Hume,
R. Chenu-Abente, H. L. Truong, M. Rovatsos, I. Carreras, S. Dustdar,
and F. Giunchiglia, “Smartsociety - A platform for collaborative
people-machine computation.” [Online]. Available: https://doi.org/10.
1109/SOCA.2015.10

[5] Y. A. Alrahman, R. D. Nicola, and M. Loreti, “Programming
interactions in collective adaptive systems by relying on attribute-based
communication.” [Online]. Available: https://doi.org/10.1016/j.scico.
2020.102428

[6] R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, and D. Weyns,
“Pulverization in cyber-physical systems: Engineering the self-
organizing logic separated from deployment.” [Online]. Available:
https://doi.org/10.3390/fi12110203

[7] P. Weisenburger, J. Wirth, and G. Salvaneschi, “A survey of multitier
programming.” [Online]. Available: https://doi.org/10.1145/3397495

[8] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular
LPWAN technologies for iot deployment: Sigfox, lorawan, and nb-iot.”
[Online]. Available: https://doi.org/10.1109/PERCOMW.2018.8480255

[9] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web
programming without tiers.” [Online]. Available: https://doi.org/10.
1007/978-3-540-74792-5_12

[10] P. Weisenburger, M. Köhler, and G. Salvaneschi, “Distributed
system development with scalaloci.” [Online]. Available: https:
//doi.org/10.1145/3276499

[11] P. Weisenburger and G. Salvaneschi, “Multitier modules.” [Online].
Available: https://doi.org/10.4230/LIPIcs.ECOOP.2019.3

[12] ——, “Implementing a language for distributed systems: Choices
and experiences with type level and macro programming in scala.”
[Online]. Available: https://doi.org/10.22152/programming-_journal.org/
2020/4/17

[13] D. Pianini, M. Viroli, and J. Beal, “Protelis: practical aggregate
programming.” [Online]. Available: http://doi.acm.org/10.1145/2695664.
2695913

[14] G. Audrito, “FCPP: an efficient and extensible field calculus framework.”
[Online]. Available: https://doi.org/10.1109/ACSOS49614.2020.00037

[15] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani,
“Engineering collective intelligence at the edge with aggregate
processes.” [Online]. Available: https://doi.org/10.1016/j.engappai.2020.
104081

[16] G. Aguzzi, R. Casadei, N. Maltoni, D. Pianini, and
M. Viroli, “Scafi-web: A web-based application for field-
based coordination programming.” [Online]. Available: https:
//doi.org/10.1007/978-3-030-78142-2_18

https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1109/SOCA.2015.10
https://doi.org/10.1109/SOCA.2015.10
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.3390/fi12110203
https://doi.org/10.1145/3397495
https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.22152/programming-_journal.org/2020/4/17
https://doi.org/10.22152/programming-_journal.org/2020/4/17
http://doi.acm.org/10.1145/2695664.2695913
http://doi.acm.org/10.1145/2695664.2695913
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1007/978-3-030-78142-2_18
https://doi.org/10.1007/978-3-030-78142-2_18

