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Abstract: Visuospatial working memory (WM) requires the activity of a spread network, including
right parietal regions, to sustain storage capacity, attentional deployment, and active manipulation of
information. Notably, while the electrophysiological correlates of such regions have been explored
using many different indices, evidence for a functional involvement of the individual frequency
peaks in the alpha (IAF) and theta bands (ITF) is still poor despite their relevance in many influential
theories regarding WM. Interestingly, there is also a parallel lack of literature about the effect of
short-term practice on WM performance. Here, we aim to clarify whether the simple repetition of a
change-detection task might be beneficial to WM performance and to which degree these effects could
be predicted by IAF and ITF. For this purpose, 25 healthy participants performed a change-detection
task at baseline and in a retest session, while IAF and ITF were also measured. Results show that
task repetition improves WM performance. In addition, right parietal IAF, but not ITF, accounts for
performance gain such that faster IAF predicts higher performance gain. Our findings align with
recent literature suggesting that the faster the posterior alpha, the finer the perceptual sampling rate,
and the higher the WM performance gain.

Keywords: working memory; oscillations; theta; alpha; individual peak frequency; inverse efficiency
score; practice

1. Introduction

Working memory (WM) refers to the ability to temporarily store and manipulate
limited amounts of information over a short period of time [1–3]. Following seminal find-
ings from clinical research [4–6], a modularized multicomponent model was devised to
account for all the different pieces of information working memory has to cope with [7,8],
wherein non-verbal (e.g., visual and spatial) material pertains to specific and independent
sub-systems. More recent neuroimaging studies concur in suggesting that such a compart-
mentalized visuospatial module might have some definite neural underpinnings, which
correspond to the so-called frontoparietal network [9–17]. Indeed, the dorsolateral pre-
frontal cortex (dlPFC) and the posterior parietal cortex (PPC) have been proved to activate
during a wide range of WM-related paradigms, sometimes showing slight lateralization
toward the right (rather than left) hemisphere during visuospatial (as compared to verbal)
tasks [18–20].
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Whereas the contribution of dlPFC has been linked to top-down control mechanisms
intrinsic to the central executive system, PPC is thought to underlie many processes as-
sociated with storage capacity, attentional deployment, and active manipulation of infor-
mation [21–24]. These findings are in line with pieces of evidence gathered from patients
suffering from parietal damage [25–27], who often display significant WM deficits, not to
mention the severe impairment of spatial attention characterizing individuals affected by
neglect syndrome, following right parietal lesions [28–30]. Besides all the clinical and neu-
roimaging data mentioned so far, electrophysiological inquiries have also highlighted the
key role played by parietal areas in driving WM performance. For instance, frontoparietal
oscillations within the theta band reported during WM tasks have been construed as a
mechanism serving the prioritization and retention of relevant stimuli [20,31–41], while
alpha activity over the same cortical regions should enhance ipsilateral performance by sup-
pressing contralateral irrelevant information [33,38,41–47]. Similar conclusions have been
reached by adopting non-invasive brain stimulation (NIBS) techniques as well [33,48–53].

Interestingly, the greater part of the above-mentioned EEG findings was collected via
metrics such as spectral power, interregional phase-coupling, or electroencephalographic
coherence, whereas other indices, namely band-specific individual peak frequencies, went
often overlooked. Indeed, the literature regarding the role of theta and alpha peak fre-
quencies is still poor, despite the relevance of such biomarkers in many influential theories
concerning WM and attention [54,55]. Recently, a few studies have been carried out to shed
some light on the matter. On the one hand, deceleration of parietal theta rhythms induced
by transcranial alternating currents stimulation (tACS) has been shown to be beneficial
to WM [49,51,52]. Conversely, externally induced acceleration of posterior alpha rhythms
appeared to boost not only spatial WM performance [56] but also visual perception, proba-
bly by inducing a finer sampling rate [57–62]. Since frequency-specific peaks (especially
in the alpha band) are known to be a rather stable neurophysiological trait that correlates
with perceptual and cognitive abilities [49,61,63–65], it is legitimate to question whether
individual alpha/theta peak frequencies (IAF/ITF) might help us to predict changes in
WM performance as a function of practice.

Whereas extensive literature outlines that a general improvement in performance
appears to correlate with large numbers of training sessions [66–70], little has been investi-
gated regarding the impact of the simple repetition of a task on WM performance. Studies
focusing on such short-term protocols, which were typically carried out within a single
session or over two consecutive days at most, yielded scattered pieces of evidence on the
matter [71–74]. Moreover, the aforementioned studies relied on neuroimaging techniques
such as fMRI or PET, rather than EEG, whenever they were set to unveil any possible
correlation between changes in WM performance and brain activity. In fact, only two major
works have attempted to detail the EEG correlates of practice-induced changes relative to
WM performance [75,76]. Specifically, both studies proved that accuracy and RTs benefitted
from practicing the task. Yet, while in McEvoy et al. (1998), the electrophysiological in-
vestigations concerned EEG evoked responses, only Gevins and colleagues (1997) focused
on oscillatory activity within the alpha and theta band. Indeed, in Gevins et al. (1997),
participants performed, in a randomized manner, verbal and spatial WM tasks that could be
either easy or difficult. An enhancement in accuracy and a decrease in reaction times were
reported in both conditions as a function of practice, which were coupled with different
oscillatory underpinnings. A power increase in the theta band over midfrontal areas, as
well as in the alpha band over occipital sites, appeared to unfold after (as compared to
before) practicing the task. Notably, such increases proved to be stronger, respectively, in
the theta band for difficult tasks and in the alpha band for easy tasks. To sum up, this
study confirmed that repetition-driven improvements could be associated with precise
patterns of EEG activity. However, such patterns relied on analyses focused on spectral
power measures instead of band-specific peak frequencies.

Here, we specifically aim to clarify whether and how short-term practice (i.e., the
simple repetition of a visuospatial WM task) may benefit WM efficiency as measured
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using the inverse efficiency score (IES), an index combining reaction times (RTs) and
accuracy, by adjusting each participant’s mean reaction time according to their own accuracy
rate [77,78]. Moreover, we will assess whether and to which extent this surmised effect
could be predicted by parietal individual peak frequency in the alpha and theta bands.
We did so by asking 25 healthy participants to perform a visuospatial change-detection
task [79] during a first (baseline) session and a second (retest) session that took place
half an hour apart. We hypothesize that performance should increase (i.e., IES should
decrease) at retest as compared to baseline (i.e., as a function of practice). Furthermore, we
expect that such change might be predicted somehow by either ITF or IAF, as measured
over the right parietal cortex, in line with clinical and experimental evidence suggesting
that the right hemisphere (especially over posterior sites) is likely to host cognitive and
perceptual systems responsible for processing and retaining visuospatial information, as
well as driving the attentional focus toward both hemifields [9,18,20,28–30,80–84].

2. Materials and Methods
2.1. Participants

All the experimental sessions were carried out at the Center for Studies and Research
in Cognitive Neuroscience in Cesena. A preliminary analysis performed on G*Power
(parameters: effect size f = 0.30; α error probability = 0.05; power = 0.80; number of
groups = 1; number of measurements = 4) returned an optimal sample size of 24 subjects.
As a result, 25 healthy adult volunteers (15 females, mean age 23.32 ± 2.92 s.d. years old),
naive as to the purpose of the study, were recruited (mostly during the first months of
2021) from the student population. Written informed consent was obtained from all the
participants before taking part in the study, which was conducted in accordance with the
Declaration of Helsinki and approved by the Bioethics Committee of the University of
Bologna (Prot. 140758, 9 October 2018). All participants reported no history of psychiatric
or neurological disorder, nor any other counter-indication such as taking psychiatric drugs.
No monetary compensation was provided for those who volunteered in the study.

2.2. Procedure

The experimental session, which had a duration of approximately one and a half
hours, progressed as follows. After signing the consent form, participants were seated on a
comfortable chair in a sound-attenuated room. EEG cap was fitted, and electrophysiological
activity was verified. Participants performed a change-detection paradigm task (baseline
session) with a fixed load of 4 items to test for individual visual WM capacity. To identify
the individual oscillatory peak, EEG analysis of retention periods (see task description in
Section 2.3) was performed. The same change-detection task, along with EEG analysis
of the retention periods, was performed around half an hour later (retest session). The
structure of the experimental session can be appreciated in Figure 1.
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2.3. Change-Detection Task

Visual stimuli of the task were displayed on a Relysis monitor (1280 × 1024, 85 Hz
refresh rate) at a viewing distance of approximately 60 cm from the participant’s eyes. Stim-
uli were presented using Psychtoolbox v3 [85]; (http://www.psychtoolbox.org/. Accessed
10 December 2020), running under MATLAB R2016a (MathWorks) on a Windows machine.

In the task (Figure 2), an arrow was presented in the center of the screen for 0.2 s,
indicating in which hemifield the to-be-remembered information was going to be presented.
Subsequently, the memory set was presented for 0.1 s and consisted of four squares of
different colors on each hemifield. The participants were instructed to only remember
the squares cued by the arrow while ignoring the four squares presented on the opposite
hemifield. A retention period of 0.9 s started, during which only a fixation cross was
displayed, followed by a match/mismatch display for 2.5 s, during which the participant
had to decide whether the new memory set presented matched (or not) the previously
presented one by pressing two keys on a keyboard. On match trials, every square was of
the same color as previously presented. On non-match trials, one of the squares of the
relevant hemifield, cued by the arrow, changed color. After 2.5 s, the next trial started
irrespective of whether the participant had responded. The task consisted of 160 trials,
of which 40 were left-mismatched, 40 left matched, 40 right-mismatched, and 40 right-
matched trials, presented in randomized order. Every 40 trials, a pause of few seconds was
introduced to prevent participant fatigue.
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2.4. EEG Recordings

EEG data were recorded using a 64 active Ag/AgCl electrodes cap arranged according
to the 10-10 international system (ActiChamp, Brain Products, Gilching, Germany) and
the software Brain Vision Recorder (Brain Products Italia Srl, Putignano, Italy) to record
the electroencephalogram continuously throughout the whole experiment at 1000 Hz at
each electrode. Electrodes were referenced online to the FCz electrode. Impedances of
all electrodes were kept below 10 kΩ during the whole experiment. After the impedance
check and before starting the recording, the EEG trace was visually inspected. This was
to exclude any large artifacts from non-physiological sources, such as power lines, bad
electrode contact, and broken electrodes. This check was repeated both for the first and the
second recording session and while the EEG recording was ongoing.

2.5. Data Analyses
2.5.1. Behavioral Data

As a measure of task performance, both accuracy rates (AR) and reaction times (RT)
were computed for every participant in each session as a function of the cue pointing

http://www.psychtoolbox.org/
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direction (left or right arrow cues). AR corresponded to the percentage of correct responses
over the total amount of trials, namely, when the participant correctly reported if the
testing set matched (or not) the memory set. On the other hand, RTs corresponded to the
mean number of milliseconds (within the 2.5 s time window starting from the onset of
the testing set) the participant took to press the response button in trials where a correct
response was given. By implementing an automated MATLAB algorithm, we removed,
for each participant, trials whose RTs exceeded more than two standard deviations from
the participant’s mean RT: at baseline and retest, respectively, 4.4% (±1.2 s.d.) and 5.0%
(±1.2 s.d.) of the total amount of trials were discarded. We then calculated an inverse
efficiency score (IES), which is an index combining both RTs and accuracy by dividing each
participant’s mean RT for their relative AR, according to the following formula [77,86,87]:

IES =
RT
AR

The advantage of using IES over ARs or RTs alone is that it better accounts for experi-
mental conditions where higher accuracy rates are associated with faster reaction times
(and vice versa) by down-weighting the contribution of slow RTs through an accuracy-
based correction and might be therefore construed as an integrative measure of the overall
efficiency displayed by a system [77,78].

2.5.2. EEG Data: Preprocessing

EEG data were analyzed using Brain Vision Analyzer 2.0 (Brain Products Italia Srl).
Electrodes were re-referenced offline to the average of all electrodes. Data were downsam-
pled to 256 Hz. Continuous signals were segmented into epochs of 2100 ms, starting at
900 ms preceding the arrow-cue onset and for another 1200 ms after the cue onset. Data
were then filtered with a high-band pass filter of 0.5 Hz and a low-band pass filter of 40 Hz
(to minimize power line noise and motor artifacts) and, subsequently, baseline-corrected us-
ing a time window spanning from −600 to −300 ms before the arrow-cue onset. Moreover,
residual artifacts contaminating the signal (eye blinks, eye movements, muscle contractions)
were corrected by implementing an automated offline pipeline based on a linear regression
method [88]. This procedure calculates the propagation factor between the eyes and each
of the scalp electrodes and subtracts the corresponding proportion of the ocular activity
from the waveform of each scalp site. This method allows subtracting the voltage due
to muscular artifacts rather than rejecting trials with those artifacts. With these quality
control steps (along with those described in paragraph 2.4), none of the participants had to
be excluded.

2.5.3. EEG Data: Peak Frequency Analyses

Preprocessed data were filtered to highlight our frequencies of interest (low cut-
off, 3 Hz; high cut-off, 15 Hz). Subsequently, for every participant, power spectrum was
extrapolated from each trial by implementing Fast Fourier Transform on the whole retention
period (900 ms-long segments starting from the disappearance of the to-be-remembered
array and ending at the onset of the match/mismatch display), with segments that were
zero-padded to length of 1600 ms, resulting in a resolution of 0.1 Hz. Such participant-wise
power spectra (sorted as a function of the testing sessions) were then averaged together
to obtain power estimation relative, respectively, to the baseline and retest sessions. As
a result, each participant’s IAFs and ITFs (both at baseline and retest) were extracted as
the frequency peak within the alpha (7–13 Hz) and theta (3–7 Hz) band that showed the
largest power estimate deviating from the 1/f scaling of EEG spectral activity [64,89]. Such
detection strategy has been chosen over other approaches, namely, Center of Gravity (CoG)
estimation [90], since it provides a more faithful and frequency-specific depiction of the
physiological dynamics at work (as compared to the post hoc weighted reconstruction
returned by CoG). Indeed, CoG has often been considered a valuable alternative to peak
estimation whenever IAF had to be extrapolated from task-positive (rather than resting)
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EEG data due to event-related alpha suppression phenomena. However, more recent
evidence shows that alpha activity might be just slightly attenuated or even enhanced
during the completion of certain cognitive tasks [91,92]. Given that our analyses rely on
data relative to retention periods, where alpha activity has been proven to be enhanced
(and not decreased) [93,94], peak estimation (as opposed to CoG) appeared to be the most
straightforward approach to implement.

Following multiple pieces of evidence regarding the role of frontoparietal sites in
driving WM performance, we chose to analyze frequency peaks recorded from P4/P3
and F4/F3 electrodes, roughly corresponding to the right/left intraparietal sulcus and
the posterior part of the right/left middle frontal gyrus [50,95–98]. As such, individual
frequency peaks from the parietal (electrode P4, IAFP4, and ITFP4, experimental data) and
frontal (electrode F4, IAFF4, and ITFF4, control data) lobes over the right hemisphere, as
well as from parietal (electrode P3, IAFP3, and ITFP3, control data) and frontal (electrode F3,
IAFF3, and ITFF3, control data) electrodes placed over the left hemisphere, were collected
for the analyses.

2.6. Statistical Analyses

Statistical analyses were performed via jamovi 1.6 (the jamovi project, 2021). Concern-
ing behavioral data, in order to assess whether inverse efficiency scores (IES) underwent
changes as a function of practice, a repeated-measure ANOVA was performed, with side
(left, right; according to the hemifield to-be-attended) and session (baseline, retest) as
the within-subjects factors, and IES as the dependent variable. As for oscillatory peaks
(IAFs/ITFs), in order to assess whether any practice-induced modulation occurred to
them, two separate repeated-measure ANOVAs, for each frequency band (alpha and theta),
were performed with hemisphere (left; right), electrode (frontal; parietal), and, most of all,
session (baseline; retest) as the within-subjects factors.

Next, we assessed, via linear regression analysis, whether individual oscillatory peaks
could account for interindividual variability in performance both at baseline and retest.

Importantly, given that behavioral data, but not oscillatory peaks, showed a significant
effect of the session, we quantified the practice-induced gains in terms of performance by
subtracting, for each participant, the mean IES scores at baseline from those at retest (∆IES)
and tested whether the practice-induced gains across individuals could be accounted for
by their absolute individual frequency peaks both at baseline and retest by means of linear
regression analysis.

3. Results
3.1. Inverse Efficiency Scores (IES)

We first checked for bias in terms of lateralized performance by comparing IES at
baseline according to the location of the to-be-attended array (left vs. right hemifield). As
expected, the paired-sample t-test returned no significant difference (t1,24 = 0.609; p = 0.548)
between IES related to the left (M = 1.36; S.E.M. = 0.06) vs. right hemifield (M = 1.34;
S.E.M. = 0.04). Subsequently, a repeated-measure ANOVA with session (baseline, retest)
and side (left, right) as within-subject factors was computed. Results showed no main
effect of side (F1,24 = 0.185; p = 0.671; η2

p = 0.008), nor any interaction of side × session
(F1,24 = 2.839; p = 0.105; η2

p = 0.106), but a main effect of session (F1,24 = 89.504; p < 0.001;
η2

p = 0.789). To better elucidate how the main effect of session was unfolding, we compared
IES at baseline vs. retest (collapsing the factor side in each condition): IES at retest (M = 1.09;
S.E.M. = 0.04) were lower than those at baseline (M = 1.35; S.E.M. = 0.05). Indeed, the
paired-sample t-test run on side-collapsed IES at baseline vs. retest to further explore this
change returned a significant difference (p < 0.001, S.E.M. = 0.027; CI [0.20 0.31]) along with a
robust effect size (Cohen’s d = 1.86). To conclude, a general decrease in the inverse efficiency
scores, indexing an improvement in WM performance, seemed to occur as a function of
practice (independently of the to-be-attended hemifield). All the above-mentioned results
are depicted in Figure 3.
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3.2. Individual Frequency Peaks

We first checked for hemispheric differences both for anterior and posterior elec-
trodes in averaged individual frequency peaks scores. Regarding the alpha band, paired-
sample t-tests returned no significant interhemispheric difference for posterior electrodes
((t1,24 = −1.453; p = 0.159) between IAFP3 (M = 10.3; S.E.M. = 0.261) and IAFP4 (M = 10.6;
S.E.M. = 0.216)) or anterior electrodes ((t1,24 = 0.614; p = 0.545) between IAFF3 (M = 10.2;
S.E.M. = 0.214) and IAFF4 (M = 10.2; S.E.M. = 0.226)). Similarly, within the theta band, no
significant interhemispheric difference was found for posterior and anterior electrodes (all
t1,24 values < −0.769; all p values > 0.05) between ITFP3 (M = 4.7; S.E.M. = 0.194) and ITFP4
(M = 4.8; S.E.M. = 0.170), nor between ITFF3 (M = 5.0; S.E.M. = 0.199) and ITFF4 (M = 5.1;
S.E.M. = 0.241).

Next, in order to test whether individual peaks change as a function of session, two
repeated-measure ANOVAs (one for each frequency band) were performed, with session
(baseline; retest), hemisphere (left; right), and electrode (parietal; frontal) as within-subject
factors. As for IAF, results showed no main effects of session, hemisphere, and electrode
(all F1,24 values < 2.396; all p-values > 0.05; all η2

p values < 0.091), nor any significative
interaction effect (all F1,24 values < 1.632; all p-values > 0.05; all η2

p values < 0.064). Likewise,
ANOVA performed on ITFs returned no significant main effects of session, hemisphere,
and electrode (all F1,24 values < 2.845; all p-values > 0.05; all η2

p values < 0.106), nor any
significative interaction effect (all F1,24 values < 1.165; all p-values > 0.05; all η2

p values < 0.046).
To sum up, oscillatory peaks within each frequency band displayed little variability, since
they appeared not to change according to the electrode location, and, most of all, as a
function of practice. All the above-mentioned results are depicted in Figure 4.
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3.3. Brain Behavior Relationships

To assess whether parietal and frontal IAFs/ITFs relative to both hemispheres could
predict any of the above-outlined behavioral patterns, we first tested whether individual
oscillatory peaks could account for individual performance at baseline (and consistently at
retest). Results showed no significant effect of IAFs/ITFs on IES scores both at baseline and
retest (all p-values > 0.05).

Next, given that behavioral data but not oscillatory peaks showed a significant effect
on the session, we tested whether IAFs/ITFs recorded at baseline, as well as at retest, from
parietal and frontal electrodes relative to both hemispheres could predict performance gain
(relative to the whole visual field) as measured with IES at retest relative to baseline (∆IES).
Results showed a significant effect of the right parietal IAFs recorded at baseline on ∆IES
(fitted regression model: ∆IES = 0.5404 − 0.0754 × IAFP4 baseline; R2 = 0.359; F1,23 = 12.90;
p = 0.002). The same effect of right parietal IAFs on ∆IES was observed again at retest (fitted
regression model: ∆IES = 0.3176 − 0.0554 * IAFP4 retest; R2 = 0.190; F1,23 = 5.41; p = 0.029).
This effect was specific to hemisphere, site, and frequency. Indeed, frontal IAFs recorded
from both the right and left hemispheres, as well as parietal IAFs recorded from the left
hemisphere, did not exert a significant impact on ∆IES (all p-values > 0.05).

Similarly, no significant effect of frontal and parietal ITFs recorded from the left and
right hemispheres on ∆IES could be observed (all p-values > 0.05).

To broadly summarize, it could be stated that neither IAFs nor ITFs (recorded at base-
line and retest) can account for baseline performance; the performance gain as measured
with ∆IES can be predicted by right parietal IAFs, independently of whether recorded at
baseline or retest. Specifically, the faster the right parietal IAFs cycle, the more the IES
decreases at retest (relative to baseline). All the above-mentioned results are depicted in
Figure 5.
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4. Discussion

In this study, we aimed to elucidate whether WM performance benefitted from the
simple repetition of a change-detection task. Moreover, we were also interested in clari-
fying to which degree these putative improvements could be associated with the parietal
individual oscillatory peak frequency in the alpha and theta bands. For this purpose, we
recruited 25 healthy participants who performed a change-detection task twice: during a
baseline session and (half an hour apart) a retest session, while individual peaks in alpha
and theta frequency bands were extracted from the power spectra relative to the retention
period during the baseline, as well as the retest session.

From a behavioral standpoint, the analyses met our predictions: IES, an integrative
measure of task performance [77,78], significantly improved as a function of practice, akin
to some previous findings relative to accuracy and RTs [71,73,75]. That is, even a simple
repetition of the task was able to prompt noticeable changes in the performance relative
to both the right and left hemifields. Let it be noted that these kinds of conclusions were
mostly drawn by means of long-term studies [68–70], while evidence on the outcomes of
short-term practice returned divergent suggestions [72,74]. However, this could be due to
many factors, such as the limited number of studies focusing on the effect of short-term
practice, their differences in terms of time devoted to practice, the overall design of the
study, as well as the tasks, stimuli, and behavioral measures involved. We decided to
keep these variables under control in two ways. On the one hand, adopting a combined
index such as the IES (rather than accuracy and RTs alone) is thought to better track the
resource consumption of a cognitive system and, consequently, its overall efficiency [78].
On the other hand, we chose to employ a change-detection task, which is a widely used
and reliable paradigm to test visuospatial WM [70,79]. Moreover, given its relatively short
length, it enabled us to collect a discrete amount of data through a simple test–retest
design, thus preventing fatigue or loss of concentration as much as possible. These peculiar
characteristics are also the reason why the change-detection task has been frequently
adopted whenever it is necessary to lend some insight into the neural dynamics underlying
WM. This consideration brings us to the second hypothesis behind our study, namely, that
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the observed behavioral improvements, ascribable to the repetition of the task, could be
predicted by the speed of parietal oscillations in the alpha and theta band.

Indeed, clinical evidence [4,28–30] has paved the way for a functional model wherein
the right parietal lobe acts as a crucial hub in driving the attentional focus toward both
hemifields, leading many authors to agree with the “hemispatial” theory [82,83]. According
to this conceptual framework, visuospatial attentional systems should be right-lateralized
and yet capable of deploying the attentional focus toward the whole visual field and
not just contralaterally [99,100]. In addition, right-lateralization was often found in WM
tasks involving visuospatial (rather than verbal) stimuli [18,20]. Therefore, we ran some
explorative analyses on individual alpha/theta frequency (focusing on oscillatory peaks
recorded from right parietal sites) to elucidate whether they could be accounted for as some
of the oscillatory signatures of such visuospatial vector, whose activities support spatial
attention and visual WM. Interestingly, band-specific ANOVAs performed on oscillatory
peaks to test for practice-induced changes yielded no significant results. Namely, both
alpha and theta individual frequency peaks appeared not to be affected by the amount
of practice, regardless of the hemisphere or the cortical site which they were recorded
from. This piece of evidence is consistent with literature that likens frequency peaks to an
individual trait with a high degree of stability [63,64]. Moreover, our data further extend
existing knowledge on the matter, suggesting that such stability appears to be immune
from short-term, practice-related effects as well.

In light of the aforementioned findings, brain–behavior relationships were investi-
gated by comparing performance gain with individual frequency peaks, respectively, at
baseline and retest. Results returned by the regression analyses depicted a clear pattern,
where participants showing faster alpha rhythms (both at baseline and retest) over the right
parietal cortex displayed a greater decrease in IES over the course of the experiment. In
other words, alpha peak frequency over the right parietal cortex appeared to predict the
extent to which participants benefitted from the repetition of the task in terms of perfor-
mance. This is not surprising, considering that oscillatory activity in the alpha band has
been linked to perceptual processing [57,101–104] and the efficiency by which distracting
stimuli are dealt with [33,55,105]. This is because the efficacy of both functional phenomena
is likely to depend on the number of alpha cycles fulfilled per second. This measure, in turn,
determines the degree of resolution of each individual’s perceptual sampling rate [62,106]
and might very well be regarded as a variable affecting WM performance [42,107–110],
namely, the higher the frequency of the individual alpha peak is, the more the IES de-
creases. Since performance estimates gathered via IES account for the degree of efficiency
by which a system draws upon its internal resources, the individual alpha peak might then
be construed as the neurophysiological parameter ensuring enough cognitive flexibility
to capitalize on the amount of practice. Indeed, the rate at which individual alpha peaks
cycle, rather than driving the performance per se (as control analyses outlined), appears
to determine how efficiently participants tap into the cognitive capabilities enabling them
to profit from the repetition of the task. In line with recent evidence, such capabilities
might regard the speed of information processing [64] and/or the extent to which indi-
viduals learn (as the task progresses) how distracting stimuli should be effectively dealt
with [42,55,111]. Remarkably, both the alpha peaks at baseline and retest proved to predict
participant ability to flexibly adapt to task demands (i.e., as a function of practice), further
corroborating previously mentioned results regarding the trait-like features (e.g., stability)
of such an electrophysiological index. Moreover, only individual alpha peaks over the right
(and not the left) parietal lobe seem to be causally involved in determining the efficiency
gain (relative to the whole visual field) over the course of the experiment, resembling many
functional and topographical characteristics ascribed to the attentional vector claimed by
advocates of the hemispatial theory [82,83]. Overall, these pieces of evidence depict a
psychophysiological scenario where the speed of parietal alpha oscillations appears to
represent a reliable biomarker of short-term practice outcomes. Whereas it remains to be
further clarified whether this relationship applies to cognitive domains other than those
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regarding WM (i.e., the “far” transfer problem), the translational meaning of such effects
needs to be accounted for. Specifically, preliminary screenings to assess parietal alpha fre-
quency might help clinicians in predicting the effectiveness of short-term training protocols
to be administered to patients suffering from attentional or cognitive impairments. As a
result, more customized treatment strategies tailored to each patient’s electrophysiological
traits would be enabled.

On the other hand, data relative to individual theta peak frequency appears to be
inconclusive. Oscillatory activity in the theta band has been thought to sustain online main-
tenance of the to-be-remembered items during WM tasks [38,49,52,112–114]. According to
the theta–gamma code theory [54,115,116], one would expect that individual theta peaks
displaying slower frequency rates should leave more room for gamma spikes to nest in,
thus enhancing WM capacity by virtue of a better phase-amplitude coupling. This seems
to be at odds with our results since our analyses unveiled no such relationship. However,
the patterns returned by our analyses may be alternatively interpreted. For instance, the
fixed load of four items, corresponding to the average WM storage limit [3,117], may not
represent a sufficient cognitive load to engage theta speed dynamics underlying storage
capacity. Indeed, oscillatory activity in the theta band has been proved to increase during
WM tasks in proportion to the difficulty or the cognitive load relative to the employed
paradigms [33,75,118,119]. Moreover, a crucial role in top-down control and cognitive
monitoring has also been ascribed to rhythmic activity between 3 and 7 Hz [120,121]. Taken
together, these pieces of evidence suggest that our paradigm, both in terms of cognitive
load and overall structure, was not sufficiently challenging to solicit a massive involvement
of theta activity (as measured through frequency peaks over frontal and parietal sites) in
support of performance. This is likely to be ascribed to the number of to-be-remembered
items (corresponding to the average storage capacity, which was not increased during the
course of the experiment), as well as the occurrence of the retest session, during which
the completion of the task may have been easier (due to practice) than that relative to the
baseline session, thus reducing the need for monitoring processes.

To summarize, the simple repetition of a change-detection task has proved to be bene-
ficial to WM performance as assessed via IES. This improvement appears to be predicted
by the individual alpha (but not theta) frequency recorded over the right parietal lobe, both
at baseline and retest. Such patterns point to a functional role played by right parietal alpha
peaks in facilitating the implementation of new and more efficient cognitive strategies
developed over the course of the experiment as a function of practice.

5. Limitations

Despite the promising pieces of evidence provided in our study, some further issues
need to be considered. Firstly, our sample size was relatively small, and a wider number
of participants is needed in order to draw more solid conclusions about the topics we
have investigated. On this same line of reasoning, participants in our experiment were
mostly psychology students whose average age and years of scholarly education differ
from those relative to the general population. As a result, not only a bigger but also a
more heterogeneous sample size will be required for study replication. Besides matters
concerning the size and demographics of the sample, a further potential limitation might
regard the extent to which the above-described effects apply to other domains. That is, we
cannot entirely rule out the possibility that our results could be task-specific and may not
be witnessed when probed with different WM tasks or experimental paradigms designed
to test other cognitive functions (the “near” and “far” transfer issue). Forthcoming study
replications should take into account such considerations as well.
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