Performance improvements for the all-copper redox flow battery: membranes, electrodes, and electrolytes

Wouter Dirk Badenhorst^a, Kuldeep^a, Laura Sanz^b, Catia Arbizzani^c, Lasse Murtomäki^a*.

^aDepartment of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, PO Box 16100, 00076 AALTO, Finland.

^bNvision System & Technologies S.L, Avenida Barcelona (ed ig nova Tecnoespai), 105 - DESP 8, Igualada, 08700, Barcelona, Spain.

^cAlma Mater Studiorum - University of Bologna, Dept. of Chemistry "Giacomo Ciamician", Via F. Selmi 2, 40126 Bologna, Italy.

*Corresponding author

lasse.murtomaki@aalto.fi

Figure 1A: Optical microscope images of CM-119 28 carbon ink coating on Sigracell FR-10 bipolar plate (left) and copper growth on the CM-119 28 carbon ink on the right at an x10 magnification.

Figure 2A: Copper growth after operation of the redox flow cell under the standard conditions listed in Table 1. A) Copper growth on clean Sigracell FR-10, B) delaminated copper in the flow divider from copper growth on clean Sigracell FR-10, C) copper growth on the CM 119-28 coating, D) very little to no delaminated copper in the flow divider from copper growth on the CM 119-28 coating.

Figure 3A: SEM images of the FAP-330 (left) and AR-118 (right) membrane after cycling for 200 hours.