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Abstract: Signatures of positive selection in the genome are a characteristic mark of adaptation
that can reveal an ongoing, recent, or ancient response to environmental change throughout the
evolution of a population. New sources of food, climate conditions, and exposure to pathogens
are only some of the possible sources of selective pressure, and the rise of advantageous genetic
variants is a crucial determinant of survival and reproduction. In this context, the ability to detect
these signatures of selection may pinpoint genetic variants that are responsible for a significant
change in gene regulation, gene expression, or protein synthesis, structure, and function. This
review focuses on statistical methods that take advantage of linkage disequilibrium and haplotype
determination to reveal signatures of positive selection in whole-genome sequencing data, showing
that they emerge from different descriptions of the same underlying event. Moreover, considerations
are provided around the application of these statistics to different species, their suitability for ancient
DNA, and the usefulness of discovering variants under selection for biomedicine and public health
in an evolutionary medicine framework.

Keywords: positive selection; whole-genome sequencing; haplotype-based methods; haplotype; link-
age; selective sweep; haplotype homozygosity; haplotype composition; haplotype frequency; statistics

1. Introduction

After the Out of Africa event (around 60–70 kya), modern humans spread across the
world, colonizing regions with new environments (locally new food resources, climate, and
pathogens) and adapting to cope with the challenges induced by these new selective pres-
sures that have left molecular signatures in the genomes of present-day populations [1–3].

The ability to accurately detect and quantify the influence of selection from genomic
sequence data enables a wide variety of insights, ranging from understanding historical
evolutionary events to characterizing the functional and disease relevance of observed or
potential genetic variants [1–3]. The genomic footprint of positive selection is generally
characterized by long high-frequency haplotypes and low nucleotide diversity in the vicin-
ity of the adaptive locus, and statistical tests for the detection of these signatures have been
developed since before the inception of the whole-genome sequencing era, more than 20
years ago [1–3]. By assigning statistical scores to single nucleotide variants contextualized
in their haplotypic surroundings, these tests allow one to detect ongoing, recent, and
even ancient instances of selection on either ancestral or derived alleles, according to the
selective sweep model taken into consideration [4,5]. In fact, candidate loci under selection
may be significant drivers or contributors to current advantageous but also pathological
phenotypes, and selection tests can pinpoint the mutations possibly responsible for changes
in the regulation of gene expression, as well as in protein structure and function.
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The present article provides an overview of the key concepts that allow to one under-
stand the origin and nature of haplotypes, their application to population genomic studies,
and how they carry signatures of selection. Then, three notable viewpoints (pattern of
haplotype homozygosity, variation in haplotype composition, and change in haplotype
frequency) are introduced to contextualize how different interpretations of the same un-
derlying phenomenon (that is, genetic similarity at the same locus in different individuals
belonging to the same population) have been used to develop, over the years, statistical
frameworks that are based on the knowledge of haplotypes and linked variants. Finally,
after presenting several statistical tests, standalone programs, and packages, closing consid-
erations around the applicability, usefulness, and importance of the information provided
by these statistical tests are offered.

2. Haplotypes, Population Genomics, and Signatures of Selection
2.1. How Do Haplotypes Arise?

Meiosis is a characteristic event that leads to the production of haploid gametes in
sexually reproductive diploid organisms, such as humans [6]. A peculiar feature of this
process, which is typical of germ cells, is the alignment of homologous chromosomes (one
copy of which was inherited from one parent and one from the other parent) along the
central axis of the cell before the first round of division, with a subsequent exchange of
genetic material between them [7,8]. This process of recombination, also called “crossing
over”, is what allows the new generation to carry different genetic combinations, increasing
the overall diversity and variability of the population: the offspring will carry different
combinations of genes than their parents [8]. Its significance, however, is amplified by
two main observations. Firstly, genetic material is inherited in chunks, not as single
nucleotides, which implies that each nucleotide will be passed on to the next generation
surrounded by a specific cluster of variants on the inherited DNA segment. Secondly,
recombination is a largely random event (although specific sites exist, which are more
prone to recombination) [9–13], which means its rate can be averaged along the genome
to estimate a relatively constant probability at any location. This implies that, given any
two nucleotides belonging to the same chromosome, their frequency of recombination
approximates the physical distance separating them, with sites that are physically close
being less susceptible to recombination and therefore more probably inherited together.
Along a chromosome, if the probability pAB of finding any two sites A and B together (thus
constituting a haplotype, or a block of linked variants that are inherited together) is higher
than the combined probabilities of finding them separately, pApB, then the sites are said to
be in linkage disequilibrium (LD) [14–16]. So, at the population level, for sufficiently distant
sites on the same chromosome, the probability of crossover is high enough to destroy any
correlation between them, breaking the continuity of the haplotype, which is generally not
inherited as a single block of linked variants anymore [17–20].

2.2. Haplotypes in the Context of Population Genomics

Given this background, let it be assumed that a mutation, represented by an alternative
nucleotide (or allele) for a variant, may become heritable by appearing in the coding region
of a gene, along the genome of a germ cell in an individual. It is also assumed that the
product of this gene (e.g., a protein) may be altered in a way that enhances either the repro-
ductive chances of this individual or its survival in an environment, making it a beneficial
allele. The implication is that the offspring of this individual, which inherits the positive
mutation, will also have a fitness advantage under the same environmental conditions in
terms of survival and possibility to reproduce, so that, in time, the population that the
starting individual belongs to will be enriched in subjects carrying the same beneficial
allele. So, if a mutation provides an evolutionary advantage, its frequency will increase
over generations in the context of the same selective pressure (i.e., any environmental cause
that may alter reproductive success) [21].
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As presented previously, however, variants along a DNA filament are linked and
genetic material is inherited in chunks during homologous recombination. Therefore, not
only the mutation that is positively selected will increase its frequency across generations
but also the neutral variants surrounding it, which are carried along the same segment
in a phenomenon called “hitchhiking” [22–25]. By taking the genomes of individuals
from a population and aligning them, the result of this process can be observed as it
generates regions (which can be approximated by haplotypes) of high LD and low genetic
variability [26]. As recombination breaks the link between variants over time, it is expected
that relatively recent adaptive events will be represented by comparatively extended
haplotypes, while older selection events will be observed as smaller haplotypes in the
overall population [5].

2.3. Haplotypes and Selection Events

As selective pressure is dependent upon the conditions in which a population lives,
genetics and environment display a mutual effect, with a change in either one being able
to trigger an environment-dependent selective event [2]. As already introduced before,
a novel allele (i.e., a genetic change) may arise through mutation, which provides an
advantage in the existing environment (Figure 1a, grey). As DNA is inherited in segments,
a consequence of the fitness advantage conferred by the new mutation will be an increase
of its frequency in the population over generations, together with the surrounding neutral
variants on the same genetic chunk (hitchhiking). More specifically, the mutation will
possibly appear only once, in a single individual, and therefore will be linked to a very
definite neutral background, leading over time to a sharp reduction of genetic variability in a
comparatively large haplotype around the mutation (a “hard sweep” model, Figure 1b) [4,5].
Conversely, a prolonged period of change in environmental conditions (e.g., migration
to higher altitude or hotter climate; consistent exposure to new pathogens; a permanent
dietary alteration) could act as a selective pressure on an already existing polymorphism
that was previously neutral (Figure 1a, orange). This now positive allele, which confers
an evolutionary advantage in terms of fitness, is already present in several members of
the population and therefore is associated with a more varied neutral genetic background.
Consequently, several different haplotypes in the population will be surrounding the
advantageous mutation, and over time the reduction of genetic variability in that segment
will be less marked (“soft sweep” model, Figure 1b), with at most only the variant under
selection showing complete loss of variability (i.e., fixation) in the population [4,5].

Most haplotype-based methods can distinguish between hard and soft sweeps, if the
ancestral and derived states of the alleles for each variant making up the haplotype are
known. This information can be introduced by comparing the sequences of the individuals
under study with non-human reference primate sequences and assuming, at a minimum, a
model in which the alleles shared between humans and all other primates are inherited
from their common ancestor and therefore are treated as ancestral. This in turn implies that
the derived allele has appeared along the human lineage at a later time and is therefore
more recent. One can then assume that signals of selection associated with a soft sweep
will be characteristic of older, ancestral alleles that became beneficial after a change in
environment (Figure 1a, orange), while signals associated with a hard sweep will be the
signature of more recent, derived alleles that were advantageous and underwent selection
immediately after their appearance in the human lineage (Figure 1a, grey).

Of course, given these two extreme models, one must acknowledge the existence
of a range of other possible influences which result in intermediate conditions, called
“incomplete selective sweeps”. For example, the time at which the selective event has taken
place in the past, as well as its intensity and origin, has an impact on the genetic variability
surrounding the site under selection and produces intermediate changes in variability along
the inherited DNA segment. Moreover, it has been shown that sometimes the two alleles
of the same variant are both beneficial when expressed together in heterozygosity, which
over a long time generates segments with average variability surrounding a variant with
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both alleles at about the same frequency in the population (balancing selection). Finally, it
is important to highlight that, in contemporary human population genomics, most of the
phenotypes are being approached as complex traits, in which several genes contribute to
the outcome of intricate metabolic and regulatory processes [4,27–29]. However, smaller
genetic contributions from a high number of interacting genes (and gene products) prove
very difficult to model explicitly, even though exciting results have been obtained in recent
years by combining genomic scans for positive selection, using several of the methods
presented here, with network-based approaches on metabolic pathways [30–33].
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(grey) allele under selection. (D) Variation in the pattern of haplotype composition in a region sur-
rounding a central ancestral (orange) or derived (grey) allele under selection. (E) Decrease in the 
frequency of each most frequent haplotype, given an increasing number of haplotypes surrounding 
a standing (orange) or novel (grey) positively selected allele in the population. 
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Figure 1. Effect of selection of standing and novel alleles. (A) A novel allele, in grey, appears after
selection has begun its action and is immediately beneficial, so it will rapidly increase its frequency in
the population over time; a standing allele, in orange, already exists in the population as a neutral
allele with relatively low frequency, and it increases after becoming beneficial. (B) Representation of
a hard and a soft sweep, relative to the conditions described for panel A. (C) Variation in the pattern
of haplotype homozygosity in a region surrounding a central ancestral (orange) or derived (grey)
allele under selection. (D) Variation in the pattern of haplotype composition in a region surrounding
a central ancestral (orange) or derived (grey) allele under selection. (E) Decrease in the frequency of
each most frequent haplotype, given an increasing number of haplotypes surrounding a standing
(orange) or novel (grey) positively selected allele in the population.

3. Investigating the Effect of Positive Selection in a Genomic Region

The effect of a hard or soft sweep on a genetic region is mirrored by the local change
in the variability of that segment across the whole population under study, so that pattern
differences in an area surrounding the variant of interest may suggest the possibility of
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selection on a de novo mutation, rather than selection on an already standing variation.
However, the same event (local change in variability) may be analyzed in at least three
different ways, which provide the basis for several haplotype-based tests that allow for the
scan of entire genomes for signatures of positive selection, as listed in Table 1.

Table 1. List of popular methods, algorithms, statistics, and packages for detecting haplotype-based
signatures of positive selection in population-wide sequencing data. EEH: extended haplotype
homozygosity; LRH: long-range haplotype; iHS: integrated haplotype score; nSL: number of seg-
regating sites by length; XP-EHH: cross-population extended haplotype homozygosity; XP-nSL:
cross-population number of segregating sites by length; DIND: derived intra-allelic haplotype di-
versity; rMHH: ratio of most frequent haplotype homozygosity; HS: haplosimilarity score; CHI:
comparative haplotype identity; SS-H12: H statistic for shared selection; REHH: R package for
extended haplotype homozygosity-based test computation.

Within Population Between Populations

Haplotype
homozygosity

EEH (LRH) [34]
WGLRH [35] XP-EHH [36]

iHS [37] XP-nSL [38]
nSL [39]

Haplotype diversity DIND [40] rMHH [41]

Haplotype frequency HS [42] CHI [43]
H statistics [44] SS-H12 [45]

Programs and packages

rehh [46–48]
selscan [49]
lassip [50]

hapbin [51]

3.1. Pattern of Haplotype Homozygosity

Given a genomic region centered around a variant with an allele under selection and
taken as a reference haplotype for that region (which can belong to the population or come
from a previous study), one can easily compute for each single variant the proportion of
the alleles belonging to the reference haplotype that are found in the population. Given the
presence of LD, it can be expected that this proportion will be near one (close to fixation) for
sites around the variant of interest, then it will reduce the more a site is far from the selected
variant [18,52,53]. This implies, in turn, that starting from the central polymorphism and
considering increasingly bigger segments, the probability of finding the same allele at the
same position in any two haplotypes will decrease and selecting two identical haplotypes at
random will become more and more improbable. This decay of haplotype homozygosity in
a population is a crucial characteristic of selective events that has been extensively exploited
to build tests for positive selection (Figure 1c and Table 1).

Sabeti and colleagues [34] were the first to develop a powerful LD-based method to
detect positive selection by taking small groups of rarely recombining single nucleotide
polymorphisms (SNPs) in regions of interest to build core haplotypes and then observing
the decay of LD at increasingly distant SNPs. This method, called “long range homozy-
gosity” (LRH), detects the transmission of an extended haplotype without recombination
(extended haplotype homozygosity, EHH) and implies finding a core haplotype with a
combination of high frequency and high EHH, as compared with the other core haplotypes
in the same region that serve as internal controls [34]. The authors also affirm that this test
can be used to scan the entire human genome for signatures of positive selection, without
prior knowledge of a specific variant or selective advantage for a population [34]. The
method seems particularly efficient for selective events over the last 10,000 years (around
the introduction of domestication and agriculture, with the spread of new infectious dis-
eases, food sources, and cultural/social structures), as these may have left clear signals of
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long-range LD (0.25 centiMorgans, cM), which should be distinguishable from the shorter
extent of LD (0.02 cM) for common haplotypes in the genome [34].

This method for intra-population scanning was then adapted into the whole-genome
long-range haplotype test (WGLRH) [35]. Starting from the same premises of the LRH, the
WGLRH algorithm identifies core haplotypes of non-recombining SNPs along the genome
and computes EHH for an extended segment of 500 kilobases (kb) around them [35].
However, instead of using the other core haplotypes in the same location directly as
controls, each haplotype is compared to the genome-wide distribution of relative EHH
(rEHH) for haplotypes of similar frequency, where rEHH is the EHH of one core haplotype
relative to other core haplotypes in a core region, adjusted for their frequency in the
population [35]. This is performed under the assumption that most markers in the human
genome are neutral for autosomal chromosomes, and the core haplotypes that experienced
recent positive selection should be larger and have higher rEHH when compared to neutral
core haplotypes with a similar frequency [35]. So, the genome-wide distribution of rEHH
for the core haplotypes with similar frequencies to a core haplotype of interest is used
as the distribution of rEHH under neutral conditions [35]. Compared with LRH, the use
of genome-wide haplotypes to infer the distribution of LD under neutrality provides a
realistic and more computationally efficient solution than modelling neutral distributions
from scratch [34,35].

Another method stemming from Sabeti’s LRH was developed for very recent positive
selection signals in favor of variants that have not yet reached fixation and is based on the
observation that, when selection is acting, the area under the curve obtained by plotting
the distance from the core SNP against the decay of EHH is bigger than under neutrality,
as in this condition haplotype homozygosity extends much further away from the variant
under selection [37]. The integrated haplotype score (iHS) [37] captures this effect by
computing the integral of the observed decay of EHH away from a specified core allele in
both directions, until EHH reaches a frequency of 0.05. Moreover, it takes into consideration
the natural logarithm of the ratio of the integral computed separately around the ancestral
and the derived allele, so that, if the EHH decay is similar around the ancestral and derived
alleles, iHS will be zero and no selective pressure will be acting [37]. Conversely, positive
statistical values will be considered indicative of selective pressure acting on the ancestral
allele, while negative values will suggest the influence of selective pressure on the derived
allele [37].

A single-population haplotype-based statistic that is somewhat analogous to iHS
was introduced to tackle possible incomplete hard and soft selective sweeps [39]. The
number of segregating sites by length (nSL) considers all couples of haplotypes carrying
the ancestral (or derived) allele for a variant of interest and computes the maximum
number of consecutive segregating sites, over which the two haplotypes are identical by
state (IBS) [39]. Then, it averages this value over all the pairs of haplotypes carrying the
ancestral (or derived) allele tested for the same variant. For each genetic site, nSL is the
natural logarithm of the ratio between the average number of segregating sites around the
ancestral allele and around the derived allele, and this metric shares the same behavior seen
previously for the iHS test [39]. The main difference is that nSL uses segregating sites as a
proxy for distance, while the iHS statistic uses the recombination distance directly [37,39].
Comparing this statistic with several other tests for positive selection, the authors verified
that nSL is robust to demographic variables such as population growth, bottleneck events,
and population structure, as well as to changing recombination and mutation rates (to
which the test is blind) [39]. Moreover, its power is extremely elevated (almost 100%) even
at very low (0.001–0.1) or very high frequencies of the allele under selection, especially in
the case of a hard sweep [39]. Since, in neutral models, low frequency alleles are generally
younger in origin and are associated with longer haplotypes than higher frequency alleles,
these tests can also be standardized to obtain a distribution with mean zero and variance
one regardless of allele frequency at the core SNP [34,35,37,39].
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With the advent of dense datasets of genetic variants, tests based on the decay of EHH
have also been developed for the comparison of two populations, with the assumption
that the same variant may be differentially selected in diverse groups and allows one to
discover selected alleles that have swept to near fixation in a population [36]. Computing
cross-population EHH (XP-EHH) for two groups A and B at a core allele X and up to an
allele Y proximal or distal to the centromere involves integrating the area under the EHH
curve with respect to the distance between X and Y, to obtain integrated values IA and IB.
The cross-score for said core allele X will be the natural logarithm of the ratio between IA
and IB [36]. As with iHS and nSL, the score will be zero if the same decay of homozygosity
is observed in both populations; it will be positive if a selective pressure has acted on the
allele X preferentially in population A, and it will be negative if selection is stronger in
population B [36,37,39]. Similarly, the XP-nSL statistics has been recently introduced for the
detection of local adaptation by comparing haplotype patterns between two populations
around the same allele of interest, and it has the power to detect both ongoing and recently
completed hard and soft sweeps [38].

3.2. Change in Haplotype Composition

Given a genomic region centered around a variant with an allele under positive selec-
tion, one can assume that the frequency of the selected allele (and of those in high LD with
it) will be close to one in the population while, moving increasingly away from the variant
of interest, the association between variants will diminish and the frequency of the most
frequent allele will reduce, with a principle similar to the decay of homozygosity presented
in the previous paragraphs [18,52,53]. This in turn means that the haplotypes in that region
will be almost identical in proximity to the selected position, but their allele content will
become increasingly different towards the extremities (Figure 1d). This characteristic has
been exploited to develop a powerful test, the derived intra-allelic nucleotide diversity
(DIND) [40], which is specifically able to detect classical selective sweeps around de novo
mutations (i.e., derived alleles). Like nSL, DIND requires that haplotypes around a variant
of interest be grouped in two clusters, one carrying the ancestral allele and one carrying the
derived allele [39,40]. Then, for the whole length of the segment, each pair of haplotypes is
compared and pairwise differences at the same positions are counted; differences between
all possible pairs are then summed, normalized by the number of haplotype comparisons,
and the score obtained for the group of haplotypes carrying the ancestral allele is divided
by the score obtained for the derived allele [40]. The statistics will assume a positive value
between zero and infinity, with one being the neutral score where haplotypes around the
ancestral and derived allele will have the same proportion of differences over the number
of performed pairwise comparisons. It also preserves its power of detection of popula-
tions with a limited number of individuals (even less than 10); however, it has the crucial
limitation of not performing well with very low allele frequencies (less than 0.2), so that
only well-established instances of selective pressure around the ancestral allele will be
predominantly recognized [40].

Regarding multiple population comparisons, several intriguing tests have been de-
veloped that leverage sequence similarity (even to fixation) along haplotypes in a test
population and contrast it with sequence similarity in the same region for a reference
population under neutral conditions. Kimura and colleagues [41] developed the rMHH
(ratio of most frequent haplotype homozygosity) and rHH (ratio of haplotype homozy-
gosity) statistics to reveal fixed loci under selection in a test population without the actual
need of systematic haplotype reconstruction along the whole genome by leveraging the
homozygous or heterozygous status of each variant at the level of single individuals. When
compared with maxFst (the greatest value of Fst in the same genomic region) on simu-
lated and real data, and 90% detection power was assured for both the statistics, maxFst
yielded false positives twice more than rMHH (which provided a maximum Type 1 error
of 2%) [41].
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3.3. Change in Haplotype Frequency

Given a genomic region of fixed size centered around a variant with an allele un-
der selection, the sweep model suggests that not only the variant of interest but also the
surrounding neutral ones will be driven towards a high frequency in the population, de-
pending on the intensity of the acting selective pressure and the nature of the advantageous
mutation. In turn, this implies that, around de novo alleles (hard sweep [4,5]), a single
haplotype may be largely represented in the population; conversely, since already-existing
alleles that become advantageous through an environmental change are associated with
diverse haplotypic surroundings (soft sweep [4,5]), it may be possible that multiple hap-
lotypes carrying the allele under selection will be at a higher frequency in the group of
individuals under scrutiny (Figure 1e).

This observation was used by Hanchard and colleagues [42] to develop a sliding
window-based test to detect whole haplotype similarity as an indicator of recent positive
selection acting on a point mutation. The approach, called haplosimilarity score (HS),
is interesting because it does not need information related to ancestral or derived allele
conditions, focusing instead on the allele with the minor frequency, and it can be performed
on limited regions instead of scanning the whole genome [42]. Supposing an application
of this method to each single point mutation in a genetic dataset, the score associated
with each variant will be the sum of the squared frequencies of all the haplotypes of fixed
dimension detected around said variant in the population, and its value will range between
1/kmax, where kmax is the number of different detected haplotypes, and 1 [42]. The
authors also show that the power of the HS test is comparable to LRH [34] in a wide range
of minor allele frequencies and remark that the method could be affected by complex
demographic histories [42]. Given the focus on the minor frequency allele, HS seems more
adequate at detecting ongoing instances of recent, strong positive selection around an allele
that is still increasing in frequency in the population [42].

Leveraging the same observations about whole haplotype frequency, Garud and
colleagues [44,54] introduced an extended suite of tests that will be addressed here as “H
statistics”, which is based on high-frequency haplotypes. In particular, the H1 statistic
can be considered a generalization of the HS test seen previously, as it considers the sum
of squares along all haplotypes found around all alleles of a selected variant, instead of
considering just the minor frequency allele. Values of H1 are expected to be particularly
high for hard sweeps, with only one adaptive haplotype at high frequency in the sample [44].
Thus, H1 is an intuitive candidate for a test of neutrality versus hard sweeps, where the
test rejects neutrality for high values of H1. This approach gives more weight to recent
events of hard sweep, where the contribution of rare, low frequency haplotypes becomes
insignificant when compared to that of the single prevalent haplotype, which may well
have gone towards fixation in the population [44]. In fact, as sweeps become softer and
the number of haplotypes increases, the relative contribution of individual haplotypes
towards H1 decreases, and the power of the test is expected to decrease. However, one can
also consider a second, related test called H2, which is the same as H1 but excluding the
frequency of the most frequent haplotype. By deliberately removing this contribution, in
the case of a hard sweep one would obtain a very low value of H2, given that the remaining
haplotypes have much lower frequencies in the population; however, this reduction would
be less and less noticeable in the case of a soft selective sweep with an increasing number
of haplotypes, as the contribution of the most frequent one may be comparable to that of
the second most frequent one and, at its most extreme, several haplotypes under selection
may provide similar contributions [44,54]. So, considering the ratio between H2 (the sum
of the squared frequency of the haplotypes, excluding the most frequent) and H1 (the sum
of the squared frequency of all haplotypes) could be a better indication of selection around
a novel mutation (hard sweep, H2/H1 close to zero) rather than a pre-existing allele (soft
sweep, H2/H1 close to one) [44]. However, this also depends on how many different
haplotypes are found, which in turn depends on the size of the segment considered as a
haplotype. Garud and colleagues also introduced another notable statistic, H12, which
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sums the frequencies of the first and second most frequent haplotypes and treats them as
if they were one single object [44]. This would have a small effect in the case of a hard
sweep, as the small contribution of the second most frequent haplotype should be close to
negligible and the value of H12 should be very similar to the value of H1. However, in the
case of a soft sweep, the contribution of the first and second most frequent haplotypes may
be comparable in size, and their squared sum would be much bigger than the value of H1.
This suite of haplotype homozygosity tests delineates an intuitive and easy way to discern
between hard and soft selective sweeps without relying on ancestral information; moreover,
its performance as compared with iHS suggests that H12 better recognizes recent, strong
selective sweeps and is more powerful in identifying soft sweeps [44].

As with the decay of haplotype homozygosity, cross-population tests have been
developed as well in recent years (Table 1). Comparative haplotype identity statistics [43]
is a haplotype-based method that assesses population-specific instances of local adaptation,
considering the possibility that an allele may have undergone selection several times in
different populations and that it may be under fixation in a population but still variable in
another one. Given a variant X and a threshold length L, the test computes the pairwise
comparison of all segments in each population centered around the variant and sums the
length of the largest haplotype block for each comparison, if it is bigger than L. Then,
haplotype sharing in the population of interest, P1, is divided by the haplotype sharing
in the “reference” population, P2. If P2 = 0, one can use L as the denominator of the
division. The authors show that, especially in particular cases such as partial soft sweeps,
this test outperforms both XP-EHH (based on the decay of haplotype homozygosity) and
Fst (a classic measure of population differentiation based on single nucleotide frequency
variation), and it can detect ancient selective events as well [43].

Recently, Harris and DeGiorgio [45] developed an alternative version of the H12
statistics that identifies genomic regions under shared positive selection across populations,
supposing that the signature of a selective sweep in an ancestral population may remain
in its descendants. Given two populations and a variant of interest X, SS-H12 takes into
consideration both the overall sharing of haplotypes, centered around X, between them and
the different frequencies at which the same haplotype appears in the two populations [45].
By evaluating both the haplotype frequency spectrum and quantifying shared haplotype
identity in terms of frequency, SS-H12 properly identifies and differentiates between inde-
pendent convergent sweeps and true ancestral sweeps, with high power and robustness to
numerous demographic variables [45].

3.4. Programs and Packages

As presented in the previous subsections, several LD-based and haplotype-based tests
for positive selection have been developed over the years, leveraging different aspects of
the same underlying genetic phenomena that are supposed to incorporate and describe
ancient, recent, and ongoing selective events around either novel or standing variations
(Table 1). To highlight the utility and relevance of these methods, it should be noted
that, over the last decade, software has been developed for the easy computation of
several among the presented tests to facilitate the user in their application (Table 1). For
example, the selscan self-standing program (https://github.com/szpiech/selscan) [49,55]
was introduced to perform EHH-based scans for positive selection: its most recent version
currently implements EHH, iHS, XP-EHH, nSL, XP-nSL, and H12. Similarly, the hapbin
program [51,56] was developed to easily compute iHS, EHH, and XP-EHH. Interestingly,
this program obtains the same results as selscan, but the computational approach used
makes it up to 3.400 times faster, especially when the population under study has a relatively
low number of individuals (25 to 100). The rehh R package [46,57] and its upgrades for large
datasets [47] and for unphased/unpolarized data [48] have also been introduced to perform
the EHH-based scans for positive selection iHS, XP-EHH, and Rsb [58] (the latter does not
require haplotype reconstruction, so it is not described in the context of the present work).
By measuring the false discovery rate in simulated whole-genome scans and quantifying

https://github.com/szpiech/selscan
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the overlap of inferred candidate regions in empirical data, the authors find that phasing
information is necessary for accurate estimation of within-population statistics (except in
the case of very large samples) and of cross-population statistics for small samples, while
ancestry information is of lesser importance in both cases [48]. Recently, a novel open-source
program, lassip [50,59], was published with a focus on scans for positive selection based on
a haplotype frequency spectrum. The standalone program implements various haplotype
frequency spectrum statistics useful for detecting hard and soft selective sweeps in genomes,
including SS-H12 [45], the H statistics [44], as well as the genotype-based unphased versions
of the latter (called G statistics) [60]. The authors show that implementing a likelihood-
based approach based on explicit demographic models for population evolutionary history
improves the discovery of both hard and soft selective sweeps in haplotype-based data,
as does accounting for distortions in the spatial distribution of the haplotype frequency
spectrum along the genome, relative to genome-wide expectation taken as neutrality [50].

4. Considerations around Haplotype-Based Tests for Positive Selection
4.1. Appropriateness for Different Types of Genetic Variants

As presented in the previous sections, haplotype-based tests for positive selection are
usually applied to biallelic SNVs or single-base mutations with only two alleles. Nonethe-
less, it is known that several types of variation along the genome have been under selection:
microsatellites or short tandem repeats [61–63], copy number variants (CNVs) [64,65],
sub-microscopic structural variants (SVs) [66,67], and transposable element (TE) inser-
tions [68–70] all show definite signatures of population differentiation that point towards
positive selection events. However, the application of LD-based methods built on haplotype
reconstruction requires that non-SNP objects are managed with extreme care, because of
their multi-allelic nature: a genomic scan for positive selection must be able to recognize
and distinguish among essentially different genetic elements with disparate lengths. One
possible solution could be to consider the LD between structural variants and nearby point
mutations and take advantage of the associated single nucleotide variant as a proxy for
the structural variation [65,71]. Indeed, there is almost no literature exploring the effective-
ness of such methods on variants that are not SNPs [72,73] or the development of specific
algorithms for the detection of signatures of selection around them.

4.2. Applicability across the Tree of Life

It is important to remember that Homo sapiens has never been the only living species
characterized by repeated events of migration, colonization, and expansion throughout
its existence: all present forms of life survive because they have evolved by adapting to
changing habitats, new climate conditions, and different diets, while settling in radically
diverse environments. Accordingly, characteristic signatures of positive selection could
be hypothetically retrieved in all extant species and populations, with haplotype-based
scans. Indeed, several of the methods presented in this manuscript have been applied
not only to humans but to many other living organisms and for different purposes. Eco-
nomically relevant species of animals and plants, such as pigs (Sus domesticus) [74], cattle
(Bos taurus) [75–77], yaks (Bos grunniens) [78], sheep (Ovis aries) [79], horses (Equus cabal-
lus) [80,81], and tomatoes (Solanum lycopersicum) [82] have been researched mainly for
commercially favorable instances of selection; pathogens and disease vectors, including
Plasmodium falciparum [83,84] and mosquitoes (Anopheles gambiae) [85], for their rapid evo-
lution and resistance to toxic compounds; companion animals, such as dogs (Canis lupus
familiaris) [86,87], were the focus of studies to understand the influence of domestication in
close contact with humans. For example, Zorc and colleagues [74] applied the iHS test on
both SNPs and microsatellites to reveal that six autochthonous Balkan pig breeds present
different genes under positive selection, with particular reference to reproductive traits
(number of offspring, sperm quality, early pregnancy), muscle mass, fat metabolism, and
disease resistance. Seo and colleagues [75] applied iHS and EHH on an unselected Korean
cattle breed and compared the results with the signatures given by a population (KPN) that
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underwent a 30-year-long artificial selection program for breeding traits, including total
weight and back fat thickness. Significant signatures of selection were detected for KPN
variants in 44 genes, with significant association of variants in chromosome 14 with the
aforementioned breeding traits, while metabolic pathways related to selective signatures on
chromosome 13 mainly impact energy metabolism and feed efficiency. They also verified
that the allele under selection for KPN was derived in most instances [75]. The study
performed by Zhao and colleagues on 163 tomato plants from three groups also used the
iHS statistic to reveal 24 positive selective sweeps associated with tomato quality traits,
including an improvement of tomato fruit weight and sugar metabolism [82]. Using P.
falciparum isolates from young subjects in the Plateaux Region of Togo, Kassegne and col-
leagues highlighted that 10 red blood cell invasion-related antigen genes show signatures
of positive selection, together with 134 immune-related and adhesion genes and eight
genes positively selected for drug resistance [83]. Lucas and colleagues took advantage of
data from the “Anopheles gambiae 1000 Genomes Consortium” and applied EHH to identify
44 CNVs subjected to positive selection: the genes found were enriched for families in-
volved in metabolic insecticide resistance [85]. Finally, Schlamp and colleagues carried out
an interesting comparative analysis of different statistical methods (including iHS, nSL, and
the H statistics) for the detection of signatures of positive selection in 25 dog breeds [86].
Testing for 12 known loci (positive controls) that are likely causal of breed-specific traits
(body size; coat color; hair, lip, ear, and snout shape and length), their work revealed that
not all tests are able to detect the same signatures of positive selection and, on the other
hand, that some genes are under selection in some breeds but not in others [86].

4.3. Pertinence to Ancient DNA

Hypothetically, haplotype-based statistics for detecting instances of positive selection
may be applied not only on samples of living organisms but also on DNA collected from
ancient remains of extant and extinct populations. However, ancient DNA comes with
its own set of problems [88–91]: an organism’s DNA degrades over time, it is highly
fragmented, often modified chemically, and it is usually retrieved in low quantities, even
with the best extraction protocols. It is much more challenging to phase ancient DNA
because endogenous reads are rare and short. After reassembling the reads, some regions
of the genome may only have a couple or less reads mapped to it. Although variants may
be found within two reads, it is difficult to distinguish real genetic variants from false
variants produced by deamination, especially when the genomic libraries are not repaired
with uracil DNA glycosylase (UDG) treatment and/or hybridization capture methods
are not applied [92]. Due to its low information, the underlying haplotypes of ancient
DNA cannot be discerned (unphased) [93,94]. As these algorithms require knowledge
(or at least a hypothesis) of LD and haplotype reconstruction, variant density along the
genome is crucial for the performance of several tests, and for low quality samples it may
prove very difficult to properly perform them, ultimately impairing their application on
ancient samples. Single nucleotide, genotype-based tests for differentiation usually provide
much more informative insights on possible existing selective pressures acting on ancient
populations. Moreover, the number of considered individuals in a population is equally
important, as the sample may not be a real representative of the variability existing in a
group and this also has repercussions on the performance of several population-oriented
haplotype-based tests for selection.

4.4. Relevance to Human Medicine and Public Health

As introduced in the previous sections, Homo sapiens experienced consistent migration
events over tens of hundreds of years, with smaller populations periodically separating
from the main group and colonizing new territories and consequently being exposed to
new environments [1–3]. Both previously existing and novel alleles underwent multiple
instances of positive selection in different populations, over relatively long periods of time.
Indeed, different combinations of the methods presented here may reveal different instances
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of positive selection: from hard to soft selective sweeps and from ongoing to recent to
ancient onset. This also implies that individuals of different ethnicity and ancestrality, living
different lifestyles in different environments, may have developed distinct adaptations that
make them more or less able to metabolize particular substances, such as specific foods
or medical compounds. Many modern human diseases exist because populations have
not adapted to changing environments or previous adaptations led to trade-offs between
health and fitness (evolutionary medicine approach) [95–98]. However, disease is not
just a product of the modern world. As long as there is phenotypic variation, disease is
inevitable; some individuals will be better suited to some environments (and thus healthier)
than others [94]. Moreover, it is argued that the recent rapid changes introduced with
industrialization and globalization may have affected the contemporary generations, so that
traits that have been adaptive in specific environments may have become dis-adaptive and
at the basis of what are considered “lifestyle diseases” and “diseases of affluence” [95,98].
In this context, haplotype-based methods may reveal loci under selection associated with
pathological phenotypes in cohorts of individuals affected by specific diseases, revealing the
importance of evolutionary genomic methodologies in the biomedical field [66,67,95–98].
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