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Abstract—Internet of Things (IoT) is a key enabler for the
transition to the automatic structural health monitoring (ASHM)
of technical facilities, thanks to the seamless flow of data from
a multitude of always connected devices. Current IoT-ASHM
installations, however, face the double challenge to ensure high
accuracy while meeting the requirement of minimal energy
consumption. This article tackles these issues from a deep-
learning perspective and describes an IoT-enabled monitoring
approach based on a distributed end-to-end deep neural network
(DNN). The architecture supports both data compression and
damage detection. A low-end microcontroller hosts a specific local
DNN; a hardware-aware neural architecture search strategy rules
network optimization, in order to satisfy the resource constraints
set by low-end computing devices. The features extracted from
data feed an aggregating unit, which includes a stacked global
classification layer for full-scale damage detection. After proper
quantization, the designed models are eventually deployed on
a wireless accelerometer sensor. Finally, a cost-benefit analysis
evaluates the system’s impact on the sensor energy autonomy.
Experiments on a well-known data set proved that the proposed
solution could achieve state-of-the-art classification scores (all
metrics above 98.4%) with a minimal transmission cost (less than
53 B on average); as compared with conventional approaches,
the described strategy yielded a reduction of three orders of
magnitude in energy consumption.

Index Terms—Automatic structural health monitoring
(ASHM), compression–accuracy co-optimization, energy profil-
ing, hardware-aware neural architecture search (NAS), smart
sensor systems.
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I. INTRODUCTION

AUTOMATED inspection procedures, also known as
automatic structural health monitoring (ASHM), allow

to detect deterioration processes in structures with mini-
mal or null human intervention. This ultimately results in
cost-effective and timely repair actions. ASHM requires the
hardware–software co-design of power-efficient resources for
signal acquisition, conditioning, and digitalization. Operational
features affect the associate infrastructure for data manage-
ment, data analytics, and structural assessment. The Internet
of Things (IoT) paradigm enables the vertical coalescence of
these functionalities. In particular, it enables the realization
of complex systems, featuring the permanent deployment
of several sensors on the target assets and the periodic
streaming of data to remote servers in a sensor-to-cloud
continuum [1].

In the area of ASHM, vibration diagnostics entails the
assessment of structures (ranging from civil infrastructures
to industrial components) in dynamic regime, and largely
benefited from those advancements in the last decade [2].
Two major issues hamper the full transition to IoT-enabled
vibration ASHM, namely, the need for high accuracy and the
necessity of minimal power consumption. The former aspect
is critical because an inaccurate monitoring solution might
bring about damage misdetection, and lead to unnecessary
downtime and/or dangerous consequences. As to the energy-
related issue, one should consider that, for easy deployment,
IoT-ASHM systems typically rely on self-powered battery-
operated wireless sensor networks. At the same time, wireless
communications usually cover most of the power budget and
hinder long-term sensor deployments. The energy-supply issue
becomes critical when considering that many sections of
large structures are not electrified or do not permit easy
wiring, hence they cannot provide stable power sources. For
this reason, suitable strategies that minimize data transfer
across the network while preserving diagnostic accuracy are
of paramount importance.

This article presents a decentralized approach based on
a distributed end-to-end deep neural network (DNN), which
integrates data compression and damage detection. The novelty
of the proposed solution lies in using the compressed features
themselves as the source of damage-sensitive information. This
approach allows to bypass the reconstruction of structural
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Fig. 1. Scheme of the proposed approach. The figure shows three sensing
nodes placed in three different regions of a bridge. Each node features an MCU
hosting a deep network that elaborates the raw data and extracts a compressed
version of them. Processed and compressed features are transmitted to an
aggregation unit that performs the final prediction about the health status of
the structure.

parameters, and thus outperforms conventional methods for
vibration monitoring, which are typically affected by high
latency and energy consumption.

Fig. 1 outlines the overall scheme of the system in the case
of a small example network with three sensors (represented
by as many colors). The architecture features two levels.
Resource-constrained, intelligent sensing nodes equipped with
microcontroller units (MCUs) adhere to the structure; they
both acquire data (from the local sensor) and process them
onboard (by means of a local neural network), thus sup-
porting data compression. In the subsequent level, the IoT
backbone forwards the features extracted from each local node
to an aggregation unit (in red). To complete the eventual
health assessment, the aggregator module relies on a classifier
network. The distributed scheme stems from the optimization
of a full-scale DNN, yielded by a neural architecture search
(NAS) strategy followed by an end-to-end training. The overall
design process aims to maximize the accuracy in classi-
fication while limiting the overall transmission bandwidth.
The network component hosted in the aggregation unit is
trained by including an L1 penalty term. The resulting sparse
solution can automatically pick a subset of the sensing nodes,
by neglecting the elements that appear redundant or less
informative. More importantly, the end-to-end training leads to
a local representation within each network that implicitly takes
into account the interactions between the various sensors.

The main contributions of this article can be summarized
as follows.

1) The novel approach for vibration ASHM based on a
distributed DNN can jointly support damage detection
and data compression in a co-optimized fashion.

2) The nonlinear compression strategy reduces the trans-
mission payload, while maintaining high accuracy in
damage detection; the workflow attained state-of-the-art
(SOTA) performances (classification metrics higher than
98%) on a well-known, real-world bridge data set.

3) The end-to-end training approach, based on L1 reg-
ularization, induces sparse solutions, thus allowing to

disregard the less informative parts of the network (e.g.,
the less informative sensors); this proved a key feature to
shrink the transmission payload to merely 53 B without
affecting classification accuracy.

4) The optimal neural network architectures for simulta-
neous compression and damage detection derive from
a hardware-aware (HW)-NAS strategy, which takes into
account the constraints set by the inference-supporting
hardware.

5) The overall workflow attained near SOTA accuracy
(classification metrics above 97%) on a well-known real-
world data set even when one single sensor is used, thus
avoiding data transmission altogether.

6) The designed tiny architectures were deployed, val-
idated, and benchmarked on a low-end computing
platform; different quantization strategies massively
reduced both execution time and memory require-
ments (up to 3× lighter) as compared with desktop
implementations.

7) A full-scale energy profiling of the quantized inference
models (on a real IoT wireless sensor node) show that
the NN-supported compression scheme can reduce the
energy consumption per hour up to three orders of mag-
nitude, as compared with compression-free monitoring
solutions.

8) The analysis of noise effects indicated a negligible
reduction of the network performances for signal-to-
noise ratio (SNR) levels as low as 20 dB.

This article is organized into five technical sections.
Section II presents a thorough review of SOTA solutions
for vibration data compression and structural damage detec-
tion in the compressed domain; the analysis covers both
deep learning (DL) and conventional statistical methods. The
detailed description of the novel approach, including the
design of individual DNNs, the end-to-end training, and L1
regularization, is presented in Section III. Section IV reviews
the adopted real-world data set, while Section V reports on
the experimental results. The analysis in Section VI deals
with model quantization and the deployment on a resource-
constrained MCU, hosted by a low-end wireless accelerometer.
The treatment also covers a cost-benefit analysis in terms of
energy consumption and the evaluation of noisy data. The final
section of the manuscript makes some concluding remarks and
envisions future perspectives.

II. RELATED WORKS

Damage detection from compressed data is attaining
increasing interest in the DL community, as it can open
unprecedented opportunities for increasing system efficiency,
from both an electrical and a communication point of view.
DL-driven approaches can somehow relax the tradeoff between
compression and detection, thanks to their remarkable learning
capabilities. The definition of the most appropriate architecture
for both the compressing and the detecting component is
crucial. In principle, one might consider a plethora of com-
binations, depending on the characteristics of the processed
signals and the subtleties inherent in the anomaly patterns. The
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TABLE I
ANALYSIS OF SOTA APPROACHES FOR VIBRATION DIAGNOSTICS AND REDUCTION IN THE COMPRESSED DOMAIN (ACCURACY MEASURED IN %)

wide taxonomy of available architectures includes, among the
many others, convolutional neural networks (CNNs), standard
multilayer perceptron (MLP), and autoencoders (AEs).

An instance of an AE can learn an efficient representation of
a data set, such that the predicted output matches the supplied
input. AEs achieve this task in a completely unsupervised
manner; one can exploit this property for both compression
and diagnostics purposes, by observing how the residual error
between inputs and reconstructed outputs changes over time.
The applicability of that approach to damage detection in
vibration-based SHM has been shown in some representative
research works, such as [3] and [4], in which the authors
monitored the health condition of a highway bridge viaduct
in Italy. In the former paper, an AE supported data reduction
in conjunction with an MLP for flaw detection, and attained
a good level of performance. The latter work featured a fully
connected AE; its convolutional variant is explored as both
encoder and decoder, yielding a maximum accuracy of 98%
and a compression ratio (CR) of 16×. The AE-based frame-
work was also investigated by Ni et al. [5] for the monitoring
of a long-span bridge in China; the approach attained high
accuracy (99%) with a considerable CR (nearly 10×). In the
application of the same strategy to industrial settings [6], a
physics-informed deep convolutional AE could identify cracks
in the bearing of an induction motor; the solution achieved
notable compression gain but lower diagnostic capabilities
(below 55%).

Hybrid architectures typically rely on a mixture of statistical
and DL blocks. The overall approach typically implies edge-
oriented compression methods; compressed sensing (CS) [7]
allows a straightforward hardware implementation involving
multiply-and-accumulate operations. Most works in literature
adopt CS for encoding, matched with various anomaly detec-
tion strategies. For example, in [8] and [9], CS supported
the condition monitoring of a rotating motor; it operated in
combination with either a stacked sparse AE or an improved
multiscale network, i.e., a model with multiple branches for
extracting and merging parallel characteristics at different
levels. These experiments proved effective only at a limited
compression depth (less than one fourth), and scored a defect-
prediction capability above 90%. The comparative analysis

in [10] for bridge monitoring took into account both CS
and a one-class classifier network. Significant improvements
(data compression 256×, accuracy 94%) were attained in
the inference step when applying a random-forest classifier
on a reduced pool of statistical features extracted from CS-
processed data [11]. Recently, integrating CS with a DL
framework has led to an increase in accuracy with respect to
existing approaches [12].

Alternative approaches yielded interesting scores on vibra-
tion data sets, including purely data-driven compression
methods, such as principal component analysis (PCA) [4],
canonical correlation analysis [13], histograms of data dis-
tributions [14], and autoregressive parameters [15]. Table I
provides a summary of the performances of these works, by
specifying the compression method, the diagnostic model, the
performances (i.e., percentage accuracy and achieved CR), and
the suitability for edge deployment.

Independently of the implementation principle and the
obtained results, some issues limit the full-scale deployment
of the above solutions. First, computing requirements often
exceed the available memory and algorithm resources, thus
preventing the methods’ deployment on low-end devices;
in other words, the deployment of artificial intelligence
models on tightly constrained scenarios calls for ad-hoc
solutions covering specialized algorithms and dedicated hard-
ware [16], [17], [18]. Second, most approaches cannot provide
both a local (sensor-related) and a global (aggregated) struc-
tural insight, which could actually prove very useful not
only for detection but also for localization purposes. Finally,
those methods do not support an integrated optimization of
compression and damage detection, thus obtaining suboptimal
neural architecture representations.

HW-NAS [19] might provide a viable solution to those
issues by the design of deep networks that comply with
hardware limitations [20], although its practical adoption
is not straightforward. For example, the correct quan-
tification of hardware requirements is a function of the
software layer, thus making a-priori accurate quantifica-
tion difficult [21], [22], [23]. The search time required by
the automatic procedure might be another shortcoming: the
optimum-search procedure might require thousands of hours
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Fig. 2. Architectural description of the proposed local-to-global monitoring approach.

of GPU computing. Accelerated approaches, such as super
networks [24], [25], aim to mitigate that problem.

The application of HW-NAS yet proved effective in
handling a very large set of computing constraints [26],
leading to SOTA methodologies for specific target hardware
devices [27], [28]. HW-NAS represents a promising research
direction but requires a careful evaluation of all the peculiar-
ities of the specific application domain.

III. LOCAL-TO-GLOBAL MONITORING WITH

END-TO-END TRAINING AND REGULARIZATION

End-to-end deep networks can process raw data, optimize
intermediate representations, and extract the relevant features
of interest automatically. DNNs are usually represented in
terms of computational graphs. The deployment requires to
allocate graph nodes to the respective computing resources,
while training completes independently of the target infrastruc-
ture. In the application context of this research, the problem
requires to maximize the overall accuracy while minimizing
wireless traffic.

Fig. 2 outlines the complete structure of the end-to-end neu-
ral network, and further details the representation anticipated
in Fig. 1. Each peripheral sensor performs both compression
and detection by hosting a DNN that integrates two main
blocks: 1) a local feature extractor, corresponding to the
core computing block, holds the set of layers to process and
compress raw data and 2) a subsequent classification stage
works out the local prediction of the health status as a result
of the sensor information itself. As opposed to standalone
implementations, the output of each local-level representation
is duplicated in a subsequent, logically equivalent path, that is
outsourced to an external aggregation network and used in a
further step for full-scale diagnostics.

The proposed approach takes advantage of a defining
feature of DNNs, namely, the ability to aggregate and encode
input information to the output classification layer, while
implementing feature extraction and data compression via
nonlinear DL operators concurrently. Classification networks
aim to minimize accuracy while optimizing the intermediate

representations for the purpose at hand; this implies that
the training process tends to delete any information that is
irrelevant to the classification task. As a result, the uppermost
feature maps (that are closer to the classification layers) most
likely tend to include the useful information for damage
detection.

This behavior can be induced by imposing specific
architectural constraints; for instance, by letting tensors of
progressively fewer elements propagate through the network.
In the method described here, a feature set, stemming from a
global average pooling layer, forces compression at the output
of each local feature extractor. This allows to perform a notable
compression of the input tensor by dropping any residual
geometrical information.

The local-to-global aggregating structure in the proposed
end-to-end scheme has points in common (and is actually
compatible) with federated learning (FL), with some distinc-
tive features. FL splits the computational cost of training
among several devices that cooperate in tuning the network’s
parameters, while the aggregator assembles their contributions
into one inference model. Conversely, the method presented
in this article follows a train-then-deploy approach, in which
sensors carry out the actual compression process, whereas the
aggregating unit merges information from the peripheral ones
to predict the full-scale health status.

A. NN Design

This section deals with the design of the single-branch NNs,
that is, the sensor architectures supporting feature extraction
and pattern classification at the local level. This is a prelimi-
nary, crucial step to the overall optimization problem and the
associate training procedure.

1) Branch Architecture: An HW-NAS optimizes the archi-
tecture of each branch NN. The algorithm drives the
architecture search by limiting both the number of parameters
(i.e., model size) and the dimensions of the propagated tensors,
such that they can satisfy the resource constraints of the
supporting computational units. Toward that purpose, HW-
NAS solves an optimization problem that pursues two goals:
1) to define the architecture that best fits the health-status
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prediction goal, depending on the data provided by the
sensor under analysis and 2) to reduce the volume of data
by forcing small-size representations. HW-NAS optimizes a
general model, featuring a single branch structure made of
an initial convolutional block (“Local Feature Extractor”),
followed by a classification block (“Local Classifier”). The
latter module consists of a global average pooling layer and
an output classification layer, with two neurons and softmax
activation. The output vector prompted by each branch NN
can vary in shape, depending on the amount of geometrical
features that survive after pooling.

Equation (1) formalizes the target optimization problem.
The validation error Lval(w∗(a), a) scored by architecture a
with the set of trained weights w∗ drives the optimization
process. The associate architecture search is subject to two
computational constraints: first, a limitation on the number
of parameters |a| in the architecture a; second, an upper
bound to the number of elements |T| in the largest tensor
that propagates through the architecture. The first constraint
ultimately sets a requirement on flash memory, whereas the
second one relates to the used RAM. A pair of threshold
values, FTh and RTh, rules this mechanism and represents the
largest numbers of elements that can be stored in flash memory
and RAM, respectively. The search space contains networks
composed of standard cells, which match those adopted in [12]
and rely on convolutional operations

minimize
a∈A

Lval
(
w∗(a), a

)

subject to w∗(a) = arg min
w

Ltrain(w, a)

|a| < FTh

|T| < RTh. (1)

2) Full Architecture Optimization: The global monitor
network that supports the aggregator module relies on a
straightforward, fully connected classification layer holding
one neuron per class, and needs to be optimized, as well. The
choice of this architecture has a twofold rationale. First, the
features feeding the aggregator are connected to the classi-
fication layer in the local feature extractor blocks; thus, the
aggregating network actually weights the contributions from
different nodes. In addition, by connecting the branch networks
to the global classification layer one can deploy an effective
sparsification strategy and implicitly prune noninformative
sensing nodes. Toward that end, using L1 regularization by
penalty fosters sparse solutions that may cancel the contri-
butions of specific features: each neuron in the aggregator’s
classification layer only connects (by one weight) to one of
the sensor-generated residual features. If the weights of all
the classification neurons connected to a given feature nullify,
that feature does not need be transmitted, thereby reducing
transmission costs remarkably.

The classical penalty term as per (2) rules L1 regularization

R = |Waggr| (2)

where |Waggr| is the �1 norm of the weights of the aggregator
layer.

The entire DNN (branch NNs and global aggregator) is
then trained in an end-to-end fashion, jointly adjusting all

the branches. The major advantage of retraining the whole
architecture is that the weights of each branch NN are
optimized by considering the information from all the sensing
nodes. This leads to an optimized representation that accounts
for the information extracted by the entire pool of sensors.

In this setup, finding a suitable expression for the network
loss function is of paramount importance. In principle, one
could train the network so that it only matches the output
prediction prompted by the global inference model after
aggregation. In contrast, taking into account the classification
outcomes at the sensor level offers two additional benefits: it
allows to get a diagnostic status directly at the sensor node
level, and it can be used to adjust a local representation to
maximize the classification performance of each sensing node.
A straightforward loss function weights all the outputs of the
aggregator (LAggr) and local network (Lnodei) as formalized
in

L = LAggr +
Ns∑

i

λiLnodei + λRR (3)

where the term λR weights the relative contribution of the
regularization term, whereas the quantity λi weights the loss
associated with the ith branch NN (i ∈ {1, . . . , Ns}, Ns being
the number of sensors).

IV. EXPERIMENTS

A. Data Set Description: Z24 Bridge

The Z24 bridge1 is considered as one of the most represen-
tative data set for the validation of vibration-based diagnostic
approaches. It is related to a highway viaduct connecting Bern
and Zürich that has been subject to a one-year monitoring cam-
paign (September 1998–August 1999). During experiments,
accelerations were collected from eight force-balance-type
FBA-11 accelerometer sensors by Kinemetrics (sampling
frequency of 100 Hz, acquisition windows of 32 768 samples
every hour) under different operational and environmental
conditions. Before its demolition, progressive damages were
provoked in a controlled manner to replicate medium-to-
severe deterioration processes. The data set contains a total
amount of 5651 measurements, the first 4922 tests related to
normal conditions, the remaining 729 coming from defective
configurations. Each time series has been split into windows of
512 elements to balance between memory and computational
requirements of low-end devices; thus, a single sensor instance
is reshaped as a matrix of 512 × 64 elements.

B. Training and Evaluation Setup

The code design to verify the effectiveness of the proposed
approach has been implemented in Python using Keras and
Tensorflow libraries. All the tested architectures shared the
same training setup: a maximum of 100 epochs with an initial
learning rate of 10−3, learning rate reduction on the plateau,
and early stopping using the validation loss as the metric. In
particular, the categorical cross entropy has been selected as
loss function for all the single networks contributing to (3).

1https://bwk.kuleuven.be/bwm/z24
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All the training procedures have been repeated five times using
a multistart approach selecting the best one based on the
validation set. A standard fivefold cross-validation procedure
has been imposed. The validation set, for each fold, has been
extracted from the training set selecting a random subset of
20% of the training data. The classification performance has
been measured for all the models on the testing folds that
have never been involved in any parameter or hyperparameter
tuning.

The NAS procedure considered the computing resources of
a standard MCU: a maximum flash size of 512 kB and a
RAM size of 256 kB have been imposed, respectively. These
threshold values are sufficiently large to entail the majority
of low-power MCUs available in the market. Increasing such
quantities is not of relevant interest since it would entail
the family of mainstream or high-performance processors not
suited for extreme-edge deployment. Noteworthy, while the
size of the model weights impinge on the flash size, the RAM
is typically set by external constraints, first among all the
dimension of the time series to be acquired. The number of
generations has been set to 500. Random mutation function
considered the insertion, deletion, or modification of one block
of the network.

Accuracy, Precision, Recall, and F1 have been selected
as metrics. These scores are a well-established procedure to
evaluate classifiers without the risk of pathological measures
that could happen when basing the analysis only on one metric.
For example, accuracy alone proves unreliable in the presence
of unbalanced data sets [29].

C. Neural Network Definition

me analyses on network selection for the Z24 data set
have been carried out in the literature. Previous works
pointed out that 1-D convolution in the time domain is a
preferable solution when compared with other convolution-
based approaches [12]. In the same work, a profitable
search space was presented leading to SOTA generalization
performance while maintaining modest compute requirements.
Coherently, the present analysis uses instances of the same
search space.

V. RESULTS OUTLINE

The following objectives have been pursued within the
experimental validation:

1) investigate the role of end-to-end training proving
that the newly proposed approach leads to SOTA
performance on the Z24 data set;

2) analyze the role of the branch architecture for compres-
sion and classification at a sensor level;

3) demonstrate the superiority of the proposed approach in
terms of transmission payload;

4) deploy, profile, and benchmark the designed models on
a low-end MCU by making use of different quantization
techniques;

5) evaluate the impact of the devised processing flow on the
energy consumption of a wireless accelerometer sensor
for IoT-driven vibration monitoring;

TABLE II
COMPARATIVE STUDY OF THE PERFORMANCE OF THE PROPOSED

END-TO-END ARCHITECTURE IN TERMS OF CLASSIFICATION SCORES

AND TRANSMISSION REQUIREMENTS, COMPARED WITH SOTA
ALTERNATIVES WORKING WITH THE SAME DATA SET. BETTER RESULTS

FOR EACH METRIC ARE MAGNIFIED BY BOLD FONTS

6) analyze how the performances can scale when practical
issues due to operative and intrinsic noise sources are
entailed.

A. Effect of End-to-End Training

In the first experiment, the importance of end-to-end training
has been evaluated by using, for all the branch NNs, a
preselected architecture with two 1-D convolutional layers
(Conv 1D) followed by average pooling with window size
2 between the two convolutions. The kernel size was set
to 3 for both layers, while the number of filters was fixed
to 5 and 3 for the first and second layer, respectively. The
output of the second convolution is directly connected to the
aggregation network composed of a concatenation layer and
two additional convolutional layers with 30 and 10 filters,
respectively. This architecture has been selected following
design choices presented in previous works [12].

Table II compares the performance of the end-to-end archi-
tecture (referred to as CNN∗

EE, last row) with nine existing
solutions trained and tested on the Z24 bridge data set using
the same evaluation metrics. Experimental results clarify the
beneficial effects of the end-to-end training when applied
to raw data. The proposed model obtained the best accu-
racy, precision, and F1 among all the investigated solutions.
Only the model proposed in [12] slightly improved in terms
of Recall, but was less accurate in the other indicators.
Importantly, the newly proposed CNN∗

EE architecture can
attain such performances with a drastic reduction in the trans-
mission payload requiring only 372 B2 to be communicated,
a quantity which is 44× lower than that of the competing
CNN∗-Z24 model. These outcomes highlight the capability
of DNNs to extract nonlinear relationships that cannot be
handled by linear compression matrices as it is imposed in
standard CS.

B. Role of the Branch NN

1) Search Space Analysis: To prove the validity of the
adopted convolution-based network, additional experiments

2It is assumed that each feature is represented as a float data quantity
whose storage requires 4 B.
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Fig. 3. Average classification scores comparing different architectures for
the design of the branch NN.

have been performed in which tiny architectures specialized
for edge inference have been explored for the realization of the
branch NN. The list of competitors includes Depthwise con-
volution [32] and temporal convolution network (TCN) [33],
which are two variants of standard convolution, as well as
FastGRNN [34]. For the first two models, analyses have been
conducted by replacing the Conv 1D layers in the CNNEE
with either the Depthwise or TCN block. More specifically,
the TCN has been designed considering blocks with groups of
dilatated layers having a dilatation value of 1, 2, 4, 8, 16, and
32, respectively. In the case of Depthwise, depth_multiplier
has been set to the same number of filters of standard
convolution. Regarding FastGRNN, the comparison has been
performed using a similar rationale. We have included two
recurrent layers with 5 and 3 neurons, respectively. In practice,
a neuron for each filter used in the convolutional architectures.

Average classification scores among all the eight sensors
are depicted in the bar chart of Fig. 3. As can be seen, Conv
1D is superior in all the metrics, apart for the isolated case of
Recall which is, however, due to the strong bias affecting both
Depthwise and FastGRNN. This is proven by the fact that all
other scores are remarkably lower for such networks.

2) HW-NAS: The second experiment aims to clarify the
role of HW-NAS in extracting information from the single
sensors. The main findings are summarized in Fig. 4, which
is organized in eight subplots, one per sensor, reporting on the
performances of three different neural architectures.

1) CNNNAS (Gray Bars): NN architecture returned by the
HW-NAS for the corresponding sensor node.

2) CNNSA (White Bars): NN model explored in
Section V-A with training performed in a standalone
manner, i.e., the architecture of each branch NN is
trained independently.

3) CNNEE (Black Bars): Sensor-related classification scores
returned by the suboptimal model in Section V-A trained
in an end-to-end fashion.

A point-wise comparison with respect to the classification
scores obtained by the global prediction network CNN∗

EE (star

markers) explored before is also included, to elucidate about
the effects of the different strategies.

Results confirm the major role played by the network
architecture. In all cases, in fact, the model obtained from
the HW-NAS procedure performs better for all the considered
metrics (apart for a few exceptions). Interestingly, the three
networks converge to the same solution for S3, indicating that
data from this sensor are subject to a strong bias, as also
shown by the poor accuracy and precision. The importance
of optimized design strategies is proven by the fact that, for
the majority of the branch NNs (see Table III), the algorithm
selected a solution with many levels, confirming the necessity
of nontrivial architectural configurations which cannot be fine-
tuned empirically. The same Table reports on the depth (header
“Level”), number of parameters (“Params”), amount of algo-
rithmic operations (“FLOPS”), and dimension of the tensor
returned by the global average pooling (“OutSensorSize”) for
all the eight branch architectures. The same characteristics
are also specified for the suboptimal model introduced in
Section VI (last row), which indeed exhibits a simpler archi-
tecture when compared to the automatically generated ones.
Eventually, one can observe a large variance in the retrieved
network architecture highlighting that each sensor introduces
a peculiar behavior.

When comparing the results of the two DNN archi-
tectures (end-to-end versus standalone) it is evident that
the co-optimized version trained in the end-to-end manner
obtains slightly lower generalization performance. This out-
come confirms that end-to-end training can bias the extracted
representations reducing the accuracy on the node, while
preserving the global accuracy. This is proved by the fact
that star markers, i.e., those retrieved at the output of the
aggregation unit with end-to-end training, are almost always
superior to the scores retained for the individual sensing units.

A very important outcome is that the HW-NAS architecture
trained and tested on S1 overcomes alone the best results in
the literature. In fact, comparing the four performance metrics
in Fig. 4 for S1 with CNN∗

EE (stars versus gray bars), one can
see that, except for a small decrease in Recall, the other tree
metrics are better than the previous benchmark. This result
becomes even more important because these solutions can be
hosted directly on the sensing node without transmission.

Nevertheless, it should be noted that defining the policy
for the selection of this sensor is far away from being trivial.
NAS solves a nonconvex problem that can lead to very
disparate solutions based on different initial conditions, that
can hinder the search problem. Accordingly, one can argue
that the CNNNAS1 architecture is simply a better architecture
in general. This observation could be further strengthened by
the fact that vibrations are, in principle, global proprieties
of a structure. Further experiments were, then, performed to
investigate these aspects.

In Fig. 4, the performance of CNNNAS1 trained and tested
on data from other sensors is also depicted with red rounded
makers. In all the cases, except for S4, the results of architec-
ture CNNNAS1 are suboptimal with respect to the ones scored
by NAS individually on each sensor data set, confirming
that different architectures are necessary to best fit different
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Fig. 4. Classification performances at the sensor level when comparing SA and EE monitoring approaches.

TABLE III
COMPUTING PERFORMANCE AND ARCHITECTURE DETAILS FOR THE

BRANCH ARCHITECTURES RETRIEVED BY HW-NAS FOR EACH SENSOR

sensing locations. This outcome can be justified by the fact
that, even if natural modes are global parameters for the
structure, the sensitivity of the sensors in terms of amplitude
and richness of the captured vibration response is strongly
dependent on its position; for example, some sensors could
be less informative since they are more proximal to static
mechanical components in correspondence of which vibration
is minimal. In the case of S4, architecture S1 performs
slightly better on the test set. This minor advantage could
be due to the nonconvex nature of the optimization problem
approached by the NAS. Anyway, the difference is very small,
confirming that the architecture retrieved by the automatic
procedure is still a good solution. In addition, the test involv-
ing network CNNNAS1 confirms that the performance gap
between CNNNAS, CNNEE, and CNNSA is not due to the
number of parameters, but strongly conditioned by the network
topology.

C. Hyperparameters Analysis

Once the optimal branches are obtained through HW-NAS,
the proper selection of the regularization parameter and the

relative weights λi associated with different terms of the loss
function in (2) deserves primary importance.

Four weighting strategies have been investigated.
1) “Unitary Weights” (1_W): λi = 1 is assumed for all

the branch NNs, such that the weight associated with
each local network equates the weight associated with
the distributed network.

2) “Uniform Weights” (Un_W): λi = 1/Ns is assigned to
each branch term; consequently, the total contribution of
all the subnetworks’ losses equates the contribution of
the distributed network.

3) “Accuracy Weight” (Acc_W): The validation error of
each network is considered independently by setting
λi = acci, i.e., the value of the validation accuracy is
set as the weight for the ith branch. Indeed, since all λi

will have a value between 0 and 1, in this new setup,
the loss of the network with better accuracy has larger
weights. Thus, in the extreme case of a branch network
with an accuracy of 1, the associated term will weigh 1,
corresponding to the value of the loss of the distributed
network.

4) “Uniform Accuracy” (Un_Acc): Combining schemata
(b) and (c), λi = acci/

∑
i acci is assumed such that

the score for each branch is given proportional to the
validation accuracy while ensuring that the summation
of all weights is unitary.

Moreover, to investigate the role of the regularization term,
each of the above described schemes has been tested with four
values of λR, namely, 0.001, 0.01, 0.1, and 1, ranging from
small (0.001) to strong (1) values of regularization.

The results are depicted in the radar charts of Fig. 5 and
confirm that the regularization parameter plays a major role.
Indeed, when λR is in the range (0.001 or 0.01), all the
weighting schemes lead to new SOTA results for all the
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Fig. 5. Radar plots for the four considered regularization mechanisms and weighting strategies.

TABLE IV
PERFORMANCE OF THE L1-REGULARIZED ARCHITECTURE COMPARED

TO THE BEST RESULTS (THOSE IN BOLD) IN TABLE II AND OTHER

REGULARIZATION ALTERNATIVES

considered metrics (apart from accuracy and F1 of strategy
Un_W) if compared with the previous best solution. This
confirms both the suitability of the proposed approach and
the robustness against variation of the hyperparameters. When
the regularization value, instead, becomes large (0.1 or 1),
the sparsity term becomes prevalent leading to a significant
deterioration of the overall performance. Eventually, the best
solution is the one among the sparse networks with the
smallest values of λR, indicating that this value balances
the contribution of the regularizer and the contribution of the
empirical error. Comparing the four weighting schemes per
given λR, plots show that it is not possible to identify a best
solution winning in all cases.

For the sake of conciseness, in the following, only results
for the unitary weighting scheme are presented, which has
deliberately been selected based on two observations. First,
from a transmission point of view, the case with λR = 0.001
is not advantageous since it imposes 100% of the features to
be outsourced. The second reason is that, instead, the case of
λR = 0.01 is almost 8× sparser (see Section V-D), with the
1_W and Un_Acc being the best weighting schemes. Among
these, the unitary weighting scheme has been selected because
of its simplicity of implementation.

Two competitive aggregating techniques have been con-
sidered for the sake of thorough comparison. The first is a
model identical to CNN∗

NAS,EE(λR = 0.01, 1_W weighting)
but with L2 regularization, while the latter (Fully) is a solution
in which the classification layer is substituted by a fully
connected neural network with one single hidden layer of
50 neurons. Table IV highlights that the HW-NAS plus L1
regularization overcomes the previous solutions for all the
metrics, proving the effectiveness of the greedy selection of

TABLE V
AMOUNT OF TRANSMITTED FEATURES OVER DIFFERENT FOLDS

the architecture for the single branches, the effectiveness of
the architecture constraints introduced, and the effectiveness
of the proposed loss function. Eventually, the comparison
between the two values of λR remarks that the smallest value
of regularization led to nonsparse solutions, making the value
of 0.01 a preferable choice.

D. Transmission Cost Analysis

A thorough analysis of the transmission cost implied by
the designed architectures is mandatory to judge their benefit
in the context of IoT-oriented deployments. For this reason,
the number of payload digits (measured as data B) to be
transmitted to run a single global inference has been included
in the last column of Table II.

Interestingly, the proposed approach is unique in that it
transmits a different amount of features for individual sensing
nodes, based on the optimal representation retrieved from HW-
NAS. Performing compression using an end-to-end approach
drastically diminishes the transmission payload when com-
pared with purely CS methods, with a payload below 53 B
(only 13.2 features on average), which is 24.8× more efficient
than the CNN∗

EE identified before. For the sake of clarity,
the indicated output quantities are not integer because of the
five-folded training procedure which implies a different set
of features for each fold; coherently, the presented value is
the average computed over the total folds. Eventually, this is
more efficient than the L2-regularized and the fully connected
alternative, having a payload of 452 B (113 features).

An in-detail analysis of the contribution of each sensing
node when λ = 0.01 is shown in Table V. The last column
reports the sum over all the different folds. Each element of
the table reports the number of active features, computed as
the sum of the absolute values of the weights (one for each
class) connected to the specific feature. The first result is that,
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in none of the folders, sensors S0, S3, and S6 have a role in
the final prediction. Similarly, S2 participates only in fold 4.
The selected sensors are not merely the ones that score the
best accuracy alone (see Fig. 4). For example, sensor S4 that
takes a large role on the global prediction scores modest results
alone, confirming the capability of the network to mix, during
the end-to-end process, information from the different sensing
nodes.

VI. PROTOTYPING ON WIRELESS ACCELEROMETER

SENSOR: DEPLOYMENT AND COST-BENEFIT ANALYSIS

The deployment of ASHM systems in real settings is influ-
enced by hardware and software constraints. On one side, the
sensing technology has to be appropriately selected to support
the realization of affordable, low-power, and small-size sens-
ing platforms. Micro-electromechanical systems (MEMSs)
sensors are particularly suited to meet these requirements
thanks to their high level of integration, reduced price, and
market availability [35]. Concerning the computing architec-
ture, key performance features, such as clock speed, power
management, memory space, and instruction per cycles, have
to be matched with the computational complexity of the sought
inference models. Thus, dedicated quantization techniques
that can reduce model latency and data depth with limited
degradation on accuracy must be applied, while enhancing
the overall system efficiency. Finally, the transmission module
and communication protocol deserve primary attention for two
main reasons: first, they represent the most energy-hungry
entry in the power budget; second, they should allow for
sufficient and reliable coverage, preventing data loss while
ensuring constant point-to-point link.

A. Model Quantization and Deployment

Four different model quantization approaches have been
investigated.

1) Float (FullFloat): All network parameters and
input/output tensors are represented as 32-bit float
quantities, adopting the deepest depth available for MCU
devices.

2) Full Integer (FullInt8): All the mathematical oper-
ations are implemented via full integer quantized
operators, forcing the weights and activations to have
8-bit precision, including input and output data tensors.

3) Float Fallback (FloatFall): Analogous to
FullInt8, but it creates a hybrid solution that
replaces some of the integer operators with a float
equivalent function; float precision is used to
represent input/output data as well.

4) Quantization-Aware (Qaware): Different from the post-
training approaches above, in which quantization is
applied to the already trained model, this technique emu-
lates the possible loss due to 8-bit precision at training
time using precision reduction in weights and activa-
tion representation. Its pretraining nature can prevent
performance degradation after deployment at the cost
of a higher convergence time. By virtue of this, it is

expected to increase the classification performance if
compared with post-training quantization.

The STM32L496 MCU [36] has been used for prototyping,
since it is an ultralow-power microcontroller based on the
high-performance Arm Cortex-M4 32-bit core operating at a
frequency up to 80 MHz. It integrates 320 kB and 1 MB of
volatile and static memory, respectively, which are sufficient to
accommodate both model parameters and input data instances
according with the prospective application scenarios.

Deployment focused on the HW-NAS models and has been
implemented via the TensorFlow Lite for Microcontrollers
runtime, resulting in the memory (flash and RAM) occupation
and inference time outlined in Fig. 6. For the sake of clarity, it
is worth recalling that, while Qaware and FloatFall have
identical computational requirements (and this is the reason
why we have aggregated them in Fig. 6), they can lead to
remarkably different classification performances. As can be
seen, the model storage (flash) required by the full float models
is more than three times larger than the one demanded by
the other versions, independently from the considered sensing
unit. Similarly, an average drop higher than 2× is witnessed
for RAM when moving to the Int8 solution; contrariwise, the
temporary memory occupied by FloatFall and Qaware
slightly increases as a consequence of the hybrid quantization
applied by the corresponding techniques.

Alongside, the average execution time computed over 16
runs confirms that strongly quantized models exhibit signifi-
cantly lower latency (more than 10× speed-up for full-integer
versus full-float) at the price of a little loss of performances
(less than 0.3%). This is testified in Table VI, in which
the average degradation over the eight sensors with respect
to the PC implementation has been listed for all the four
classification metrics. The same does not apply to FullInt8
and FloatFall, which are slightly less performative even if
being more convenient from a memory viewpoint. A negligible
drop is experienced for the FullFloat model and might
be attributed to potential rounding mechanisms when running
on the low-end MCU. These outcomes align with the benefits
foreseen by the TensorFlow Lite developers3 and enforces
the importance of selecting the appropriate conversion tech-
nique depending on the best compromise between the key
performance indicators.

B. Sensor Energy Consumption

Starting from the time analysis above, the effects of
running the deployed model on a real wireless accelerome-
ter sensor have been assessed. More specifically, the smart
sensor node in [37] has been considered for prototyping,
since it offers embedded signal processing functionalities
enabled by the same MCU already tested in Section VI.
The sensor presents a dual accelerometer-based triggering
principle necessary to maximize power efficiency, while the
transmission is realized in a wireless manner via the Digi
X-Bee 3 module implementing the 802.15.4 communication
protocol. The latter is one of the most common choices for
IoT-enabled SHM given its favorable compromise between

3https://www.tensorflow.org/lite/performance/model_optimization?hl=en



RAGUSA et al.: COMPRESSION–ACCURACY CO-OPTIMIZATION 31755

Fig. 6. HW-NAS model deployment profiling in terms of Flash, RAM, and inference time.

TABLE VI
AVERAGE LOSS IN CLASSIFICATION METRICS FOR THE QUANTIZED

HW-NAS MODELS WITH RESPECT TO THE OFF-MCU IMPLEMENTATION

TABLE VII
ENERGY PROFILING OF THE BEST (CNNNAS1) AND WORST (CNNNAS6)

BRANCH HW-NAS NETWORKS WHEN DEPLOYED ON THE SMART

SENSOR IN [37] COMPARED WITH THE BEST CS-BASED STRATEGY

(CNN∗-Z24) AND A RAW IMPLEMENTATION (RAW) DISCARDING

ONBOARD IMPLEMENTATION

transmission bandwidth, power consumption, and range. The
node is powered by a 2600-mAh battery with nominal voltage
of 4.15 V and safety discharge equal to 20. The electrical
characteristics in terms of average current, time, and energy
required by the entire node for processing and transmission
are listed in Table VII, in which the best (CNNNAS1) and
worst (CNNNAS6) models are compared with a naive scenario
without on-sensor data processing (i.e., transmission of the
entire time series-label Raw) and the best CS-based strategy
(CNN∗-Z24).

Thereby, an analysis of the sensor energy autonomy has
been performed, under the following additional assumptions:
1) measurements consist of 32 768 samples collected at 100 Hz
with a duty-cycle of 1 h and 2) the MCU runs at the maximum
speed of 80 MHz. While the time spent in data acquisition is
constant and common to all sensors, the remaining intervals

are a function of the single HW-NAS models, their computa-
tional complexity, and forced level of compression imposing
the dimension of the output payload. Even if data outsourcing
is the most energy-hungry operation since it demands for the
largest current supply, the introduction of near-sensor data
compression techniques renders the newly proposed scenario
extremely efficient thanks to the very short dimension of the
output tensor, reducing transmission to a negligible part of the
overall energy expenditure. In this new configuration, the total
energy per hour spent by the proposed approach for processing
and transmitting data varies from 0.206 to 0.026 mJ/h for
the most cumbersome (CNNNAS6 with Float quantization)
and faster (CNNNAS1 with FullInt8 quantization) model,
respectively. Noteworthy, even the worst performing model
is 410× more efficient than the best CS-based architecture
(CNN∗-Z24 [12]) in Table II, a gain which further increases
to 12 859× in comparison with a raw monitoring scenarios
in which no onboard data processing is embedded and the
raw time series are transmitted to the aggregator: in these
alternative cases, the energy consumption arises to nearly
84 and 2649 mJ/h, correspondingly. Notably, in the analyses
above, the energy absorbed in the idle, sleep, and acquisition
states have been neglected since they are common to all the
methods; in this way, it has been possible to perform a fair
comparison of the sole contribution of the data management
operations.

C. Robustness Against Noisy Data and Practical Issues

Field acquisitions can be corrupted by multiple noise
sources, which may originate from external factors (such
as operational and environmental interference) and/or are
inherent to the sensing components, such as the intrinsic sensor
noise density of inertial accelerometers. Thus, it is important
to evaluate the impact of such corruption on the robustness
of the proposed monitoring. To this end, we have investigated
how the classification performance is affected by noisy data,
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Fig. 7. Classification scores of architecture 1_W-L1-CNN∗
NAS,EE (0.01) in

the presence of noisy data.

which have been obtained by adding random Gaussian noise
to the original time series. Such noise properly captures the
nonideal behavior of electronic components and is typically
the dominant one in vibration acquisitions [38].

In particular, the noise density of the ADXL355 sensor
(20 μg/

√
Hz) implies an average SNR of 45 dB (considering

the data set under analysis). Under these circumstances, no
appreciable degradation in the classification score of the
1_W-L1-CNN∗

NAS,EE (0.01) architecture has been observed, as
reported in the bar charts of Fig. 7 (dark blue bars versus
yellow-countered black markers). Then, two alternative cases
have been investigated, in which the SNR has been decreased
to 20 dB (violet bars) and 10 dB (light-violet bars), modeling
modest and very critical condition of disturbance, respectively.
Coherently, as the chart shows, the performance remains
remarkably high also for the operative setting of 20 dB, while
a more prominent decrement in accuracy and precision (near
to 5%) verifies in the extreme case of 10 dB.

VII. CONCLUSION

This work presented a solution that maximizes the damage
detection capability of an automatic inspection system com-
posed of a network of vibration sensors equipped with a DNN.
Exploiting an HW-NAS-based procedure, the architecture of
each DNN is designed to maximize accuracy while allowing
deployment on commercial MCU and reduced transmission
payload. The outputs of the individual DNNs are combined for
the retrieval of the global health status: the entire architecture
is trained in an end-to-end fashion driven by L1 regularization,
essential to further sparsify the data representation without
affecting the damage detection capability. Classification scores
significantly above 98.4% and a data payload as low as tens
of B for the Z24 bridge data set ascertain the suitability of the
proposed approach. Furthermore, the energy efficiency after
deploying the designed architectures on a custom wireless
accelerometer sensor is demonstrated, revealing that the quan-
tized models can reduce the energy consumption per hour by
more than three orders of magnitudes.

Possible future works will be devoted to the investigation of
solutions supported by even more constrained target embedded
devices and the exploration of the potential benefits of NAS
when applied on the whole architectures, as well as the
feasibility for its integration into an FL scenario to also
optimize the training stage.
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