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Abstract

Aerial manipulators are composed of a robotic arm installed on an unmanned aerial vehicle and are used in several
applications because of their inherent ability in performing complex tasks. In real-world applications, these systems
are required to be robust against exogenous disturbances, such as wind, to guarantee the desired level of accuracy in the
execution of the tasks. In this paper, the reference scenario consists of an aerial manipulator with a camera mounted
on the end-effector of the robotic arm, and the goal is to track a fast-moving target. A control system architecture
able to assure that the tracking error remains bounded even in the presence of external disturbances is illustrated. The
proposed approach is based on the compensation of the dynamic coupling between the robotic arm and the unmanned
aerial vehicle. Stability is analytically proved, and the effectiveness of the proposed control solution is shown with
some simulations.

Keywords: robust control, aerial robotics, nonlinear control

1. Introduction

Aerial robots are rapidly spreading thanks to their in-
born mobility and inexpensiveness which make them an
attractive alternative to humans in performing tasks in
harsh environments. Among the plentiful number of solu-
tions, the aerial manipulators, constituted by the union of
an Unmanned Aerial Vehicle (UAV) with a robotic arm,
are drawing the attention of the scientific community. In-
deed, the degrees of freedom added by the introduction of
the robotic arms extend the ability of the UAVs to accom-
plish complex tasks such as visual maintenance, tracking
of moving targets, load transfer, etc [1]. In these appli-
cations, the end-effector, which constitute the terminal
part of the robotic arm, is required to follow a given time
varying trajectory while the UAV keeps its position to as-
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sure that the robotic arm remains in its working space.
The tracking performance of both the end-effector and the
UAV should be guaranteed with a prescribed level of ac-
curacy and despite the presence of unknown environmen-
tal disturbances such as the wind.

In this operative scenario, the design of control systems
for aerial manipulators faces the challenging problems of
the robust stabilisation and tracking of a reference trajec-
tory in presence of disturbances [2]. These problems are
worsen by the inherent under-actuated nature of most of
the UAVs (e.g., multi-rotors with fixed uniaxial propellers
configuration) that couples the rotational and translational
dynamics, with the latter that are also subject to kinematic
and dynamical constraints enforced by the aerial manip-
ulators [3]. The under-actuated nature of the platform is
necessarily handled by considering the attitude as virtual
input for the position control. By governing the attitude,
in fact, the thrust of the vehicle is projected along desired
directions by thus indirectly controlling the position dy-
namics. The choice of this virtual control input requires
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the ability to track the desired attitude to guarantee the sta-
bility of the whole system. In this respect any joint torque
which accelerates the robotic arm results in a force-torque
wrench that must be balanced by the UAV.

As for the stabilisation of the system during trajectory
tracking, the problem of the coupling between the dy-
namics of the manipulator and the dynamics of the UAV
is typically approached in different ways. One possible
way is to adopt two independent control designs, one for
the manipulator [4] and one for the UAV [5], fulfilling
some interconnection constraints which guarantee the sta-
bility of the whole system. A second design philosophy is
based on “monolithic” controllers considering the aerial
manipulators as a whole. In this class of control solu-
tions, the back-stepping approach was used in [6, 7, 8, 9]
whereas the singular perturbation theory was exploited in
[10]. As for monolithic solutions, it is also worth recalling
solutions using non-linear model predictive controllers in
[11], task oriented control strategies in [12] and adaptive
controllers in [13, 14, 15]. Finally, a feedback linearisa-
tion was designed in [16, 17].

The main contribution of this work regards the design
of a control system for quadcopters equipped with a three
degrees of freedom robotic arm. Inspired by [18], the pro-
posed control design strategy relies on the robust stabili-
sation of the end-effector, which takes advantage of the
knowledge of the UAV attitude, and on the robust stabili-
sation of the UAV based on a direct compensation of the
dynamic effects induced by the robotic arm. The plant
has been modified with respect to the one presented in
[18], and this implied an improvement of the control law
to avoid singularities in the definition of the total thrust
of the UAV. Moreover, here robustness with respect to
exogenous disturbances acting on the whole state is ad-
dressed.

The paradigm adopted in this paper for the control of
the UAV is based on the stabilisation of the position-
attitude dynamics by using an inner-outer loop control
strategy and vector-thrust design philosophy [19]. We
build the controller on the idea that the position can be
governed by controlling the total thrust and by tilting the
airframe to orient the thrust toward the desired direction.
The adoption of the proposed overall control architecture
leads to the presence of two internal loops that need to
be stabilised: the first concerns the interaction between
the quadcopter position and attitude, which is directly re-

sponsible for the stability of the UAV, whereas the sec-
ond regards the interaction between the end-effector and
the quadcopter and affects the aerial manipulator stabil-
ity. With this control architecture at hand, the nested sat-
urations proposed in [20] are adopted as control solution
to provide stability and robustness with bounded control
laws, both for the end-effector reference tracking control
and for the UAV stabilisation. Given a sufficiently smooth
end-effector reference trajectory, the resulting aerial ma-
nipulator control system is demonstrated to guarantee a
desired tracking performance (maximum allowed track-
ing error) despite the presence of bounded exogenous dis-
turbances.

The manuscript is organised as follows. Section 1.1
concludes the introduction by defining the notations,
whereas Section 2 presents the aerial manipulator and de-
scribes its dynamics. Section 3 describes the control sys-
tem architecture whose performance is tested in simula-
tion, with the latter presented in Section 4. Finally, this
paper ends with the conclusions presented in Section 5.

1.1. Notations

We let R, R>0, and R≥0 denote the set of real, positive
real and non-negative real numbers, respectively. With
ei ∈ R3 we denote the unitary vector along the i-th coor-
dinate. Given x ∈ Rn, |x| denotes the Euclidean norm,
while, for a function f : [0, +∞) → Rk, k > 0, de-
fine | f |∞ = supt∈[0,+∞) | f (t)|, and | f |a = lim supt→+∞ | f (t)|.
Given a class Cn function s, with n > 0, s(n) denotes the
n-th order derivative. Moreover, given the square matrix
J ∈ Rn×n, the minimum and the maximum singular value
of J are denoted as σ(J) and σ(J) respectively.

The notion of Input-to-State Stability (ISS) with restric-
tions given in [20, Appendix B] is used, and reported be-
low for sake of completeness. Consider a nonlinear sys-
tem

ẋ(t) = f
(
x(t), u(t)

)
(1)

with state x ∈ Rn, input u ∈ Rm, in which f (0, 0) = 0 and
f (x, u) is locally Lipschitz on Rn × Rm. Let X be an open
subset of Rn containing the origin, and let U be a positive
number. System (1) is said to be ISS with restriction X on
the initial state x(0) and restriction U on the input u(·) if
there exist class-K functions γ0 and γu such that, for any
x(0) ∈ X and any input u ∈ Lm

∞ satisfying |u|∞ ≤ U, the
solution x(t) satisfies
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• |x|∞ ≤ max {γ0 (|x(0)|) , γu (|u|∞)},

• |x|a ≤ γu (|u|a).

Moreover, a saturation function is a mapping σ : Rn →

Rn such that, for n = 1

• |σ′(s)| =
∣∣∣∣∣dσ(s)

ds

∣∣∣∣∣ ≤ 2, for all s,

• sσ(s) > 0, for all s , 0, σ(0) = 0,

• σ(s) = sign(s), for |s| ≥ 1,

• |s| < |σ(s)| < 1, for |s| < 1.

For n > 1, the properties listed above are intended to hold
component-wise. Finally, the list of the symbols used in
this paper is reported in Table 1.

1.2. System and problem description

An aerial manipulator is a mobile robot specifically de-
signed to perform manipulation tasks in all those environ-
ments / situations in which the human intervention could
be demanding from a safety, economic or efficiency point
of view. In this work the aerial manipulator is a quad-
copter equipped with a three-degrees of freedom robotic
arm, (see Fig. 1). The focus is on all the applications in
which the goal is to let the end-effector to track a desired
trajectory in the work space while the flying base, i.e. the
quadcopter, remains in a fixed position. An example can
be a drone equipped with a moving camera accomplishing
surveillance tasks or tracking a moving target. The con-
tribution is a control strategy that assures robust practical
tracking of the end-effector position.

2. Mathematical model

Let F (O, x1, x2, x3) denotes the inertial reference
frame, and F ′(O′, x′1, x

′
2, x
′
3) the body frame, rigidly at-

tached to the quadcopter. The attitude of F ′ with respect
to F is described by the rotation matrix R(θ) ∈ SO(3),
with θ ∈ R3 a parametrisation based on the Euler angles,
such as the roll, pitch and yaw angles. To compute the
kinematic model of the aerial manipulator in free-flight,
we denote by p ∈ R3 the inertial quadcopter position, and
by q = (q1, q2, q3) ∈ R3 the joint angles of the robotic arm.
If the function fkin : R3 7→ R3 provides the position of the

parameter description
p, pe, q UAV, end-effector positions and

arm joint angles
p?, p?e reference UAV and end-effector po-

sitions
p̃, p̃e UAV and end-effector position er-

rors
θc, θ, ω UAV reference attitude, actual atti-

tude and rotational speed
fkin(q), J(q) arm direct kinematics and Jacobian
d, de, dω external disturbances
τq, τ, T control inputs
M, Juav UAV mass and inertia
m end-effector mass
κ̄ and κ end-effector and UAV saturated

feedback control law
λ̄1, λ̄2, k̄1, k̄2, ε̄ robotic arm controller parameters
λ1, λ2, k1, k2, ε UAV position controller parameters
λ?1 , λ?2 , k?1 , k?2 saturated controls reference param-

eters
vc, vFF UAV overall position control and

feed-forward position control
vc, v UAV position control lower bounds
Tc, τc UAV designed thrust and torques

control laws
τFF, τFB UAV designed feed-forward and

feed-back control torques

Table 1: List of symbols.

end-effector in the body frame F ′, then the corresponding
inertial position pe ∈ R3 is given by

pe = R(θ) fkin(q) + p (2)

The inertial velocity of the end-effector ṗe is then obtained
by taking the time derivative of (2) as

ṗe = R(θ)S (ω) fkin(q) + R(θ)J(q)q̇ + ṗ . (3)

In (3), ω ∈ R3 is the angular speed of the quadcopter ex-
pressed in F ′, S (ω) ∈ so(3) indicates the skew symmetric
matrix associated to the vector ω, and J(q) =

∂ fkin
∂q (q) is

the geometric Jacobian of the robotic arm.
The aerial manipulator consists of two subsystems, the

quadcopter and the robotic arm, that are rigidly inter-
connected one with the other. This means that, if τq ∈
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pe
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Figure 1: An aerial manipulator composed by a quadcopter equipped
with an anthropomorphic robotic arm.

Tq ⊂ R3 denotes the joint torques, the internal force
R(θ)J−>(q)τq acts on the quadcopter and on the robotic
arm in opposite directions. As a consequence, if M > 0
and Juav ∈ R3×3 are the mass and the inertia tensor of the
quadcopter, and if m > 0 is the mass of the end-effector,
under the hypothesis that mass and inertia of the links of
the robotic arm are negligible, the dynamic of the aerial
manipulator in free-flight is

mp̈e = R(θ)J−>(q)τq − mge3 + de (4a)

Mp̈ = R(θ)
(
Te3 − J−>(q)τq

)
− Mge3 + d (4b)

Ω(θ)θ̇ = ω (4c)
Juavω̇ = −ω × Juavω − fkin(q) × J−>(q)τq + τ + dω (4d)

where T ∈ [0, Tmax] is the quadcopter control thrust,
τ ∈ T ⊂ R3 are the torques acting on the quadcopter,
Ω : R3 7→ R3×3 is the matrix that maps the time derivative
of the Euler’s angles to the corresponding angular veloc-
ity vector ω, and the functions de, d, dω : R≥0 7→ R3

represent exogenous disturbances. The interaction be-
tween robotic arm and quadcopter dymamics is illus-
trated in Fig. 2. To conclude, the state of the system is
x := (pe, p, θ, ω, ṗe, ṗ) ∈ X ⊆ R18. We also introduce the
set

Q :=
{

q ∈ RN :
σ(J(q))
σ(J(q))

≤ KQ

}
(5)

that represents the set of joint variables q for which the
manipulator is sufficiently far from kinematic singulari-

τq
Robotic Arm

Dynamicsde

τ, dω
UAV Attitude

Dynamics

T, d
UAV Position

Dynamics

θ

θ

q

UAV
Dynamics

pe

θ, ω

p

Figure 2: Graphical representation of the plant model.

ties. Here, K̄Q is a positive parameter. Finally, the control
input is u := (τq,T, τ) ∈ U, withU := Tq× [0, Tmax]×T .

Remark 2.1. The model (4) follows from a Lagrangian
description of the aerial manipulator dynamic, in which
p, pe and ω are the Lagrangian coordinates. The inertial
coupling between end-effector and UAV is taken into ac-
count by adding in the Lagrangian the virtual work that
the joint torques τq do with respect to the virtual displace-
ments associated to p, pe and θ.

3. Control design

3.1. General overview
Given the reference trajectory p?e (t) for the end-effector

and the constant reference position p? for the quadcopter
and a desired yaw attitude ψ?, the Aerial Manipulator
Controller is designed to robustly stabilise the system
around such references. In particular as depicted in Figure
3, based on the knowledge of state of the aerial manipula-
tor, the Manipulator Controller generates the joint torques
τq to let the end-effector to robustly track p?e (t). At
the same time, the Quadcopter Controller, thanks to the
knowledge of τq, computes the thrust T and the torques
τ to robustly stabilise the quadcopter in p?. As matter
of fact, the overall control scheme is able to let the end-
effector inertial position to track a desired reference ma-
noeuvre, while the aerial vehicle is maintained at a con-
stant position.
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Manipulator
Controller

p?e

Position
Controller

p?

Attitude
Controller

R?

θc

τq

Aerial
Manipulator

x

τq

T τ

Quadcopter
Controller

Aerial
Manipulator
Controller

de, d, dω

Figure 3: Control System Architecture

3.2. The Aerial Manipulator Controller
The coupling between the manipulator and the quad-

copter takes place via the joint generalised forces τq and
through the kinematic link (2). Manipulator and drone
control systems are interlaced because, from one hand,
the manipulator control action must compensate for the
drone attitude and, on the other hand, the quadcopter is
required to compensate for the disturbance forces intro-
duced by the manipulator and to stabilize the desired con-
stant lateral and vertical position.

The controller achieves asymptotic tracking of the
desired references under some restrictions on the end-
effector trajectory. To maintain stability, saturations are
used to bound the disturbance response, i.e. the magni-
tude of the inputs of the manipulator and of the vehicle po-
sition controllers. In this situation, the controller achieves
practical tracking of the desired references, provided that
restrictions on the manipulator reference signals are taken
into account. Mechanical parameters play a crucial role
so as to achieve the desired stability properties. Later, in
fact, it is shown the importance of keeping the mass of
the manipulator sufficiently small with respect to the one
of the aerial vehicle.

3.2.1. Robust control of the robotic arm
Given the reference trajectory p?e (t) for the inertial po-

sition of the end-effector, consider the control law

τq = J>(q)R>(θ)
[
m

(
p̈?e + ge3

)
− κ̄

(
p̃e, ˙̃pe

)]
(6)

in which p̃e = pe − p?e is the position error of the end-
effector in the inertial coordinates, and where κ̄ : R3 ×

R3 → R3 is an error feedback controller that is designed
by means of the following nested saturation control law

κ̄
(
p̃e, ˙̃pe

)
= λ̄2σ

(
k̄2

λ̄2

(
˙̃pe + λ̄1σ

(
k̄1

λ̄1
p̃e

)))
(7)

in which, by following [20, Appendix B], the parameters
k̄1, k̄2, λ̄1, and λ̄2 are selected as

λ̄i = ε̄(i−1)λ?i k̄i = ε̄k?i (8)

with i = 1, 2, and where k?i and λ?i are such that

λ?2
k?2

<
λ?1
4
,

vM(ε̄)
ε̄

+ 4k?1 λ
?
1 <

1
m
λ?2
4
, 6

k?1
k?2

<
1
24

1
m

(9)

with vM(ε̄), ε̄ > 0. The main properties of the manipulator
(4a) driven by the control law (6)-(7) and with the system
in free-flight are summarised in the next proposition, [18,
Proposition 1].

Proposition 1. Consider system (4a) driven by the control
law (6)-(7). For all ε̄ > 0, there exists vM(ε̄) > 0 and a
set of gains k̄i and λ̄i, i = 1, 2, so that (8) and (9) hold.
Then, for all initial conditions

(
p̃e(t0), ˙̃pe(t0)

)
∈ R3 × R3

and for all de(t) such that |de|∞ ≤ vM(ε̄), we have that the
following holds

• Given ε̄ and λ?2 , then

|τq|∞ ≤
√

3σ(J)
[
mg + m| p̈?e |∞ + ε̄λ?2

]
(10)

• There exist Γ̄1, Γ̄2 ∈ R>0 such that∣∣∣∣∣dκ̄dt
( p̃e(t), ˙̃pe(t))

∣∣∣∣∣
∞

≤ Γ̄1ε̄
2 + Γ̄2ε̄ |de|∞ (11)

• There exists a class-KL function βε̄ and a class-K
γε̄ such that ∀ t > t0 ≥ 0

|( p̃e(t), ˙̃pe(t))| ≤

≤ γε̄ (|de|∞) + βε̄
(
|( p̃e(t0), ˙̃pe(t0))|, t − t0

)
(12)

Proof. See Appendix A.

The first item shows how the manipulator joint con-
trol actions τq are bounded functions, and the second one
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shows how the first order derivative of the feedback con-
trol law can be bounded by a value that does not depend
on the current tracking error and its derivatives. This
bound will be taken into account later, where the intercon-
nection between the manipulator and the aerial platform is
considered. Moreover, the third item shows how the ro-
bust tracking of the desired trajectory p?e is achieved.

Despite the results in Proposition 1 only require the ref-
erence p?e (t) to be a sufficiently smooth function of time,
additional constraints are introduced to support the stabil-
ity results pertaining the aerial platform presented in the
next subsection. The scope is to bound the influence that
the manipulator has on the position and attitude dynamics
of the vehicle when tracking a reference p?e .

Assumption 3.1. There exist three constants D̄?
1 , D̄?

2 and
D̄?

3 ∈ R>0 such that

| ṗ?e |∞ ≤ D̄?
1 | p̈?e |∞ ≤ D̄?

2 |p?,(3)
e |∞ ≤ D̄?

3 .

3.2.2. Position control of the quadcopter
The control design proposed in this work draws inspi-

ration from the thrust-vectoring control employed to sta-
bilize the position of under-actuated aerial configurations
(see, among others, [21, 22]). The novelty of the design
proposed here lies in the fact that the reaction forces ap-
plied by the manipulator back to the aerial platform are
directly taken into account in the definition of the desired
control force vector. To stabilise the position of aerial
platform to the constant reference p?, the following con-
trol vector is defined

vc( p̃, ˙̃p, t) = vFF(t) − κ(p̃, ˙̃p) (13)

in which p̃ = p−p? is the position error, κ : R3×R3 → R3

is a control law and vFF(t) is the feed-forward term

vFF(t) = Mge3 + R(θ(t))J−>(q(t))τq(t). (14)

The control vector vc is applied to the vehicle position
dynamics (4b) by properly vectorizing the thrust produced
by the propeller. By taking advantage of the knowledge
of the manipulator control inputs τq, a control thrust Tc

and a control attitude θc are computed to have

R(θc(p̃, ˙̃p, t))Tce3 = vc( p̃, ˙̃p, t). (15)

To solve (15), let us assume that, for all t ≥ 0, there exists
a positive real v such that

|vFF(t)| ≥ Mg −
|τq|∞

σ (J(q(t)))
≥ v > 0 (16)

and also that the feedback law κ( p̃, ˙̃p) is designed to guar-
antee that

|vc( p̃, ˙̃p)| ≥ v − |κ( p̃, ˙̃p)| > v c (17)

for some positive real v c. The positive lower bound v c is
necessary to avoid singular configurations for θc. Then,
the desired thrust Tc and the desired attitude R(θc) that
satisfy (15) are

Tc = |vc(p̃, ˙̃p)| R(θc( p̃, ˙̃p))e3 =
vc( p̃, ˙̃p)
|vc( p̃, ˙̃p)|

. (18)

It is worth noting that despite (18) are well defined, for
all t ≥ 0 due to (16) and (17), they only fix the first two
components of θc. By imposing, in addition, the desired
attitude ψ?, we obtain a R?(t) : Rc(θc(0, 0, t)) = R?(t)
such that the yaw is ψ?. While the control thrust Tc can
be directly applied to the vehicle by choosing T = Tc,
the control attitude θc is employed as a reference for the
attitude stabilising control law.

To stabilize the position dynamics of the aerial vehicle,
we focus on the following nested saturation control law

κ
(
p̃, ˙̃p

)
= λ2σ

(
k2

λ2

(
˙̃p + λ1σ

(
k1

λ1
p̃
)))

(19)

in which k1, k2, λ1, and λ2 are selected as

λi = ε(i−1)λ?i ki = εk?i (20)

with i = 1, 2, ε > 0, and where k?i , λ?i are the same of
Proposition 1.

Proposition 2. Consider the control law (19) in which ki

and λi, i = 1, 2, have been selected according to (20) and
(9), with ε > 0. Let the trajectory of the complete system
be such that that q ∈ Q, with Q defined in (5) for all t ≥ 0,
the references p?e satisfy Assumption 3.1 and let ε > 0 and
ε̄ > 0 be chosen so that

Mg −
√

3
σ(J)
σ(J)

(
mg + |p̈?e |∞ + ε̄λ?2

)
≥ v >

√
3λ?2 ε (21)

6



for some v > 0. Furthermore, let

Γη(θ, θc, τq) := [R(θ) − R(θc)]
[
Tce3 − J−>(q)τq

]
.

Then, for all the initial conditions
(
p̃(t0), ˙̃p(t0)

)
∈ R3 ×

R3 and for all θ(t), θc(t), τq(t) and d(t) such that
‖Γη(θ, θc, τq) + d(t)‖ ≤ vM , the following results hold true:

• |κ( p̃, ˙̃p)|∞ ≤
√

3λ?2 ε;

• Let the reference p?e (t) satisfy Assumption 3.1. Then,∣∣∣∣∣dκdt
( p̃(t), ˙̃p(t))

∣∣∣∣∣
∞

≤ ΓD̄?
2
ε2 + Γ2ε |d|∞ (22)

for some ΓD̄?
2
, Γ2 positive;

• There exists a class-K∞ function, γε , such that the
trajectories ( p̃(t), ˙̃p(t)) are asymptotically bounded
by |( p̃(t), ˙̃p(t))|a ≤ γε(vM).

Proof. See Appendix B.

This result shows how the position control input is
bounded by a value that does not depend on the current
position error, but only on the saturation parameters. This
property, together with the analogous one for the manip-
ulator proved in Proposition 1, is used to analyse the be-
haviour of the overall closed-loop system in presence of
disturbance preventing the vehicle to maintain the desired
horizontal and vertical position asymptotically. In this
context, the ISS with restriction on the inputs property is
instrumental for proving the ISS stability of the complete
system.

It is important to note that Propositions 1 and 2 are
strictly related. In particular, to satisfy (21), the param-
eter ε̄ has to be selected sufficiently small. On the other
hand, also the second condition in (9), that is instrumen-
tal for Proposition 1, has to hold. Consequently, vM(ε̄)
must be small enough. As a matter of fact, this bounds
the amplitude of the disturbance de(t) acting on the ma-
nipulator that the proposed control scheme is capable to
compensate.

3.2.3. Attitude control of the quadcopter
Finally, the attitude control for the vehicle is designed.

In particular, the control torque τc is defined as

τc = τFF

(
τq, q

)
+ τFB

(
θ̃, θ̇

)
(23)

in which

τFF

(
τq, q

)
= fkin(q) ×

[
J−>(q)τq

]
(24)

is the feed-forward control action compensating for the
reaction torque produced by the manipulator, and

τFB

(
θ̃, ˙̃θ

)
= −kP

(
θ̃ + kDθ̇

)
(25)

is the feedback stabilising control law in which θ̃ = θ −
θc. The stability of the overall system resulting from the
interconnection with the robotic is discussed in the next
proposition.

Proposition 3. Let us consider the system (4b)-(4d) with
state ξ = (p, ṗ, θ, ω), in which the control inputs T and τ
are selected as T = Tc and τ = τc, and define the error
dynamic as ξ̃(t) = ξ(t)− (p?, 0, θc, 0)>. There exist k?D > 0
and ε̄?, for all kD < k?D, a k?P(kD) > 0 such that for all
kP > k?P and 0 < ε̄ < ε̄?, there exist a ∆0 > 0, a class-
KL function βp and a class-K function γp such that the
closed-loop system in the error coordinates ξ̃(t) is ISS with
restriction ∆0 on the initial conditions and

|ξ̃(t)| ≤ βp(|ξ̃(t0)|, t − t0) + γp

(
|(p?,(3)

e , de, d, dω)|∞
)

(26)

for all t ≥ t0.

Proof. See Appendix C.

This result shows how the aerial vehicle dynamics re-
mains bounded even in presence of the reaction forces
applied by the manipulator. Hence, by considering also
the result in Proposition 1 for the manipulator dynamics,
the proposed control strategy achieves robust tracking of
the desired references (p?, p?e (t)) provided that the restric-
tions on the magnitude of the disturbance de are satisfied.
Moreover, when de, d, dω ≡ 0, the tracking of the manip-
ulator references becomes asymptotic and the quadcopter
converges to the desired constant position, provided that
p?,(3)

e (t) ≡ 0, i.e. the jerk of the reference end-effector
trajectory is zero.

4. Simulation results

The kinematic and dynamic models of the aerial ma-
nipulator are now simulated in Matlab with the ode23

integrator with a maximum step size of 0.01 sec. It is
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parameter value
M 1.05 kg
Juav diag(0.82, 0.82, 1.64) kg m2

m 0.1 kg
p′b (0.1, 0.1, 0) m
`1 0.1 m
`2 0.2 m
`3 0.2 m

Table 2: Parameters of the aerial manipulator.

parameter value
k?1 1 m/sec
k?2 150 kg m/sec2

λ?1 5 m/sec
λ?2 150 kg m/sec2

ε̄ 0.3
ε 0.1
kP 0.05 kg m2/sec2

kD 40 kg m2/sec

Table 3: Parameters of the controller.

worth noting that, instead of adopting (4) which requires
the inversion of fkin(q) to check if the kinematic con-
straints are verified, the simulator has been implemented
by exploiting a Lagrangian formulation based on the di-
rect kinematics of the robotic arm (2)-(3) and with p, θ
and q as Lagrangian coordinates. The resulting model is
suitable for simulation purposes because it does not re-
quire the inversion of the kinematics of the robotic arm.
As far as the robot arm is concerned, an anthropomor-
phic configuration is adopted, with three rotational joints
q = (q1, q2, q3). The kinematic is given by

fkin(q) = R3(q1)
[
R1(q2) (R1(q3)e1`3 + e1`2) + e3`1

]
+ p′b

in which `i > 0 is the length of the i-th link, R j(qi) ∈
SO(3) is the rotational matrix, around the j-th axis, asso-
ciated with the rotation of the i-th joint, i = 1, 2, 3, and
p′b ∈ R3 is the position of the base of the manipulator in
the moving frame F ′. The plant parameters are reported
in Table 2, while the controller gains, selected in agree-
ment with (8) and (20), are in Table 3.

In the operative scenario, a fast moving target that has
to be tracked by the camera installed on the end-effector

0 5 10 15 20 25 30 35 40 45 50
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 4: Drone position tracking error in presence of disturbances

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

Figure 5: Actual and reference end-effector position in presence of dis-
turbances

is taken into account. The initial state x(0) of the aerial
manipulator is randomly generated, while the end-effect
reference trajectory p?e (t), shown in Fig. 5 (dotted lines),
results from the sum of sinusoidal functions of time and
simulates the required motion of the camera. The refer-
ence position of the quadcopter is for simplicity chosen
as p? = 0.

The simulation has been performed in presence of ex-
ogenous disturbances which simulate a sinusoidal wind
field with a time varying intensity and orientation. Such
disturbances deteriorate the tracking performances of the
quadcopter and of the end-effector. Since ε̄ > ε and the
influence of the wind on the end-effector is lower than the
one on the UAV, the tracking accuracy for the end-effector
position is better than the one for the drone position, see
Figures 5 and 6, and Figure 4, respectively. Finally, the
control actions T , τ and τq are depicted in Figures 7, 8
and 9, respectively.
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Figure 6: End-effector position error in presence of disturbances
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Figure 7: Drone thrust in presence of disturbances

5. Conclusions

In this paper, the design of a control system able to
govern an aerial manipulator constituted of a quadcopter
equipped with a three-degrees of freedom robotic arm
is discussed. The robust stability of the whole system
against unknown external disturbances has been achieved
by means of a state-feedback controller. In particular, the
robotic arm is stabilised by compensating the quadcopter
attitude whereas the joint torques are directly exploited in
the computation of the control law for the aerial base. The
closed-loop system resulting from the interconnection of
these two subsystems has been proven to be stable. Sim-
ulations demonstrate a good accuracy in case of tracking
of a moving target despite the presence of exogenous dis-
turbances.

Appendix A. Proof of Proposition 1

The first item follows from the definition of the satura-
tion function, and from the fact that |R(θ)| =

√
3. Now,

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5
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Figure 8: Drone Torques in presence of disturbances
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Figure 9: Joint Torques in presence of disturbances

thanks to the following change of coordinates

ζ̄1 = p̃e ζ̄2 = ˙̃pe + λ̄1σ

(
k̄1

λ̄1
ζ̄1

)
(A.1)

the closed-loop error dynamics of the manipulator is

˙̄ζ1 = −λ̄1σ

(
k̄1

λ̄1
ζ̄1

)
+ ζ̄2

m ˙̄ζ2 = −λ̄2σ

(
k̄2

λ̄2
ζ̄2

)
+ mk̄1σ

′

(
k̄1

λ̄1
ζ̄1

)
˙̄ζ1 + de(t)

(A.2)

Note also that in the new coordinates

dκ̄
dt

(ζ̄1(t), ζ̄2(t)) =
k̄2

m
σ′

(
k̄2

λ̄2
ζ̄2

)
·

·

[
−λ̄2σ

(
k̄2

λ̄2
ζ̄2

)
+ mk̄1σ

′

(
k̄1

λ̄1
ζ̄1

)
˙̄ζ1 + de(t)

]
(A.3)
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By the definition of the saturation function, σ and σ′

are bounded; moreover, if |ζ̄2| >
λ̄2
k̄2

, then

σ′
(

k̄2

λ̄2
ζ̄2

)
= 0

and hence ˙̄κ( p̃e(t), ˙̃pe(t)) = 0. Differently, when |ζ̄2| ≤
λ̄2
k̄2

, from the definition of ζ̄1 in (A.1) and (A.2), we have

that ˙̄ζ1 is bounded. Then, the second item of the propo-
sition statement follows from the definition of k̄1, k̄2, λ̄1,
and λ̄2 in (8) and (9). Moreover, the third item is a con-
sequence of the fact that, as shown in [20, Appendix C],
system (A.2) is ISS with non-zero restrictions (which de-
pends on ε̄) on de(t).

Appendix B. Proof of Proposition 2

First of all, note that (21) and ε̄ < ε̄? ensure that (16)
and (17) are satisfied. The first item follows from the defi-
nition of the saturation function. To prove the second one,
let us introduce the change of coordinates

ζ1 = p̃ ζ2 = ˙̃p + λ1σ

(
k1

λ1
ζ1

)
. (B.1)

Given the position dynamics of the quadcopter (4b), and
the control law (19), the position error dynamics can be
written as

ζ̇1 = − λ1σ

(
k1

λ1
ζ1

)
+ ζ2

Mζ̇2 = − λ2σ

(
k2

λ2
ζ2

)
+ Mk1σ

′

(
k1

λ2
ζ1

)
ζ̇1

+ Γη(η1, τq) + d(t)

(B.2)

where Γη(η1, τq) is the auxiliary input

Γη(η1, τq) = [R(θ) − R(θc)]
[
Tcê′3 − J−T(q)τq

]
being η1 = θ − θc (see also Appendix C). Note that
Γη(0, τq) = 0 for all τq ∈ R3, and for all η1 ∈ R3 we
have that |Γη(η1, τq)|∞ ≤ Γ̄η,1|τq|∞ + Γ̄η,2 for some positive
constants Γη,1 and Γη,2. In the new coordinates, we have
that

κ(ζ1, ζ2) = λ2σ

(
k2

λ2
ζ2

)

which implies that

dκ
dt

(ζ1(t), ζ2(t)) =
k2

M
σ′

(
k2

λ2
ζ2

) [
λ2σ

(
k2

λ2
ζ2

)
+ d(t)

+ Mk1σ
′

(
k1

λ1
ζ1

)
ζ̇1 + Γη(η1, τq)

]
. (B.3)

Due to the first requirement in Assumption 3.1, namely
that |p̈?e | ≤ D̄?

2 , the result is proved by considering the
bound of |τq|∞ given in the first item of Proposition 1, and
by following the same arguments as in Appendix A. Fi-
nally, the ISS with restriction on the inputs d(t), Γη(η1, τq),
and then τq and η1, is immediate from (B.2) and the prop-
erties of the saturation functions.

Appendix C. Proof of Proposition 3

The proof is based on [18, Appendix A]. The main dif-
ference is that now we have to deal with the exogenous
disturbances d and dω. Let us introduce the change of
coordinates

η1 = θ − θc η2 = θ̇ +
η1

kD
. (C.1)

The closed-loop attitude error dynamics can be written as

η̇1 = −
η1

kD
+ η2 − θ̇c

JuavΩ(η1 + θc)η̇2 = − ω × Juavω − kPkDη2+

+ Juav

[
1

kD
+ Ω̇(η1 + θc)

]
·

·

(
η2 −

η1

kD

)
+

Juav

kD
θ̇c + dω(t)

(C.2)

in which we have that

ω = Ω(θ)θ̇ = Ω(η1 + θc)
(
η2 −

η1

kD

)
with Ω(θ) introduced in (4c). Note that θc and θ̇c are some
bounded functions of Rc and Ṙc which, thanks to the (18),
are function of vc, R?(t), v̇c and Ṙ?(t). Starting from (18),
the time derivative of Rc is given by

Ṙc =
v>c vcI − vcv>c

(v>c vc)3/2 v̇c

10



Eq. (C.2) p?,(3)
e , dω(t)

R?(t), Ṙ?(t)

Eq. (B.2)

η1

ε

κ̇(·, ·)

ε̄

˙̄κ(·, ·)

de, ζ̄1, ζ̄2

ζ1, ζ2

d, τq

Figure C.10: UAV dynamics in terms of the error systems (B.2) and
(C.2).

in which (v>c vcI − vcv>c )/(v>c vc)3/2 is bounded because vc

is bounded both from below and above. Moreover, from
(6) and (13) we get that

v̇c = mp?,(3)
e − ˙̄κ(p̃e, ˙̃pe) − κ̇( p̃, ˙̃p)

with ˙̄κ and κ̇ bounded by (11) and (22), respectively.
The closed-loop dynamics of the UAV results from the

feedback interconnection of (B.2) and (C.2), depicted in
Fig. C.10. Due to space limitations this part of the proof is
only sketched. By considering an ISS-Lyapunov function
V(η1, η2) = 1

2η
>
1 η1 + 1

2η
>
2 Ω>(η1)JuavΩ(η1)η2, and choos-

ing kD and kP sufficiently small and large, respectively,
and for m and ε̄ sufficiently small, system (C.2) can be
shown to be ISS with respect to the exogenous input p?,(3)

e ,
κ̇( p̃, ˙̃p), ˙̄κ(p̃e, ˙̃pe) and dω(t) with an arbitrary asymptotic
gain. From Propositions 1 and 2, and from the fact that
|de|∞, |d|∞ are bounded, it is clear that κ̇ and ˙̄κ are also
bounded. Moreover, according to Assumption 3.1, also
p?,(3)

e is bounded. Then, it is possible to choose kD and kP

to satisfy the restrictions on the input (see Proposition 2)
on the position error subsystem (B.2) in finite time, and
then to enforce the small gain condition. The final result
is a consequence of standard ISS arguments, as in [20,
Appendix C].
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