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Analysis of Bank Leverage via Dynamical Systems and Deep Neural Networks*
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Abstract. We consider a model of a simple financial system consisting of a leveraged investor that invests in
a risky asset and manages risk by using value-at-risk (VaR). The VaR is estimated by using past
data via an adaptive expectation scheme. We show that the leverage dynamics can be described
by a dynamical system of slow-fast type associated with a unimodal map on [0,1] with an addi-
tive heteroscedastic noise whose variance is related to the portfolio rebalancing frequency to target
leverage. In absence of noise the model is purely deterministic and the parameter space splits into
two regions: (i) a region with a globally attracting fixed point or a 2-cycle; (ii) a dynamical core
region, where the map could exhibit chaotic behavior. Whenever the model is randomly perturbed,
we prove the existence of a unique stationary density with bounded variation, the stochastic stability
of the process, and the almost certain existence and continuity of the Lyapunov exponent for the
stationary measure. We then use deep neural networks to estimate map parameters from a short
time series. Using this method, we estimate the model in a large dataset of US commercial banks
over the period 2001--2014. We find that the parameters of a substantial fraction of banks lie in
the dynamical core, and their leverage time series are consistent with a chaotic behavior. We also
present evidence that the time series of the leverage of large banks tend to exhibit chaoticity more
frequently than those of small banks.

Key words. leverage cycles, risk management, systemic risk, random dynamical systems, unimodal maps, Lya-
punov exponents, neural networks

MSC codes. 91G80, 34F05, 37H15, 62M45

DOI. 10.1137/21M1412517

1. Introduction. Leverage is one of the most critical and controversial concepts in fi-
nance. On one side, borrowing is essential in many economic activities, while, on the other,
it is intrinsically connected with risk. The recent literature (see, e.g., [38, 2, 46, 3, 1, 61]) has

*Received by the editors April 15, 2021; accepted for publication (in revised form) February 13, 2023; published
electronically May 31, 2023.

https://doi.org/10.1137/21M1412517
Funding: This research was supported by the research project ``Dynamics and Information Research Institute -

Quantum Information, Quantum Technologies"" within the agreement between UniCredit Bank and Scuola Normale
Superiore. The first and third authors were partially supported by the European Program scheme ``INFRAIA-
01-2018-2019: Research and Innovation action,"" grant agreement 871042, ``SoBigData++: European Integrated
Infrastructure for Social Mining and Big Data Analytics."" The fifth author received support from the Centro di
Ricerca Matematica Ennio de Giorgi, Scuola Normale Superiore, the Laboratoire International Associ\'e LIA LYSM,
INdAM (Italy), and the UMI-CNRS 3483, Laboratoire Fibonacci (Pisa), where this work was initiated and completed
under a CNRS delegation.

\dagger 
Dipartimento di Matematica, Universit\`a di Bologna, Bologna, 40126, and Scuola Normale Superiore, Pisa,

56127, Italy (fabrizio.lillo@unibo.it).
\ddagger 
The London School of Economics and Political Science, London, United Kingdom (g.livieri@ac.lse.uk).

\S 
Scuola Normale Superiore, Pisa, 56127, Italy (stefano.marmi@sns.it).

\P 
Envelop Risk, Bristol, UK (solomko.anton@gmail.com).

\| 
Aix Marseille Universit\'e, Universit\'e de Toulon, CNRS, CPT, 13009 Marseille, France (vaienti@cpt.univ-mrs.fr).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

598

D
ow

nl
oa

de
d 

10
/3

0/
23

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1412517
mailto:fabrizio.lillo@unibo.it
mailto:g.livieri@ac.lse.uk
mailto:stefano.marmi@sns.it
mailto:solomko.anton@gmail.com
mailto:vaienti@cpt.univ-mrs.fr


BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 599

highlighted, both theoretically and empirically, an essential source of risk deriving from lever-
age, namely its procyclical nature. The seminal papers [2] and [3] argued that when assets
are evaluated at mark-to-market, an increase in market prices of assets decreases the so-called
``quasi-market leverage ratio""---roughly the ratio of total assets to equity capital---and this
leaves room to build up debt for banks that operate through leverage or value-at-risk (VaR)
constraints.1 Banks typically use the additional debt to expand the asset side of the balance
sheet by purchasing more assets and, due to finite liquidity, this leads to a further increase
in prices. This positive feedback between prices and balance sheets provides the additional
source of systemic risk associated with procyclicality. As an empirical support, [2] and [3] show
that cycles of expansion (contraction) in the banks' balance sheet size go hand in hand with
increases (decreases) in leverage, a behavior that has been witnessed since the 1960s but that
was exacerbated during the 2007--2009 financial crisis. The creation of negative externalities
in financial systems populated by VaR constrained financial institutions following standard
mark-to-market and risk management rules has been investigated in, e.g., [62, 32, 53]. These
works confirm that the balance sheet dynamics of financial intermediaries are far from being
passive and exogenous and can create market instability and result in what has been called
by [31] endogenous risk .

This risk sometimes manifests itself in an abrupt and violent manner, via the so-called fire
sales. A sudden drop in prices leads to a revaluation of the asset side of the balance sheet, and
when the VaR constraint is violated, banks must deleverage by massively selling part of their
portfolio. Due to the finite liquidity, this leads to a further decrease of prices affecting other
banks' balance sheets. This mechanism creates an exceptionally threatening environment if
many banks hold similar positions and use the same VaR model to manage their risk since
they are forced to sell the same assets contemporaneously (overlapping portfolio contagion),
leading to a destabilizing spiral. The theoretical and empirical literature on fire sales and
their impact on the market price dynamics is vast and growing; see, e.g., [51, 22, 44, 28, 23,
29, 34].

Investors' expectations provide a further positive feedback between past and future risk.
To implement the VaR constraint (and any risk management mechanism), banks must estimate
the riskiness of the investments and their dependencies. The estimation of the expected risk
is usually performed by using historical data; thus when past volatility is high, the VaR
constraint becomes more binding, forcing financial institutions to trade more, increasing the
future volatility endogenously. This additional feedback adds new threats to the systemic
stability of financial markets, as shown, for example, by [56].

Our contribution. In order to fully understand the leverage dynamics and its role in finan-
cial systemic risk, it is paramount to model the effect of leverage targeting, risk expectations,
and asset prices and of all the above-described feedbacks. In this paper, we present and ana-
lyze a stylized yet realistic model, and we show that leverage dynamics can be described by a
discrete-time slow-fast dynamical system ([37] and [15]) with heteroscedastic noise. This fact

1Here, VaR is the loss in market value of the bank's portfolio over one period that is exceeded with
probability 1  - \alpha , where \alpha is the associated confidence level. VaR constraints were imposed on the banks'
trading book under Basel II. However, many other leveraged institutions, not subject to Basel II, also used
VaR constraints in their internal risk management.
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600 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

makes our model amenable to the tools of dynamical systems theory. It allows us to fully
characterize in a mathematically rigorous way the stability properties of the financial system
depending on its parameters. We then employ a methodology based on deep neural networks
to estimate the model's parameters on empirical data. Finally, we use such a methodology to
estimate the model in a large dataset of US commercial banks over 2001--2014, finding that
the leverage of large banks tends to exhibit chaotic behavior more frequently than that of
small banks.

More precisely, building on [30] and [56], we consider a representative investor (bank
for short), which evaluates the VaR capital requirement at discrete points in time t \in \BbbN .
This evaluation leads the bank to choose the maximum possible leverage, which is inversely
proportional to the portfolio's expected risk. At each t the bank computes the expected
volatility by using a straightforward yet realistic backward-looking method using past returns
and uses it to set its desired leverage. The unitary time scale of the interval used to make
decisions on leverage is the slow component of our model. During the unitary time interval
(t, t + 1], the bank rebalances its portfolio to target the leverage without changing the risk
expectations. The rebalancing occurs in n time subintervals within (t, t+ 1]. The time scale
1/n, with n \in \BbbN characterizes the so-called fast component of the model. In particular, slow
variables evolve as a function of averages over fast variables. Starting from this model, we
make the following contributions.

First, we show that a deterministic unimodal map perturbed with an additive and het-
eroscedastic noise describes the dynamics of leverage in our model on the unit interval. The
variance of the noise is related to the frequency of portfolio rebalancing n to target leverage.
The parameter space of the deterministic map has two regions: (i) a region where the map
has a globally attracting fixed point or a 2-cycle; (ii) the so-called dynamical core region,
where the map can exhibit chaotic behavior.2 Then, in order to improve the understanding
of the anatomy of leverage cycles, we consider a more general class of maps and describe the
leverage dynamic using a Markov chain parametrized by the rebalance time n and we study
the regime of finite n, as well as the limit for n \rightarrow \infty . The stability of Markov chains is a
relatively well studied topic (see, e.g., [18] or [57] and references therein). However, some
specific properties of the stochastic kernel that defines our model do not allow us to apply
general results available [13, 14] (e.g., we do not know if our chain is Harris recurrent) and
therefore we introduce an original approach to this type of map; see [41] for another type of
heteroscedastic nonlinear autoregressive process applied to financial time series. In particular,
we prove the existence of finitely many stationary measures with bounded variation densities.
The proof hinges on the spectral properties of the Markov operator associated with our chain
on suitable Banach spaces and the quasi-compactness of such an operator. The stationary
measure's uniqueness is achieved when the chain perturbs the unimodal map, which either
is topologically transitive or admits an attracting periodic orbit; such maps correspond to a
major part of the parameter space.

2Roughly speaking, a dynamical system is defined as chaotic if small changes in initial conditions produce
large changes in long-term outcomes and any autocorrelation function decays to zero, resulting in unpredictabil-
ity of the system dynamics in the long run [35].
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 601

Second, in order to rigorously establish the existence of chaotic behavior in leverage time
series of banks and to detect it in financial datasets, we define an average Lyapunov3 expo-
nent by integrating the logarithm of the derivative of the unimodal map with respect to the
stationary measure, a definition that is suitable for the Markov chain approach. We show
that the average Lyapunov exponent still allows us to discriminate periodic and chaotic be-
haviors: it is negative when we perturb a contracting map (and then the realizations of the
process fluctuate around the fixed point), and it becomes positive by perturbing the dynamical
core region. We also show that the average Lyapunov exponent depends continuously on the
Markov chain parameters and relate it to the different chaotic behavior of the unperturbed
unimodal map. Finally, we show the weak convergence of the unique stationary measure to
the invariant measure of the unimodal map; namely we prove the weak stochastic stability of
the system.

The third contribution of the paper is the estimation of the proposed model to real data
to identify evidence of chaotic behavior. Our dataset consists of the time series of leverage of
about 5,000 US commercial banks in the period 2001--2014. The time series are very short
(59 observations), thus standard estimation methods perform poorly. For instance, maximum
likelihood estimation is not feasible for two reasons. First, the likelihood function is highly
nonconvex, so that standard optimization methods may perform poorly on short time series.
Second, although the likelihood function for the process itself can be written explicitly, it may
happen that in many cases we observe only a certain iterate of the process, e.g., we observe
only one slow time scale portfolio decision event out of two. Therefore, we propose to use a
convolutional neural network (CNN) [52] to estimate the parameters of the map. Our CNN
takes as input the one-dimensional time series and gives the map's corresponding parameters as
output. We train the CNN via extensive simulations of the model, considering different regions
of the parameter space, and test its robustness and effectiveness.4 Remarkably, we find that
the parameters of a sizable fraction of banks lie in the map's dynamical core and that the large
banks' leverage tends to be more chaotic than one of the small ones. As a robustness check,
the identification of chaotic/periodic behavior is compared with a nonparametric approach
where the map is not specified and estimators of indicators (such as the Lyapunov exponent
[73]), which assume different values in the two regimes, are used to classify finite length time
series. We use the chaos decision tree algorithm (CDTA) [71], which combines several tools
into an automated processing pipeline that can detect the presence (or absence) of chaos in
noisy recordings, even for difficult edge cases. When applying the CDTA to our data set,
the results corroborate the CNN approach's findings concerning the chaotic behavior for a
significant subset of typically large banks.

Related literature. The present paper aims to combine several strands of literature.
From a methodological point of view, it is naturally related to the literature on the ap-

plication of dynamical systems theory to the problem of systemic risk in financial markets

3We recall that for deterministic systems, the Lyapunov exponents characterize the divergence of nearby
orbits, allowing us to distinguish between regular and chaotic dynamics.

4We decided to use CNN because when employed for time-series analysis they may increase the accuracy
up to 30\% and train the models twice as fast as other algorithms, such as recurrent neural networks and long
short-term memory [64].
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602 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

[26, 27, 63, 25, 9], while, from the financial perspective, it is related to the literature on the
impact of risk management on the leverage cycle [2, 3, 68]. These two strands were partially
connected, for instance, in [10, 9, 30, 56], which study the impact of risk management practice
on the dynamical properties of leverage cycles and how leverage cycles might be controlled.
Similarly to these works, we develop a fully dynamic model of endogenous leverage cycles, and
we show that the endogenous dynamics induced by leverage management and historical risk
estimation can be very rich (i.e., one can observe dynamics ranging from stable fixed points to
chaos), but, contrary to them, we study in a mathematically rigorous way the properties of the
resulting model. The approach we proposed also differs from [40], which shows the existence
of leverage cycles but uses a two-period general equilibrium model. Finally, we mention the
works of [8] and [24], which show that the deleveraging of banks may amplify asset return
shocks and lead to large fluctuations in realized returns, which in turn can cause spillover ef-
fects between different assets. Differently from these papers, we explicitly model the existence
of an additional feedback driven by the estimation of risk used in leverage decision.

Our work is also partially related to the literature on fire sales and their impact on the
market price dynamics, e.g., [51, 22, 44, 28, 23, 29, 34]. The main differences are the following.
First, in our model we consider not ``extreme"" events leading to fire sale spillovers but ``normal""
market conditions. Second, the previous works do not focus on the role of risk expectation
feedbacks in financial systems. Instead, our model quantifies the impact of a possible mismatch
between perception and reality of market condition due to the historical estimation of banks'
perceived portfolio risk.

In addition, the present paper has a point of comparison with the agent-based model of
leveraged investors in [63] and [70]. The main difference is that in their model the bank is a
dummy agent with infinite capital whose only role is to provide credit to funds. In contrast,
in our model the banks are the key strategic agents. Again, another important difference is
the mathematically rigorous approach that we adopt.

Finally, our estimation method connects with the vast literature on parameter estimation
of dynamical systems via NN such as, for example, [58, 54, 65], which employ multilayer NN
and recurrent networks to identify and control nonlinear deterministic dynamical systems.

Outline of the paper. In section 2 we present the financial model of a representative bank
managing its leverage. In section 3 we recall some facts about unimodal maps and Markov
chains and then define the class of chains that we study. We also represent our model in terms
of random transformations. In section 4 we show the existence and uniqueness of an absolutely
continuous stationary measure and establish its convergence to the invariant measure of the
deterministic map. This allows us to define the Lyapunov exponent and prove its continuity
with respect to the model parameters. We also discuss chaotic indicators naturally arising from
the random maps representation of the process. The last part of the paper concerns numerical
and empirical analyses. Specifically, section 5 presents some numerical investigations of the
bifurcation diagram and Lyapunov exponent of the map. Section 6 proposes an estimation
method of the map based on the use of deep neural networks, and section 7 presents an
empirical application to a large set of leverage time series of US banks, showing evidence of
chaotic behavior. Finally, in section 8 we draw some conclusions and outline some potential
extensions of our work.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 603

2. From the structural model to the dynamical system. The stylized model of the
leverage dynamics we are going to present is a special case of the model of [56] (which in
turn builds on [30]) restricted to the case of a single (representative) financial institution and
of a single investment asset. Specifically, we consider a representative financial institution (a
bank, hereafter) taking investment decisions at discrete times t \in \BbbN , which defines the slow
time scale. At each time t, the balance sheet of the financial institution is endowed with
an amount of equity Et and of asset At; the leverage is defined as \lambda t := At/Et. Financial
institutions are confronted with a VaR type of constraints, in line with the literature on bank
behavior [2, 21], given by VaR= \alpha \sigma e,tAt \leq Et. The scaling constant \alpha depends on the return
distribution5 and on the VaR constraint, whereas \sigma e,t is the expected volatility at time t of
the portfolio, which in this simple model is composed of a risky representative investment.
Thus, at each time t the bank (re-)computes \sigma e,t and chooses the optimal leverage, which is
inversely related to the volatility \sigma e,t and given by

(2.1) \lambda t =
1

\alpha \sigma e,t
.

Then, in the interval [t, t+1] the bank trades the risky investment to keep the leverage close
to the above defined target (2.1). The trading process occurs on the points of a grid obtained
by subdividing [t, t+1] in n subintervals of length 1/n (the fast time scale). The dynamics of
the investment return is made of two components:

(2.2) rt+k/n = \varepsilon t+k/n + et+(k - 1)/n, k= 1,2, . . . ,n,

the exogenous component \varepsilon t+k/n coming from external shocks and the endogenous component
et+(k - 1)/n. The former is a white noise term with variance \sigma 2\epsilon , while the latter depends on the
bank`s demand for the risky investment in the previous step. Having identified its optimal
leverage, the bank adjusts the demand for the risky investment at time t+k/n by computing
the difference between the desired amount of asset A\ast 

t to reach \lambda t and the actual one, At.
Because the bank's asset is composed of the risky investment, an investment return rt+k/n

modifies At and the bank trades at each grid point to reach the target leverage. In order to
achieve this, at each time t+ k/n the bank's demand for the risky investment is

(2.3) Dt+k/n = (\lambda t  - 1)A\ast 
t+(k - 1)/nrt+k/n,

where A\ast 
t+(k - 1) is the target asset size in the previous step; see [30, 56] for an explicit derivation

of (2.3). In particular, any profit and loss from investments in the chosen risky asset (which
is given by A\ast 

t+(k - 1)/nrt+k/n) will directly result in a change in the risky asset value amplified

by the current degree of leverage (being the leverage greater than one). Assuming a linear
price impact function, the endogenous component of the return rt+k/n is given by

et+k/n =
1

\gamma 

Dt+k/n

Ct+k/n
,

5For example, if returns are Gaussian and the probability of VaR is 5\%, it is \alpha = 1.64.
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604 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

where Ct+k/n =A\ast 
t+(k - 1)/n is a proxy of the market capitalization of the risky asset, and \gamma is

a parameter expressing the market liquidity of the investment. Using the expression in (2.3)
for Dt+k/n, the endogenous component is given by

et+k/n =
\lambda t  - 1

\gamma 
et+(k - 1)/n := \phi tet+(k - 1)/n,

where we set \phi t :=
\lambda t - 1
\gamma . Therefore, in the period [t, t+1] the return rt+k/n follows an AR(1)

process with autoregression parameter \phi t and idiosyncratic variance \sigma 2\epsilon .
Finally, to close the model, we specify how the bank forms expectations \sigma e,t on future

volatility at time t. Here we assume, as in [56], that the representative bank uses adaptive
risk expectations, which implies that

\sigma 2e,t = \omega \sigma 2e,t - 1 + (1 - \omega )\^\sigma 2e,t,

where \omega \in [0,1] is a parameter weighting between the expectation at t - 1 and the estimation
\^\sigma 2e,t of volatility obtained by the return data in [t - 1, t]. As done in practice (e.g., [45]), we
assume that the representative bank estimates the sample variance of the returns in [t - 1, t]
to compute \^\sigma 2e,t, i.e.,

\^\sigma 2e,t =\widehat Var
\Biggl[ 

n\sum 
k=1

rt - 1+k/n

\Biggr] 
(2.4)

=

\Biggl( 
1 + 2

\^\phi t - 1(1 - \^\phi n
t - 1)

1 - \^\phi t - 1

 - 2
(n\^\phi t - 1  - n - 1)\^\phi n+1

t - 1 + \^\phi t - 1

n(1 - \^\phi t - 1)2

\Biggr) 
n\^\sigma 2\epsilon 

1 - \^\phi 2t - 1

,

where the last expression gives the aggregated variance of an AR(1) process as a function
of the AR estimated parameters \^\phi t - 1 and \^\sigma 2\epsilon . In particular, the estimator \sigma 2e,t can be seen
as a stochastic term depending on \lambda t - 1 and whose variance goes to zero when n \rightarrow \infty . In
the following, we will assume that these are the maximum likelihood estimators. We recall
that when n is large, \^\phi t - 1 is a Gaussian distributed variable with mean \phi t - 1 and variance
(1 - \phi 2t - 1)/n.

In conclusion, the following system of equations describes the leverage dynamics:

(2.5)

\left\{   \lambda t =
\Bigl( 
\omega 1

\lambda 2
t - 1

+ (1 - \omega )\alpha 2\^\sigma 2e,t

\Bigr)  - 1/2
,

rs = \phi t - 1rs - 1/n + \epsilon s, s= t - 1 + k/n, k= 1,2, . . . ,n.

In the first equation, the variable \lambda t defines the slow variable and describes the slow component
of the dynamics. In the second, the return evolution of the risky investment rs describes the
fast component of the dynamics. Since slow variables evolve depending on the averages of
the fast variables, the model is a slow-fast deterministic-random dynamical system. We now
derive an expression for the variable \phi t valid when n is large. For these values of n, the map
for \lambda t reduces to

\lambda t =

\Biggl( 
\omega 

1

\lambda 2t - 1

+
(1 - \omega )\alpha 2n\^\sigma 2\epsilon 
(1 - \^\phi t - 1)2

\Biggr)  - 1/2

,
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 605

and so, using the relation \phi t =
\lambda t - 1
\gamma , the desired map becomes

(2.6) \phi t = - 1

\gamma 
+

1

\gamma 

\Biggl( 
\omega 

(1 + \gamma \phi t - 1)2
+

(1 - \omega )\alpha 2n\^\sigma 2\epsilon 
(1 - \^\phi t - 1)2

\Biggr)  - 1/2

.

At this point, a few remarks are in order. When changing n, \sigma 2\epsilon also changes, since the AR(1)
can be seen as the discretization of a continuous time stochastic process (namely an Ornstein--
Uhlenbeck process). A simple scaling argument shows that the quantity \Sigma \epsilon = \sigma 2\epsilon n is instead
constant and independent from the discretization step 1/n. In the limit n \rightarrow \infty , it is \^\phi t \rightarrow \phi t,
thus the map in (2.6) becomes purely deterministic.6 The map in this case has a fixed point

\phi \ast = 1 - \alpha 
\surd 
\Sigma \epsilon 

1+\alpha \gamma 
\surd 
\Sigma \epsilon 
. By replacing this condition in (2.6) and assuming that the risky asset is very

liquid (\gamma \gg 1), the map becomes

(2.7) \phi t \simeq 

\Biggl( 
\omega 

\phi 2t - 1

+

\biggl( 
1 - \phi \ast 

\phi \ast 

\biggr) 2 (1 - \omega )

(1 - \^\phi t - 1)2

\Biggr)  - 1/2

.

In the large n limit the maximum likelihood estimator \^\phi t - 1 is a Gaussian variable with mean
\phi t - 1 and variance (1 - \phi 2t - 1)/n. Therefore, it holds that

\^\phi t - 1 = \phi t - 1 + \eta t - 1,

where \eta t - 1 \sim \scrN (0, (1 - \phi 2t - 1)/n). If the noise \eta t - 1 is small (i.e., n is large), we can perform a
series expansion, obtaining

\phi t \simeq 
| \phi t - 1(1 - \phi t - 1)| \sqrt{} 
b\phi 2t - 1 + \omega (1 - \phi t - 1)2

(1 + \zeta t - 1),

where b= b(\omega ,\phi \ast ) is given by

(2.8) b= (1 - \omega )

\biggl( 
1 - \phi \ast 

\phi \ast 

\biggr) 2

and the noise term

\zeta t - 1 =
 - b\phi 2t - 1

(1 - \phi t - 1)(b\phi 2t - 1 + \omega (1 - \phi t - 1)2)
\eta t - 1.

Finally, in this approximation, the map becomes

(2.9) \phi t+1 = T (\phi t;\theta ) + \sigma (\phi t;\theta )\epsilon t,

where \epsilon t \sim \scrN (0,1) and \theta is a vector of parameters. In our setting \theta = (b,\omega ,n) and the
deterministic map T does not depend on n. Specifically,

(2.10) T (\phi t;\theta ) =
| \phi t(1 - \phi t)| \sqrt{} 
b\phi 2t + \omega (1 - \phi t)2

6This is the deterministic skeleton, whose properties are discussed in detail in [56].
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606 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Figure 1. Plot of the deterministic component T (\phi ), \phi \ast = 0.73, \omega = 0.4 (b= 0.082).

and

(2.11) \sigma (\phi t;\theta ) =
b\phi 3t
\sqrt{} 

1 - \phi 2t\surd 
n(b\phi 2t + \omega (1 - \phi t)2)

3/2
.

In particular, the process \phi t is constructed by perturbing with a heteroscedastic additive
noise \sigma (\phi t;\theta )\epsilon t the deterministic map T (\phi t;\theta ) of the unit interval I = [0,1]. Figure 1 provides
a pictorial representation of the map T . Notice that the process \phi t is a (continuous state)
Markov chain since the distribution of \phi t only depends on \phi t - 1: this is a simple yet crucial
observation that will be heavily used in the next section.

As said in the introduction, one of the purposes of the present paper is to rigorously
establish the possibility of chaotic behavior in leverage time series of banks and to detect it
in financial datasets. To this end, in the next sections we develop a rigorous mathematical
theory of additive unimodal maps with heteroscedastic noise as in (2.9), with (2.10) being its
representative. This theory will allow us to study, e.g., the existence of a stationary measure,
the stochastic stability, and the Lyapunov exponent for this class of models. It is worth noting
that our results remain valid for any noise \epsilon t in (2.9), not only Gaussian.

3. The mathematical model. We first describe the class of unimodal maps with which
we will work (subsection 3.1). Then, we define the Markov chain describing our model (sub-
sections 3.2), and we show that our leverage model can be described in terms of this Markov
chain (subsection 3.3). Finally, we present a different yet equivalent approach based on random
transformations to define our model (subsection 3.4).

3.1. Unimodal maps. We consider unimodal maps [14] T : I \rightarrow I of class at least C3

with T (0) = T (1) = 0 and with a nondegenerate critical point7 at c: T \prime (c) = 0. The map T

7The critical point for (2.10) is c= (1+ 3
\sqrt{} 

b/\omega ) - 1.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 607

Figure 2. Partition of the parameter space for the unimodal map (2.10) according to the classification
(C1)--(C3).

is strictly increasing on [0, c) and strictly decreasing on (c,1]. Moreover, we suppose that T
satisfies the following assumptions:
(A1) T has negative Schwarzian derivative: S(T ) := T \prime \prime \prime 

T \prime  - 32(T
\prime \prime 

T \prime )2 < 0.
(A2) The maximum \Delta := T (c)< 1.
(A3) The critical point is quadratic: T \prime \prime (c) \not = 0.

The map T arising from our financial model (2.10) satisfies the above assumptions, as we
verified numerically.

In order to establish the possibility of chaotic behavior in leverage time series, we partition
the parameter space for the map (2.10) by using the theory of unimodal maps (see, for instance,
the review [69]):
(C1) If \Delta \leq c, then a globally attractive fixed point exists.
(C2) If c < T (\Delta )<\Delta , then there is a globally attracting fixed point or a 2-cycle in (c,\Delta ).
(C3) If T (\Delta ) < c <\Delta , we can reduce the study to the so-called dynamical core [T (\Delta ),\Delta ],

which is mapped onto itself and absorbs all initial conditions (except 0, which is a
fixed point).

Figure 2 reports a pictorial representation of the partition of the parameter space according
to the classification (C1)--(C3). Following this classification, we will say that

(1) T is periodic if there is a globally attracting fixed point or a globally attracting cycle,
(2) T is chaotic if T and all its power are topologically transitive8 on the interval [T (\Delta ),\Delta ]

and T admits a unique invariant Borel probability measure which is absolutely con-
tinuous with respect to the Lebesgue measure.9

8A map T on a topological space X is called topologically transitive if for all nonempty open sets U,V \subset X,
there exists n such that T - nU \cap V \not = \emptyset . In particular, the topological transitivity for all Tn is only used for the
continuity of the Lyapunov exponent.

9Notice that, since T satisfies (C3), T (x)>x for any x< T (\Delta ), in particular, T \prime (0)> 1.
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608 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Subsection A.1 of Appendix A collects additional important results on the class of uni-
modal maps presented in this section. We will refer to these results in the rest of the paper.
Notice that there are unimodal maps that are neither periodic nor chaotic, as follows from
Theorem A.1.

3.2. Coupling with a stochastic process. We define now the continuous state Markov
chain \{ Xt : t \in \BbbN \} describing our model. For the reader's convenience, subsection A.2 of
Appendix A recalls some basic, yet important, properties of such chains. The chain \{ Xt : t\in \BbbN \} 
is obtained as a deterministic unimodal map T : I \rightarrow I satisfying (A1)--(A3), coupled with a
stochastic process, namely, by perturbing T with an additive noise. Starting from (2.9) as
our main motivation, on the one hand, we consider a more general class, and on the other, we
impose some mild technical restrictions that are necessary for rigorous analysis.

Since the noise varies in a neighborhood of 0, we will need to extend the state space on
the negative axes. However, we will see in a moment that such an extension is irrelevant for
the asymptotic behavior of the perturbed system, whose random trajectories spend all the
time, but a relatively short transient, on the positive unit interval.

We fix T and parametrize the chain by the rebalance time n (which is roughly inverse

to the variance of the noise), consequently indexing with n the chain (X
(n)
t ), the transition

probabilities P
(n)
x , and the stochastic kernel pn(x, y) where it is necessary. We will be interested

in the limit for n\rightarrow \infty .
We also need to assume that the noise is compactly supported, so trajectories of the

process stay bounded. Compared to the Gaussian noise in (2.9), this is done by truncating
the distribution tails that are exponentially small for large n; see section 3.3 for the main
example.

Denote by \Gamma := 1 - \Delta the gap between T (c) and 1. We now extend the domain of definition
of T to the larger interval [ - \Gamma ,1] (which, by abuse of notation, will still be denoted by I)
so that T is continuous at 0 and on [ - \Gamma ,0) is C4 smooth, positive, and decreasing, with
T ( - \Gamma )<\Delta .10

To construct the chain, we need to define transition probabilities. Let gx,n(y) be a proba-
bility density supported on a compact interval [ - s(x), s(x)]. We assume that

\bullet 0< s(x)< \Gamma /2 for x\in (0,1),
\bullet T (x) - s(x)> 0 for x\in (0,1 - \Gamma /2],
\bullet T (x) - s(x)>x for x small (in particular, T \prime (0)> 1).

We set for simplicity s(x) := 0 for x\leq 0 (meaning P
(n)
x = \delta T (x)); Lemma B.4 shows that this

choice does not affect the dynamics. We will also assume that both the mean and the variance
of gx,n decrease to 0 as n \rightarrow \infty and, for every \varepsilon > 0,

(3.1) sup
x\in [\varepsilon ,1 - \varepsilon ]

| gx,n| TV <\infty .

10A similar extension was considered in [14] to allow perturbations with additive noise; in particular, it was
supposed that T (I) \subset int(I) and that T admits an extension to some compact interval J \supset I, preserving all
the previous properties and satisfying T (\partial J)\subset \partial J . Notice that with this extension the map T is no longer of
class C4 as prescribed in Appendix A.1. However, this regularity persists on the interval (0,1) and this will be
enough for the subsequent considerations.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 609

Fix any initial distribution \rho 0 \in BV and define transition probabilities

(3.2) P (n)
x (A) :=

\int s(x)

 - s(x)
1A(T (x) + y)gx,n(y)dy,

which correspond to the stochastic kernel

(3.3) pn(x, y) = gx,n(y - T (x)).

Informally speaking, the probability that the chain steps from x to A will be high whenever
T (x) falls in A. Equivalently, we can write

(3.4) X
(n)
t+1 = T (X

(n)
t ) + Yt+1, where Yt+1 \sim gx,n.

The values of X
(n)
t+1 are spread in a neighborhood of T (x) due to the addition of the random

variable Yt+1.

3.3. The leverage model. Now, we will slightly modify (2.9) to satisfy the technical
assumptions listed above. The unimodal map is

(3.5) T (x) =
| x(1 - x)| \sqrt{} 

bx2 + \omega (1 - x)2
,

where the parameters \phi \ast and \omega are such that T satisfies assumptions (A1)--(A3). It always has
a negative Schwarzian derivative, as we verified numerically, and the critical point is quadratic.
The condition T (\Delta ) < c < \Delta < 1 defines a nonempty subset of parameters (see Figure 2).
Notice that T \prime (0) = 1/

\surd 
\omega > 1.

We want gx,n to be (truncated) normal with a variance close to (2.11). For this, let
us denote by \scrN a(0, \sigma ) the smoothed truncated normal distribution with the density g(y) =

ca,\sigma \chi a(y)e
 - y2

2\sigma 2 , where ca,\sigma is so that
\int 
g(y)dy= 1 and \chi a is a smooth bump function supported

on [ - a,a].11 For instance, we may set

\chi a(y) =

\left\{     
1 if | y| \leq (1 - \varepsilon )a,

\Psi (y\pm (1 - \varepsilon )a
\varepsilon a ) if (1 - \varepsilon )a< | y| \leq a,

0 if | y| >a,

where \Psi (t) = e1 - 
1

1 - t2 is the standard C\infty bump function on [ - 1,1]. We set

(3.6) \sigma n(x) :=
bx3

\surd 
1 - x2

\surd 
n(bx2 + \omega (1 - x)2)3/2

.

Denote \sigma (x) := \sigma 1(x) and \sigma \mathrm{m}\mathrm{a}\mathrm{x} :=maxx\in [0,1] \sigma (x). Set

(3.7) gx,n(y) := cx,n\chi s(x)(y)e
 - y2

2\sigma 2
n(x) ,

11The smoothness of the truncation function is only used in the proof of Theorem 4.12.
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610 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Figure 3. Support of the kernel (3.9).

where

s(x) :=
\sigma (x)

\sigma \mathrm{m}\mathrm{a}\mathrm{x}
min

\Bigl\{ \Gamma 
2
, T
\Bigl( 
1 - \Gamma 

2

\Bigr) \Bigr\} 
and cx,n :=

\biggl( \int s(x)

 - s(x)
\chi s(x)(y)e

 - y2

2\sigma 2
n(x)dy

\biggr)  - 1

.

We can then rewrite (3.4) as

(3.8) X
(n)
t+1 = T (X

(n)
t ) + \sigma n(Xt)Zt+1, Zt+1 \sim \scrN bn

(0,1),

with bn :=
\surd 

n
\sigma \mathrm{m}\mathrm{a}\mathrm{x}

min\{ \Gamma 
2 , T (1 - 

\Gamma 
2 )\} \rightarrow \infty as n \rightarrow \infty . The fact that for n fixed, gx,n are rescaled

copies of the same distribution will be used in section 3.4 to explicitly describe random maps
associated to the process. We get the following stochastic kernel:

(3.9) pn(x, y) = cx,n\chi s(x)(y - T (x))e
 - (y - T (x))2

2\sigma 2
n(x) .

Notice also that the support of pn(x, y) does not depend on n (see Figure 3).
Finally, (3.1) holds, because | gx,n| TV = 2cx,n and the latter is proportional to 1/\sigma n(x),

which is bounded on [\varepsilon ,1 - \varepsilon ].
In particular, the evolution of our system/model is given by the Markov chain \{ Xt : t\in \BbbN \} ,

which produces a perturbation affecting the deterministic map T at each step. In the next
subsection, we proceed differently by replacing the deterministic orbit Tn(x), x \in I, with a
composition of (possibly different) maps Tk close to T and chosen in an independetn and
identically distributed (i.i.d.) way, which is called random transformations. Importantly, we
will provide an explicit construction of the maps Tk together with their distribution, which
will be crucial in proving the weak stochastic stability of our system.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 611

3.4. Random transformations. Our model was defined as a Markov chain. We now
present a slightly different, yet equivalent, point of view. Namely, we will pick up a family of
maps T\eta : I\rightarrow I, \eta \in [0,1], in such a way that

(3.10) Leb\{ \eta : T\eta (x)\in A\} = Px(A)

for all A\subset I. We can then define a stochastic process

(3.11) \=xt+1 = T\eta t+1
(\=xt),

where \eta t are independent and uniformly distributed in [0,1]. We can write \=xt = T\eta t
\circ \cdot \cdot \cdot \circ T\eta 1

\=x0,
where (\eta t)t\in \BbbN is an i.i.d. stochastic process, i.e., the process (3.11) follows the orbits under the
concatenation of randomly chosen maps from the family. One can show that the two processes
are equivalent; see, for instance, [48]. Conversely, starting with a family of maps T\eta , one can
use (3.10) to define transition probabilities Px and thus a Markov chain.

Rewriting (3.10) as Px(A) =
\int 1
0 1A(T\eta (x))d\eta and plugging into (A.2) we get the disinte-

gration formula for the Markov operator:

(3.12) \scrL =

\int 
L\eta d\eta ,

where L\eta are the transfer operators associated with T\eta . In particular, a measure \mu is stationary
for the Markov chain if and only if it satisfies \mu =

\int 
L\eta \mu d\eta , i.e., for all A\subset I,

(3.13) \mu (A) =

\int 
\mu (T - 1

\eta A)d\eta .

Equation (3.13) is usually taken as the definition of a stationary measure for the family of
random maps. Every such measure corresponds to a product measure that is invariant for the
skew-product with the Bernoulli shift in the base and the maps T\eta in the fibers; we refer to
[4, section 2] for details.

As follows from (3.8), the random maps for the main example have the form

(3.14) T\eta (x) = T (x) + qn(\eta )\sigma n(x),

where qn is the quantile function of the truncated normal distribution \scrN bn
(0,1). Indeed,

since qn maps the uniform measure on [0,1] to the truncated standard Gaussian measure on
[ - bn, bn], we have

Px(A) = \BbbP \{ T (x) + \sigma n(x)Zt \in A\} 
= Leb\{ \eta : T (x) + \sigma n(x)qn(\eta )\in A\} 
= Leb\{ \eta : T\eta (x)\in A\} .

We can equivalently rewrite (3.14) as

(3.15) T\eta (x) = T (x) + \~qn(\eta )\sigma (x),

where \~qn is the quantile function of \scrN b1(0,
1
n). Notice that for different n, the set \{ T\eta \} \eta \in [0,1]

consists of the same maps; however, the ones close to T = T 1

2
are given bigger weights for

large n. More precisely, for every \delta > 0, we have

(3.16) sup
\eta \in [\delta ,1 - \delta ]

sup
x\in I

| T\eta (x) - T (x)| \leq \sigma \mathrm{m}\mathrm{a}\mathrm{x} sup
\eta \in [\delta ,1 - \delta ]

| \~qn(\eta )|  -  -  - \rightarrow 
n\rightarrow \infty 

0.

Figure 4 displays an example of random transformation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/3

0/
23

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



612 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Figure 4. Random maps (3.14) for \phi \ast = 0.5, \omega = 0.2, n = 10,100,1000, \eta = k/16.

4. Theoretical study of the mathematical model. We first establish the existence of a
unique stationary measure for the Markov chain defined in subsection 3.2 (subsection 4.1).
Then, we prove its weak stochastic stability (subsection 4.2). Finally, we prove the existence
and some regularity properties of the Lyapunov exponent for the slow component of our
dynamical system (subsection 4.3). In order to not weigh down the reading of this section,
we confine all the proofs to Appendix B.

4.1. Existence and uniqueness of the stationary measure. We establish the existence
of a unique stationary measure for the chain. We here only mention the techniques used in
the proofs. The existence of stationary measures will be accomplished in the following steps:
we first prove the Lasota--Yorke inequality; as a consequence, we will get a finite number of
ergodic absolutely continuous stationary measures whose supports are mutually disjoint up to
sets of zero Lebesgue measure. The uniqueness will be proved by showing that all the previous
components share a measurable set of positive Lebesgue measure.

Before stating the existence theorem, Theorem 4.1, we need to introduce the following
notation. For any \varepsilon > 0, we define the interval I\varepsilon ,\Gamma := [\varepsilon ,1 - \Gamma /2].

Theorem 4.1. The Markov chain defined in section 3.2 admits finitely many ergodic sta-
tionary measures with densities in BV , the space of bounded variation function on the unit
interval equipped with the complete norm \| f\| BV = | f | TV + \| f\| 1; see Appendix A, subsection
A.1. Moreover, there is \varepsilon > 0 such that supp \mu \subset I\varepsilon ,\Gamma for any such measure \mu .

Proof. See Appendix B, subsection B.1.

Remark 4.2. It is worth noticing that the prior result is entirely independent of the
structure of the unimodal map T . In this respect, we could consider maps admitting attracting
periodic points or Cantor sets of measure zero but still producing smooth stationary measures
when perturbed with our additive noise.

We now state the main result of this section.

Theorem 4.3. If T is either periodic or chaotic, then the Markov chain defined in section
3.2 admits a unique stationary measure \mu with BV density. Moreover, supp \mu contains a
neighborhood of the periodic cycle if T is periodic, or the interval [T (\Delta ),\Delta ] if T is chaotic.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 613

Proof. See Appendix B, subsection B.2.

We conclude this subsection with the following consideration. From a financial point of
view, should the stationary measure not be unique, it would imply that, depending on the ini-
tial conditions, different banks could experience completely different dynamics corresponding
to different stationary measures. When this occurs in physical systems, one speaks of phase
transitions and coexistence of different mutually singular states. In our case, this would imply,
for instance, that policy measures could not be universal.

4.2. Stochastic stability. Once we consider random perturbations of a deterministic dy-
namics, an important question is to investigate the stochastic stability of the system, which
means to determine if a sequence of stationary measure will converge, in a sense to be made
precise, to the invariant measure of the unperturbed map. In our case, the sequence of proba-
bility measures is given by \mu n := hndx. These measures belong to the set of Borel probability
measures on the unit interval, which is a compact metric space with the weak-* topology.12

There will be therefore at least one subsequence (\mu nk
)k\geq 1 converging to a probability measure

\mu \infty on I. Our objective is to prove that (i) \mu \infty is invariant, (ii) it is the same for any conver-
gent subsequence, if more than one, and (iii) it coincides with \mu . Whenever that happens, we
will say that our random system is weakly stochastic stable. This result could be strengthened
by showing that \| hn  - h\| 1 \rightarrow 0, which is called the strong stochastic stability . However, we
are not able to obtain this result. Instead, we now give a sufficient condition to get the weak
stochastic stability:
(Aq) There exist q > 1 and Cq > 0 such that for all n \geq 1 we have \| hn\| q \leq Cq.
We will see in the next subsection that with the preceding assumption, we can prove the

convergence of the Lyapunov exponent (Theorem 4.10) and then verify it numerically, which
is an indirect indication of the validity of (Aq).

Theorem 4.4. Under assumption (Aq) and when the map T is chaotic, the Markov chain
defined in section 3.2 is weakly stochastic stable, i.e., the stationary probabilities converge to
the unique T -invariant probability in the weak-* topology as n \rightarrow \infty .

Proof. See Appendix B, subsection B.3.

It follows from Proposition B.8 that assumption (Aq) cannot be satisfied in the periodic
case, since the limiting T -invariant measure is singular and supported on the periodic orbit,
so Theorem 4.4 only covers the chaotic case. We will now give proof in the periodic case under
the following assumption:
(As) For all n sufficiently large and all x\in supp \mu n we have | T \prime (x)| \leq \tau < 1.

Proposition 4.5. If T is periodic and satisfies (As), then the Markov chain defined in section
3.3 is weakly stochastic stable.

Proof. See Appendix B, subsection B.4.

Remark 4.6. It follows from the proof that Proposition 4.5 remains valid for the general
class of Markov chains defined in section 3.2 whenever (3.16) holds, which is in turn the case
when T and gx,n are sufficiently smooth.

12The weak-* topology is given by the family of seminorms \| \rho \| \varphi =
\int 
\varphi d\rho , \rho \in \scrM , \varphi \in C0.
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614 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Remark 4.7. We conjecture that if T is periodic with the attracting periodic orbit \scrO , then
hn \rightarrow 0 uniformly on compact sets K \subset I \setminus \scrO as n \rightarrow \infty . This property, which we checked
numerically, strengthens the previous result. In particular,
(Ac) If T is periodic and the critical point c does not belong to the attracting periodic orbit,

then hn \rightarrow 0 uniformly in a neighborhood of c as n \rightarrow \infty .

4.3. Lyapunov exponent.

4.3.1. Average Lyapunov exponent. We are interested in the existence of the Lyapunov
exponent for the slow component, which in our case is defined \BbbP \mu -almost surely as the limit

(4.1) \Lambda = lim
n\rightarrow \infty 

1

n

n - 1\sum 
t=0

log | T \prime (Xt)| 

along the chain (Xt)t\geq 0. We provide two motivations for such a choice. First, we want to
reproduce the Lyapunov exponent of the unperturbed map T in the limit of zero noise, which
we will get in Theorem 4.10; second, we want an indicator that kept the memory of the
underlying slow dynamics played by the map T . We will, in particular, show that such an
exponent is negative for periodic T , even in the presence of mixing stationary measures.

We now return to (4.1); if the chain admits a unique stationary probability \mu , then, by
the ergodic theorem for Markov chains, the above limit equals

(4.2)

\int 
log | T \prime | d\mu ,

assuming log | T \prime | \in L1(\mu ).

Remark 4.8. The Lyapunov exponent (4.2) was called the average Lyapunov exponent in
[39, 59]. It was associated with the phenomenon of noise-induced order , which happens when
the perturbed systems admit a unique stationary measure depending on some parameter,
say \theta , and the Lyapunov exponent depends continuously on \theta and exhibits a transition from
positive to negative values; see also [55] for experimental evidence of this fact. We will partially
prove this phenomenon below by combining Corollary 4.11 and Theorem 4.12, and we show
it numerically in section 5.2.

A unimodal map T is said to have a critical point of order l if there is a constant D such
that D - 1| x - c| l - 1 \leq | T \prime (x)| \leq D| x - c| l - 1. In this case it was proved in [60] that the invariant
density for T is in Lq, with q < l

l - 1 . We will assume that T has a critical point of order 2.
It is easy to check that (3.5) satisfies this assumption. Consequently, log | T \prime | is in Lp for any
p\geq 1.

Theorem 4.9. If T is periodic or chaotic, the limit (4.1) exists almost surely.

Proof. The integral (4.2) is finite, because log | T \prime | is in L1 and the unique stationary
measure \mu has bounded density, as we proved in section 4.1.

Once we know that the Lyapunov exponent exists almost surely, it is natural to ask how
it depends on the model parameters, for instance, the length n of the fast component series.
We have the following result.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 615

Theorem 4.10. Suppose one of the following is satisfied: (a) T verifies (Aq); (b) T is
periodic and verifies (As) and (Ac). Then the Lyapunov exponent (4.1) converges to the
Lyapunov exponent of the deterministic map T as n \rightarrow \infty .

Proof. See Appendix B, subsection B.5.

Corollary 4.11. Under the assumptions of Theorem 4.10 and for n large enough, \Lambda is
positive if T is chaotic and is negative if T is periodic.

In some cases, the negativity of the Lyapunov exponent can be shown relatively easily;
see Example B.9. We also provide some numerical examples in section 5.2.

4.3.2. Continuity of the Lyapunov exponent. Denote by \Theta := \{ \theta = (\phi \ast , \omega ,n) \in (0,1)2 \times 
(0,\infty ) | maxT\theta < 1\} the (extended) parameter space. In order to prove the continuity of the
Lyapunov exponent, we will assume that T\theta (x)\in C3(\Theta \times [0,1]) and p\theta (x, y)\in C2(\Theta \times (0,1)2).
It is straightforward that our main example defined in section 3.3 satisfies this assumption.
Let \~\Theta \subset \Theta be the set of parameters \theta for which there is a unique stationary measure \mu \theta with
a density h\theta \in BV ; we proved in section 4.1 that this is the case if T\theta is periodic or chaotic,
but our numerical investigations confirm that in fact Leb(\Theta \setminus \~\Theta ) = 0.

Theorem 4.12. The mapping \~\Theta \ni \theta \mapsto \rightarrow \Lambda \theta \in \BbbR is continuous.

Proof. See Appendix B, subsection B.6.

We conclude this section with the following two remarks.

Remark 4.13. In (4.1) we use the derivative of the deterministic map only to define the
Lyapunov exponent. However, in subsection 3.4 we define our process using the perspective
of the random transformation. This leads naturally to define the Lyapunov exponent of the
cocycle given by the derivative computed along the random orbit, named the random Lyapunov
exponent (RLE). We analyze it in Appendix B, subsection B.7. Also, We discuss the so-called
entropy formula allowing us to equate the RLE with the random entropy , which is the random
generalization of the Kolmogorov--Sinai entropy. Finally, we describe the interesting situation
of a stationary state with zero random entropy but which mixes exponentially fast.

Remark 4.14. For the stochastic stability and the Lyapunov exponent, we mainly discuss
the relation between finite n (thus noisy system) and infinite n (purely deterministic system).
Thus our results indicate in which sense what we learn for a noisy system is informative
about the deterministic backbone. In our empirical analysis we will not study or use directly
either the stationary measure or the Lyapunov exponent (mainly because we have very short
time series); however the ``continuity"" we observe from finite to infinite n suggests that the
properties we observe empirically for finite n are informative of the underlying deterministic
dynamics.

5. Numerical results. In this section, we describe and discuss some numerical experiments
in support of our rigorous theoretical investigations. Specifically, we present the bifurcation
diagram associated with the unimodal map (3.5) and compute the corresponding Lyapunov
exponents for both the deterministic and the stochastic version of the map; see subsections
5.1 and 5.2, respectively.13

13The code to reproduce all the figures and tables of this section is available from the corresponding author
upon reasonable request.
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616 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Figure 5. Bifurcation diagram for T in the dynamical core region (\omega = 0.5).

5.1. Bifurcation diagram. In this subsection, we analyze the dynamics of the unimodal
map (3.5). The bifurcation diagram of a dynamical system shows how a typical orbit's as-
ymptotic distribution varies as a parameter's function. For our map, either the memory
parameter \omega or the parameter \phi \ast can be employed as the bifurcation parameter. Figure 5
shows the bifurcation diagram as a function of \phi \ast (the bifurcation diagram as a function of
\omega looks similar). The choice of the parameters for this plot corresponds to a vertical segment
in the parameter space (see Figure 2) with \omega = 0.5 and \phi \ast varying in a neighborhood of the
dynamical core area. As explained in Appendix A.1, the invariant set of the unimodal map
(3.5) could be an attracting periodic orbit, a Cantor set of measure zero, or a finite union
of intervals with a dense orbit, depending on the parameters \omega and \phi \ast . Specifically, there
is an attracting fixed point or a 2-cycle outside the dynamical core region, whereas in the
dynamical core, the situation is more complex as small parameter variations can change the
dynamics from chaotic to periodic and back, as we see in Figure 5. To identify the signature
of a chaotic behavior more precisely, in the following subsection, we compute the Lyapunov
exponent as a function of \phi \ast .

5.2. Lyapunov exponent. The Lyapunov exponent for the deterministic map (3.5) is
positive if and only if T admits an absolutely continuous invariant measure; see Theorem
A.3 in Appendix A.1. Figure 6 shows the estimated Lyapunov exponent in the same slice of
the parameter space as in Figure 5. Notice that the exponent becomes a smooth function
of \phi \ast when we add even a very small noise, in agreement with the results of section 4.3.2.
Figure 7 shows the contour plot of the Lyapunov exponent as a function of \phi \ast and \omega both
for the deterministic map (3.5) and for the stochastic process described in section 3.3. The
right panel shows a clear noise-induced regularization phenomenon. In fact, for the stochastic
version of the map, the intricate fine structure in the parameter dependence of the Lyapunov
exponent disappears and is replaced by a smooth dependence.

To provide a numerical exemplification of the stochastic stability and of Theorem 4.10,
we computed average (4.1) and random (B.12) Lyapunov exponents, as well as the Lyapunov
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 617

Figure 6. Lyapunov exponents for deterministic and stochastic maps (\omega = 0.5).

ω

φ∗

(a)

φ∗

(b)

Figure 7. Contour plot of the average Lyapunov exponents for (a) deterministic and (b) stochastic maps
(n = 1).

exponent for the deterministic map (3.5), for different values of \phi \ast , \omega , and n. The results are
presented in Table 1. Within each row, the two subrows are ALE and RLE, respectively: the
two agree very well, in most cases, up to the precision of the numerical computation. In both
cases, we sampled 128 independent realizations of the process, each of length 10,000.

6. Estimating the map parameters via deep neural networks. We now consider the
problem of estimating the map's parameters from (short) time series. This fact is motivated
by the fact that in section 7 we empirically investigate a dataset of a US commercial bank`s
leverage. We will consider the time series of the bank's leverage as realizations of the process
described in section 3.3 and will estimate for each bank the model parameters. Each time
series is very short, composed of only 59 points.
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618 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Table 1
Average and random Lyapunov exponents for different values of n compared to the Lyapunov exponent for

the deterministic map. DC stands for dynamical core, Per. for periodic, and Det. for the Lyapunov exponent
of the deterministic map.

φ∗ ω DC Per.
Lyapunov exponent

n

Det.
1 103 106 109

0.845 0.557 yes no
0.287 0.287 0.349 0.341

0.340
0.286 0.286 0.349 0.341

0.795 0.390 yes no
0.345 0.346 0.389 0.398

0.400
0.345 0.346 0.389 0.399

0.904 0.627 yes no
0.557 0.557 0.560 0.550

0.552
0.558 0.557 0.560 0.550

0.821 0.439 yes yes
0.378 0.375 −0.051 −0.159 −0.158
0.378 0.375 −0.052 −0.159

0.944 0.826 yes yes
0.296 0.297 0.049 −0.123 −0.122
0.297 0.296 0.052 −0.123

0.766 0.323 yes yes
0.320 0.324 0.286 −0.076 −0.046
0.320 0.325 0.286 −0.076

0.258 0.837 no yes
−0.243 −0.248 −0.248 −0.248 −0.248−0.286 −0.248 −0.248 −0.248

0.908 0.804 no yes
−0.284 −0.285 −0.365 −0.362 −0.362−0.286 −0.287 −0.366 −0.362

0.541 0.227 no yes
−0.619 −0.441 −0.380 −0.380 −0.380−0.578 −0.446 −0.380 −0.380

Given the random nature of the map, one could use maximum likelihood estimation to
estimate the parameters. However, this approach is not feasible for two reasons. First,
the likelihood function is highly nonconvex, so standard optimization methods may perform
poorly. Second, although the likelihood function for the process itself can be written explicitly,
in many cases, the observed time series are systematically undersampled, preventing an explicit
calculation of the likelihood function. For example, we may observe only one slow time scale,
corresponding to portfolio rebalancing, out of two, or even out of three (i.e., the bank's risk
assessment and portfolio composition may be updated more frequently than our quarterly
observations, for instance, at a monthly frequency). If we observe, for instance, only the
second iterate of the process,

\phi t+2 = T (T (\phi t;\theta );\theta ) + \sigma (\phi t;\theta )\epsilon t) + \sigma (\phi t+1;\theta )\epsilon t+1, t\in \BbbZ ,

the transition probabilities p(\phi t+2| \phi t;\theta ), t \in \BbbZ , are no longer Gaussian (as would be the case
if we observe the first iterate). Hence, there is no effective formula for the likelihood function.

For this reason, to estimate the parameters of the map, we propose to use a CNN consisting
of a sequence of convolutional layers followed by a sequence of dense, or fully connected, layers
(see [42, Chapter 9] for more details). In order to deal with the possibility that the observed
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 619

Figure 8. Accuracy of the CNN1 model used to estimate the iterates.

time series are realizations of certain iterates of the process, we separately optimize two CNN
architectures to be used sequentially. First, we optimize a CNN (henceforth denoted by CNN1)
for estimating the number of iterates between observations: it takes as input time series of
length 59 (as our empirical data) and outputs the corresponding value k of the map's iterate
that generated the time series. Second, for each value of k, we optimize a CNN (henceforth
denoted by CNN2(k)), having the same inputs, to output the corresponding parameters (\phi \ast , \omega )
that generated the time series. Once the parameters (\phi \ast , \omega ) are estimated, the noise variance
(and therefore n) can be estimated by standard methods. To train CNN1 and CNN2(k)
we used a training set of one million samples simulated from the model in section 3.3 with
values of the parameters \theta = (\phi \ast , \omega ,n) which uniformly span the parameter space. For both
steps, when simulating the series, the system's initial state was taken randomly from a uniform
distribution on [0,1]. This fact is especially important because of the relatively short length of
the series. Therefore, based only on simulations, the NN approach, contrary to the maximum
likelihood one, can also work for partial observations. The selected14 CNN models show a
good performance. We tested our methods on a testing set of 100,000 out of sample time
series. Figure 8 shows the accuracy of CNN1 to estimate the iterates on test data. We choose
k= 1,2,3 because of our empirical application of section 7. The MSE of CNN2(k) on the test
set is about 0.001 for each k. Since both \phi \ast and \omega are uniformly distributed in [0,1], the MSE
is quite small and the NN effective.

7. Chaos in real bank leverage time series. In this section, we perform an empirical
analysis of a large set of banks' leverage time series. We first describe the data set. Next,
through CNN1 and CNN2(k), we estimate the iterate k as well as the parameters (\phi \ast , \omega ) of the
model and discuss the results, investigating the relationship between the estimated parameters
and the bank's size. Finally, to perform an independent analysis supporting our conclusions,
we apply the CDTA [71] to these time series and compare the resulting classification with the
one obtained with CNN estimates.

14Appendix C reports details on the selected CNN models and on the procedure we employed to choose
such models.
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620 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

7.1. Data set. We use a data set of US commercial banks and savings and loan associa-
tions provided by the Federal Financial Institutions Examination Council (FFIEC). For the
sake of completeness, we provide a description of it, referring to [36] and references therein
for further details. A commercial bank is defined15 officially by the FFIEC as ``a financial
institution that is owned by stockholders, operates for a profit, and engages in various lend-
ing activities."" Commercial banks quarterly file the Consolidated Report of Condition and
Income (generally referred to as a call report) as required by the FFIEC. A savings and loan
association, instead, is a financial institution that accepts deposits primarily from individuals
and channels its funds primarily into residential mortgage loans. Starting in the first quarter
of 2012 they have been required to file the same reports as commercial banks; thus they have
been included in the data set since then. The data provided by the call reports have been
publicly available since 1986, although the required details have increased over time. To have
a good compromise between the fine structure of data and reasonably populated statistics,
we follow [36] and consider the period from March 2001 to December 2014, for a total of 59
quarters. Also, we consider only the financial institutions present in the data set in all the
quarters for a total of 5,031 banks. The financial leverage \lambda t of each institution at time t is
defined as the ratio between the sum of its assets and its equity at time t. In particular, the
latter is given by Et = At  - Lt, where Lt represents the liabilities and At the assets of the
bank, thus \lambda t =At/Et.

7.2. Estimation via neural networks. In order to estimate the parameters of the map
on the just-described data set, we need to fix the value of the liquidity parameter \gamma ; recall
that we consider the linear transformation \phi t = (\lambda t  - 1)/\gamma . In this work, we assume that
the liquidity parameter \gamma of the risk investment is the same for all the banks in our data
set. Admittedly, this is a simplifying assumption, coherent with the so-called assumption
of statistical equivalence for risky investments (see also [56]), which allows for an analytical
tractability of the model; a complete exploration of a relaxation of this hypothesis is beyond
the scope of the present paper and is, therefore, left for future work. In order to fix its value,
we exclude 662 time series (out of 5,031) that contain outliers, which we define to be values
that are two standard deviations away from the mean. We then set \gamma to the maximum over
the remaining 4,369 series, obtaining \gamma = 15.969.

Since the time series that we analyze contain quarterly data and portfolio decisions may
be made more frequently, it is natural to assume that the observed time series are realizations
of certain iterates of the process; we assume k \in \{ 1,2,3\} . Figure 9(a) displays the output
of CNN1. It turns out that only a small percentage (about 1\%) of the banks in our data
set rebalance their portfolios at a quarterly frequency. Most banks seem to rebalance either
every six weeks (k = 2, about 55\%) or every month (k = 3, about 43\%). One may ask if the
portfolio rebalancing frequency is related to the size of the bank (defined as the average across
the 59 quarters of the sum of the dollar amount of all the types of assets detained by it), for
example, because larger banks manage more actively their portfolios. Figure 9(b) shows the
box plots of the logarithm of the size of the banks for k= 1,2,3. We observe that there is not
a statistically significant difference among them.

15See http://www.ffiec.gov/nicSearch/FAQ/Glossary.html.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 621

(a) Number of banks by iterate. (b) Log bank size by iterate.

Figure 9. Results on the iterate of the process.

(a) Parameters distribution by DC. (b) Parameters distribution by iterate.

Figure 10. Estimated parameters for iterates in \{ 1,2,3\} .

Once the number of iterates k has been identified, we proceed to the study of the chaotic
behavior of the time series. We divide the banks in the three groups identified by k and employ
CNN2(k) in order to estimate the parameters (\phi \ast , \omega ). In Figure 10(a) we plot the estimates
of \phi \ast against those of \omega ; pairs belonging to the dynamical core region are displayed in red,
whereas those falling outside the dynamical core region are displayed in blue. Interestingly,
the percentage of banks for which the estimates (\phi \ast , \omega ) are in the dynamical core region is
about 12\%. Moreover, Figure 10(b) indicates that k is very often equal to two for these banks.
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622 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

(a) Probability density functions. (b) Probability-probability plot.

Figure 11. Results on the parameters of the process and bank size.

We now ask if bank size is related to the fact that the estimated pair (\phi \ast , \omega ) is or is not
in the dynamical core region. Figure 11(a) shows the probability density functions of the
logarithm of the bank size, by considering separately banks inside and outside the dynamical
core, and Figure 11(b) displays the corresponding probability-probability plot. To test that
the difference between the distribution of bank sizes in and outside the dynamical core region
is statistically significant, we perform the Kolmogorov--Smirnov test of the null hypothesis
that the two samples have the same distribution. The statistics of the test is 9.31 \times 10 - 2

corresponding to a p-value of 5.9 \times 10 - 4. This latter value shows that the two subsamples
have different distributions.

Summarizing, we have found that the parameters of a sizable fraction of banks lie in the
dynamical core region and that the dynamics of the leverage of the larger banks tend to be
more frequent in the dynamical core than that of the smaller banks.

7.3. Classification via the chaos decision tree algorithm. Finally, we perform an inde-
pendent analysis on the bank's leverage time series by making use of the recently proposed
CDTA [71], described in detail in Appendix F. This is a nonparametric method which clas-
sifies an input time series as chaotic, periodic, or stochastic.16 We perform this analysis for
two reasons. First, we know that chaotic behavior can be present only for series generated by
our map with parameters in the dynamical core. Thus we test whether the series classified as
chaotic by CDTA have estimated parameters in the dynamical core. The second reason is to
count how many banks in the dynamical core are identified as chaotic or periodic by CDTA.
The appendix also contains the results of the application of CDTA to data simulated by our
map for different time series length, level of noise n, and number of iterates k.

16Notice that the definitions of chaotic and periodic for the CDTA differ from the ones given in subsection
3.1; see Appendix D.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 623

Table 2
Number of banks by classes.

Periodic Chaotic Stochastic

Nondynamical core 382 (9.98\%) 648 (16.93\%) 2798 (73.09\%)
Dynamical core 107 (20.34\%) 176 (33.46\%) 243 (46.20\%)

Table 3
Fraction of banks classified as chaotic, periodic, or stochastic by CDTA conditionally to the decile of the

bank size.

Statistics q1 q2 q3 q4 q5

Chaotic (\%) 18.2 20.2 21.7 23.6 29.1
Periodic (\%) 12.9 11.6 12.9 13 11.8
Stochastic (\%) 68.6 67.3 65 63 58.9

Applying CDTA, we find that 64\% of the banks are classified as stochastic, \sim 12\% as
periodic, and \sim 23\% as chaotic. The consistency between the classification made by CDTA
and the partition ``dynamical core"" and ``not dynamical core"" of the parameters space (\phi \ast , \omega )
found by the NN model can be assessed by looking at Table 2. We find that a large fraction
of series outside the dynamical core are classified as stochastic by CDTA, while a third of
banks in the dynamical core are classified as chaotic. This fraction is significantly smaller for
banks outside the dynamical core. Thus, although the agreement is not perfect, we find a
reasonable consistency between the conclusions of the two methods and, more importantly,
find significant (and independent) support to the conclusion that a sizable fraction of bank
time series are described by a chaotic dynamics.

Finally, the findings reported in the previous subsection suggest a positive relation between
the size of a bank and the probability that the dynamics of the (corresponding) leverage
time series is chaotic. To verify this observation by using the CDTA classification, we first
rank the banks in quintiles according to their size and within each quintile we compute the
percentage of banks that are detected to be stochastic, periodic, and chaotic. Table 3 collects
the results. In a nutshell, banks having a larger size have, on average, a larger percentage
of leverage time series detected as chaotic. A \chi 2-test applied to contiguous quintiles rejects
the hypothesis of independence of the CDTA classification from the quintile, indicating that
the difference in frequencies across quintiles is statistically significant. Thus also the CDTA
analysis confirms that larger banks are more likely characterized by chaotic time series of
leverage.

8. Conclusions. Most risk management practices (for example, VaR) assume that prices
are not affected by the actions of other financial institutions managing the risk of their portfo-
lio. In other words, these practices assume that risk is exogenous. In reality, in the presence of
limited liquidity, coordinated and homogeneous risk management can create market instabil-
ity and result in what is known as endogenous risk. This has the potential to amplify market
instabilities and create crashes through the well-known feedback between leverage, risk, and
asset prices. Additional and less considered feedback between past and future risks is pres-
ent because financial institutions use historical data to estimate both the riskiness of their

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/3

0/
23

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



624 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

investments and their correlations. This creates new threats to the systemic stability of finan-
cial markets. Studying how these two feedbacks affect the leverage dynamics is paramount
for understanding systemic risk.

In this paper, we consider a stylized model where both feedbacks are present. We showed
that the dynamics of the bank's leverage are described by a unimodal map on [0,1] perturbed
with additive and heteroscedastic noise. The perturbed system can be described in two equiv-
alent ways as a stationary Markov chain or in terms of random transformations. In both cases,
a fundamental object is the stationary measure of the process, which allows us to properly
define and state all the statistical properties of the system. We are able to construct such a
measure and prove its uniqueness. Moreover, under a few assumptions, we show the stochas-
tic stability of the perturbed system, namely the weak convergence of the stationary measure
to the invariant measure for the unimodal map in the zero noise limit. We also define an
average Lyapunov exponent, still in terms of the stationary measure, as a sensitive indicator
of slow motion and prove its continuity with respect to the parameters defining the system.
We show that, depending on the parameters, the average Lyapunov exponent can be either
negative or positive, leading to two qualitatively different (periodic- and chaotic-like) leverage
dynamics.

We then estimate the map's parameters via a method based on deep neural networks,
whose efficiency was tested in a large testing set. Assuming the proposed unimodal map with
heteroscedastic noise as a data generating process for the banks` leverage, we estimated the
parameters on quarterly data of about 5,000 US commercial banks via the proposed CNN
architecture. By investigating the period from March 2001 to December 2014, for a total of
59 quarters, we found that the parameters of a sizable fraction of banks lie in the dynamical
core region of the parameter space and that the large banks' leverage tends to be more chaotic
than that of small ones. The latter finding was also corroborated by using a nonparametric
approach.

We believe that the proposed methodologies may offer revealing perspectives for future
works. For instance, it would be interesting to extend the employed mathematical tech-
niques to study a model in which more than one asset and one bank are present in the
system.

Appendix A. Additional mathematical results of section 3.

A.1. Unimodal maps. In this section, we recall some known results on the class of uni-
modal maps introduced by [14].

First, we recall the following theorem of Blokh and Lyubich (we quote the statement given
in [69, Theorem 6]) on the structure of the invariant sets (attractors) of a unimodal map.

Theorem A.1 (see [17]). Let T : I \rightarrow I be an S-unimodal map with nonflat critical point
c. Then T has a unique metric attractor A such that the \omega -limit set \omega (x) = A for Lebesgue
almost all x\in I. The attractor A is of one of the following types:

1. an attracting periodic orbit;
2. a Cantor set of measure zero;
3. a finite union of intervals with a dense orbit.

In the first two cases, A= \omega (c).
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 625

Second, we recall that associated to T there is the transfer operator (also called the
Perron--Frobenius operator) L : L1 \rightarrow L1 which is the positive linear operator defined by the
duality relation17 \int 

I
Lf g=

\int 
I
f g \circ T, f \in L1, g \in L\infty .

In order to get useful information from this operator, we need to restrict the functional space
where it acts; we choose here the Banach space BV of bounded variation functions on the
unit interval equipped with the complete norm

\| f\| BV = | f | TV + \| f\| 1,

where | f | TV is the total variation of the function f \in L1. A chaotic map T will admit a unique
absolutely continuous invariant measure \nu = \nu \circ T - 1 supported on the interval [T (\Delta ),\Delta ] with
a density h\in BV [14, section 5, Corollary 1]. Moreover, \nu is mixing with exponential decay of
correlations on BV observable, namely there exist 0< v < 1 and a constant C > 0 such that

(A.1)
\bigm| \bigm| \bigm| \int Lnf gdx - 

\int 
fdx

\int 
gdx

\bigm| \bigm| \bigm| \leq Cvn\| f\| BV \| g\| \infty ;

see [14, section 5, Corollary 3] and [72, Proposition 5.15].
Also, we quote a sort of analogue of the theorem of Blokh and Lyubich given above, for

what concerns invariant measures for the map T . We give here the statement of Theorem 9 in
[69], where the fact that the map T is S-unimodal is equivalent to saying that it has a negative
Schwarzian derivative. In particular, the (weak) accumulation points of the empirical measures
constructed by iterating Lebesgue almost all initial points are characterized by Theorem A.2.
These limiting invariant measures will be equivalent to the Lebesgue measure on the attractor
if and only if the corresponding Lyapunov exponent is positive; this is the content of Theorem
A.3 below.

Theorem A.2 (see [33, Chapter V.1]). Let T be an S-unimodal map with nonflat critical
point. If T has a periodic attractor, or a Cantor attractor, then T admits a unique SRB
measure18 supported on the attractor.

If T admits an absolutely continuous invariant probability measure \mu , then
1. \mu is an SRB measure;
2. the attractor A of T is an interval attractor;
3. supp \mu =A, in particular, \mu is equivalent to the Lebesgue measure on A.

Finally, we recall the following theorem by Keller, useful to compute the Lyapunov expo-
nent \Lambda for the map T .

17Without mention of the contrary, all the Lp spaces in the paper will be intended with respect to the
Lebesgue measure. The latter will be denoted as dx or Leb.

18We recall that an invariant measure \mu is called a Sinai--Ruelle--Bowen (SRB) measure if

\mu = lim
n\rightarrow \infty 

1

n

n - 1\sum 
k=0

\delta Tk(x)

for Leb-a.e. x\in [0,1], where \delta x is the Dirac mass at x.
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626 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Theorem A.3 (see [47]). Let T : I \rightarrow I be an S-unimodal map with nonflat critical point.
Then T admits an absolutely continuous invariant probability measure if and only if

lim
n\rightarrow \infty 

1

n
log | DTn(x)| =\Lambda > 0

for almost all x\in I.
Of course if T has a periodic attractor, the Lyapunov exponent will be negative. The

situation is different whenever T has a Cantor attractor. For an S-unimodal map with non-
degenerate critical point that also has a Cantor attractor, the Lyapunov exponent will be 0,
while there are families of unimodal maps with critical point of sufficiently high order, which
have Cantor attractors with sensitive dependence on initial conditions; see [69, section 5].

A.2. Continuous state Markov chains. In this section, we recall some basic properties of
the continuous state Markov chain. A Markov chain \{ Xt : t\in \BbbN \} on the interval I is given by
the transition probabilities

Px(A) = \BbbP \{ Xt+1 \in A | Xt = x\} 

(the probability that a chain at x \in I will be in a set19 A \subset I after one step) and an
initial distribution \rho 0(A) = \BbbP \{ X0 \in A\} . In the particular case where all Px, x \in I, and \rho 0
are absolutely continuous (with respect to Leb) and are given by densities p(x, \cdot ) and h0,
respectively, we have

Px(A) =

\int 
A
p(x, y)dy, \rho 0(A) =

\int 
A
h0(y)dy.

The map p : I \times I \rightarrow \BbbR + (known as the stochastic kernel) plays the role that the transition
matrix does in the theory of Markov chains with a finite state space. For Px to be a probability,
it should satisfy

\int 
p(x, y)dy= 1 for every x\in I.

Denote with \scrM the space of (real-valued) Radon measures on I. There is an associated
operator \scrL : \scrM \rightarrow \scrM (called the Markov operator corresponding to P ) acting by

(A.2) \scrL \rho =
\int 
Pxd\rho (x), \rho \in \scrM ,

that is, \scrL \rho (A) =
\int 
Px(A)d\rho (x) for every A\subset I, or, equivalently,\int 

\varphi d\scrL \rho =
\int \int 

\varphi (y)dPx(y)d\rho (x)

for all \varphi \in C0, where C0 denotes the Banach space of continuous functions on I with the sup
norm. We note that \scrL : L1 \rightarrow L1 is an isometry, where L1 is intended, from now on, with
respect to the Lebesgue measure. If the chain is given by the kernel p, formula (A.2) restricted
to L1 becomes

(A.3) (\scrL h)(y) =
\int 
p(x, y)h(x)dx, h\in L1.

19All sets considered will be assumed to be measurable. For brevity's sake, we omit the word ``measurable""
everywhere in this text.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 627

If \rho t denotes the distribution of the random variable Xt, then the distribution of Xt+1 is
\rho t+1 =\scrL \rho t. In other words, by fixing the distribution \rho 0 for X0, the entire sequence of future
distributions can be obtained by iterating with \scrL .

A measure \mu \in \scrM + is said to be stationary if

\scrL \mu = \mu .

Every stationary measure \mu gives rise to a shift-invariant measure \BbbP \mu on the sequences space
\Omega = \{ (xt)t\in \BbbN : xt \in I\} of realizations of the process, such that \BbbP \mu (xt \in A) = \mu (A) for all t \in \BbbN 
(see, e.g., [50]). We say that \mu is ergodic if \BbbP \mu is ergodic. In the next section, we will show
that, under some mild conditions, our model admits a unique (and thus ergodic) absolutely
continuous stationary probability \mu with a density h \in BV . Then, by the ergodic theorem
(see, e.g., [16, Remark C4.1]), for every f \in L1(\mu ),

1

n

n\sum 
t=1

f(Xt) -  -  - \rightarrow 
n\rightarrow \infty 

\int 
fd\mu , \BbbP \mu -almost surely.

In particular, realizations of the process are distributed in the state space according to the
measure \mu .

Appendix B. Proofs of the results in section 4.

B.1. Proof of Theorem 4.1. In order to prove the theorem, we need some auxiliary
results. We start by showing that there are finitely many ergodic stationary densities of
bounded variation. The following lemma will be useful to that end.

Lemma B.1. For any \rho \in BV , if C := ess supx\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} \rho | p(x, \cdot )| TV <\infty , then

| \scrL \rho | TV \leq C\| \rho \| 1 and \| \scrL \rho \| BV \leq (C + 1)\| \rho \| 1.

Proof. For the first inequality, we have

| \scrL \rho | TV = sup
\sum 
i

\bigm| \bigm| \bigm| \bigm| \int p(x, yi+1)\rho (x)dx - 
\int 
p(x, yi)\rho (x)dx

\bigm| \bigm| \bigm| \bigm| 
\leq sup

\sum 
i

\int 
| p(x, yi+1)\rho (x) - p(x, yi)\rho (x)| dx

\leq 
\int 

| p(x, \cdot )| TV \rho (x)dx\leq C\| \rho \| 1.

The second inequality follows from the first one, since the Markov operator is an isometry,
i.e., \| \scrL \rho \| 1 = \| \rho \| 1 for all \rho \in L1.

Then, we show in Proposition B.2 below that we get a finite number of ergodic abso-
lutely continuous stationary measures whose supports are mutually disjoint up to sets of zero
Lebesgue measure.

We say that a stochastic kernel p(x, y) has uniformly bounded variations if | p(x, \cdot )| TV \in L\infty ,
i.e., there is C > 0 such that | p(x, \cdot )| TV \leq C for almost every x\in I.
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628 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Proposition B.2. If the kernel p has uniformly bounded variations, then the operator \scrL is
quasi-compact, and there exist finitely many ergodic stationary measures with densities in BV
and, moreover, their supports are mutually disjoint up to sets of zero Lebesgue measure.

Proof. By Lemma B.1, for every n,

\| \scrL n\rho \| BV = | \scrL n\rho | TV + \| \scrL n\rho \| 1 \leq C\| \scrL n - 1\rho \| 1 + \| \rho \| 1 = (C + 1)\| \rho \| 1.

In particular,

(B.1) \| \scrL \rho \| BV \leq (C + 1)\| \rho \| 1 \leq \eta \| \rho \| BV + (C + 1)\| \rho \| 1

for any \eta < 1. This is the Lasota--Yorke inequality . The latter, plus the fact that BV is
compactly embedded in L1, implies that the peripheral spectrum of \scrL is discrete and therefore
the chain will admit finitely many (at least one) absolutely continuous ergodic stationary
measures, with supports that are mutually disjoint up to sets of zero Lebesgue measure.
Moreover, the essential spectral radius is strictly smaller than the spectral radius (spectral
gap). These properties, which are consequences of the Ionescu--Tulcea--Marinescu theorem,
are summarized by saying that the operator \scrL acting on BV is quasi-compact ; see, e.g., [12, 20,
19] for an exhaustive presentation of these results and [11, section 2.3] for a specific application
to random systems.

Remark B.3. Let us mention that whenever the operator \scrL is quasi-compact and the
largest eigenvalue, which is 1 in our case, is simple and there are no other peripheral eigenval-
ues, and therefore there is only one stationary measure with density in BV , then the norm of
\| \scrL kf\| BV goes exponentially fast to zero when k\rightarrow \infty , for f \in BV and

\int 
fdx= 0 (exponential

decay of correlations). This fact is extensively used in section 4.3. The absence of other
peripheral eigenvalues follows easily from an extension of Lemmas B.5 and B.6 to the power
of \scrL and by using the topological transitivity of Tn, n\geq 1.

At this point, the following remark is in order. Since the variance (3.6) vanishes at 0 and
1, the kernel (3.9) is in fact unbounded. However, we can still apply Proposition B.2 under
a suitable restriction of the domain of \scrL . We first state a general result which allows us to
confine the stationary measures.

Lemma B.4. Under the assumptions of section 3.2, there is \varepsilon > 0 such that any stationary
measure \mu has supp \mu \subset \{ 0\} \cup I\varepsilon ,\Gamma . If \mu is continuous, supp \mu \subset I\varepsilon ,\Gamma .

Proof. First, notice that any stationary measure is supported on the interval K\Gamma :=
[ - \Gamma /2,1  - \Gamma /2]. Indeed, by invariance, \mu (Kc

\Gamma ) =
\int 
Px(K

c
\Gamma )d\mu (x) = 0, because Px(K

c
\Gamma ) = 0

for all x.
Fix \varepsilon > 0 such that T (x) - s(x) > x for x \in (0, \varepsilon ). By choosing a smaller \varepsilon if needed, we

may also assume that T (x) - s(x) > \varepsilon for x \in [\varepsilon ,1 - \Gamma /2]. Then inf supp Px > min\{ x, \varepsilon \} for
every x \in K\Gamma \setminus \{ 0\} . This means that for any realization (xt) of the process, either all xt = 0
(clearly, 0 is a fixed point, since P0 = \delta 0) or all but finitely many xt > \varepsilon .

On the other hand, if \mu ([ - \Gamma , \varepsilon ) \setminus \{ 0\} ) > 0, then by the Poincar\'e recurrence theorem,
applied to the shift on (\Omega ,\BbbP \mu ), \BbbP \mu -almost surely there would exist a realization (xt) with
infinitely many 0 \not = xt < \varepsilon , which is not possible, as we showed above. This finishes the
proof.
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 629

Proof of Theorem 4.1. By Lemma B.4, the density of any absolutely continuous stationary
measure belongs to the subspace Y := \{ h\in L1 | supp h\subset I\varepsilon ,\Gamma \} . From the first part of the proof
of Lemma B.4 it also follows that Y is \scrL -invariant. Moreover, the kernel (3.3) has uniformly
bounded variations when restricted to I\varepsilon ,\Gamma \times I\varepsilon ,\Gamma . Indeed, | pn(x, \cdot )| TV = | gx,n| TV and the latter
is bounded on I\varepsilon ,\Gamma by (3.1). We can therefore apply Proposition B.2.

B.2. Proof of Theorem 4.3. As for the proof Theorem 4.1, we need some preliminary
lemmas. We begin with the following simple lemma that links the topological dynamics of T
with the structure of any stationary measure.

Lemma B.5. For any stationary measure \mu and any open set U , if \mu (U) = 0, then also
\mu (T - kU) = 0 for all k > 0.

Proof. It is enough to show that \mu (T - 1U) = 0, the result then follows by induction. By
invariance we have 0 = \mu (U) =

\int 
Px(U)d\mu (x) \geq 

\int 
T - 1U Px(U)d\mu (x). But for every x \in T - 1U ,

T (x) \in U \cap supp Px, and hence Px(U) > 0. Therefore the latter integral can only be zero if
\mu (T - 1U) = 0.

With the help of the following lemma we will show that the support of any stationary
measure contains the support of the T -invariant measure (atomic in the periodic case). Recall
that x\in supp \mu if and only if \mu (U)> 0 for any open U \ni x.

Lemma B.6. Let A \subset I be such that (1) T is topologically transitive on A and (2)\bigcup \infty 
k=0 T

 - kU = I for any open set U \supset A. Then A\subset supp\mu for any stationary measure \mu .

Proof. Given an open set U with U \cap A \not = \emptyset , by transitivity A\subset 
\bigcup \infty 

k=0 T
 - kU , and therefore\bigcup \infty 

k=0 T
 - kU = I. By Lemma B.5, \mu (U)> 0.

Proof of Theorem 4.3. If T is periodic, a globally attracting cycle \scrO satisfies the as-
sumptions of Lemma B.6, therefore \scrO \subset supp \mu for any stationary measure \mu . Let us show
that supp \mu contains an open neighborhood of \scrO . Recall that p(x, y) > 0 if and only if
y \in (T (x) - s(x), T (x) + s(x)), and T and s are continuous. Given x0 \in \scrO , let x1 \in \scrO be such
that x0 = T (x1). Since (x1, x0) \in \{ (x, y) | p(x, y) > 0\} and the latter set is open, we can find
open sets U \ni x1 and V \ni x0 such that p(x, y)> 0 for all x\in U , y \in V . Also \mu (U)> 0, because
x1 \in supp \mu . Denoting h the density of \mu , by invariance we get h(y)\geq 

\int 
U p(x, y)d\mu (x)> 0 for

all y \in V , i.e., V \subset supp \mu .
If T is chaotic, then T is topologically transitive when restricted to I\Delta = [T (\Delta ),\Delta ]. It

also follows from (C3) that
\bigcup \infty 

k=0 T
 - kI\Delta = I, so again we can apply Lemma B.6.

In both cases, we conclude that Leb(supp \mu 1 \cap supp \mu 2)> 0 for any stationary measures
\mu 1, \mu 2, and therefore by Proposition B.2 they must coincide. Hence the stationary measure
is unique.

B.3. Proof of Theorem 4.4. The proof of Theorem 4.4 is based on Proposition B.8, where
the following lemma is employed.

Lemma B.7. For every x\in I, P (n)
x converges to \delta Tx in the weak-* topology as n\rightarrow \infty , i.e.,\int 

\varphi dP
(n)
x \rightarrow \varphi (Tx) for all \varphi \in C0(I).

Proof. For arbitrary \varepsilon > 0 we can split\int 
\varphi dP (n)

x =

\int 
B\varepsilon (Tx)

\varphi dP (n)
x +

\int 
B\varepsilon (Tx)c

\varphi dP (n)
x .
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630 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

By Chebyshev's inequality, P
(n)
x (B\varepsilon (Tx)

c) \leq Var2P
(n)
x /\varepsilon 2 \rightarrow 0 as n \rightarrow \infty , while \varphi is

bounded, so the second integral can be made arbitrarily small for n large. Consequently,

P
(n)
x (B\varepsilon (Tx))\rightarrow 1, and since \varphi is continuous, the first integral can be made arbitrarily close

to \varphi (Tx).

The proof of (i) below follows a suggestion in [5, Theorem D].

Proposition B.8. Let \mu be a weak-* limit measure of a sequence \mu nk
= hnk

dx. If hnk
satisfy

(Aq), then
(i) \mu is absolutely continuous with density in Lq;
(ii) \mu is invariant under T .

Proof. (i) Let \varphi \in C0(I). By H\"older's inequality, with p= q
q - 1 ,\bigm| \bigm| \bigm| \int \varphi d\mu 

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| lim
k\rightarrow \infty 

\int 
\varphi hnk

dx
\bigm| \bigm| \bigm| \leq lim

k\rightarrow \infty 
\| hnk

\| q\| \varphi \| p \leq Cq\| \varphi \| p.

Therefore the map Lp \ni \varphi \mapsto \rightarrow 
\int 
\varphi d\mu \in \BbbR is continuous, since C0 is dense in Lp, and therefore

such a functional will be in Lq, namely \mu = hdx, h\in Lq, \| h\| q \leq Cq.
(ii) It suffices to prove that any test function \varphi \in C0(I) satisfies\int 

\varphi hnk
dy - 

\int 
\varphi \circ Thnk

dy\rightarrow 0.

Since hnk
= \scrL hnk

=
\int 
pnk

(x, \cdot )hnk
(x)dx, by changing the order of integration in the first

integral and subtracting the second, we get

(B.2)

\int 
hnk

(x)

\biggl[ \int 
pnk

(x, y)\varphi (y)dy - \varphi (T (x))

\biggr] 
dx.

Since the function \psi nk
(x) :=

\int 
pnk

(x, y)\varphi (y)dy - \varphi (T (x)) is uniformly bounded,

(B.2)\leq \| hnk
\| q\| \psi nk

\| p \leq Cq\| \psi nk
\| p.

By Lemma B.7, \psi nk
(x) \rightarrow 0 for every x \in I, and therefore by dominated convergence

\| \psi nk
\| p \rightarrow 0.

The weak stochastic stability now follows easily from the above results.

Proof of Theorem 4.4. Since T admits a unique invariant measure, \mu must be the same for
all convergent subsequences in Proposition B.8, and therefore the entire sequence \mu n converges
to \mu .

B.4. Proof of Proposition 4.5.
Proof. Let us first consider the case when T has a globally attracting fixed point x0. We

need to show that for any test function \varphi \in C0(I) we have
\int 
\varphi (x)hn(x)dx\rightarrow \varphi (x0) as n\rightarrow \infty .

Since hn is a fixed point of the random transfer operator (3.12) and this operator is the dual
of the random Koopman operator \varphi \mapsto \rightarrow 

\int 
\varphi \circ T\eta d\eta (see, e.g., [4, section 2] for details), the

previous weak limit leads to proving that the quantity

(B.3)

\int 
I

\int 
[0,1]k

(\varphi (T\eta k
\circ \cdot \cdot \cdot \circ T\eta 1

(x)) - \varphi (x0))hn(x)d\=\eta dx
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 631

goes to 0 as n \rightarrow \infty , where k is an arbitrary fixed number and \=\eta = (\eta 1, . . . , \eta k).
Given \varepsilon > 0, let \zeta > 0 be such that | \varphi (x) - \varphi (x0)| < \varepsilon when | x - x0| < 2\zeta 

1 - \tau . Fix k such
that, for all n,

(B.4) sup
x\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} \mu n

| T k(x) - x0| < \zeta .

Next, fix \delta > 0 such that

(B.5) 2\| \varphi \| \infty (1 - (1 - 2\delta )k)< \varepsilon .

Finally, by (3.16), for all n sufficiently large, we have

(B.6) sup
\eta \in [\delta ,1 - \delta ]

sup
x\in I

| T\eta (x) - T (x)| < \zeta .

We now split the integral (B.3) in the \=\eta variable over the region E := [\delta ,1  - \delta ]k and its
complement. On Ec the absolute value of (B.3) is bounded by (B.5). Notice that the integral
over x takes place on the support of \mu n, where (As) holds. Moreover, since the map [0,1] \ni 
\eta \mapsto \rightarrow T\eta \in C2(I) is continuous, each T\eta maps supp \mu n to itself; see [6]. Therefore, for \=\eta \in E
and x\in supp \mu n, by (B.6) and (As), we have

| T\eta 2
\circ T\eta 1

(x) - T 2(x)| \leq | T\eta 2
(T\eta 1

(x)) - T (T\eta 1
(x))| + | T (T\eta 1

(x)) - T 2(x)| < \zeta + \tau \zeta .

By induction we easily get | T\eta k
\circ \cdot \cdot \cdot \circ T\eta 1

(x) - T k(x)| < \zeta 
1 - \tau and therefore, in view of (B.4),

| T\eta k
\circ \cdot \cdot \cdot \circ T\eta 1

(x)  - x0| < 2\zeta 
1 - \tau for all \=\eta \in E and x \in supp \mu n. Then, by the choice of \zeta ,

| \varphi (T\eta k
\circ \cdot \cdot \cdot \circ T\eta 1

(x)) - \varphi (x0)| < \varepsilon and the absolute value of (B.3) over E is therefore bounded
by \varepsilon .

It is straightforward to modify the above proof for the case when T has a globally attracting
periodic orbit of length m > 1. One needs to replace T with Tm; the latter will have m
attracting fixed points. The corresponding random maps of the form T\=\eta = T\eta 1

\circ \cdot \cdot \cdot \circ T\eta m
will

be parametrized by \=\eta = (\eta 1, . . . , \eta m) \in [0,1]m endowed with the Lebesgue measure. We leave
the details to the reader.

B.5. Proof of Theorem 4.10.
Proof. (a) Denote with \mu n = hndx the unique stationary measure associated to n and with

\mu = hdx the unique invariant measure for T . We need to show that

(B.7)

\int 
log | T \prime | d\mu n  -  -  - \rightarrow 

n\rightarrow \infty 

\int 
log | T \prime | d\mu .

Let q > 1 be such that hn, h \in Lq and set p := q
q - 1 . Since log | T \prime | \in Lp, for any \varepsilon > 0 there is

\varphi \varepsilon \in C0 such that \| log | T \prime |  - \varphi \varepsilon \| p < \varepsilon . Write\int 
log | T \prime | d\mu n =

\int 
(log | T \prime |  - \varphi \varepsilon )hndx+

\int 
\varphi \varepsilon d\mu n

and \int 
log | T \prime | d\mu =

\int 
(log | T \prime |  - \varphi \varepsilon )hdx+

\int 
\varphi \varepsilon d\mu .
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632 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Since log | T \prime |  - \varphi \varepsilon \in Lp and hn, h\in Lq, we have\int 
| log | T \prime |  - \varphi \varepsilon | hndx\leq \| log | T \prime |  - \varphi \varepsilon \| p\| hn\| q \leq \varepsilon Cq,

and the same inequality holds for the integral with respect to \mu . Finally, from Theorem 4.4

we know that \mu n
w\ast 

 -  - \rightarrow \mu , hence
\int 
\varphi \varepsilon d\mu n \rightarrow 

\int 
\varphi \varepsilon d\mu as n \rightarrow \infty .

(b) We know from Proposition 4.5 that
\int 
\varphi d\mu n \rightarrow 1

| \scrO | 
\sum 

x\in \scrO \varphi (x) for all \varphi \in C0(I) as
n \rightarrow \infty , since the T -invariant measure \mu is atomic and supported on the attracting periodic
orbit \scrO . Let us first consider the case when the critical point c belongs to \scrO ; the right-hand
side of (B.7) is then  - \infty . Denoting fm(x) := max\{ log | T \prime (x)| , - m\} \in C0(I), for every m we
have \int 

log | T \prime | d\mu n \leq 
\int 
fmd\mu n  -  -  - \rightarrow 

n\rightarrow \infty 

1

| \scrO | 
\sum 
x\in \scrO 

fm(x)\leq  - m

| \scrO | 
+C,

because fm \leq C := sup log | T \prime | and fm(c) = - m. Therefore
\int 
log | T \prime | d\mu n \rightarrow  - \infty as n \rightarrow \infty .

If c /\in \scrO , we can fix a neighborhood U \ni c given by (Ac) and split\int 
log | T \prime | d\mu n =

\int 
U
log | T \prime | d\mu n +

\int 
Uc

log | T \prime | d\mu n.

The first term is bounded by \| log | T \prime | \| 1 supU hn and vanishes as n \rightarrow \infty by (Ac), while
the second one converges to

\int 
log | T \prime | d\mu by Proposition 4.5 (approximate log | T \prime | 1Uc with a

suitable continuous function).

The following example illustrates Corollary 4.11.

Example B.9. Denote \{ x \in I | | T \prime (x)| \leq 1\} = [m,M ] and \=\Delta := supx\in I T (x) + s(x). If
T (x) - s(x) > min\{ x,m\} for all x \in (0, \=\Delta ], then, arguing as in the proof of Lemma B.4, one
can show that any continuous stationary measure \mu has supp \mu \subset [m, \=\Delta ]. So if, moreover,
\=\Delta \leq M , then \Lambda < 0. Following the classification given in Appendix A.1, let us consider
the case T (c) < c, where the map T exhibits a globally attracting fixed point. In this case,
the conditions above will be satisfied if s(x) is small enough; in other words, the stationary
measure will be supported in a neighborhood of the fixed point, where | T \prime (x)| \leq 1, leading
to the negative Lyapunov exponent. For other cases, we provide some numerical examples in
section 5.2.

B.6. Proof of Theorem 4.12.
Proof. Fix an exhaustion of \Theta by nested compact sets \Theta \iota and set \~\Theta \iota := \Theta \iota \cap \~\Theta . It is

enough to prove that the mapping \~\Theta \iota \ni \theta \mapsto \rightarrow \Lambda \theta \in \BbbR is continuous on each \~\Theta \iota , and from now
on we fix one of them. As we showed in Lemma B.4, for each \theta \in \Theta , supp \mu \theta \subset I\varepsilon \theta = [\varepsilon \theta ,1 - \varepsilon \theta ],
and since \varepsilon \theta can be shown to depend continuously on \theta , we can find a single \varepsilon > 0 that works
for all \theta \in \Theta \iota .

Given \theta , \theta \prime \in \~\Theta \iota we can write

| \Lambda \theta  - \Lambda \theta \prime | =
\bigm| \bigm| \bigm| \int log | T \prime 

\theta | h\theta dx - 
\int 

log | T \prime 
\theta \prime | h\theta \prime dx

\bigm| \bigm| \bigm| 
\leq 
\int 

| log | T \prime 
\theta | | | h\theta  - h\theta \prime | dx+

\int 
| log | T \prime 

\theta |  - log | T \prime 
\theta \prime | | h\theta \prime dx.(B.8)
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 633

To bound the second term in (B.8), first notice that, by Lemma B.1,

\| h\theta \prime \| \infty \leq \| h\theta \prime \| BV = \| \scrL \theta \prime h\theta \prime \| BV \leq C\| h\theta \prime \| 1 =C,

where

C = 1+ sup
\theta \in \Theta \iota 

sup
x\in I\varepsilon 

| p\theta (x, \cdot )| TV \leq 1 + sup
\theta \in \Theta \iota 

sup
x,y\in I\varepsilon 

\bigm| \bigm| \bigm| \bigm| \partial p\theta \partial y (x, y)

\bigm| \bigm| \bigm| \bigm| <\infty 

is finite, because \partial p\theta 

\partial y (x, y) is continuous and \Theta \iota \times I2\varepsilon is compact. The second term is thus

bounded by C\| log | T \prime 
\theta |  - log | T \prime 

\theta \prime | \| 1 and, by Lemma B.11 below, goes to 0 as \theta \prime \rightarrow \theta .
We now estimate the first term in (B.8). Since log | T \prime 

\theta | \in L1, it is enough to bound
\| h\theta  - h\theta \prime \| \infty which is again dominated by \| h\theta  - h\theta \prime \| BV . By invariance,

\| h\theta  - h\theta \prime \| BV = \| \scrL k
\theta h\theta  - \scrL k

\theta \prime h\theta \prime \| BV \leq \| \scrL k
\theta (h\theta  - h\theta \prime )\| BV + \| (\scrL k

\theta  - \scrL k
\theta \prime )h\theta \prime \| BV .

As we said in Remark B.3, the Markov operator \scrL \theta enjoys the exponential bound

\| \scrL k
\theta f\| BV \leq C\theta \zeta 

k
\theta \| f\| BV

for all k > 0 and f \in BV supported on I\varepsilon with
\int 
fdx = 0, where the constants C\theta > 0,

0< \zeta \theta < 1, depend on the parameter \theta . Since h\theta  - h\theta \prime has zero mean, we therefore have

\| \scrL k
\theta (h\theta  - h\theta \prime )\| BV \leq C\theta \zeta 

k
\theta \| h\theta  - h\theta \prime \| BV .

Then

(1 - C\theta \zeta 
k
\theta )\| h\theta  - h\theta \prime \| BV \leq \| (\scrL k

\theta  - \scrL k
\theta \prime )h\theta \prime \| BV ,

and for k sufficiently large, C\theta \zeta 
k
\theta < 1. By a standard trick, expanding a telescopic sum

\scrL k
\theta  - \scrL k

\theta \prime =
\sum k

j=1\scrL 
k - j
\theta (\scrL \theta  - \scrL \theta \prime )\scrL j - 1

\theta \prime , we get

\| (\scrL k
\theta  - \scrL k

\theta \prime )h\theta \prime \| BV \leq 
k\sum 

j=1

\| \scrL k - j
\theta (\scrL \theta  - \scrL \theta \prime )h\theta \prime \| BV

\leq 
k\sum 

j=1

C\theta \zeta 
k - j
\theta \| (\scrL \theta  - \scrL \theta \prime )h\theta \prime \| BV \leq C\theta 

1

1 - \zeta \theta 
\| (\scrL \theta  - \scrL \theta \prime )h\theta \prime \| BV .

Combining the above inequalities we come to the following estimate:\int 
| log | T \prime 

\theta | | | h\theta  - h\theta \prime | dx\leq M\theta \| (\scrL \theta  - \scrL \theta \prime )h\theta \prime \| BV ,

where M\theta =
C\theta \| \mathrm{l}\mathrm{o}\mathrm{g} | T \prime 

\theta | \| 1

(1 - \zeta \theta )(1 - C\theta \zeta k
\theta )
. It therefore remains to bound \| (\scrL \theta  - \scrL \theta \prime )h\theta \prime \| BV . Since both h\theta \prime 

and (\scrL \theta  - \scrL \theta \prime )h\theta \prime are supported on I\varepsilon and \| h\theta \prime \| \infty \leq C, we have

\| (\scrL \theta  - \scrL \theta \prime )h\theta \prime \| 1 =
\int 
I\varepsilon 

\int 
I\varepsilon 

| p\theta (x, y) - p\theta \prime (x, y)| h\theta \prime (x)dxdy\leq M1\| \theta  - \theta \prime \| ,
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634 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

where M1 = C sup\theta \in \Theta \iota 
supx,y\in I\varepsilon \| \nabla \theta p\theta (x, y)\| is finite because \nabla \theta p\theta (x, y) is continuous and

\Theta \iota \times I2\varepsilon is compact. Similarly, arguing as in the proof of Lemma B.1, we get

| (\scrL \theta  - \scrL \theta \prime )h\theta \prime | TV \leq 
\int 
I\varepsilon 

| p\theta (x, \cdot ) - p\theta \prime (x, \cdot )| TV h\theta \prime (x)dx\leq M2\| \theta  - \theta \prime \| 

with M2 = C sup\theta \in \Theta \iota 
supx,y\in I\varepsilon \| \nabla \theta 

\partial p\theta 

\partial y (x, y)\| < \infty . Therefore, the first term in (B.8) is

bounded by M\theta (M1 +M2)\| \theta  - \theta \prime \| . This finishes the proof.

Remark B.10. Clearly, the above proof works if we replace log | T \prime | with any continuous
function. Therefore, the mapping \~\Theta \ni \theta \mapsto \rightarrow \mu \theta \in \scrM is continuous with respect to the weak-*
topology on \scrM , i.e., \~\Theta \ni \theta \mapsto \rightarrow 

\int 
\varphi \mu \theta \in \BbbR is continuous for any \varphi \in C0(I). Theorem 4.12 is

more delicate, however, because log | T \prime 
\theta | is neither continuous nor bounded and also depends

on \theta .

Lemma B.11. \| log | T \prime 
\theta |  - log | T \prime 

\theta \prime | \| 1 \rightarrow 0 as \theta \prime \rightarrow \theta .

Proof. First notice that the critical point c\theta of the map T\theta depends continuously on the
parameter \theta \in \Theta . Indeed, since T \prime 

\theta is continuous on \Theta \times I, the set \{ (\theta , c\theta )\} = (T \prime 
\theta )

 - 1(\{ 0\} ) is
closed, and then the map \Theta \ni \theta \mapsto \rightarrow c\theta \in I is continuous by the closed graph theorem.

The functions log | T \prime 
\theta | and log | T \prime 

\theta \prime | have logarithmic singularities at c\theta and c\theta \prime , respectively.
We will show that these singularities cancel out as c\theta \prime approaches c\theta . As in the proof of
Theorem 4.12, we may assume that \theta , \theta \prime \in \Theta \iota , where \Theta \iota is compact.

Let \alpha := sup\theta \in \Theta \iota 
| T \prime \prime \prime 

\theta | . As a direct consequence of the mean value theorem,

(| T \prime \prime 
\theta (c\theta )|  - 2\alpha \delta )| x - c\theta | \leq | T \prime 

\theta (x)| \leq (| T \prime \prime 
\theta (c\theta )| + 2\alpha \delta )| x - c\theta | 

for all | x  - c\theta | \leq 2\delta , and the same inequality holds if we replace \theta with \theta \prime . Set D\pm 
\delta :=

| T \prime \prime 
\theta (c\theta )| \pm 3\alpha \delta ; bothD+

\delta andD - 
\delta are positive, since T\theta has quadratic critical point (T

\prime \prime 
\theta (c\theta )< 0).

If \theta \prime is sufficiently close to \theta , then | c\theta  - c\theta \prime | < \delta /2 and | T \prime \prime 
\theta (c\theta )  - T \prime \prime 

\theta (c\theta \prime )| < \delta , and for all
| x - c\theta | \leq \delta we then simultaneously have

D - 
\delta | x - c\theta | \leq | T \prime 

\theta (x)| \leq D+
\delta | x - c\theta | ,

D - 
\delta | x - c\theta \prime | \leq | T \prime 

\theta \prime (x)| \leq D+
\delta | x - c\theta \prime | ,

and hence

| log | T \prime 
\theta |  - log | T \prime 

\theta \prime | | \leq log
D+

\delta 

D - 
\delta 

+
\bigm| \bigm| \bigm| log | x - c\theta | 

| x - c\theta \prime | 

\bigm| \bigm| \bigm| .
Given \varepsilon > 0 and \theta \in \Theta \iota , we first fix \delta > 0 such that log

D+
\delta 

D - 
\delta 

< \varepsilon 
3 and then let \theta \prime \rightarrow \theta . The

integral of the second term is elementary and vanishes as c\theta \prime \rightarrow c\theta , so
\int 
B\delta (c\theta )

| log | x - c\theta | 
| x - c\theta \prime | | dx<

\varepsilon 
3 ,

provided \theta \prime and \theta are sufficiently close, and

(B.9)

\int 
B\delta (c\theta )

| log | T \prime 
\theta |  - log | T \prime 

\theta \prime | | dx<
2\varepsilon 

3
.

Let us show that log | T \prime 
\theta |  - log | T \prime 

\theta \prime | \rightarrow 0 uniformly on B\delta (c\theta )
c. Denote \beta :=

infx\in B\delta (c\theta )c | T \prime 
\theta (x)| > 0. We have \| T \prime 

\theta  - T \prime 
\theta \prime \| \infty \leq M\| \theta  - \theta \prime \| , where M = sup\theta \in \Theta \iota ,x\in I \| \nabla \theta T

\prime 
\theta (x)\| .
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 635

Therefore infx\in B\delta (c\theta )c | T \prime 
\theta \prime (x)| > \beta 

2 if \| \theta  - \theta \prime \| < \beta 
2M . Consequently, | log | T \prime 

\theta |  - log | T \prime 
\theta \prime | | <

2M
\beta \| \theta  - \theta \prime \| , and for \| \theta  - \theta \prime \| < \varepsilon \beta 

6M we have

(B.10)

\int 
B\delta (c\theta )c

| log | T \prime 
\theta |  - log | T \prime 

\theta \prime | | dx<
\varepsilon 

3
.

Combining (B.10) with (B.9) we finally get \| log | T \prime 
\theta |  - log | T \prime 

\theta \prime | \| 1 < \varepsilon .

B.7. Random Lyapunov exponent and random entropy. In (4.1) we used the derivative
of the deterministic map only. Alternatively, if we define the process using the random trans-
formations (3.11), we are led to compute the Lyapunov exponent of the cocycle given by the
derivative computed along the random orbit, namely we define the RLE \=\Lambda as

(B.11) \=\Lambda := lim
n\rightarrow \infty 

1

n
log | D(T\eta n

\circ \cdot \cdot \cdot \circ T\eta 1
)(x)| 

for almost every sequence (\eta k) \in [0,1]\BbbN with respect to the measure Leb\otimes \BbbN (see section 3.4)
and almost every x \in I with respect to the stationary measure \mu n. By using the notation
introduced in section 3.4, \=xk(x) := T\eta k

\circ \cdot \cdot \cdot \circ T\eta 1
(x), with \=x0(x) = x, formula (B.11) is equal

to

(B.12) \=\Lambda = lim
n\rightarrow \infty 

1

n

n\sum 
k=1

log | T \prime 
\eta k
(\=xk - 1)| ,

again for Leb\otimes \BbbN -a.e. (\eta k)\in [0,1]\BbbN and \mu n-a.e. x\in I. By using the ergodic theorem for random
transformations (see [48] or [7, section 3.1]), we have that

\=\Lambda =

\int 
log | T \prime 

\eta (x)| d\mu n(x)d\eta .

Notice that if we compare this random exponent with \Lambda , we see that the difference between
the two is bounded by

| \Lambda  - \=\Lambda | \leq 
\int 

| log | T \prime 
\eta (x)|  - log | T \prime (x)| | d\mu n(x)d\eta .

By using expression (3.15) for T\eta , we can bound the error term in a more explicit way as

| \Lambda  - \=\Lambda | \leq 
\int \bigm| \bigm| \bigm| \bigm| log\bigm| \bigm| \bigm| 1 + \~qn(\eta )\sigma 

\prime (x)

T \prime (x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| hn(x)dxd\eta .

Since \sigma \prime is bounded over I\varepsilon ,\Gamma , log | T \prime | \in Lp, p\geq 1, and finally \| hn\| q \leq Cq for all n, we have

| \Lambda  - \=\Lambda | \leq Cq

\int \bigm\| \bigm\| \bigm\| \bigm\| log\bigm| \bigm| \bigm| 1 + \~qn(\eta )\sigma 
\prime 

T \prime 

\bigm| \bigm| \bigm| \bigm\| \bigm\| \bigm\| \bigm\| 
p

d\eta .

We expect that this error converges to zero for large n, since the quantile function converge
to zero almost everywhere. Table 1 shows that, in fact, the error remains very small even for
small values of n.
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636 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

It is known that whenever the RLE (B.11) is positive, then it equals the random entropy ,
which is the random generalization of the Kolmogorov--Sinai entropy: this equality is called the
entropy formula. Roughly speaking, the random entropy computes the limit of the Shannon
entropy of the joint partition generated by the successive application of the backward images
of the random maps on an initial generating partition, aka the entropy rate. We defer to [48,
Theorem 1.3] for the precise definition and [7, Theorem 3.2] for the connection with the RLE.
What is important for us is that the random entropy coincides with the much easier object
which is the RLE when the latter is positive.

In Corollary 4.11 we proved that the Lyapunov exponent (4.1) may be negative, and there
is strong numerical evidence that the RLE (B.12) is also negative for certain parameters; see
section 5.2. By assuming that the RLE is negative or zero, we then get that the random
entropy is also zero, by using another important result connecting entropy and Lyapunov
exponents, namely the Margulis--Ruelle inequality (see, for instance, [66]), which states that
the metric entropy is bounded by the maximum between zero and the sum of the positive
Lyapunov exponents. The random version of this inequality, which we use, has been proved
by Kifer in [48, Theorem 1.4].

We should now stress the interesting fact that although the entropy is zero, the Markov
chain mixes exponentially fast , as we pointed out in Remark B.3. This means that for any ob-
servables f \in L1, g \in BV the correlations

\int 
(\scrL k

nf)(x)g(x)dx converge to
\int 
f(x)d\mu n(x)

\int 
g(x)dx

exponentially fast when k\rightarrow \infty . This result can be stated in a more suggestive way by relying
on random transformations. By using the notation introduced in section 3.4, we can in fact
rewrite the previous correlation in terms of composition of randomly chosen maps and say
that there exist 0< v < 1 and C > 0, depending only on the system, such that, for all k\geq 0,\bigm| \bigm| \bigm| \bigm| \int \int f(x)g(T\eta k

\circ \cdot \cdot \cdot \circ T\eta 1
(x))d\eta dx - 

\int 
fd\mu n

\int 
g(x)dx

\bigm| \bigm| \bigm| \bigm| \leq Cvk\| f\| 1\| g\| BV .

This exponential decay of correlations is a consequence of the spectral gap prescribed by the
quasi-compactness of the Markov operator proved in Proposition B.2 and of the uniqueness of
the absolutely continuous stationary measure (see [11] for details); of course these properties
hold even when the Lyapunov exponent is negative or zero.

Appendix C. Details on the CNN's architectures. The architectures of CNN1 and
CNN2(k) used in section 6 are schematized in Figure 12. In particular the only difference
between CNN1 and CNN2(k) is on the dimension of the final layer (three and two, respec-
tively) and on the loss (categorical cross-entropy and mean squared error, respectively). In
general, a convolutional layer is composed of nf filters and each filter is associated with one
kernel that is applied to a small moving window of the time series; for instance, in our first
convolutional layer (indicated by Conv1D in Figure 12) nf = 128 and all the windows are of
width 2 (this number is not displayed in the standard Python output). The outputs of one
convolutional layer are connected to the next layer. The weights of these connections consti-
tute the NN parameters to be optimized. After seven convolutions, the output is passed to a
sequence of dense layers, which concludes the NN. We use the rectified linear unit function as
the activation function.

Now, we describe the experimental setup. The implementation is carried out in Python.
To generate training and testing data we simulate one million samples. CNN1 is optimized
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 637

Model CNN1: "convolutional_categorical_model"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

reshape (Reshape) (None, 59, 1) 0

_________________________________________________________________

conv1d_1 (Conv1D) (None, 58, 128) 384

_________________________________________________________________

conv1d_2 (Conv1D) (None, 29, 64) 16448

_________________________________________________________________

conv1d_3 (Conv1D) (None, 15, 64) 8256

_________________________________________________________________

conv1d_4 (Conv1D) (None, 8, 64) 8256

_________________________________________________________________

conv1d_5 (Conv1D) (None, 4, 64) 8256

_________________________________________________________________

conv1d_6 (Conv1D) (None, 2, 64) 8256

_________________________________________________________________

conv1d_7 (Conv1D) (None, 1, 64) 8256

_________________________________________________________________

flatten (Flatten) (None, 64) 0

_________________________________________________________________

dense_1 (Dense) (None, 128) 8320

_________________________________________________________________

dense_2 (Dense) (None, 64) 8256

_________________________________________________________________

dense_3 (Dense) (None, 3) 195

=================================================================

Trainable params: 74,883

Model CNN2: "convolutional_model"

...

_________________________________________________________________

dense_3 (Dense) (None, 2) 130

=================================================================

Trainable params: 74,818

Figure 12. Architectures of the CNN1 model (Model CNN1) used to estimate the iterate k and the CNN2(k)
model (Model CNN2) used to estimate the parameters (\phi \ast , \omega ) for each k. The two models differ only in the
output layer. Layer (type) indicates the type of the employed layer (precisely, Conv1D indicates the usage of
a one-dimensional convolution layer, Dense indicates the usage of a dense layer). Output Shape indicates the
output shape of the layers, with None indicating that we do not perform batching. Finally, Param \# indicates
the number of layer's parameters.

with the stochastic gradient descent method by using the Adam algorithm [49], the categorical
cross-entropy as the loss function, and the accuracy as a metric, with an L2 regularization
of weights equal to 10 - 7. Instead, to optimize CNN2 we use the mean squared error (MSE)
both as the loss function and as the metric, again with an L2 regularization of weights equal
to 10 - 7. The batch size is 32 in both cases. The seven convolutional and three dense layers
have a total of 74,818 trainable parameters.

We point out that different CNN models with different ranges for layers, dense units, and
CNN filters were tested, but they gave us a lower accuracy and a bigger MSE with respect to
the one selected. For the sake of space, we do not report all the experimented architectures;
the results and the Python code are available from the authors upon request. Finally, the
L2 regularization (hyper-)parameter has been chosen as part of the training process by using
the validation set as that value for which the validation MSE stops decreasing. For instance,
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638 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

Figure 13. The training MSE and the validation MSE as a function of the regularization factor for CNN1.

Figure 13 shows the training MSE and the validation MSE as a function of the regularization
factor for CNN1.

Appendix D. The chaos decision tree algorithm. The CDTA [71] is a nonparametric
chaos-detection tool which has been developed with the goal of being especially robust to
measurement noise. It provides an automated processing pipeline which has been shown to
be able to detect the presence (or absence) of chaos in noisy recordings, even for difficult edge
cases. We use it in our work to identify periodic/chaotic time series without any reference
to our model. It is meant to provide an independent check on the existence of chaotic be-
havior in leverage time series and to support the evidence that it may depend on the bank's
size.

The algorithm classifies a time series as either stochastic or periodic, or chaotic. We now
briefly explain how the algorithm works. The first step is to test if data are stochastic. This
is done via a surrogate-based approach by comparing the permutation entropy of the original
time series to the permutation entropy of random surrogates of that time series by using a
combination of amplitude adjusted Fourier transform surrogates and cyclic phase permutation
surrogates. If the permutation entropy of the original time series falls within either surrogate
distribution, the time series is classified as stochastic. If the permutation entropy falls outside
the surrogate distribution, then the algorithm proceeds to denoise the inputted signal by
using the Schreiber's noise-blackuction algorithm [67]. Notice that the calculation of the
permutation entropy relies on two parameters: the permutation order and the time-lag. The
time-lag has been set to 1 as suggested in [71]. The choice of the order of the permutation is
made in order to maximize the detection of chaotic series in our model.

To test the CDTA algorithm on our model, we first consider the deterministic map and
generate 100 chaotic and 100 periodic time series of length 59 from the dynamical core. We
then apply CDTA to these series for different values of the permutation order (\in \{ 3, . . . ,8\} ).
While the periodicity accuracy is maximized for a value equal to 8 (92\% of the periodic
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BANK LEVERAGE VIA DYNAMICAL SYSTEMS AND DNNs 639

Table 4
Percentage of time series detected by the CDTA as stochastic (S), periodic (P), and chaotic (C) in the

dynamical core and its complement as a function of the time series length and n for different iterates of the
map.

Iterate Series n Dynamical core Not dynamical core
length S (\%) P (\%) C (\%) S (\%) P (\%) C (\%)

1 5 33.5 5.14 61.4 57.4 4.81 37.7
59 20 29.3 4.28 66.5 69.9 3.28 26.8

100 24.3 6.99 69.6 88.1 2.94 8.97
5 2.2 1.7 96.1 22.5 6.24 71.2

295 20 0.1 1.9 98 43.8 10.4 45.8
100 0 2.3 97.7 73.8 8.35 17.9
5 0 0.7 99.3 13.1 6.08 80.9

590 20 0 0.4 99.6 33.6 8.5 57.9
100 0 0.4 99.6 66.4 8.04 25.6
5 0 0.1 99.9 10.9 3.44 85.6

1180 20 0 0 100 27.7 5.57 66.8
100 0 0 100 60.2 5.29 34.5

2 5 75.7 2.17 22.2 83.8 1.33 14.9
59 20 80.1 1.65 18.2 92.8 0.26 6.91

100 86.6 1.43 11.9 96.6 0.56 2.81
5 39.4 0 60.6 40.5 3.26 56.2

295 20 38.6 0.6 60.8 70 3.7 26.3
100 21 1.2 77.8 83.9 2.96 13.1
5 27.6 0 72.4 25.6 3.23 71.2

590 20 10.6 0 89.4 52.3 4.24 43.4
100 4.8 0.6 94.6 74.7 2.88 22.4
5 11 0 89 13.7 2.22 84.1

1180 20 0.2 0 99.8 39.4 2.82 57.7
100 0.2 0 99.8 64.1 2.24 33.7

3 5 85.3 0.47 14.2 83.9 1.33 14.9
59 20 84.5 1.17 14.3 92.8 0.26 6.91

100 89.5 1.43 8.79 96.6 0.56 2.81
5 36 0 64 40.5 3.26 56.2

295 20 32.6 0.4 67 70 3.7 26.3
100 23 1.6 75.4 83.9 2.96 13.1
5 20.6 0 79.4 25.6 3.23 71.2

590 20 9.6 0 90.4 52.3 4.24 43.4
100 9.4 0.8 89.8 74.7 2.88 22.4
5 6 0 94 13.7 2.22 84.1

1180 20 2 0 98 39.4 2.82 57.7
100 2.8 0.8 96.4 64.1 2.24 33.7

series are correctly detected as such and the remaining 8\% are labeled chaotic), the chaos
detection accuracy is maximized for a choice of the permutation order equal to 5 (65\% of
the series are correctly detected as chaotic and the remaining periodic). Because of the
purpose of this paper, we fix the permutation order to 5, but we have checked that the con-
clusions of our data analysis (in particular Table 4) would have been the same with a different
choice.
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640 LILLO, LIVIERI, MARMI, SOLOMKO, AND VAIENTI

At this point, the algorithm checks for signal oversampling and, if the data are oversam-
pled, the algorithm iteratively down-samples the data until they are no longer oversampled.
Finally, CDTA performs the 0-1 chaos test [43] on the input data. Reference [71] points out
that the 0-1 chaos test has been modified from the original one to be less sensitive to noise.
Then, it suppresses the correlations arising from quasi-periodicity and normalizes the standard
deviation of the test signal. The value for the parameter that suppresses signal correlations
is chosen based on ROC analyses. The modified 0-1 test provides a single statistic, K , which
approaches 1 for chaotic systems and approaches 0 for periodic systems. The algorithm sets
up a cutoff for K based on the length of the time series. If K is greater than the cutoff, the
data are classified as chaotic, and if they are smaller than or equal to the cutoff, they are
classified as periodic.

Simulations. In this section we present some numerical investigations showing how CDTA
performs when simulating (noisy) time series from the map described in section 3.3. Specifi-
cally, we run the following two numerical experiments:

(i) First, we simulate time series from the dynamical core area (i.e., time series for which
the pairs (\phi \ast , \omega ) satisfy condition (C3): T (\Delta ) < c < \Delta < 1). More precisely, we
simulate 500 samples of different lengths and level of noise, which is captured by the
variable n.

(ii) Second, we simulate time series from outside the dynamical core area (the map T thus
satisfies (C1) or (C2)). The remaining simulation setting coincides with that in (i).

The procedures explained in (i)--(ii) are also repeated when T is replaced by its kth iterate
T k, k = 2,3; see the discussion in section 6. Table 4 collects the results. We observe that
when both n and the time series length are large, CDTA classifies almost all the time series in
the dynamical core as chaotic, while those outside it are never classified as such. This is quite
independent on k. By decreasing either n or the time series length, the classification is less
precise and this effect is stronger for larger values of k. In the regime of length comparable
with our empirical data (N = 59), roughly a third (for k = 1) or up to 85\% (for k = 3) of the
time series in the dynamical core are classified as stochastic, showing the limits of the CDTA
when the time series are short and/or the noise is large.

Acknowledgment. S.V. thanks C. Gonzalez-Tokman for useful discussion about subsec-
tion 3.4.
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