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ABSTRACT

In this paper we deal with the notion of singquandles introduced in [CEHN17]. This is an algebraic
structure that naturally axiomatizes Reidemeister moves for singular links, similarly to what happens for
ordinary links and quandles. We present a new axiomatization that shows different algebraic aspects and
simplifies applications. We also reformulate and simplify the axioms for affine singquandles (in particular
in the idempotent case).
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1. Introduction

Singular knot theory was introduced in 1990 by Vassiliev [Vas90] as an extension of classical knot

theory allowing also immersions of S1 → S3 with singularities; the aim was to get information on

knots by studying the space of all their isotopy classes. Singular knots gave rise to a decreasing

filtration on the infinite dimensional vector space generated by isotopy classes of knots. Together

with the introduction of this extension, the notion of finite type (or Vassiliev) invariants, as invari-

ants vanishing on some step of this filtration, was introduced producing a new point of view on

knot theory. Since then, many knot invariants, as well as different knot representations and tech-

niques have been extended to singular knots and links (see for example [Bir93,Fie10]). Recently,

in [CEHN17], a singular link invariant having the form of a binary algebraic structure and called

singquandle, was defined; as the name suggests, this structure extends to the singular case the

quandle invariant for classical links. Quandles, or distributive groupoids, were introduced in the

1980s by Joyce [Joy82] and, independently, by Matveev [Mat82]: the fundamental quandle Q(L)

of a link L, axiomatizes the Reidemeister moves and it is a classifying invariant for prime knots.

Even if comparing quandles is as difficult as comparing links, as for the case of Vassiliev theory, the

introduction of quandles (and racks) in knot theory paved the way for the construction of new in-

variants and techniques. Moreover, beside the interest of quandles for knot theory, these structures

are relevant in many other areas, as theoretical physics, for the study of the Yang-Baxter equation

(see [AG03,ESS99,ESG01]) or abstract algebra itself (see [Sta15,BS21,BF21]). In [BEHY18] and

[CCE21] the singquandle construction is done for the oriented case, while in [NOS19] the notion

of psyquandles is introduced for the case of pseudoknots and singular knots and links as a gener-

alization of biquandle structures for classical and virtual links [FJSK04].

In this paper we deal with algebraic structures associated to singular links. More precisely,

we reformulate the definition of oriented and non-oriented singquandles, by using the language of

1
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binary operations: we simplify the axioms introduced in the above mentioned papers and we prove

the independence of our axioms. With this new definition we are able to prove some algebraic prop-

erties of these structures and to simplify some associated constructions as, for example, Alexander

singquandles introduced in [CEHN17] (in this paper we prefer the alternative terminology affine

singquandles).

Starting from our new reformulation of the oriented singquandles SQ(L) associated to a singular

link L, we remark that, if L̄+ (resp. L̄−) is the link obtained by replacing each singular crossing of

L with a positive (resp. negative) crossing, see the left (resp. right part) of Figure 9, then Q(L̄+)

(resp. Q(L̄−)) is a quotient of SQ(L). This could be a starting point to explore the connection

between SQ(L) and {Q(L̄i)}, with {L̄i}, being the set of all regular links obtained from L by

replacing a singular crossing with either a positive or negative crossing.

The definition of the (oriented) singquandle associated to a singular link is purely combinatorial.

We wonder if there is also a topological construction for such an object as for the fundamental

quandle for classical links [Joy82,Mat82] or alternatively for one of its proper quotients as for the

fundamental biquandle of a link [Hor19].

In Section 2 we recall all the algebraic notions that will be used in the rest of the paper, as

well as the definition of classical and singular links and their associated algebraic structures. In

Section 3 we analyze the oriented case, reformulating the definition of oriented singquandle, while

the non-oriented case is studied in Section 4. We conclude the paper by analyzing the case of affine

singquandles.

In the paper we sometimes use the software [McC10] to generate examples and non examples

of binary algebraic structures.

2. Preliminary results

2.1. Binary structures and right quasigroups

A binary operation · on a set X is a mapping

· : X ×X −→ X, (x, y) 7→ x · y

and a binary algebraic structure is a set X endowed with a set of binary operations. Let (X, ·) be

such a structure, the right multiplication by x ∈ X is the map defined by setting

Rx : y 7→ y · x

and the squaring mapping is the map defined as

σ : X −→ X, x 7→ x · x.

A (bijective) map f : X −→ X is said to be an endomorphism (automorphism) of (X, ·) if f(x·y) =

f(x) · f(y) for every x, y ∈ X. The group of automorphism of (X, ·) is denoted by Aut(X, ·).
The structure (X, ·) is a right quasigroup if Rx is a permutation for every x ∈ A. Clearly we

can define the right division associated to · as x/y = R−1y (x). Thus, for the scope of this paper, a

right quasigroup can be alternatively be defined as a binary algebraic structure (X, ·, /) such that

(x · y)/y = x = (x/y) · y.

Note that also (X, /, ·) is a right quasigroup. A right quasigroup (X, ·, /) is said to be:

(i) permutation if x · y = x · z holds;

(ii) idempotent if x · x = x holds;

(iii) involutory if (x · y) · y = x holds;

(iv) right distributive if (x · y) · z = (x · z) · (y · z) holds;
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(v) 2-divisible if σ is bijective

for all x, y, z ∈ X. Idempotent permutation right quasigroups satisfy the identity x · y = x · x = x

and they are called projection. Idempotent right distributive right quasigroups are called (right)

quandle.

Given a right quasigroup (X, ·), the orbits with respect to the natural action of the group

RMlt(X, ·) = 〈Rx, x ∈ X〉 are called the connected components of (X, ·) and we say that (X, ·) is

connected if such group is transitive on X. Note that X is the union of the connected components

of its generators, therefore the following statement follows.

Lemma 2.1. Let (X, ·) be a right quasigroup generated by S ⊆ X. Then (X, ·) is connected if and

only if the element of S are in the same connected component.

Let (A,+) be an abelian group, f ∈ Aut(A,+), g ∈ End(A,+) and c ∈ A. The right quasigroup

(A, ·) defined by setting

x · y = f(x) + g(y) + c

is called affine right quasigroup over A. We denote such right quasigroup by Aff(A, f, g, c).

In the paper we usually deal with algebraic structure with two binary operations denoted by

(X, ·, ∗). In the sequel, we denote the operation · just by juxtaposition and the right multiplication

mappings by x ∈ X respectively by Rx : y 7→ y · x and by ρx : y 7→ y ∗ x.

2.2. S-right quasigroups

Let us introduce a class of right quasigroups that will be relevant in the present paper in connection

with coloring invariants of singular knots. The right quasigroups satisfying the identity

x/y = x(yx) (S)

will be called S-right quasigroups.

Lemma 2.2. Let (X, ·) be a binary algebraic structure. The following are equivalent:

(i) (X, ·) is a S-right quasigroup.

(ii) The identity

(yx)(x(yx)) = y (2.1)

holds.

(iii) The identity

(x(yx))y = x (2.2)

holds.

Proof. (i) ⇒ (ii) We have

y = (yx)/x
(S)
= (yx)(x(yx)).

(ii) ⇒ (iii) Using the identity (2.1) twice, we have

(x(yx))y = (x(yx))((yx)(x(yx))) = x.

(iii) ⇒ (ii) Using the identity (2.2) twice, we have

(yx)(x(yx)) = (y((x(yx))y))(x(yx)) = y.

(ii), (iii) ⇒ (i) Let us denote x • y = x(yx). The identities (2.1) and (2.2) read

(xy) • y = (x • y)y = x,
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therefore • is the right division with respect to ·.

It is easy to prove that the identity (S) is equivalent to

xy = x/(y/x). (S’)

Indeed, it is enough to replace y by y/x in order to get the identity (S’) from (S) and replace y by

yx conversely.

Proposition 2.3. Let (X, ·, /) be a right quasigroup. The following are equivalent:

(i) The map

ϕ : X ×X −→ X ×X, (x, y) 7→ (xy, y/x)

is an involution.

(ii) (X, ·, /) is a S-right quasigroup.

(iii) (X, /, ·) is a S-right quasigroup.

Proof. The items (ii) and (iii) are equivalent because of the previous remark.

(i) ⇔ (ii), (iii) Since

ϕ2(x, y) = ϕ(xy, y/x) = ((xy)(y/x), (y/x)/(xy))

then ϕ is an involution if and only if

(xy)(y/x) = x, (y/x)/(xy) = y,

hold. Namely (S) and (S’) hold.

Let t = s be an identity that follows from (S). According to Proposition 2.3, then also the iden-

tity t′ = s′ where · and / are interchanged follows. For instance the identity x = (x(y((x(yx))y)))y

is a consequence of (S) and so also x = (x/(y/((x/(y/x))/y)))/y holds for S-right quasigroups.

Let us show some examples of S-right quasigroups.

Example 2.4.

(i) Let (X, ·) be an involutory right quasigroup. Then (X, ·) is a S-right quasigroup if and

only if

x(yx) = xy (2.3)

holds. Thus, if Rx = Ry whenever x and y are in the same connected component of

(X, ·) the identity (2.3) is satisfied. For instance, involutory permutation right quasigroups

and 2-reductive involutory (right) quandles have such property (see [JPSZD15] for the

construction of such quandles).

(ii) Let X = Aff(A, f, g, c). Then X is an S-right quasigroup if and only if

fg2 + f2 − 1 = g + fgf = (f + fg + 1)(c) = 0. (2.4)

Then (A,+) has a Z[t, t−1, u]/(tut + u, t2 + tu2 − 1)-module structure. On the other

hand, given a module M over such ring, (M, ·) where

x · y = tx+ uy + c

is a S-right quasigroup if and only if (1 + t+ tu)c = 0 (e.g. c = 0).
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(iii) A quandle (Q, ·) is a S-right quasigroup if and only if

x = ((xy)x)y

holds. Let G be a group and Q be the conjugation quandle associated to G. Then Q is a

S-right quasigroup if and only if

[x, y2] = 1

holds, i.e. {y2 : y ∈ G} ⊆ Z(G) (G is also said to be 2-central).

(iv) A group (G, ·) is a right quasigroup and x/y = xy−1. Therefore, (G, ·) is a S-right quasi-

group if and only if

xy−1 = x(yx) ⇔ x = y−2

holds. Such an identity is satisfied only by the trivial group.

2.3. Regular and Singular links, quandles and singquandles

An oriented link in S3 is an embedding S1tS1t· · ·tS1 of µ disjoint copies of S1 in S3, together with

the choice of an orientation on every connected component. Each oriented link can be represented

by means of a regular diagram on a plane, that is a plane quadrivalent directed graph having

vertices colorated with overcrossing and undercrossing (see Figure 1). As oriented links in S3 are

Fig. 1. The two possible colorings of a vertex in a diagram of a link.

considered up to isotopy, their diagrams are considered up to planar isotopy (preserving colorings)

and the classical Reidemeister moves depicted in Figure 2.

A usual way to construct link invariants is to define them on diagrams in a way that en-

sure invariance under Reidemeister moves. With respect to this approach, algebraic invariants are

provided by quandles. Indeed, the axioms satisfied by a quandle structure, idempotency, the right-

quasigroup property and right-distributivity, correspond exactly to the Reidemeister moves. More

precisely given an non-empty set Q and a binary operation ∗, suppose to color each arc of a link di-

agram by an element of Q as depicted in Figure 3: requiring the invariance under the Reidemeister

moves, correspond to imposing the quandle axioms to the binary operation. So, to each oriented

link L we can associate a quandle Q(L), called fundamental quandle of L, by taking the quotient of

the free quandle generated by the arcs of a diagram of L modulo the crossing relations represented

in Figure 3. A coloring of a link by a quandle T is a quandle homomorphism f : Q(L) → T or

equivalently a coloring of the edges of a link diagram with elements of T such that the crossing

relations in Figure 3 are satisfied; so a quandle could color a link L if and only if it is a quotient

of the fundamental quandle of L.

Remark 2.5. Given a coloring of a link L by a quandle T , the colors (i.e. the elements of T ) that

color the edges within the same connected component of L are also within the same connected

component of T . Moreover, for a knot any pair of colors at an arbitrary crossing completely

determines the whole coloration. So, all quandles that color a knot diagram are 2-generated and

connected according to Lemma 2.1.
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Ω1a Ω1b

Ω2

Ω3

Fig. 2. The classical Reidemeister moves.

In [FR92], the fundamental quandle was introduced in a topological way using paths in the link

complement. Using this approach it is easy to see that the fundamental quandle in fact depends on

the orientation of the pair (S3, L): if both the orientation of the 3-sphere and that of the link L are

changed the quandle structure does not change, while if only one of them is changed the quandle

(Q(L), ·, /) and (Q(L′), /, ·) are isomorphic where Q(L′) is the fundamental quandle associated to

the pair with just one orientation reversed.

x y

y x ∗ y

x y

xy/x

Fig. 3. The coloring of crossings in the fundamental quandle.

The above way of reasoning could be generalized to the case of oriented singular links. An

oriented singular link is the immersion S1 t S1 t · · · t S1 of µ disjoint copies of S1 in S3, together

with the choice of an orientation on every connected component. Taking a combinatorial point

of view, an equivalent definition of a singular link is an equivalence class of plane quadrivalent

directed graphs having some vertices colorated with overcrossing and undercrossing, modulo the

equivalence relation generated by planar isotopy (preserving colorings) and the Reidemeister moves

depicted in Figure 2 and in Figure 4 (see [BEHY18]).

The colorated crossings are called regular crossing, and the others are called singular crossing.

The set of moves displayed in both Figures 2 and 4 are called singular Reidemeister moves. In

[BEHY18] an algebraic structure having three binary operations (∗, R1, R2), associated to a singular

link and generalizing the fundamental quandle associated to classical links, is constructed. It is

called the fundamental oriented singquandle and it is defined as follows.

Suppose to color the arcs of the diagram of a singular links as in Figure 5; as before, imposing
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Ω4a Ω4b

Ω5

Fig. 4. The Reidemeister moves for singular crossings.

x y

y x ∗ y

x y

xy/x

x y

R1(x, y) R2(x, y)

Fig. 5. The coloring of crossings of a singular diagram.

the invariance with respect to the classical Reidemeister moves implies that the operation ∗ is

a quandle, while the invariance under the other generalized Reidemeister moves, imposes some

further axioms (see Figure 6 for Ω5). After a suitable change of variables we can rewrite them as

R1(x, y) ∗ z = R1(x ∗ z, y ∗ z) (OS1)

R2(x, y) ∗ z = R2(x ∗ z, y ∗ z) (OS2)

(y ∗ x) ∗ z = (y ∗R1(x, z)) ∗R2(x, z) (OS3)

R1(x, y) ∗R2(x, y) = R2(y, x ∗ y). (OS4)

R2(x, y) = R1(y, x ∗ y) (OS5)

Ω5

x y

R2(x, y)R1(x, y)

R2(x, y) R1(x, y) ∗R2(x, y)

x y

y x ∗ y

R1(y, x ∗ y) R2(y, x ∗ y)

Fig. 6. The axioms associated to Ω5.

So we get the following definition.

Definition 2.6. [BEHY18] An oriented singquandle is a triple (X, ∗, R1, R2) where (X, ∗) is a

(right) quandle and

R1, R2 : X ×X −→ X
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such that (OS1), (OS2), (OS3), (OS4), (OS5) hold.

In [CCE21], the fundamental oriented singquandle SQ(L) associated to a singular link L is

defined as the quotient of the free singquandle generated by the arcs of any diagram of L modulo

the crossing relations represented in Figure 5. As for classical knots, colorings of a link L by an

oriented singquandle T correspond to morphisms from SQ(L) onto T .

Let us see what is going to happen if we forget about orientation: the quandle structure will be

involutive and the other two binary operations will have to respect a rotational symmetry. More

precisely, following [CEHN17], we get the following definition.

Definition 2.7. [CEHN17] Let (X, ∗) be an involutive quandle and let R1, R2 : X × X −→ X.

The triple (X, ∗, R1, R2) is called a singquandle if the following axioms hold:

x = R1(y,R2(x, y)) = R2(R2(x, y), R1(x, y)) (S1a)

y = R2(R1(x, y), x) = R1(R2(x, y), R1(x, y)) (S1b)

(R1(x, y), R2(x, y)) = (R2(y,R2(x, y)), R1(R1(x, y), x)) (S1c)

(y ∗ z) ∗R2(x, z) = (y ∗ x) ∗R1(x, z) (S2)

R1(x, y) = R2(y ∗ x, x) (S3)

R2(x, y) = R1(y ∗ x, x) ∗R2(y ∗ x, x) (S4)

R1(x ∗ y, z) ∗ y = R1(x, z ∗ y) (S5)

R2(x ∗ y, z) = R2(x, z ∗ y) ∗ y (S6)

Notice that the axioms (S1a), (S1b), (S1c) are those corresponding to a rotational symmetry

of π/2, π and 3/2π of the coloration of a singular crossing (see Figure 7); hence it is enough to set

the symmetry with respect to a rotation of π/2 degree and so set only the axiom

(R2(x, y), y) = (R1(R1(x, y), x), R2(R1(x, y), x)) . (S1)

R2(x, y) R1(x, y)

y = R1(R2(x, y), R1(x, y)) x = R2(R2(x, y), R1(x, y))

R1(x, y) x

R2(x, y) = R1(R1(x, y), x) y = R2(R1(x, y), x)

(b)(a)

y R2(x, y)

x = R1(y,R2(x, y)) R1(x, y) = R2(y,R2(x, y))

(c)

Fig. 7. Rotational simmetry and corresponding singquandle axioms.

The definition of fundamental singquandle associated to a (non-oriented) singular link is ana-

logue to the one of oriented singquandle.
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3. Oriented singquandles

In this section we deal with binary algebraic structure with several binary operations as (X, ·, ∗).
and both (X, ·) and (X, ∗) are right quasigroups. We denote by / the right division associated to ·
and by /∗ the right division associated to ∗.

If we set yx = R1(x, y) and we take (OS5) as the definition of R2 by · and ∗ as R2(x, y) = (x∗y)y,

we can rewrite Definition 2.6 as follows.

Definition 3.1. An oriented singquandle is a binary algebraic structure (X, ·, ∗) where (X, ∗) is a

(right) quandle and such that

(yx) ∗ z = (y ∗ z)(x ∗ z) (OS1’)

(x(yx)) ∗ z = (x ∗ z)((y ∗ z)(x ∗ z)) (OS2’)

(y ∗ x) ∗ z = (y ∗ (zx)) ∗ ((x ∗ z)z) (OS3’)

(yx) ∗ ((x ∗ y)y) = (y ∗ (x ∗ y))(x ∗ y) (OS4’)

It is clear that (OS1’) implies (OS2’), so we can omit (OS2’) from the definition of oriented

singquandles.

If (X, ·, ∗) satisfies the axioms in Definition 3.1, then (X, ∗, R1, R2) where R1(x, y) = y · x and

R2(x, y) = (x · y) ∗ y is an oriented singquandle in the sense of Definition 2.6. Thus, we stick to

Definition 3.1 as the definition of oriented singquandles.

Proposition 3.2. Let (X, ·, ∗) be a binary algebraic structure. The following are equivalent:

(i) (X, ·, ∗) is an oriented singquandle.

(ii) (X, ∗) is a quandle, ρx ∈ Aut(X, ·) and

ρxρy = ρ(y∗x)xρxy. (3.1)

for every x, y ∈ X.

(iii) (X, ∗) is a quandle and the following identities hold:

(xy) ∗ z = (x ∗ z)(y ∗ z), (3.2)

(z ∗ y) ∗ x = (z ∗ (xy)) ∗ ((y ∗ x)x). (3.3)

Proof.

The equivalence between (ii) and (iii) is straightforward. Let us show the equivalence between

(i) and (ii).

• The identity (OS1’) is equivalent to have that ρz ∈ Aut(X, ·) for every z ∈ X. In particular,

Rz and ρz commute: indeed ρzRz(x) = (xz) ∗ z = (x ∗ z)(z ∗ z) = (x ∗ z)z = Rzρz(x) for

every x ∈ X.

• The identity (OS3’) is equivalent to

ρxρy = ρ(y∗x)xρxy. (3.4)

• Using that ρx ∈ Aut(X, ·) and ρx∗y = ρyρxρ
−1
y , the identity (OS4’) can be written as

ρ(x∗y)yRx(y) = Rx∗yρx∗y(y) = ρyRxρ
−1
y ρyρxρ

−1
y (y) = ρyRxρx(y).

Then using (3.4) we have ρ(x∗y)y = ρyρxρ
−1
yx and so

ρ(x∗y)yRx(y) = ρyρxρ
−1
yx (yx) = ρyρxRx(y) = ρyRxρx(y)

holds since ρx and Rx commute. Therefore (OS4’) follows from (3.2) and (3.3).
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Let (X, ·, ∗) be a binary algebraic structure.

(i) If (X, ∗) is projection then (X, ·, ∗) is an oriented singquandle (the corresponding maps

are R1(x, y) = yx and R2(x, y) = xy). Therefore, given any binary structure (X, ·) we can

color the diagram of a singular knot as as in Figure 8.

x y

y x

x y

xy

x y

yx xy

Fig. 8.

(ii) If (X, ·) is a projection right quasigroup then ρx ∈ Aut(X, ·) = Sym(X) for every x ∈
X and (3.1) turns out to be right distributivity for (X, ∗) (the corresponding maps are

R1(x, y) = y and R2(x, y) = x ∗ y). Hence (X, ·, ∗) is an oriented singquandle for any

quandle (X, ∗) and we can color the diagram of a singular knot as in Figure 9.

x y

y x ∗ y

x y

xy/∗x

x y

y x ∗ y

Fig. 9.

Moreover, if L̄+ is the link obtained by replacing each singular crossing with the regular

crossing on the left of Figure 9, then Q(L̄+) is a quotient of SQ(L). Indeed the link L

is colorable by the oriented singquandle X generated by the arcs modulo the crossing

relations as in Figure 9 that is isomorphic to Q(L̄+) (the · operation in X is trivial and

the generators of X satisfy the very same relations satisfied by the generators of Q(L̄+)).

Therefore we have the canonical morphism

SQ(L) −→ X ∼= Q(L̄+)

that identifies the canonical generators.

(iii) Let (X, ∗) be a quandle. Then (X, /∗, ∗) is an oriented singquandle. Indeed clearly ρx ∈
Aut(X, /∗) = Aut(X, ∗) for every x ∈ X and

(y ∗ (z/∗x)) ∗ ((x ∗ z)/∗z) = (y ∗ (z/∗x)) ∗ x
= (y ∗ x) ∗ ((z/∗x) ∗ x)

= (y ∗ x) ∗ z,
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x y

y x ∗ y

x y

xy/∗x

x y

y/∗x x

Fig. 10.

i.e. (3.3) holds. In this case the crossing relations look like those in Figure 10.

Similarly to the previous case, if L̄− is the link obtained by replacing each singular

crossing with the regular crossing on the right of Figure 10, then Q(L̄−) is a quotient of

SQ(L).

The axioms in Proposition 3.2(iii) are independent, as we can see from the following computer

generated examples, computed by using Mace 4 [McC10].

• The binary algebraic structure (X, ·, ∗) where

(X, ·) =

1 1 1

1 2 3

3 3 3

, (X, ∗) =

1 3 1

2 2 2

3 1 3

,

satisfies (3.2) but not (3.3).

• The binary algebraic structure (X, ·, ∗) where

(X, ·) =

2 1 1

2 1 1

2 1 1

, (X, ∗) =

1 1 1

3 2 2

2 3 3

,

satisfies (3.3) but not (3.2).

4. Singquandles

Let (X, ∗, R1, R2) be a singquandle and let us define yx = R1(x, y) and, according to (S1),

R2(x, y) = R1(R1(x, y), x) = x(yx) (see Figure 11). Let us show Definition 2.7 in terms of identities

satisfied by · and ∗.

y = (yx)(x(yx)) (S1’)

(y ∗ z) ∗ (x(zx)) = (y ∗ x) ∗ (zx) (S2’)

yx = (y ∗ x)(x(y ∗ x)) (S3’)

x(yx) = (x(y ∗ x)) ∗ ((y ∗ x)(x(y ∗ x)) (S4’)

(z(x ∗ y)) ∗ y = (z ∗ y)x (S5’)

(x ∗ y)(z(x ∗ y)) = (x((z ∗ y)x)) ∗ y (S6’)

Proposition 4.1. Let (X, ·, ∗) be a binary algebraic structure. The following are equivalent:

(i) (X, ·, ∗) is a singquandle.

(ii) (X, ·) is a S-right quasigroup, x ∗ y = (xy)y and (X, ·, ∗) is an oriented singquandle.
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(iii) The following identities hold

(x(yx))y = x (4.1)

x ∗ y = (xy)y (4.2)

x ∗ x = x (4.3)

((xy)z)z = ((xz)z)((yz)z) (4.4)

(x ∗ z) ∗ y = (x ∗ (yz)) ∗ (z/y) (4.5)

Proof. Let us first point out some observations:

• According to Proposition 2.2, the identity (S1’) is equivalent to have that (X, ·) is a S-right

quasigroup.

• The identity (S2’) is equivalent to

ρzxρx(zx) = ρxρz. (4.6)

(i) ⇒ (ii) Using ρ2x = 1 and replacing x by x ∗ y in (S5’) we have

(z((x ∗ y) ∗ y)) ∗ y = (zx) ∗ y = (z ∗ y)(x ∗ y)

namely ρx ∈ Aut(X, ·). In particular, Rx and ρx commute.

Using that ρx ∈ Aut(X, ·) in (S3’) we have

yx = (y ∗ x)(x(y ∗ x)) = (y ∗ x)((x ∗ x)(y ∗ x)) = (y(xy)) ∗ x = (y/x) ∗ x.

Thus, Rx = ρxR
−1
x , i.e. ρx = ρ−1x = R2

x and so x ∗ y = (xy)y.

Using that (x ∗ z)z = x/z = x(zx) in (4.6) we have that (3.1) follows.

Therefore (X, ·, ∗) is an oriented singquandle according to Proposition 3.2.

(ii) ⇒ (iii) The mapping ρ2x ∈ Aut(X, ·) and so (4.4) holds. (X, ∗) is a quandle and so x ∗ x =

(xx)x = x. Finally (4.5) follows by (3.1) just by replacing the definition of ∗.
(iii) ⇒ (i) Let us first show that (X, ∗) is an involutory quandle. Since ρx ∈ Aut(X, ·) then

ρx ∈ Aut(X, ∗) and (X, ∗) is idempotent by (4.3). Thus (X, ∗) is a quandle.

Note that

(x/y)(yx)
(S)
= (x(yx))(yx) = x ∗ (yx), (4.7)

x/(yx)
(S)
= x((yx)x) = x(y ∗ x)

(4.3)
= (x ∗ x)(y ∗ x)

(4.4)
= (xy) ∗ x. (4.8)

Therefore we have

(x ∗ (yx)) ∗ (x/y)
(4.7)
= ((x/y)(yx)) ∗ (x/y)

(4.8)
= (x/y)/((yx)(x/y))

(S’)
= (x/y)/y. (4.9)

Finally, we have

x ∗ y (4.3)
= (x ∗ x) ∗ y (4.5)

= (x ∗ (yx)) ∗ (x/y)
(4.9)
= (x/y)/y.

Therefore ρy = R2
y = R−2y = ρ−1y , i.e. (X, ∗) is involutory.

Under this assumption (S5’) is equivalent to ρy ∈ Aut(X, ·) and (S6’) follows from the same

argument. Also (S3’) follows as in the first part of the proof, by using that ρx is an involutory

automorphism of (X, ·). The identity (S2’) is equivalent to (4.4) modulo the identity (4.2).

Let us check the identity (S4’). Indeed, using that y ∗x = (yx)x and that x/y = x(yx) we have

(x(y ∗ x)) ∗ ((y ∗ x)(x(y ∗ x)) = (x((yx)x)) ∗ ((y ∗ x)/x)

= (x/(yx)) ∗ (yx) = x(yx).

Singquandles are 2-divisible.

Corollary 4.2. Singquandles are 2-divisible and the squaring mapping is an involution.
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Proof.

Let (X, ·) be a singquandle and x ∈ X. It is enough to prove that σ2(x) = (xx)(xx) = x.

According to (4.3) we have xx = x/x. Hence by (S) it follows that

(xx)(xx)
(4.3)
= (xx)(x/x)

(S)
= x.

Note that the proof of Corollary 4.2 actually uses just (S) and (4.3), so also S-right quasigroups

such that (xx)x = x holds are 2-divisible.

The set of axioms given in Proposition 4.1(iii) is independent. We can consider singquandles as

a right quasigroup using (4.2) as the definition of ∗ and rewrite all the axioms accordingly as:

(x(yx))y = x, (4.10)

(xx)x = x, (4.11)

((xy)z)z = ((xz)z)((yz)z), (4.12)

(((xz)z)y)y = (((x(yz))(yz))(z/y))(z/y). (4.13)

Let us show that the axioms above are independent by examples generated by the software

Mace4:

• Involutory S-right quasigroups are singquandles. Indeed, if (X, ·) is involutory then (X, ∗)
is projection and so (4.11), (4.12) and (4.13) are trivially satisfied. The involutory right

quasigroup

(X, ·) =
2 1

1 2
,

does not satisfy (4.10).

• The right quasigroup

(X, ·) =

2 3 3 2

4 1 1 4

1 4 4 1

3 2 2 3

,

satisfies all the axioms but (4.11).

• The right quasigroup

(X, ·) =

1 4 6 1 1 1

3 2 2 3 3 3

2 3 3 2 2 2

4 1 5 5 5 4

5 6 4 4 4 5

6 5 1 6 6 6

,

satisfies all the axioms but (4.12).

• The right quasigroup

(X, ·) =

1 4 5 1 1

3 2 2 3 3

2 3 3 2 2

4 5 1 4 4

5 1 4 5 5

,

satisfies all the axioms but (4.13).
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Corollary 4.3. Let (X, ·) be right quasigroups. If (X, ·) is a singquandle then (X, /) is a singquan-

dle.

Proof. According to Proposition 2.3, (X, /) is a S-right quasigroup and so (4.10) hold for (X, /).

Note that we can write (4.12) and (4.13) in terms of the right multiplication mappings as

(4.12) ⇔ R2
x ∈ Aut(X, ·)

(4.13) ⇔ R2
yR

2
z = R2

z/yR
2
yz.

Thus, using that R4
z = 1 and Aut(X, ·) = Aut(X, /), we have

(xx)x = x ⇔ (x/x)/x = x,

R2
x ∈ Aut(X, ·) ⇔ R−2x ∈ Aut(X, /)

R2
yR

2
z = R2

z/yR
2
yz ⇔ R−2z R−2y = R−2yz R

−2
z/y,

namely all the axioms of singquandles hold for (X, /).

Note that the quandle associated to (X, ·) and to (X, /) is the same.

Finally, note that colorings of non-oriented singular links by singquandles are obtained as in

Figure 11.

x y

y (xy)y

x y

x(yx)x

x y

yx x(yx)

Fig. 11.

Note that, since singquandles are right quasigroups, Remark 2.5 holds also for such colorings.

4.1. Affine singquandles

Let us turn our attention to the family of affine singquandles.

Proposition 4.4. Let (X, ·) = Aff(A, f, g, c) be an affine right quasigroup. The following are

equivalent:

(i) (X, ·) is a singquandle.

(ii) The identities (S), (4.11) and (((xy)y)y)y = x hold.

(iii) The following identities hold:

fg2 + f2 − 1 = 0, (A1)

g + fgf = 0, (A2)

1− f4 = 0 (A3)

(1 + f)g = 1− f2 (A4)

(1 + f)(c) = g(c) = 0. (A5)

Proof. (i)⇒ (ii) According to Proposition 4.1, (S) and (4.12) hold and (X, ∗) where x∗y = (xy)y

is an involutory quandle. Then (x ∗ y) ∗ y = (((xy)y)y)y = x holds.



September 25, 2022 22:15 WSPC/INSTRUCTION FILE Singquandles˙revised2

On the axioms of singquandle 15

(ii) ⇒ (iii) We compute the conditions on f, g and c that need to be satisfied in order to have

that (S), (4.11) and (((xy)y)y)y = x hold.

• The identity (S) holds if and only if the identities (2.4) hold, i.e. (A1), (A2) and (1 + fg+

f)(c) = 0. hold.

• The identity (4.11) holds if and only if

(xx)x = c+ g(x) + f(c) + fg(x) + f2(x) = x,

namely

(1 + f)(c) = 0, (1 + f)g = 1− f2. (4.14)

Using the first equation of (4.14) and that (1 + fg + f)(c) = 0 we have that (1 + f)(c) =

g(c) = 0. Therefore, (A4) and (A5) hold.

• We have that ((xy)y)y)y = x if and only if

(((xy)y)y)y = (1 + f2)(1 + f)(c) + (1 + f2)(1 + f)g(y) + f4(x)

(A5)
= (1 + f2)(1 + f)g(y) + f4(x)

(A4)
= (1 + f2)(1− f2)(y) + f4(x)

= (1− f4)(y) + f4(x) = x

i.e. (A3) holds.

(iii) ⇒ (i) Let us prove that such conditions are sufficient for the other axioms of singquandles.

We have already showed that (S) and (4.11) are equivalent to the equations (A1), (A2), (A3), (A4)

and (A5). Let us check the other identities.

• Since

((xy)z)z = f2(c) + (g + fg)(z) + f2g(y) + f3(x)

((xz)z)((yz)z) = f2(c) + (g2 + gfg + fg + f2g)(z) + (gf2)(y) + f3(x),

the identity (4.12) holds if and only if

g = g2 + gfg + f2g, (4.15)

f2g = gf2 (4.16)

Since f4 = 1 then by (A2) we have

f2g = −fgf−1 = gf−2 = gf2.

Moreover

g2 + gfg + f2g − g (4.16)
= g2 + gfg + gf2 − g = g(g + fg + f2 − 1)

(A4)
= 0.

• It is easy to compute that

(((xz)z)y)y = (1− f2)(y − z) + x.

So we have

(((x(yz))(yz))(z/y))(z/y) = (1− f2)(z/y − yz) + x

= (1− f2)(f−1(z − g(y)− c)− c− g(z)− f(y)) + x

(A5)
= (1− f2)((f−1 − g)(z)− (f−1g + f)(y)) + x.
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Thus, the identity (4.13) holds if and only if

(1− f)(1 + f)(1 + f−1g + f) = 0

(1− f)(1 + f)(f−1 − g + 1) = 0

Using that (1 + f)g = 1− f2 and that 1− f4 = 0 we have

(1− f)(1 + f)(1 + f−1g + f) = (1− f)(1 + f + f3(1− f2) + f + f2)

= (1− f)(1 + f + f2 + f3) = 1− f4 = 0

(1− f)(1 + f)(f−1 − g + 1) = (1− f)(f3 + 1− (1− f2) + 1 + f)

= (1− f)(1 + f + f2 + f3) = 1− f4 = 0.

Thus the identity (4.5) holds.

The construction of Alexander singquandles given in [CEHN17, Proposition 4.3] defined as a

binary algebraic structure over an abelian group A using t, B ∈ Aut(A,+) by setting

x ∗ y = tx+ (1− t)y, R1(x, y) = (1 + t−B)x+ (t+B)y, R2(x, y) = (1−B)x+By,

provides exactly affine idempotent singquandles (the relation between f, g and B is g = B(1−B)

and f = B2−B+1 and the pair B and t satisfy 1−(1−B)4 = B(1+(1−B)2) = (1−B)2− t = 0).

It is easy to check that the affine right quasigroup Aff(A, f, g, c) is a idempotent if and only if

g = 1− f, c = 0. (4.17)

Note that idempotent affine right quasigroup are quandles and so (4.4) holds and according to

Example 2.4(iii), the identity (S) is equivalent to the identity ((xy)x)y = x. Thus, under the

assumptions (4.17) and using that 1 − f4 = (1 + f)(1 − f)(1 + f2) the identities in Proposition

4.4(iii) reduce to

(1− f)(1 + f2) = 0.

So, we have the following result.

Corollary 4.5. Let X = Aff(A, f, g, c) be an affine right quasigroup. The following are equivalent:

(i) X is an idempotent singquandle.

(ii) The identities xx = x and ((xy)x)y = x hold.

(iii) g = 1− f , (1− f)(1 + f2) = 0 and c = 0.

According to Corollary 4.5, affine idempotent singquandles are endowed with a module structure

over the ring R = Z[t, t−1]/((1− t)(1 + t2)). Conversely, every module M over R is an idempotent

affine singquandle with the operation

x · y = (1− t)x+ ty

for x, y ∈M . In particular, given an affine quandle Q = Aff(A, 1−f, f, 0) we can consider the right

quasigroup Q′ = Aff(A/
(
(1− f)(1 + f2)A

)
, 1 − f ′, f ′, 0) where f ′ is the automorphism induced

by f on the quotient group A/
(
(1− f)(1 + f2)A

)
. Then Q′ is a singquandle.
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