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Abstract
Models of two contestants exerting effort to win a prize are very common and widely
used in political economy. The contest success function plays as fundamental a role
in the theory of contests as does the production function in the theory of the firm, yet
beyond the existence of equilibrium few general results are known. This paper seeks
to remedy that gap.
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1 Introduction

Two themes of Nicholas Yannelis’s scientific work are the importance of fundamental
results of practical importance and the insistence that they not depend upon special
or arbitrary assumptions. So, for example, his work on the existence of competitive
equilibrium with large commodity spaces in Yannelis and Zame (1986) does not rest
upon arbitrary assumptions about preferences, but it does include the commodity
spaces which are important to economists. This paper is about political economy
rather than competitive equilibrium, but the analysis and results are in the spirit of
Nicholas Yannelis.
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Models of two contestants exerting effort to win a prize are common—and of par-
ticular importance in the political economy of conflict, such as voting or lobbying. A
key element of the analysis is the contest success function giving the probability of
winning as a function of the effort of the contestants. This function plays as funda-
mental a role in the theory of contests as do the production function and the revenue
function in the theory of the firm, yet beyond the existence of equilibrium few general
results are known. This paper seeks to remedy that gap.

Assumptions about the contest success function vary. In the all-pay auction the
greatest effort wins the prize. The widely used Tullock function supposes that the
chance of winning is proportional to effort. A great deal is known about the unique
mixed strategy equilibrium in the all-pay auction and a great deal is known about pure
strategy equilibria when they exist.1 However, equilibrium generally involves mixed
strategies and except in the case of the all-pay auction and some special cases such as
the Tullock function with linear costs very little is known about the structure of mixed
strategy equilibria. Here we address the basic question of when it is that lower cost of
effort results in greater success—that is a greater probability of winning or a greater
payoff—across equilibria and contest success functions.

In the spirit of Nicholas Yannelis we do not assume particular functional forms.
Rather, we allow general symmetric contest success functions of the type that are
important to economists including the possibility that there is a discontinuous proba-
bility ofwinningwhen there is a tie, andwe allow for general continuous cost functions
for which zero effort has no cost. Nash equilibria always exist: this follows from a fun-
damental result that Nicholas Yannelis developed together with Pavlo Prokopovych
in Prokopovych and Yannelis (2014). We take as our measure of success of a contes-
tant her equilibrium utility as a fraction of the prize—that is, how close the contestant
is to achieving the goal of winning the prize at no cost.

We observe first that when the contest success function is continuous and costs are
high enough, there will be a unique equilibrium in which neither contestant chooses to
provide any effort so that lower cost does not provide greater success. More generally,
we should be concerned that it might be the case—as it is in alternative models such as
the war of attrition—that there can be pre-emptive equilibria in which the higher cost
contestant provides a high effort and by doing so discourages the lower cost contestant.
Then, we prove three main results. First, there cannot be a pre-emptive equilibrium
in which the higher cost contestant has greater success. Second, a contestant with a
sufficiently great cost advantage alwayshas greater success.Third, if the cost advantage
is a homogeneous one, then the lower cost contestant always has greater success.

We also obtain more precise results if we impose all-pay auction like assumptions
on the contest success function. We show how the all-pay auction can be generalized
by allowing each contestant a fixed probability of winning regardless of effort. We
then introduce generalized convexity and insensitivity properties that apply to a much
broader class of contests than the all-pay auction but assume a homogeneous cost
advantage. In this case we show that the contest is payoff equivalent to the generalized
all-pay auction.

1 See the survey of Corchón (2007).
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We further study the robustness of equilibrium by proving a basic upper hemi-
continuity result. The underlying mathematics derives from the study of the conver-
gence of monotone functions on rectangles. This enables us to conclude, for example,
that contest success functions that converge pointwise to the all-pay auction do not
have pure strategy equilibria. More broadly it shows that greater success is a robust
property shared by neighboring contest success functions.

A fundamental result of Whitney (1934) enables us to approximate discontinuous
contest success functions by real analytic contest success functions. This is important
because most functional forms used by economists are real analytic. Remarkably, con-
sidering that little is known in general about the structure of mixed strategy equilibria
in games with a continuum of actions, we establish that when the contest success
function and costs are real analytic, the support of mixed strategy equilibria must be
finite. Hence, for example, if the contest success function is the normal cumulative
distribution applied to the difference in effort levels, and the variance decreases to
zero so that the contest success function approaches the all-pay auction and costs are
real analytic, then equilibria have finite support converging weakly in the limit to the
continuous uniform distribution that is the unique equilibrium of the all-pay auction.

2 Themodel

Two contestants j ∈ {1,−1} compete for a prize worth Vj > 0 to contestant j . Each
contestant chooses an effort level e j ≥ 0. The probability of contestant j winning the
prize is given by a contest success function 0 ≤ p(e j , e− j ) ≤ 1 that is symmetric in
the sense that it depends on the efforts of the two contestants and not on their names.

The contest success function is assumed to be continuous for e j �= e− j , non-
decreasing in e j , and itmust satisfy the adding-up condition p(e j , e− j )+p(e− j , e j ) =
1. Note that we allow for a discontinuous jump in the winning probability when we
move away from e j = e− j , but require that when there is a tie the probability of win-
ning is 1/2. Two standard contest resolution functions have this type of discontinuity:
the all-pay auction in which the highest effort wins for sure and the Tullock function
where the probability of winning is given by eβ

j /(e
β
j + eβ

− j ) with β > 0 which is
discontinuous when there is a tie at zero.

The raw cost of effort e j is Vjc j (e j ) and it is incurred regardless of the outcome of
the contest. The function c j (·), which we refer to simply as the cost of effort, measures
cost relative to the value of the prize Vj > 0. We assume that c j (·) is continuous,
non-decreasing, it satisfies c j (0) = 0, and for some w j called the willingness to bid
c j (w j ) = 1 and if e j > w j then c j (e j ) > 1. To avoid degeneracy we assume that for
contestant −1 the cost function c−1(·) is strictly increasing at the origin.

The raw objective function of contestant j is given by Vj p(e j , e− j ) − Vjc(e j ), or
equivalently p(e j , e− j )− c(e j ) which we refer to as the utility function. Since choos-
ing effort higher than the willingness to bid is strictly dominated by choosing zero
effort, we may restrict the choice of effort to [0,W ], where W > max{w j , w− j }.
Hence, a strategy for contestant j is a cdf Fj on [0,W ]. Define p(Fj , F− j ) ≡
´ W
0

´ W
0 p(e j , e− j )dFj (e j )dF− j (e− j ) and c j (Fj ) ≡ ´ W

0 c j (e j )dFj (e j ). A Nash
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equilibrium is a pair of strategies (Fj , F− j ) such that for each contestant j and all
strategies F̃j we have

p(Fj , F− j ) − c j (Fj ) ≥ p(F̃j , F− j ) − c j (F̃j ).

Since this is an expected utility model this definition is equivalent to restricting devi-
ations to pure strategies e j .

Existence of pure andmixed equilibrium

The crucial first step in our analysis is the existence of equilibrium. Our first result
establishes that equilibria exist and provides some basic information about what they
are like. Our proof of existence draws on the literature about discontinuous games.
The pioneering work in this area Dasgupta and Maskin (1986) does not apply but the
subsequent literature, and particularly the work of Prokopovych and Yannelis (2014)
do apply.

Theorem 1 A Nash equilibrium exists and in every Nash equilibrium the probability
of a tie at a point of discontinuity is zero. If both contestants have the same costs there
is a symmetric Nash equilibrium. However, if p(e, e) is a point of discontinuity for all
0 ≤ e ≤ W the symmetric equilibrium is not in pure strategies.

Proof First, suppose that (W ,W ) is a point of continuity of p(b j , b− j ). Existence
follows from two conditions. The first is that the sum of utilities of both contestants
is continuous. The second is Monteiro and Page (2007)’s uniform payoff security
condition. The latter is satisfied since at a point of discontinuity (e, e) a higher effort
e1 = e + ε implies that the utility at (e1, e−1) cannot be much worse than the utility
obtained from (e, e) if e−1 is close enough to e. Prokopovych and Yannelis (2014)
show that these conditions imply the sufficient conditions of Baye, Tian and Zhou
(1993) for the existence of a mixed equilibrium. Second, if (W ,W ) is a point of dis-
continuity of p(b j , b− j )we canmodify the contest success function in any rectangular
neighborhood of (W ,W ) so that no additional points of discontinuity are introduced
and the modified function is a contest success function that is continuous at (W ,W ).
Hence an equilibrium exists in the modified game. If we take the rectanglar neighbor-
hood sufficiently small, it is strictly dominated to put positive weight on effort there
so the equilibrium strategies of the modified game are also equilibrium strategies of
the original game.

With the exception of Dasgupta and Maskin (1986) symmetry is not typically
studied in the existence literature. In addition, as it is a simple implication of the tools
we develop for studying robustness, we give an alternative proof of existence in Sect. 7.

Next we show that if p(e, e) is a point of discontinuity then both contestants cannot
have an atom at e so the probability of (e, e) is zero. Notice that this immediately
implies that if p(e, e) is a point of discontinuity for all 0 ≤ e ≤ W , a symmetric
equilibrium cannot be in pure strategies.

To show that both contestants cannot have an atom at e we show that if F− j has an
atom at e < W and p(e, e) is a point of discontinuity then e j = e is not a best-response
by j to Fj . If e = W this is obvious since that effort level is strictly dominated by 0.
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Define p+(e) = limε→0+ p(e + ε, e). First we show that if p(e, e) is a point of
discontinuity of e then p+(e) > 1/2. Discontinuity implies that there is a sequence
en → (e, e) with lim p(en) �= p(e). From symmetry we may assume lim p(en) >

1/2. Fix e + ε where ε > 0. For n sufficiently large en1 < e + ε. Hence p(e +
ε, en−1) ≥ p(en1 , e

n−1). Since p(e+ ε, e) is a point of continuity of p(e1, e−1) we have
p(e + ε, e) = lim p(e + ε, en−1) ≥ lim p(en1 , e

n−1). Hence p+(e) = limε→0+ p(e +
ε, e) ≥ lim p(en1 , e

n−1) > 1/2.
The remainder of the proof is to show that when p+(e) > 1/2 it would be better

to choose a little bit more effort than e so as to break the tie and get a jump in the
probability of winning at trivial additional cost. Specifically, suppose that − j has an
atom f− j (e) at e. If j provides effort e + ε instead of e then j gains at least

f− j (e)(p
+(e) − 1/2) + c(e) − c(e + ε).

In the limit as ε → 0 this is strictly positive proving the result.23 �	

3 Cost and success

We are interested in the case in which 1 has a cost advantage. We should emphasize
here that as we have normalized by the value of the prize, our notion of cost advantage
in all cases is one of relative cost advantage. Our goal is to analyze the extent to which
this translates to greater success in the contest. One measure of success is a greater
probability of winning: we say that j has outcome success if p(Fj , F− j ) > 1/2 or
equivalently p(Fj , F− j ) > p(F− j , Fj ). This, however, fails to take into account the
cost of the resources used in achieving success, so we say that j has greater success if
p(Fj , F− j ) − c j (Fj ) > p(F− j , Fj ) − c− j (F− j ), that is, j gets a greater fraction of
achievable utility than − j . Notice that while success is defined for arbitrary strategies
Fj , F− j it will be of interest only when those strategies are equilibrium strategies.

The simplest notion of cost advantage is that of a pure cost advantage: here e > 0
results in c1(e) < c−1(e). We first analyze the generalized all-pay auction where
e j > e− j results in p(e j , e− j ) = q > 1/2. Here higher effort guarantees a greater
chance of winning, but the loser also has a chance of winning: for example this could
model an electoral process where there is a chance of corruption. The following result
adapts a well known result for the standard all-pay auction for which q = 1.4

Theorem 2 In the generalized all-pay auction if 1 has a pure cost advantage then in
any equilibrium 1 has greater success.

Proof Let (F1, F−1) be an equilibrium of the game. Define e−1 ≡ max suppF−1.
Consider the strategy for 1 of providing effort eε ≡ e−1 + ε < W . In the all-pay

2 See Siegel (2009) for alternative argument.
3 It may be a bit puzzling when e = w j to think of contestant j deviating to e + ε. Clearly this cannot
be optimal. However, the argument shows that although such a deviation to a strictly dominated strategy is
suboptimal it does better than e, which is just another way of saying e was not a terribly good idea in the
first place.
4 See, for example, Siegel (2014).

123



600 D. K. Levine, A. Mattozzi

auction this guarantees a win, so

p(F1, F−1) − c1(F1) ≥ q − c1(eε).

By the continuity of c1 this implies

p(F1, F−1) − c1(F1) ≥ q − c1(e−1).

Because 1 has a pure cost advantage, the right hand side of the inequality is strictly
larger than q − c−1(e−1).

Because e−1 ∈ suppF−1 there is a sequence en → e−1 with

p(en, F1) − c−1(e
n) = p(F−1, F1) − c−1(F−1).

By the continuity of c−1 this implies

q − c−1(e−1) ≥ p(F−1, F1) − c−1(F−1).

Hence it is indeed the case that 1 has greater success. �	
Our goal is to understand how this result extends to more general contest success

functions. First of all, however, wewant to rule out uninteresting cases where the result
of Theorem 2 trivially does not extend.

4 Peaceful equilibria

Consider the following example.

Example 1 Suppose that c1(e1) = e1, c−1(e−1) = 2e−1 so that 1 has a pure cost
advantage but that p(e j , e− j ) ≡ 1/2 so that effort does not matter. Then the unique
equilibrium is for each to provide zero effort so both get 1/2 and neither is more
successful.

We define peaceful equilibria those in which both contestants choose to incur zero
cost of effort and have a probability of winning of 1/2 and, recalling our utility nor-
malization, utility equal to 1/2. In particular neither contestant has greater success
or greater outcome success regardless of any cost advantages. To have a contested
equilibrium in which this is not the case we must rule out situations such as Example 1
in which the cost function rises too fast relative to the steepness of the contest success
function.5 We begin with the relevant definitions.

We start with the possibility that contestant j finds it strictly dominant to provide
zero effort, that is, p(0, e− j ) − c j (0) > p(e j , e− j ) − c j (e j ) for all e j > 0 and all
e− j . Since c j (0) = 0 we can rewrite this as c j (e j ) > p(e j , e− j ) − p(0, e− j ) for all
e j > 0. This separates the cost from the contest success function, and the right hand

5 Note that if contestant 1 has a headstart, that is, a flat cost function at 0 then there can be a contested
equilibrium in which 1 provides effort but the total cost of effort by both contestants is still zero.
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side is the same for both contestants. If p(e j , e− j ) is continuous at 0 with respect to
e j for every e− j then all sufficiently large c j (e j ) will satisfy this condition, so we call
the condition very high cost.

A second possibility is that the strict best response to zero effort is zero effort,
that is, p(0, 0) − c j (0) > p(e j , 0) − c j (e j ) for all e j > 0. This we can rewrite as
c j (e j ) > p(e j , 0)− p(0, 0).Again the right hand side is the same for both contestants,
and if p(e j , 0)− p(0, 0) is continuous at 0 all sufficiently large c j (e j )will satisfy this
condition. Since supe− j

p(e j , e− j ) − p(0, e− j ) ≥ p(e j , 0) − p(0, 0) very high cost
implies this condition, so we call it high cost. Notice that when p is discontinuous at
(0, 0) as it is in the all-pay auction or the Tullock case, high cost (and by implication
very high cost) is ruled out because c j (e j ) is continuous and c j (0) = 0.

By contrast, we say that contestant j has low cost if zero effort is not a best response
to zero effort, that is, for some e j wehave c j (e j ) < p(e j , 0)−p(0, 0), and in particular
high cost and low cost are mutually exclusive.

Theorem 3 If 1 has high cost and −1 has very high cost then the unique equilibrium
is peaceful and neither provides effort. If both have high cost there is a peaceful equi-
librium in which neither provides effort. If 1 has low cost all equilibria are contested.

Since −1 having very high cost means providing zero effort because this is strictly
dominant, while 1 having high cost means the unique best response by 1 is also to
provide zero effort, so the equilibrium is unique and peaceful. Similarly if both have
high cost then each finds it optimal to provide zero effort when the other is doing so.
Finally, at a peaceful equilibrium since c−1(e−1) is assumed to be strictly increasing
at the origin, as we noted above, it must be that−1 provides zero effort. The condition
for 1 having low cost may be written as p(e1, 0)− c1(e1) > p(0, 0)− c1(0) implying
that 1 gets strictly more than 1/2 in equilibrium. This requires that the chance of 1
winning is greater than 1/2 contradicting the definition of a peaceful equilibrium. �	

Note that while this result establishes necessary conditions for a contested equilib-
rium and sufficient conditions, there is a gap between the two conditions.

5 Contested equilibria

We now focus on contested equilibria. We first show that even in this case pure cost
advantage is not in general sufficient for the cost advantaged contestant to have greater
success.

Example 2 Here we construct a contested pure strategy equilibrium in which 1 has a
pure cost advantage but−1 has greater success. Take p(e j , e− j ) = (1/2)+(1/2)(e j −
e− j ) truncatedby0belowand1 above.The cost function for 1 is c1(e1) = (4/7)(e1−1)
for e1 ≥ 1 and 0 otherwise. For −1 it is c−1(e−1) = (3/7)e−1 for 0 ≤ e−1 ≤ 2 and
6/7 + (4/7)(e−1 − 2) otherwise. At e = 0 we have c1 = c−1 = 0. At e = 1 we have
c1 = 0, and c−1 = 3/7. At e = 2 we have c1 = 4/7, and c−1 = 6/7. Above 2 the
cost difference remain equal to 2/7 in favor of −1. So 1 has a pure cost advantage. We
claim that (e1, e−1) = (1, 2) is a pure strategy equilibrium. Here 1 loses for certain
and has no cost so gets 0 while −1 wins for sure and has a cost of 6/7 so gets 1/7.
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Hence certainly −1 is more successful. To see this is an equilibrium observe that 1 is
indifferent to reducing effort below 1: there is no cost and no chance of winning there.
Increasing effort above 1 increases the chances of winning at the rate of 1/2 while it
increases costs at the rate of 4/7 so in fact e1 = 1 is optimal for contestant 1. For −1
reducing effort below 2 reduces the chances of winning at the rate of 1/2 but decreases
costs only at the rate of 3/7. Increasing effort above 2 has no effect on the chances of
winning but simply increases costs. Hence e−1 = 2 is optimal for contestant −1.

We introduce two strengthened notions of cost advantage:

1. 1 has amarginal cost advantage if for e2 > e1we have c1(e2)−c1(e1) < c−1(e2)−
c−1(e1).

2. 1 has a homogeneous cost advantage if c1(e) = αc−1(e) for some 0 < α < 1.

Given these notions, we have that homogeneous cost advantage implies marginal cost
advantage, and marginal cost advantage implies pure cost advantage. An important
special case of homogeneous cost advantage occurs when both contestants have the
same absolute cost: for all e we have V1c1(e) = V−1c−1(e). In this case 1 has a
homogeneous cost advantage if and only if the prize is valued more highly: V1 > V−1.

The notions of pure, marginal, and homogeneous cost advantage are defined inde-
pendent of the contest success function. An alternative approach is to relate the size
of the cost advantage to measures of the steepness of the contest success function.

A simple but quite strong form of cost advantage is the following: we say that 1 has
a strong cost advantage over −1 if for some e1 > w−1, wherew−1 is thewillingness to
bid defined earlier, we have p(w−1, w−1) = 1

2 < p(e1, w−1) − c(e1). This condition
implies that, no matter how small player 1’s cost at w−1 (i.e., even if it is zero) there
is an e1 > w−1 that yields higher payoff when played against w−1 than playing w−1
does. To understand this condition better fix w−1, −1’s willingness to bid. If contest
success has a strict increase above this point, a sufficiently low cost for 1 will always
lead to a strong cost advantage. On the other hand, strong cost advantage in the all-
pay auction requires that c1(w−1) < 1/2, while greater success requires only that
c1(w−1) < 1.

For this reason we introduce a weaker condition applied over a broader range of
effort levels. We say that 1 has a uniform cost advantage over−1 if for any 0 ≤ e−1 ≤
w−1 there is an e1 > e−1 with c1(e1) < c−1(e−1) − (p(e−1, 0) − p(e1, e−1)), that
is player 1 earns strictly more playing e1 against e−1 than player -1 earns playing e1
against 0. Notice that this condition is satisfied in the all-pay auction provided that 1
has a cost advantage. It is also satisfied in a difference model in which p(e1, e−1) =
p(e1−e−1, 0) if c1(2e1) < c−1(e1). One particularly important case of a uniform cost
advantage arises when there is a common underlying strictly increasing cost function
c2(e) but contestant 1 has a sufficient effort advantage of e1 > 0, meaning that the
probability that 1 wins with underlying effort ẽ1 is given by p(ẽ1 + e1, e−1). This is
known in the literature as a “head start advantage” and it can be made equivalent to the
original model by defining c1(e1) = c̃2(e1 − e1) for e1 ≥ e1 and 0 otherwise. Notice
that in this case the cost advantage cannot be homogeneous.

Finally, we introduce the concept of preemptive equilibrium and say that F1, F−1 is
a preemptive equilibrium if either one distribution first order stochastically dominates
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the other or the two are equal. Equipped with these new definitions we can state our
first main result:

Theorem 4 In a contested equilibrium 1 has greater success if any of the following
conditions are satisfied:

(0) she has a pure cost advantage and −1 does not have outcome success;
(i) she has a marginal cost advantage and the equilibrium is preemptive;
(ii) she has a homogeneous cost advantage;
(iii) she has a strong cost advantage;
(iv) she has a uniform cost advantage.

Proof Suppose that (F1, F−1) is an equilibrium. From optimality of Fj and symmetry
we have

p(Fj , F− j ) − c j (Fj ) ≥ p(F− j , F− j ) − c j (F− j ) = 1/2 − c j (F− j ). (1)

By rearranging the terms we also have

p(Fj , F− j ) − 1/2 ≥ c j (Fj ) − c j (F− j ). (2)

First, we show (0). Suppose that 1 has a pure cost advantage but does not have
greater success. Then

p(F−1, F1) − c−1(F−1) ≥ p(F1, F−1) − c1(F1) ≥ 1/2 − c1(F−1). (3)

where the first inequality follows from the fact that 1 does not have greater success,
and the second from Eq. 1. Suppose first−1 is not providing effort. Then c−1(F−1) =
c1(F−1) = 0 so 3 implies p(F−1, F1) ≥ 1/2. Moreover p non-decreasing implies
p(F−1, F1) = p(0, F1) ≤ 1/2 so p(F−1, F1) = 1/2. Since this is not a peaceful
equilibrium it must be that c1(F1) > 0 so p(F1, F−1)−c1(F1) = 1/2−c1(F1) < 1/2
while choosing e1 = 0 gives a utility of 1/2 contradicting the fact that 1 is playing
optimally. Suppose second that −1 is providing effort. By the pure cost advantage
equation

1/2 − c1(F−1) > 1/2 − c−1(F−1)

From Eq. 3 this gives p(F−1, F1) > 1/2. Consequently−1 has outcome success. This
proves (0).

To show (i), notice that from Eq. 2 with j = 1 we have

p(F1, F−1) − 1/2 ≥ c1(F1) − c1(F−1).

From symmetry this gives

−p(F−1, F1) + 1/2 ≥ c1(F1) − c1(F−1)
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or

p(F−1, F1) − 1/2 ≤ c1(F−1) − c1(F1). (4)

From Eq. 2 with j = −1 we have

p(F−1, F1) − 1/2 ≥ c−1(F−1) − c−1(F1)

Hence

c1(F−1) − c1(F1) ≥ c−1(F−1) − c−1(F1). (5)

Suppose that 1 has amarginal cost advantage. If F1 first order stochastically dominates
F−1 or the two are equal then −1 does not have a outcome advantage so 1 has greater
success by (0). Suppose instead that F−1 first order stochastically dominates F1. For
e2 > e1 the condition formarginal cost advantage can bewritten as c−1(e2)−c1(e2) >

c−1(e1) − c1(e1). It follows that c−1(F−1) − c1(F−1) > c−1(F1) − c1(F1). This
contradicts Eq. 5. This shows (i).

Next, we show (ii). Suppose that 1 has a homogeneous cost advantage. From Eq. 5

c1(F−1) − c1(F1) ≥ c−1(F−1) − c−1(F1) = (1/α) (c1(F−1) − c1(F1)) .

Since α < 1 it follows that c1(F−1) − c1(F1) ≤ 0. From Eq. 4

p(F−1, F1) − 1/2 ≤ c1(F−1) − c1(F1) ≤ 0

so −1 does not have an outcome success. There are two possibilities. First, if 1 does
not have an outcome success either, then, it must be that p(F−1, F1) = 1/2 so that
also p(F1, F−1) = 1/2. By (0) we may assume that −1 does not provide zero effort
with probability one so by cost advantage

p(F1, F−1) − c1(F−1) > p(F1, F−1) − c−1(F−1) = p(F−1, F1) − c−1(F−1)

and indeed 1 instead has greater success. The second possibility is that 1 does have
outcome success. In this case by (0) 1 also has greater success. This proves (ii).

We now show (iii). If 1 has a strong cost advantage then there is a ê1 with c1(ê1) <

p(ê1, w−1)− p(w−1, w−1) = p(ê1, w−1)− 1/2. Hence p(ê1, w−1)− c1(ê1) > 1/2.
Observe that F−1 ≤ w−1 so p(ê1, w−1) ≤ p(ê1, F−1). Finally, from optimality

p(F1, F−1) − c1(F1) ≥ p(ê1, F−1) − c1(ê1) ≥ p(ê1, w−1) − c1(ê1) > 1/2

which as both contestants cannot have a utility greater than 1/2 implies greater success.
This proves (iii)

Finally we prove (iv). Let ê−1 be the top of the support of the equilibrium F−1. Let
en−1 ≤ ê−1 with en−1 → ê−1 and p(en−1, F1) − c−1(en−1) = p(F−1, F1) − c−1(F−1).
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Since at points of discontinuity of p the jump is up this implies

p(F−1, F1) − c−1(F−1) ≤ p(ê−1, 0) − c−1(ê−1).

From the definition of a uniform cost advantage there is a ê1 such that

p(F−1, F1) − c−1(F−1) < p(ê1, ê−1) − c1(ê1).

Moreover because ê−1 is the top of the support of F−1 we get

p(F−1, F1) − c−1(F−1) < p(ê1, F−1) − c1(ê1)

By optimality of F1 this gives

p(F−1, F1) − c−1(F−1) < p(F1, F−1) − c1(F1)

that is to say, greater success. �	
Notice that in Example 2 while 1 had a pure cost advantage in the range [1, 2], 1

also had higher marginal cost than −1. This possibility is ruled out by marginal cost
advantage. With this assumption 1 has greater success in all preemptive equilibria. For
pure strategies this trivially “works” since all pure strategy equilibria are preemptive.
Unfortunately pure strategy equilibria do not always exist and we do not have general
results about when equilibria are preemptive. If we further strengthen the cost advan-
tage assumption to homogeneous cost advantage then we get a general result for all
equilibria pure or mixed.

The following special case of parts (i) and (ii) of Theorem 4 is useful in a variety
of applications.

Corollary 1 In a contested equilibrium 1 has greater success if either of the following
two conditions is satisfied:

(i) Cost is linear for both contestants and 1 has a pure cost advantage.6

(ii) 1 has a marginal cost advantage and one contestant provides no effort.

6 Convexity and an all-pay auction result

Hirshleifer (1989) points out that it is likely to be the case in practice that effort makes
the greatest difference when the contest is close. If this is the case, we would expect
that the contest success function p(e j , e− j ) should be convex in e j for e j < e− j . He
argues that in this case one contestant should be expected to provide zero effort. We
now examine this possibility more closely.

Consider a real valued function h(e) on [0,∞). If the function is continuously
differentiable then strict convexity implies that if h(e) ≥ h(0) for e > 0 then h′(e) > 0.

6 This assumption is very popular in the literature.
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For want of a better name we generalize this idea by calling h(e) generalized convex
up to e if for e ∈ (0, e] and h(e) ≥ h(0)

h+(e) ≡ lim sup
ε→0+

h(e + ε) − h(e)

ε
> 0

where we allow the possibility that h+(e) = ±∞ so that this is well defined. General-
ized convex functions cannot achieve a maximum in (0, e] since h(e) ≥ h(0) implies
h+(e) > 0.

A contest is generalized convex if for each contestant j and all e− j > 0 the objective
p(e j , e− j ) − c j (e j ) is generalized convex as a function of e j up to e− j . If cost is
strictly positive for e1 > 0 the all-pay auction is generalized convex: the condition
p(e j , e− j )−c j (e j ) ≥ p(0, e− j ) is never satisfied for 0 < e j < e− j ,while at e j = e− j

the right derivative is positive infinity. Hirshleifer (1989)’s argument suggests that
contest success functions should be generalized convex. This condition is satisfied
by many standard contest success functions. Ewerhart (2017) studies continuously
differentiable contest success functions and shows that if the elasticity of the odds ratio
with respect to own effort is globally larger than 2 then generalized convexity holds.
He shows that if β > 2 this elasticity condition is satisfied by the Tullock function and
it is also satisfied by the serial contest success function p(e j , e− j ) = (1/2)(e j/e− j )

β

for e j < e− j studied by Alcalde and Dahm (2007).7

Generalized convexity not only applies to discontinuous contest success functions,
it is weaker than the elasticity condition even for continuously differentiable functions.
For example, while the serial contest success fails the elasticity condition for β ≤ 2 it
is continuously differentiable and for e j ≤ e− j and β > 1 strictly convex in e j so it
is generalized convex even for 1 < β ≤ 2.

If the contest success function is generalized convex and the cost functions are
not “too convex,” and certainly if they are weakly concave, then the contest will be
generalized convex.8

Let us say that a contest is insensitive if for each contestant j and e− j > 0 we have
p(0, e− j ) = q < 1/2. This is a strong condition but is satisfied in cases such as the
Tullock and serial cases where q = 0, and more generally in any ratio form contest
success function with the condition that a zero ratio yields a probability of success
strictly lower than 1/2.

If Fj , F− j are an equilibrium, we write û j = p(Fj , F− j ) − c j (Fj ) for the
corresponding normalized utility. We can then generalize the results of Hirshleifer
(1989), Alcalde and Dahm (2007) and Ewerhart (2017).

Theorem 5 (i) If a contest is generalized convex then in any equilibrium there is at
least one contestant who provides effort with positive probability in every interval
containing zero.

(ii) If in addition the contest is insensitive then in any equilibrium Fj , F− j neither
contestant uses a pure strategy and there is a less successful contestant − j who

7 Feddersen and Sandroni (2006) study β = 1 with quadratic cost.
8 For example cost functions are linear in Ewerhart (2017).
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receives û− j = q and and more successful contestant j who receives û j = (1 −
F− j (0))q + F− j (0)(1 − q).

(iii) If in addition 1 has a homogeneous cost advantage c1(e1) = αc−1(e1) then in
any equilibrium 1 is more successful F1(0) = 0 and F−1(0) = 1 − α.

Notice that part (iii) says is that if we retain the generalized convexity and insen-
sitivity property of the generalized all-pay auction but assume a homogeneous cost
advantage the contest is payoff equivalent to the generalized all-pay auction with the
same costs and q.

Proof Suppose the contest is generalized convex. Define e j to be the lowest point
of support in the equilibrium Fj . If e j > 0 then for − j the objective p(e− j , Fj ) −
c− j (e− j ) is generalized convex up to e j meaning that it is strictly suboptimal for − j
to provide effort in (0, e j ]. This implies that either one of the e j ’s is zero or both are
equal. If both are equal, Theorem 1 and Lemma 6 in the Appendix imply that for one
j the function p(e j , F− j ) is continuous in e j at e j hence so is the objective function.
Since e j is strictly suboptimal and p(e j , F− j ) is continuous there, it follows that there
is an ε > 0 such that e j is strictly suboptimal in [e j , e j +ε] contradicting the definition
of e j .

Suppose next that e− j = 0, that the contest is insensitive and that e j > 0. We will
show this is impossible.

Since p(0, e− j ) is constant for e− j > 0 and − j does not provide effort in
(0, e j ] define the function v j (e j ) = p(e j , F− j ) − c j (e− j ) for e j > 0 and v j (0) =
lime j→0 p(e j , F− j ) − c j (e j ). This is generalized convex up to e j .

If p is discontinuous at (e j , e j ) and − j has an atom there then j does not by
Theorem 1. It follows from Lemma 6 that there is an ε > 0 such that e j is strictly
suboptimal in [e j , e j + ε]. Hence v j is in fact generalized convex up to e j + ε, so for
ê j ∈ [e j , e j + ε] we have v j (ê j ) < lime j→0 p(e j , F− j ) − c j (e j ). Hence ê j is not
optimal. This contradicts the definition of e j .

If either p is continuous at (e j , e j ) or − j has no atom there, the generalized
convexity of v j up to e j implies that v j (e j ) < lime j→0 p(e j , F− j ) − c j (e j ). By
Lemma 6 it follows that there is an ε′ so that for ê j ∈ [e j , e j + ε′] we have
v j (ê j ) < lime j→0 p(e j , F− j ) − c j (e j ). Hence ê j is not optimal, again contradict-
ing the definition of e j . As all cases have been covered, we conclude that e j = 0 for
both contestants.

We next derive the equilibrium normalized utility under the insensitivity assump-
tion. Fix j and choose a positive sequence enj , e

n
− j → 0 such that p j (enj , e

n
− j ) → q.

Since e j = 0 the support of Fj must contain points arbitrarily near 0. Hence for both
contestants we can choose a sequence ẽnj ≤ enj in the support of Fj and this implies
that p j (ẽnj , F− j ) − c j (ẽnj ) = û j . Since cost is continuous

û j = lim inf p j (ẽ
n
j , F− j ) = lim inf

ˆ

0<e− j

min{q, p j (ẽ
n
j , e− j )}dF− j (e− j )

+F− j (0)(1 − q)

+
ˆ

0<e− j<en− j

[
p j (ẽ

n
j , e− j ) − min{q, p j (ẽ

n
j , e− j )}

]
dF− j (e− j )
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+
ˆ

e− j≥en− j

[
p j (ẽ

n
j , e− j ) − min{q, p j (ẽ

n
j , e− j )}

]
dF− j (e− j )

≤ (1 − F− j (0))q + F− j (0)(1 − q).

The third line vanishes in the limit since the range of integration goes to zero, the
fourth line because it is bounded above by |p j (enj , e

n
− j ) − q| which goes to zero by

construction. Since nearly (1 − F− j (0))q + F− j (0)(1 − q) is obtained by providing
near zero effort, it follows that in fact

û j = (1 − F− j (0))q + F− j (0)(1 − q). (6)

Since insensitivity implies discontinuity at zero, by Theorem 1 both contestants do
not have an atom at zero. If j has no atom then − j gets q. If − j provides zero effort
with probability one then j has no best response so this is not an equilibrium. Since
e j = 0 it must be that j is mixing as well. This proves (ii).

To prove (iii) observe that if cost is homogeneous it follows from Theorem 4 (ii)
that 1 must be more successful. Hence −1 gets q and if 1 had an atom at zero −1
could get nearly (1 − F1(0))q + F1(0)(1 − q) by providing near zero effort. That
is to say, 1 cannot have an atom at zero. The final part of the argument is derived
from Ewerhart (2017) and Alcalde and Dahm (2007). Consider the contest in which
1 has cost (α/(1 − F−1(0)))c−1(e1). We then modify −1’s strategy to get rid of the
atom taking the strategies to be F1 and F−1/(1 − F−1(0)) on e−1 > 0 and observing
that these are an equilibrium of this modified game. Hence both contestants get q as
neither has an atom at zero. By Theorem 4 this implies α/(1 − F−1(0)) = 1. �	

7 Robustness and the equilibrium correspondence

In order to investigate the robustness of our results we will now deal with sequences
of contests pn(e1, e−1), c1n(e1), c−1n(e−1). To make sense of this, we now give a
slightly more formal definition of a contest. A contest on W is a contest success
function p(e j , e− j ) ≥ 0 for 0 ≤ e1, e−1 ≤ W , which is non-decreasing in the
first argument, continuous except possibly at e j = e− j , and satisfying the adding-up
condition p(e j , e− j )+p(e− j , e j ) = 1 togetherwith a pair of cost functions c j (e j ) ≥ 0
non-decreasing and continuouswith c j (0) = 0, c j (W ) > 1, and c−1 strictly increasing
at 0. For a contest on W we take the strategy space to be of cumulative distribution
functions on [0,W ]. Theorem 13 in the Appendix shows that:

Theorem 6 Suppose pn, p0, c jn, c j0 are a sequence of contests in W with pn(e1, e−1)

→ p0(e1, e−1), c jn(e j ) → c j0(e j ) for each 0 ≤ e1, e−1 ≤ W and that F1n, F−1n
are equilibria for pn, c jn converging weakly to F10, F−10. Then pn(Fjn, F− jn) →
p0(Fj0, F− j0), c jn(Fjn) → c j0(Fj0)and F10, F−10 is an equilibrium for p0(e1, e−1),

c j0(e j ).

We should emphasize that this result requires only the pointwise convergence of
pn, c jn . Pointwise convergence is easy to check, but, as shown in the Appendix,
has strong consequences for non-decreasing functions on rectangles. If the limit is
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continuous the convergence is uniform. Even if the limit is discontinuous on the
diagonal—as we allow for contest success function - convergence is uniform on the
set of effort pairs that is bounded away from the diagonal.

As an example the Tullock contest success function eβ
j /(e

β
j + eβ

− j ) converges
pointwises to the all-pay auction as β → ∞, so in any sequence of equilibria the
payoff of −1 converges to zero and that of 1 to 1 − c1(w−1). This is a known result.
The following implication is new. Say for b > 0 that a conflict resolution function
is perturbed Tullock if p(e j , e− j ) = (b + e j )β/

(
(e j + b)β + (e− j + b)β

)
where

recall that β > 0.9 Alternatively, a conflict resolution function is perturbed serial if
p(e j , e− j ) = (1/2)((e j +b)/(e− j +b))β for e j < e− j . Notice that both of these func-
tions are continuous but fail the insensitivity condition of Theorem 5, never-the-less
that theorem together with Theorem 6 imply the following:

Corollary 2 Suppose that the conflict resolution function is perturbed Tullock with
β > 2 or perturbed serial with with β > 1 and that 1 has a homogeneous cost
advantage c1(e1) = αc−1(e1). Then in the limit as b → 0 in any sequence of equilibria
the utility of 1 converges to 1 − α and of −1 to zero.

We say that a contest is well-behaved if p(e j , e− j ) > 0, p is strictly increasing
in the first argument, c j is strictly increasing, and both have an extension to an open
neighborhood of [0,W ]× [0,W ] that is real analytic. Some contest success functions
studied in the literature have real analytic extensions. This is true of the perturbed
Tullock function. The logit function

p(e j , e− j ) = exp(βe j )

exp(βe j ) + exp(βe− j )

introduced by Hirshleifer (1989) is another example. Notice that like the Tullock
function as β → ∞ the logit function converges pointwise to the all-pay auction.
Another example can be found in Shachar and Nalebuff (1999) who take

p j (e j , e− j ) = H

(
1

2
+ exp(e j ) − exp(e− j )

exp(e j ) + exp(e− j )

)

where H is a cdf with support in [0, 1]. If the cdf H is symmetric around 1/2 then
p j (e j , e− j ) is a contest success function, and if in addition H admits a real analytic
extension to (−ε, 1 + ε) then so does p j (e j , e− j ).

Other contest success functions studied in the literature are not well-behaved either
being discontinuous as is the case with the all-pay auction and Tullock function, or
having discontinuities in the derivatives as is the case with the quasi-linear function
p j (e j , e− j ) = P · (e j − e− j ) which is linear when it is not 0 or 1. Never-the-less in
Appendix 11 we show that all contests can be approximated by well behaved contests:

Theorem 7 If p, c j is a contest on W then there is a sequence of well-behaved contests
pn, c jn onW with pn(e j , e− j ) → p(e j , e− j ), c jn(e j ) → c j (e j ) for every (e1, e−1) ∈
[0,W ] × [0,W ].
9 As for example in Amegashi (2006).
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Notice that since real analytic functions are continuous, the existence result of
Theorem 1 can be also obtained using this alternative approach.

We are interested in understanding properties of contests that are robust. By a
property we mean a statement �(p, c, F) such as: there is complete rent dissipation,
contestant 1 has greater success, or one contestant has zero utility. We say that a
property is true in a contest if it is true for all equilibria of the game. We say that a
property in p, c is robust if whenever it is true in p, c then for every sequence pn, cn
converging pointwise to p, c and for n sufficiently large the property is true in pn, cn .

Corollary 3 Any strict inequality concerning equilibrium utility, probability of win-
ning, or cost is robust.

Proof Suppose not. Then there exists a subsequence in which �(pn, cn, Fn) is false.
Since the space of strategies is compact every subsequence contains a further sub-
sequence that converges weakly to some F . By Theorem 6 F is an equilibrium and
utility, winning probability, and cost converge. Hence as the strict inequality is pre-
sumed to be satisfied for F for all sufficiently large n it was satisfied for�(pn, cn, Fn),
a contradiction. �	

An important implication of Theorem 6 and Corollary 3 is that if pn converges to
the all-pay auction holding fixed costs c j then utilities and the probability of winning
approach those of the all-pay auction. If we assume that the costs are linear then Ewer-
hart (2017) shows that if pn is close enough to the all-pay auction as measured by
“decisiveness” then the utility and probability of winning are in fact identical to those
of the all-pay auction.

Finite support

In Appendix 14 we show that well-behaved contests have a relatively simple equilib-
rium structure:

Theorem 8 Suppose that c1(e1) = 0 for 0 ≤ e1 ≤ w1 and if w1 > 0 we require
that p(e j , e− j ) is strictly increasing in the first argument (so in particular in any
equilibrium limw→w−

1
F1(w) = 0). If p(e j , e− j ), c j (e j ) have real analytic extensions

to an open neighborhood of [w1,W ]×[0,W ] then every equilibriumhas finite support.

We note that the finiteness property holds also for some contests that are not well-
behaved. Che and Gale (2000) show that with quasi-linear contest success function
and linear costs there is an equilibrium with finite support and they explicitly compute
it. Ashworth and BuenoDeMesquita (2009) extend that analysis to the case where one
contestant has a head start advantage. Ewerhart (2015)whodeveloped the techniquewe
use in the appendix analyzed the symmetric Tullock contest for large β. That function
is not well-behaved since it is discontinuous at zero and without the extension of
analyticity below zero the finiteness result fails: with linear costs Ewerhart (2015)
shows that the support is countable with a single accumulation point at zero and
explicitly computes the equilibrium.
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8 Rent dissipation

An important idea in the literature on contests is that of complete rent dissipation,
meaning that both contestants get zero, competing so hard that the gains are cancelled
by the costs. This is the case in the symmetric all-pay auction. Notice that this is ruled
out if one contestant provides zero effort with positive probability, since the other can
guarantee herself a strictly positive payoff by providing zero effort, and by a contested
equilibrium in which one contestant has a greater success.

Although complete rent dissipation is often associated with symmetry and the all-
pay auction, interestingly symmetry, discontinuity, and mixed strategy equilibria are
not needed for complete rent dissipation. Indeed any positive pure strategy pair can be
turned into a pure strategy equilibrium with full dissipation. Specifically, if p(b j,b− j )

is a contest success function with p(0, b− j ) = 0 and continuous for (b j , b− j ) �= 0,
for example the Tullock function, and b̂ j , b̂− j > 0 then there are cost functions
c j (b j ), c− j (b− j ) such that (b̂ j , b̂− j ) is a pure strategy equilibriumwith complete rent
dissipation. An example is to take c j (b j ) = p j (b j , b̂− j ) on [0, 2b̂ j ] and c j (b j ) =
p j (b j , b̂− j ) + b j for b j > 2b̂ j .

Also important in the literature has been theweaker situation inwhichone contestant
gets nothing—this is the case in every all-pay auction, symmetric or not. It turns out
that the possibility of a contestant getting nothing is quite exceptional. We say that a
property is generic if it is robust and if for any p, c1, c−1 for which it is not true there
is a sequence pn, c jn converging pointwise to p, c j in which it is true.

We formally define properties corresponding to dissipation:

1. no dissipation: in equilibrium c1(F1) + c−1(F−1) = 0
2. partial dissipation: in equilibrium 0 < c1(F1) + c−1(F−1) < 1
3. some dissipation: in equilibrium 0 < c1(F1) + c−1(F−1)

4. complete dissipation: in equilibrium c1(F1) + c−1(F−1) = 1
5. γ -dissipation: in equilibrium c1(F1) + c−1(F−1) > γ where 0 ≤ γ < 1

Notice that complete dissipation means γ -dissipation for every 0 ≤ γ < 1. More-
over, contested equilibrium implies some dissipation. If in addition one contestant has
greater success then there is partial dissipation. Recall that robustness and genericity
concern a property that applies to all equilibria. We have

Theorem 9 Concerning rent dissipation:

(i) there is a subset of contests with no dissipation that are robust;
(ii) the entire set of contests with some (or partial) dissipation is robust;
(iii) contests without complete dissipation are generic;
(iv) contests with γ -dissipation are robust.

Proof (i) The property of very high cost for j is c j (e j ) > supe− j
p(e j , e− j ) −

p(0, e− j ) which is robust by Corollary 3. By Theorem 3 if both contestants have
very high cost there is a unique peaceful equilibrium and hence no dissipation.

Part (ii) follows directly fromCorollary 3 and the fact that some (partial) dissipation
is defined by a strict cost inequality
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For (iii) we show the slightly stronger result that both contestants getting positive
utility is generic. Strict inequality concerning utility is robust by Corollary 3: this
proves that both contestants getting positive utility is robust. We will show that for
any p0, c j0 there is a sequence pn, c jn converging uniformly to p0, c j0 in which each
contestant gets positive utility in every equilibrium, and this will complete the proof.

For costs we take c jn = c j0. Then take 1 > λn > 0 to be a sequence converging to
zero and define

pn(e j , e− j ) = (1 − λn)p0(e j , e− j ) + λn�(e j − e− j )

where � is the standard normal cumulative distribution function. This obviously con-
verges uniformly to p0(e j , e− j ). Moreover, for 0 ≤ e j ≤ W we have pn(e j , e− j ) ≥
λn�(−W ). Hence providing zero effort gets at least λn�(−W ) > 0 so this is obtained
by both contestants in any equilibrium.

The proof of (iv) follows from taking an anomalous subsequence and then finding
one on which Fn converges. �	

Notice that (iii) states that complete dissipation is not robust and (iv) that contests
near those with complete dissipation—so for example close to symmetric all pay—
have nearly complete dissipation.

9 Conclusion

The goal of this paper has been to establish general results about contests. We char-
acterize cost functions for which there are peaceful and contested equilibria. We then
prove four main results. First, a contestant with a sufficiently great cost advantage
always has greater success. Second, if the cost advantage is a homogeneous one, then
the lower cost contestant always has greater success. Third, if we retain the generalized
convexity and insensitivity property of the generalized all-pay auction but assume a
homogeneous cost advantage, the contest is payoff equivalent to the generalized all-
pay auction. Finally, we study the robustness of equilibrium. We prove a basic upper
hemi-continuity result and examine approximation by real analytic functions. This
enables us to show that properties involving strict inequality are robust and that large
classes of examples have equilibria with finite support.

Our results extend in a number of directions. Some of the existing contest models
truncate the effort level above: for example, there might be only a limited number
of voters or a budget constraint like in Che and Gale (1996) and Pastine and Pastine
(2012). This can be easily approximated in our model by assuming that cost grows
rapidly, and in particular becomes greater than the value of the prize, as the limiting
effort level is approached. More generally, a model with a truncated effort level is
equivalent to a model in which cost is discontinuous at the truncation point, jumping
to a level greater than the value of the prize. Here it is crucial to emphasize that we only
used continuity of the cost function at 0 in proving our results on advantage, so those
results extend to this more general class of models. Furthermore, if the contest success
function itself is continuous, it can be shown that our robustness results continue to
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hold.10 This leaves the issue of robustness when both the costest success function and
costs are discontinuous, and here we can go no further. Indeed, we know that upper
hemi-continuity of the equilibrium correspondence may fail for an all-pay auction
from the analysis of Siegel (2009) and Che and Gale (1996).

Finally, some models assume that one contestant has an advantage in providing
effort. A number of these asymmetric contest success function can be easiliy mapped
back in our framework. Specifically, let h1(e1) be a strictly increasing continuous
function with h1(e1) ≥ e1 and consider the contest success function p(h1(e1), e−1)

where p satisfies our symmetry assumption. It is immediate to show that the modified
contest is equivalent to the original one in the sense that any equilibrium of one contest
can be transformed to an equilibrium of the other (equivalent) contest with exactly the
same probabilities of winning and costs.11
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10 Appendix: Upper hemi-continuity

Mathematical preliminaries

We use the standard order on �M so that x ≥ x ′ means that this is true for each
component. Suppose that X is a compact rectangle in �M , that fn(x), f0(x) are uni-
formly bounded non-decreasing real valued functions on X Denote by D the set of
discontinuities of f0(x) and by D the closure of D.

Lemma 1 Suppose that Do ⊃ D is an open subset of X. If for all x ∈ X we have
fn(x) → f0(x) then fn converges uniformly to f on X\Do.

Proof If X\Do is empty this is true trivially. Otherwise as X\Do is compact if the
theorem fails there is a sequence xn ∈ X\Do with xn → x ∈ X\Do and fn(xn) →
z �= f0(x). There are two cases as z < f0(x) and z > f0(x). Denote the bottom
corner of X as y0 and the top corner as y1. Notice that since Do is open and contains
the closure of D, then x has an open neighborhood in which f0 is continuous.

10 See Theorem 15 in the Appendix.
11 Not all asymmetries have this form. The model of Shachar and Nalebuff (1999) can only be reduced to
a standard contest under certain symmetry assumptions. In a similar way the model of Coate and Conlin
(2004) maps to a standard contest only if the parties are of equal expected size. By contrast Herrera, Levine
and Martinelli (2008) allow only effort advantage so their model is equivalent to a standard contest for all
parameter values.
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If z < f0(x) and x �= y0 since f0 is continuous near x there is a y < x with
f0(y) > z and an N such that for n > N we have xn > y. Since fn is non-decreasing
fn(xn) ≥ fn(y). Hence z ≥ f0(y) a contradiction. If x = y0 then fn(y0) → f0(y0)
while fn(xn) ≥ fn(y0). Taking limits on both sides we get z ≥ f0(y0) a contradiction

If z > f0(x) and x �= y1 we have y > x such that f0(y) < z and an N such
that for n > N we have xn < y. This gives fn(xn) ≤ fn(y) implying z ≤ f0(y) a
contradiction. If x = y1 we have fn(x1) → f0(x1) and fn(xn) ≤ fn(x1) and taking
limits on both sides we get z ≤ f0(x1) a contradiction. �	

We say that an open set Do encompasses f0 if there is a closed set D1 ⊂ Do such
that the interior of D1 contains D. Let Do denote the closure of Do.

Theorem 10 Suppose that the probability measures μn converge weakly to μ0. If
there is a sequence of sets Dm

a , Dm
g with Dm

a ∪ Dm
g encompassing f0 such that

lim supm lim supn supx∈Dm
a

| fn(x) − f0(x)| = 0 and lim supm lim supn μn(D
m
g ) = 0

then lim
´

fndμn = ´ f0dμ0.

Proof By Urysohn’s Lemma there are continuous functions 0 ≤ gm(x) ≤ 1 equal to
1 for x ∈ X\Dm

0 and equal to zero for x ∈ Dm
1 . Setting Dm

o = Dm
g ∪ Dm

a

∣∣∣∣
ˆ

fndμn −
ˆ

f0dμ0

∣∣∣∣ ≤
∣∣∣∣
ˆ

gm fndμn −
ˆ

gm f0dμ0

∣∣∣∣

+
∣∣∣∣
ˆ

(1 − gm) fndμn −
ˆ

(1 − gm) f0dμ0

∣∣∣∣

≤
∣∣∣∣
ˆ

gm fndμn −
ˆ

gm f0dμ0

∣∣∣∣ +
∣∣∣∣∣
ˆ

D
m
0

fndμn −
ˆ

f0dμ0

∣∣∣∣∣ .

If φn, φ0 are real numbers and mn,m0 are non-negative real numbers we have the
inequality |φnmn − φ0m0| ≤ |φn − φ0|(mn + m0) so

∣∣∣∣
ˆ

fndμn −
ˆ

f0dμ0

∣∣∣∣

≤
∣∣∣∣
ˆ

gm fndμn −
ˆ

gm f0dμ0

∣∣∣∣ +
ˆ

D
m
o

| fn − f0| d(μn + μ0).

First we show that
´
D
m
o

| fn − f0|d(μn + μ0) → 0. Let f = sup | fk(x)|. we have
ˆ

D
m
o

| fn − f0| d(μn + μ0) ≤
ˆ

D
m
a

| fn − f0| d(μn + μ0)

≤ +
ˆ

D
m
g

| fn − f0| d(μn + μ0)

≤ sup
x∈Dm

a

| fn(x) − f0(x)| + f
(
μn(D

m
g ) + μ0(D

m
g )

)
.
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The first term converges to 0 by hypothesis. For the second, as D
m
g is closed and μn

converges weakly to μ0 we have μ0(D
m
g ) ≤ lim supμn(D

m
a ) so

lim sup
n

f
(
μn(D

m
g ) + μ0(D

m
g )

)
≤ 2 f lim sup

n
μn(D

m
g )

giving the first result. Second, write

∣∣∣∣
ˆ

gm fndμn −
ˆ

gm f0dμ0

∣∣∣∣

≤
∣∣∣∣
ˆ

gm
∣∣∣∣ fn − f0 |dμn+|

ˆ
gm f0dμ0 −

ˆ
gm f0dμn

∣∣∣∣ .

Since gm f0 is continuous by constructionwe have limn | ´ gm f0dμ0−
´
gm f0dμn| =

0 by weak convergence of μn to μ0.
Finally, we show that limn | ´ gm | fn − f0|dμn = 0. Denote by Dmo

1 the interior
of Dm

1 and Xm
1 = X\Dmo

1 . By Lemma 1 | fn(x) − f0(x)| ≤ εmn for x ∈ Xm
1 where

limn εmn = 0. As gm(x) = 0 for x ∈ Dm
1 ⊃ Dmo

1 we have gm | fn − f0| ≤ εmn so that´
gm | fn − f0|dμn ≤ εn . �	
Recall that D denote the closure of D.

Theorem 11 Suppose that X is a compact rectangle in �M, that fn(x), f0(x) are
uniformly bounded non-decreasing real valued functions on X, that fn(x) → f0(x)
and that the probability measures μn converge weakly to μ0. If μ0(D) = 0 then
lim
´

fndμn = ´ f0dμ0.

Proof Take the sets Dm
o = Dm

g to be the open εm → 0 neighborhoods of D
and take Do

a = ∅. We may take Dm
1 sets to be the closed ε/2 neighborhoods of

D: this clearly contains D in its interior and is contained in Dm
o . Take Dm

2 to be
the open 2εm neighborhoods of D: as these contain D

m
o is suffices to show that

lim supm lim supn μn(Dm
2 ) = 0. Since Dm

2 is open and μn converges weakly to μ

we have lim supn μn(Dm
2 ) ≤ μ0(Dm

2 ), so we need only prove lim supm μ0(Dm
2 ) = 0.

Since ∩mDm
2 = D we have limm μ0(Dm

2 ) = μ0(D) = 0. �	

Upper hemi-continuity of the equilibrium correspondence

We now consider a convergence scenario. Here pn(e1, e−1) → p0(e1, e−1),

c jn(e j ) → c j0(e j ) is a sequence of contests on W . We take F1n, F−1n to be equi-
libria for n converging weakly to F10, F−10 with μ jk the corresponding measures.
We say that the convergence scenario is upper hemi-continuous if pn(Fjn, F− jn) →
p0(Fj0, F− j0), c jn(Fjn) → c j0(Fj0) for both j and F10, F−10 is an equilibrium for
p0(e1, e−1), c j0(e j ).

Theorem 12 If pn(Fjn, F− j N ) → p0(Fj0, F− j0) for both j then the convergence
scenario is upper hemi-continuous.
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616 D. K. Levine, A. Mattozzi

Proof By Theorem 11 c jn(Fjn) → c j0(Fj0) on the relevant domain 0 ≤ e j ≤ W .
This shows that u jn(Fjn, F− jn) → u j0(Fj0, F− j0). Next consider j deviating to
e j ∈ [0,W ]. Suppose first that e j is an atom of F− j0. Then this is not a best
response. Suppose second that e j is not an atom of F− j0. Hence the function of e
given by p0(e j , e) has measure zero with respect to F− j0. If follows from Theo-
rem 11 that pn(e j , F− jn) → p0(e j , F− j0), so also u jn(e j , F− jn) → u j0(e j , F− j0).
If e jwas a profitable deviation, that is, u j0(e j , F− j0) > u j0(Fj0, F− j0), it follows by
the standard argument that for sufficiently large n we would have u jn(e j , F− jn) >

u jn(Fjn, F− jn) contradicting the optimality of Fjn . �	
In what follows all sequences are of strictly positive numbers.

Lemma 2 If γm → 0 then there are sequences Gn, Hm → 0 such that on [0,W +
2max γm] we have maxe∈[0,W ] c jn(e + 2γm) − c jn(e) ≤ Gn + Hm.

Proof By Lemma 1 we have c jn converging uniformly to c j0 so that

max
e∈[0,W ] c jn(e + 2γm) − c jn(e) ≤ max

e∈[0,W ] c j0(e + 2γm) − c j0(e) + G jn

Since c j0 is uniformly continuous on compact intervals maxe∈[0,W ] c j0(e + 2γm) −
c j0(e) ≤ Hjm . Then take Gn = maxG jn, Hm = max Hjm . �	
Lemma 3 Fix sequences γm, θm → 0. Then there exists a sequence un → 0 and
γm ≥ ωm such that for 0 ≤ e− j − e ≤ ωm:

(i) If p(e + γm) − 1/2 < θm then sup0≤ek−e≤ωm |pn(e j , e− j ) − p0(e j , e− j )| ≤
2θm + un.

(ii) If p(e + γm) − 1/2 ≥ θm then pn(e + γm + ωm, e− j ) − 1/2 ≥ θm/2 − un .

Proof We may apply Theorem 10 to the functions pn(e j ,−x− j ), p0(e j ,−x− j ) on
the rectangle [0,W ] × [−W , 0] with Do = {(e j , x− j )

∣∣|e j + x j | < γm } to conclude
that pn(e j ,−x− j ) converges uniformly to p0(e j ,−x− j ) there. Hence there exists a
constant um such that for e j −e− j ≥ γm we have |pn(e j , e j−1)− p0(e j , e j−1)| ≤ un .

Fix e. For (i) Take ωm = γm . Take 0 ≤ ek − e ≤ ωm . Observe that

p0(e j , e− j ) ≤ p0(e + ωm, e) < 1/2 + θm .

Since e + ωm − e ≥ γm we also have |pn(e + ωm, e) − p0(e + ωm, e)| ≤ un this
implies

pn(e j , e− j ) ≤ 1/2 + θm + un .

Reversing the role of j and − j we see that

|p0(e j , e− j ) − 1/2| < θm, |pn(e j , e− j ) − 1/2| < θm + un .

Hence |pn(e j , e− j ) − p0(e j , e− j )| < 2θm + un .
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For (ii), observe that p0(e j , e− j ) is uniformly continuous on e j −e− j ≥ γm . Hence
we may find a ωm > 0 which without loss of generality we may take to be smaller
than γm such that for |e− j − e| ≤ ωm we have |p0(e j , e− j ) − p0(e j , e)| < θm/2.
Since pn(e + γm + ωm, e− j ) is non-increasing in e− j we put this all together:

pn(e + γm + ωm, e− j ) ≥ pn(e + γm + ωm, e + ωm) ≥ p0(e + γm

+ωm, e + ωm) − un

≥ p0(e + γm + ωm, e) − θm/2 − un ≥ p(e + γm)

−θm/2 − un ≥ 1/2 + θm/2 − un .

�	
Lemma 4 For any γm → 0 there are sequences Gn, Hm → 0 such that for any θm

and ωm ≤ γm and any e with pn(e + γm + ωm, e− j ) − 1/2 ≥ θm/2 − un > 0 for
all 0 ≤ e− j − e ≤ ωm we have

min
j

μ jn([e, e + ωm]) ≤ Gn + Hm

θm/2 − un

Proof Given γm → 0 choose the sequences Gn, Hm by Lemma 2.
Define m j ≡ μ jn([e, e + ωm]). If for one j we have m j = 0 then certainly the

inequality holds. Otherwise, consider that if each j plays μ jn/m j in [e, e+ ωm] then
one of them must have probability no greater than 1/2 of winning. Say this is j .
Consider the strategy for j of switching from μ jn to μ̂ jn by not providing effort in
[e, e + ωm] and instead providing effort with probability m j at e + γm + ωm . This
results in a utility gain of at least

m− j
(
θm/2 − un

) − (
c jn(e + γm + ωm) − c jn(e)

)

≥ m− j
(
θm/2 − un

) − (
c jn(e + 2γm) − c jn(e)

)

≥ m− j
(
θm/2 − un

) − (
Gn + Hm)

.

As the utility gain cannot be positive, this implies 0 ≥ m− j (θ
m/2 − un)−(Gn + Hm)

giving the desired inequality. �	
Theorem 13 Convergence scenarios are upper hemi-continuous.

Proof By Theorem 12 it suffices to show pn(Fjn, F− jn) → p0(Fj0, F− j0).

Observe that pn(e j , e− j ), p0(e j , e− j ) are non-decreasing in the first argument and
non-increasing in the second so that the functions on the rectangle [0,W ] × [−W , 0],
given by fk(x) ≡ pk(x j ,−x− j ), are uniformly bounded.Defineμn = μ1n×μ−1n and
μ0 = μ10×μ−10. From Fubini’s Theoremμn converges weakly toμ0. so Theorem 10
applies if we can show how to construct the sets Dm

a , Dm
g .

Fix a sequence γm → 0. Choose sequences Gn, Hm by Lemma 4 and choose
θm → 0 so that Hm/θm → 0. Then choose un → 0 and ωm ≤ γm by Lemma 3.

We cover the diagonal with open squares of width ωm . Specifically, for � =
1, 2, . . . , L we take the lower corners κ� of these squares to be 0, 2ωm/3, 4ωm/3, . . .
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until the final square overlaps the top corner at (W ,W ). There are two types of squares:
a-squareswhere p(κ�+γm)−1/2 < γm and g-squareswhere p(κ�+γm)−1/2 ≥ γm .

We take Dm
a to be the union of the a-squares and Dm

g to be the union of the g-squares.
Then for each square �wemay take a closed squarewith the same corner but 3/4rths the
width and define D1 to be the union of these squares. Then Dm

o = Dm
a ∪Dm

b ⊃ D1 ⊃ D
so that indeed Dm

o encompasses p0.
Since Dm

a is the union of a-squares, by Lemma 3 (i) we have supx∈Dm
a

| fn(x) −
f0(x)| ≤ 2θm + un , so indeed lim supm lim supn supx∈Dm

a
| fn(x) − f0(x)| = 0 as

required by Theorem 10.
For a g-square � we have 0 ≤ e− j − e ≤ ωm so by Lemma 3 pn(e + γm +

ωm, e− j ) − 1/2 ≥ θm/2 − un . Then by Lemma 4

min
j

μ jn([κ�, κ� + ωm]) ≤ Gn + Hm

θm/2 − un
.

We now add up over the g-squares four times, once for the odd numbered ones and
once for the even numbered ones. This assures that each sum is over disjoint squares. In
each case we first add those for which j = 1 has the lowest value ofμ jn([κ�, κ�+ωm])
and once for j = −1. In each set of indices � we get a sum

∑
�∈�

μ jn([κ�, κ� + ωm])μ− jn([κ�, κ� + ωm])

≤ Gn + Hm

θm/2 − un
∑
�∈�

μ− jn([κ�, κ� + ωm]) ≤ Gn + Hm

θm/2 − un
.

This gives a bound

μn(D
m
g ) ≤ Gn + Hm

θm/2 − un
.

We then have

lim sup
n

μn(D
m
g ) ≤ Hm

θm/2

and since we constructed the sequences so that Hm/θm → 0 the result now follows
from Theorem 10. �	

11 Appendix: Smoothing conflict resolution functions

Theorem 14 If p, c j is a contest on W then there is a sequence of well-behaved
contests pn, c jn on W with pn(e j , e− j ) → p(e j , e− j ), c jn(e j ) → c j (e j ) for every
(e1, e−1) ∈ [0,W ] × [0,W ].

To prove this theorem we first state and prove
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Lemma 5 Suppose that pn(e j , e− j ) → p0(e j , e− j ) and pmn(e j , e− j ) →m pn
(e j , e− j ). Then there is M(n) such that pM(n)n(e j , e− j ) → p0(e j , e− j ).

Proof Define d(p, q) = inf{γ | sup|e j−e− j |≥γ |p(e j , e− j ) − q(e j , e− j )| ≤ γ }. Then
d(p, q) = 0 if and only if p = q, d(p, q) = d(q, p) and d(p, q) + d(q, r) ≤
2max{d(p, q), d(q, r)}. Moreover, d(pn, p0) → 0 if and only if pn(e j , e− j ) →
p0(e j , e− j ). Let εn → 0 and take M(n) such that for m ≥ M(n) we have
d(pmn, pn) < εn . Then d(pM(n)n, p0) ≤ 2max{εn, d(pn, p0)} → 0. �	

We now prove Theorem 14.

Proof By Lemma 5 we can do the perturbations sequentially.
Step 1: Perturb p to get it strictly increasing with strictly positive infimum: take

pn(e j , e− j ) = (1− λn)p(e j , e− j ) + λn�(e j − e− j ) where � is the standard normal
cdf.

Step 2: Given p strictly increasing and positive perturb it to get it strictly increasing,
positive and C2. Let gn(x j |e j ) = (1/W )hn(x j/W |e j ) where hn(•|e j ) is the Dirichlet
distribution with parameter vector

8n3
[(

1 − 1/n

2
√
2

)
(e j/W ) + 1/n

2
√
2

1

2

]
, 8n3

[(
1 − 1/n

2
√
2

)
(1 − e j/W ) + 1/n

2
√
2

1

2

]
.

This is C∞ in b j and gn(0|e j ) = gn(W |e j ) = 0 and taking pn(b j , b− j ) ≡´∞
0 p(x j , x− j )gn(x j |b j )gn(x− j |b− j )dx jdx− j this is certainly strictly positive and
C2. To see that it is strictly increasing observe that increasing b j increases gn(x j |e j )
in first order stochastic dominance. Finally, it is shown in the Web Appendix of Dutta,
Levine and Modica (2018) that Pr(|x j − e j | > 1/n) ≤ 1/n so that we have pointwise
convergence at every continuity point of p. Pointwise convergence on the diagonal is
by definition.

Step 3: Given p strictly increasing, positive and C2 perturb it to get it strictly
increasing, positive on [0,W ] × [0,W ] and real analytic in an open neighborhood.
By Whitney (1934) Theorem 1 we can extend p to be C1on all of R2. Take an open
neighborhood W of [0,W ] × [0,W ] so that p is strictly positive there. By Whitney
(1934) Lemma 5 for each ε > 0 we can find a real analytic function q(b j , b− j ) with
|q − p| < ε and |Dq − Dp| < ε on the closure of W . Then define Q(b j , b− j ) =
q(b j , b− j )/(q(b j , b− j ) + q(b− j , b j )).

Remark: The case of c j is similar but easier. In the final step the real analytic
function q j (b j ) is not necessarily zero at zero so we define Q j (b j ) = q j (b j )−q j (0).

�	

12 Appendix: Continuity for ties

Lemma 6 Suppose that either F− j does not have an atom at e or p is continuous at
(e, e). Then p(e j , F− j ) as a function of e j is right continuous at e j = e.
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Proof Let enj ↓ e and write

p(enj , F− j ) =
ˆ

p(enj , e− j )dF− j (e− j ) =
ˆ

|e− j−e|>ε

p(enj , e− j )dF− j (e− j )

+
ˆ

|e− j−e|≤ε

p(enj , e− j )dF− j (e− j ).

For the first term from Theorem [monotone-uniform]

ˆ

|e− j−e|>ε

p(enj , e− j )dF− j (e− j ) →
ˆ

|e− j−e|>ε

p(e, e− j )dF− j (e− j )

≤
ˆ

e− j �=e
p(e, e− j )dF− j (e− j ).

Hence there is a sequence εn → 0 such that

lim sup
ˆ

|e− j−e|>εn
p(enj , e− j )dF− j (e− j ) ≤

ˆ

e− j �=e
p(e, e− j )dF− j (e− j ).

If F− j does not have an atom at e

ˆ

|e− j−e|≤εn
p(enj , e− j )dF− j (e− j ) ≤

ˆ

|e− j−e|≤εn
dF− j (e− j ) → 0.

Hence limn→∞ p(enj , F− j ) ≤ p(e, F− j ).
If p is continuous at (e, e) and letting μ− j be the measure corresponding to F− j

ˆ

|e− j−e|≤εn
p(enj , e− j )dF− j (e− j ) → p(e, e)μ− j (e).

Hence limn→∞ p(enj , F− j ) ≤ ´
e− j �=e>ε

p(e, e− j )dF− j (e− j ) + p(e, e)μ− j (e) =
p(e, F− j ).

Since by monotonicity p(enj , F− j ) ≥ p(e, F− j ) right continuity follows from
limn→∞ p(enj , F− j ) ≤ p(e, F− j ). �	

13 Appendix: Resource limits

A resource constrained contest onW is a contest success function p(e j , e− j ) together
with a pair of cost functions c j (e j ) that satisfy the definition of being a contest except
that p is required to be continuous and we allow the possibility that c j instead of being
continuous on the entire support is continuous on [0, e j ]where e j > 0, c j (e j ) = c j <

1, and for e j > e j we have c j (e j ) = cMax > 1. Our goal is to prove:
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Theorem 15 Suppose pn(e1, e−1) → p0(e1, e−1), c jn(e j ) → c j0(e j ) for e j �= e j0
are a sequence of resource constrained contests in W, that F1n, F−1n are equilib-
ria for n converging weakly to F10, F−10. Then pn(Fjn, F− jn) → p0(Fj0, F− j0),
c jn(Fjn) → c j0(Fj0) for both j and F10, F−10 is an equilibrium for p0(e1, e−1),

c j0(e j ).

Proof If c j0 is continuous then c jn(e j ) → c j0(e j ) for all e j there is nothing new to
be proven. We take then the discontinuous case. There are two new things that must
be shown. First, we must show that if a deviation to e j0 against Fj0 is profitable then,
because we do not have pointwise convergence at e j0, there is another deviation that
is also profitable. Second, we must show that c jn(Fjn) → c j0(Fj0).

The first is simple: if we take a sequence e jm → e j0 strictly from below, the
continuity of p0, c j0 imply that u j0(e jm, F− j ) → u j0(e j0, F− j ) so that for large
enough m the deviation e jm �= e j0 is also profitable.

To prove the secondwe first choose 0 < ε < (cMax−1)/2.We observe that for each
n (including n = 0) the fact that c jn is weakly decreasing and left continuous means
that {e j |c jn(e j ) ≤ c j0 + ε} = [0, e jn(ε)] and {e j |c jn(e j ) > c j0 + ε} = (e jn(ε),W ]
where it is apparent that e j0(ε) = e j0. Moreover, we can show that limn e jn(ε) = e j0.
To see that for any γ > e j0 we have limn c jn(γ ) = cMax implying lim sup e jn(ε) ≤ γ .
For any γ < e j0 we have limn c jn(γ ) ≤= c j0(γ ) ≤ c j0 implying lim infn e jn(ε) ≥
γ .

Second, since p0 is continuous, pointwise convergence of pn to p0 implies uniform
convergence and since W is compact, p0 is uniformly continuous. It follows that
�(ε) = inf{0 ≤ e1j − e2j |pn(e2j , e− j ) − pn(e1j , e− j ) ≤ ε} is positive.

Third, we show that for sufficiently large n we have

μ jn((e jn(ε), e j0 + �(ε/2)/2]) = 0.

Suppose that e j ∈ (e jn(ε), e j0 + �(ε/2)/2]). Then c jn(e j ) ≥ c j0 + ε while
c jn(e j0 − �(ε/2)/2]) ≤ c j0(e j0 − �(ε/2)/2]) + ηn where ηn → 0. Since
e j − (

e j0 − �(ε/2)/2]) ≤ �(ε/2) it follows that pn(e j , F− j ) − pn(e j0 −
�(ε/2)/2], F− j ) ≤ ε/2, while c jn(e j ) − c jn(e j0 − �(ε/2)/2]) ≥ ε − ηn . Hence for
ηn < ε/2 it is not optimal to play e j .

Fourth, we show that for sufficiently large n we have μ jn((e jn(ε),W ]) = 0. To do
soweneedonly show that for sufficiently largenwehaveμ jn((e j0+�(ε/2)/2,W ]) =
0. Since c jn(e j0 + �(ε/2)/2) → cMax for all sufficiently large n we have c jn(e j0 +
�(ε/2)/2) > 1 and since c jn is non-decreasing c jn(e j ) > 1 for all e j ≥ e j0 +
�(ε/2)/2 . Of course it cannot be optimal to play such an e j .

Fifth we show that μ j0((e j0,W ]) = 0. This follows from the fact that it is the
countable union of the sets

(e j0 + |e jn(ε) − e j0|,W ] ⊂ (e jn(ε),W ].

Sixth, we construct approximating functions c̃ jn . Since c j0is continuous on [0, e j0]
we may choose γ < e j0 so that c j0(e j0) − c j0(γ ) < ε. Then for e j ≤ γ we take
c̃ jn(e j ) = c jn(e j ) and for e j > γ we take c̃ jn(e j ) = c jn(γ ). Certainly then c̃ jn is
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non-decreasing and converges pointwise to the non-decreasing function c̃ j0. It follows
that the convergence is uniform, hence c̃ jn(Fjn) → c̃0n(Fj0).

Seventh, we bound

|c̃ jn(Fjn) − c jn(Fjn)|
≤
ˆ

[0,γ ]
∣∣c̃ jn(e jn) − c jn(e jn)

∣∣ dFjn +
ˆ

(γ,e jn(ε)]
∣∣c̃ jn(e jn) − c jn(e jn)

∣∣ dFjn

+
∣∣∣∣∣
ˆ

(e jn(ε),W ]
(
c̃ jn(e jn) − c jn(e jn)

)
dFjn

∣∣∣∣∣

=
ˆ

(γ,e jn(ε)]
∣∣c̃ jn(e jn) − c jn(e jn)

∣∣ dFjn

≤ sup
(γ,e jn(ε)]

∣∣c̃ jn(e jn) − c jn(e jn)
∣∣

= c jn(e jn(ε)) − c jn(γ )

≤ ∣∣c jn(e jn(ε)) − c j0(e j0)
∣∣ + ∣∣c j0(e j0) − c j0(γ )

∣∣ + ∣∣c j0(γ ) − c jn(γ )
∣∣

≤ 2ε + ηn

where ηn → 0.
Finally, we put this together to see that for all 0 < ε < 1/2 and sufficiently large

n we have

∣∣c jn(Fjn) − c j0(Fj0)
∣∣ ≤ ∣∣c̃ jn(Fjn) − c̃ j0(Fj0)

∣∣ + 4ε + 2ηn .

It follows that lim sup
∣∣c jn(Fjn) − c j0(Fj0)

∣∣ ≤ 4ε. This proves the result. �	

14 Appendix: Finite support

Theorem 16 Suppose that c1(e1) = 0 for 0 ≤ e1 ≤ w1 and if w1 > 0 we require
that p(e j , e− j ) is strictly increasing in the first argument (so in particular in any
equilibrium μ1([0, w1)) = 0). Suppose as well that c j (W ) > 1. If p(e j , e− j ), c j (e j )
have real analytic extensions to an open neighborhood of [w1,W ]×[0,W ] then every
equilibrium has finite support.

Proof Take w−1 = 0 and consider

Uj (e j ) ≡
ˆ W

w j

p(e j , e− j )dF− j (e− j ) − c j (e j ).

We first show that this is real analytic in an open neighborhood of [w j ,W ]. For c j
this is true by assumption so we show it for the integral

Pj (e j ) ≡
ˆ W

w j

p(e j , e− j )dF− j (e− j ).
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In Ewerhart (2015) the extensibility properties of p(e j , e− j ) were known. Here
we must establish them. Let W be the open neighborhood of [w1,W ] × [w−1,W ]
in which p is real analytic. Then for each point e ∈ W the function p has an infinite
power series representation with a positive radius of convergence r1, r−1for e1, e−1
respectively. Hence the extension of p to a function of two complex variables has
the same radius of convergence there. Take an open square around e j in the complex
plane small enough to be entirely contained in the circle of radius min{r1, r−1} and
lying inside of W . The product of these squares is an open cover of the compact set
[w1,W ] × [w−1,W ], hence has a finite sub-cover. Choose the smallest square from
this finite set, say with length 2h. Hence p(e j , e− j ) is complex analytic in the domain(
(w1 − h,W + h) × (−h,+h)

) × (
(w−1 − h,W + h) × (−h,+h)

)
.

The remainder of the proof follows Ewerhart (2015) in showing that wemay extend
Pj (e j ) to a complex analytic function in the domain (w j − h,W + h) × (−h,+h).
As this is a convex domain, take a triangular path � in this domain and integrate

j

�

Pj (e j ) =
j

�

ˆ W

w j

p(e j , e− j )dF− j (e− j ).

Everything in sight is bounded so we may apply Fubini’s Theorem and interchange
the order of integration to find

j

�

Pj (e j ) =
ˆ W

w j

⎛
⎝
j

�

p(e j , e− j )

⎞
⎠ dF− j (e− j ).

By Cauchy’s Integral Theorem since p is analytic
ı
�
p(e j , e− j ) = 0. Henceı

�
Pj (e j ) = 0 so by Morera’s Theorem Pj (e j ) is analytic, and in particular real

analytic when restricted to (w j − h,W + h) × 0.
Hence the gain from deviating to e j is given by a real analytic function Uj (e j ) −

max j U j (ẽ j ). That implies it is either identically zero or has finitely many zeroes. We
can rule out the former case since max j U j (ẽ j ) ≤ 1 and c(W ) > 1. Hence Fj must
place weight only on the finitely many zeroes. �	
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