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Abstract—With the increasing tendency on data rates in
forthcoming communication networks, availability is a crucial
aspect to guarantee Quality of Service (QoS) requirements. The
possibility of predicting the lifetime of networking hardware can
be a key to improve the overall network QoS. This paper proposes
a generic Machine Learning (ML) based framework that learns
how to mimic the mathematical model behind the lifetime of
network line cards. Results show that a good precision (85%)
and recall (close to 100%) on the estimation can be achieved
regardless the type of line cards the network is composed of.

Index Terms—Machine Learning, line card, lifetime, estima-
tion, QoS.

I. INTRODUCTION

With the ever increase of the data rate in communication
networks, a few milliseconds of service disruption in the data
plane turn into a severe packet loss, raising problems to the
Quality of Service (QoS) guarantee. In computer networks,
one of the main causes of service disruption is hardware failure
[1], [2].

Current solutions to recover from a network hardware
failure are based on two different mechanisms: i) a failure
detection method, and ii) a re-routing strategy. The main idea
is to quickly detect the failure and to change the path of a sub-
set of traffic flows, so that the failed device is bypassed. Failure
detection is generally based on a monitoring system [3], [4],
which sends probe packets along cyclic paths that allow to
determine which one is the link that has failed. The detection
of a link failure triggers the re-routing mechanism, which
forces the traffic flows to avoid the failed link. For instance,
recently proposed Segment Routing allows to re-route the
traffic flows involved in a link failure in 50 milliseconds [5].

Considering a network Line Card (LC), its functioning
can be described by the following three statuses: i) working
properly, in which it behaves normally and loses packets
only due to temporary congestion, ii) failing, in which it
experiences temporary outages that represent another source
of packet loss, iii) died, in which it stops working and all
packets are lost. Generally, a dying LC passes from status
1 to 3, staying for a transitory time (the duration of the
transitory time depends on the type of failure experienced by
the LC, and can be negligible (on-off behaviour), i.e. hardware
breakdown; or extended, i.e. hardware degradation) into status
2. Classical failure detection methods aim to determine if a LC
is in status 3. This evaluation is done only after the hardware

has died. Clearly, when the duration of the transitory time is
not negligible, classical failure detection methods take a long
time before activating the re-routing mechanism, leading to a
consistent packet loss and QoS degradation.

In this paper, we present a Machine Learning (ML) based al-
gorithm whose aim is the prediction of the lifetime of network
hardware [6]. The prediction is then used as the triggering
event for the activation of a fast re-routing mechanism. In
this way, it is possible to change the traffic paths before
the hardware completely stops working, highly reducing (or
completely avoiding) the packet loss, and thus improving the
QoS.

The proposed framework, named Line card Failure Predictor
(LFP) exploits the availability of a data set (supervised learn-
ing) and an approach derived from a linear regression ML
algorithm [7], to learn how to mimic the mathematical model
behind the lifetime of network LCs, thus learning to estimate
their remaining lifetime. Specifically, this is done by selecting,
from an input set, the function shape and coefficients that are
the best fit for the data set, according to a Mean Square Error
(MSE) metric.

Due to the lack of real data sets on the lifetime of LCs,
a network fault simulator based on mathematical models is
presented to generate the input data set for the proposed LFP
algorithm. We stress here that the use of synthetic data to train
and test the performance of LFP does not affect the generality
of the proposed approach.

To summarize, the main contributions of this work are:
• Proposal of the LFP framework for the estimation of the

lifetime of network line cards.
• Creation of an extensible network failure simulator based

on mathematical models.
• Training and performance evaluation of different ML

systems to solve the problem at hand.
The rest of the paper is organized as follows: in Sec. II

we describe the proposed system to predict the remaining life
time of network line cards. Sec. III contains the performance
evaluation, while conclusion and future works are presented
in Sec. IV.

II. MACHINE LEARNING BASED LINE-CARD LIFETIME
ESTIMATION FRAMEWORK

The proposed framework is intended to be integrated in
a centralized monitoring system (Fig. 1). Firstly, the LFP



Figure 1. Architecture of the Monitoring System based on LFP algorithm.

algorithm is used to generate a final hypothesis, i.e., a function
that mimics the mathematical model that regulates the lifetime
of network line cards. Then, the final hypothesis is used to
predict the current lifetime, by providing it with the current
set of features (which will be described later) as input. Features
are periodically collected from the network devices by means
of a southbound interface, which can be realized by different
protocols (OpenFlow, SNMP, etc.). No further functions need
to be implemented, since simple OpenFlow OFP.STAT or
equivalent messages could be used to get the required data,
e.g., TX/RX traffic counters. Finally, the output estimation is
used to eventually trigger the activation of the fast re-routing
mechanism. In the next subsections, the main functional blocks
reported in Fig. 1 are detailed.

A. Data Set

The data set is a collection of data gathered by the network
devices by means of the southbound interface. Generally,
monitoring systems allow the collection of statistics from the
network devices with a given time granularity (e.g., 1 minute
in case of Netflow [8]). This time interval between consecutive
data collection processes is referred to as Time Slot (TS). Each
data can be seen as a point (x1, ..., xn, y) ∈ Rn+1 ∀n ≥ 1
in a multidimensional space, in which y is called output or
expected output, and (x1, ..., xn) represent the features.

The set of features to use must i) have an impact on the
lifetime of line cards, and ii) be able to be measured by
the LCs. Four features have been chosen for the framework:
line card utilization in current and previous TS, and packet
loss percentage in current and previous TS. Adding features
that use data from previous TSs allows the system to work
differently when measurements are stabilized, increasing or
decreasing over two consecutive TSs.

B. Machine Learning algorithm

The main goal of the proposed framework is therefore to
predict how long it will take until a failing line card finally
dies. Since the remaining lifetime of a network line card is
a continuous value, the problem we aim to solve falls into
the regression problem archetype [9]. This type of problem
is very similar to linear regression problems: given a set of
points, the algorithm must find the coefficient for each feature
that best fits on those points, returning a function known as
final hypothesis.

Additionally, the system uses different non-linear models
(predictors or hypothesis set) such as logarithmic, sinusoidal,
polynomial, etc., that add extra features to make the math-
ematical function predicted more flexible than a classic linear
regression model [9]. However, a new problem emerges, since
we must determine which function is the best fit for the data.
This is done by using a technique called validation [9], which
consists on training the system with an 80− 90% of the data,
and then using the remaining data (called validation set or
cross-validation set) to get an estimate of its generalization
accuracy. This is, the similarity between the output of the
system and real data. More in detail, LFP uses a technique
named 10-fold validation [10]. Instead of dividing the data set
into a large training set and a smaller validation set, 10-fold
validation divides the data set into 10 subsets of same size.
The system is then trained 10 times, using 9 of the subsets as
the training set and the remaining subset as the validation set,
making sure each of the subsets is used once for validation.
After this process, 10 different estimates are obtained. Thus,
a combination of the data (such as the average or median)
provides a reliable and stable estimate of its generalization
that is not affected by randomness.

C. Optimization algorithm

While the ML algorithm described in Sec. II-B provides a
model that allows the system to learn, it is the optimization
algorithm that allows it to actually learn.

The optimization algorithm requires a cost function, J(θ),
which estimates the difference between the values predicted
by the system and the expected output [9]. Eq. 1 defines the
cost function, assessed as the half of the Mean Squared Error
(MSE):

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 (1)

In eq. 1, m represents the number of training examples;
hθ(x) is the output of the ML system given the input x (also
known as value of the hypothesis function on x); x(i) is a
vector with the values for the features for the i-th training
example and y(i) is the expected output for the i-th training
example.

During the learning phase, the system tries to minimize J(θ)
by using the training set to assess the values. Since many
different optimization algorithms are able to minimize it, a
modification of the L-BFGS [11] algorithm has been used.

III. PERFORMANCE EVALUATION

Although initial efforts have been made to provide the re-
search community with real data about real traffic patterns [12]
and VNF performance over SDN [13] to feed ML solutions,
to the best of our knowledge, no public data sets related to
networking hardware error metrics are available yet. In order
to evaluate our generic LFP framework, a Network Failure
Simulator (NFS) has been created to produce data related to
LC failure. In the following, we first describe the proposed
NFS, then the description of the data set used for simulations



is detailed, and a performance evaluation is finally carried out
to show the effectiveness of the proposed framework.

A. NFS Description

Five input parameters are required by NFS: i) a network
graph: G; ii) a set of TMs, one per TS: TMt; iii) a hardware
deterioration function: fi; iv) a maximum lifetime span: δt;
and a weighting parameter: α. NFS is executed once per
TS t by feeding it with the corresponding TMt and the
failure characterization parameters, fi, δt, α, which are used
to reproduce variability in the proposed model.

In order to simulate the beginning of failure in a particular
network LC, each of them is given a failure probability, p,
by using the bathtub curve model [14]. This model splits the
lifetime of a product into three stages. First, an early infant
mortality failure range is applied to simulate the introduction
of the product into the market. Then, a second stage of random
failures with constant rate that refers to its useful life. Finally,
the probability of failure increases again as the product exceeds
its designed lifetime.

Network links are first divided into two groups: High Failure
Links and Low Failure Links. For each link in the network
[15], the bathtub curve is first applied to determine if it is
working properly (state 1) or it started failing (state 2). To
do so, a random number r is assessed based on an uniform
distribution. If r < p, then the link card is labeled as failing
and the packet loss function, F , is applied.

The packet loss function models the impact of a failing line
card l on the network at TS t, and is defined as follows:

F (l, t) = min{αU(l, t) + (1− α)fi(t− tf (l), δt), 1} (2)

In eq. 2, term δt > 0 represents the maximum lifespan
for a line card, i.e., the number of TSs it will be working
after it started failing and before finally dying. The hardware
deterioration function is given by fi and represents the packet
loss probability due to hardware degradation as a function
of the time for a LC that has started failing. Assuming
that the LC starts failing at time t = 0, we have that a
hardware deterioration function must respect the following
constraints: i) fi(0, δt) = 0, ii) fi(δt, δt) = 1, and iii)
∀t ∈ [0, δt], fi(t, δt) ∈ [0, 1].

The term U(l, t) is a function that describes the probability
to lose packets due to link congestion. Finally, α ∈ [0, 1]
is a parameter that balances the two terms of the equation,
moving the emphasis of the function from the packet loss due
to link utilization to the packet loss caused by the hardware
deterioration. It is worth saying that any mathematical function
will work as a hardware deterioration function. Therefore, NFS
is able to simulate different types of line card deterioration
models due to the broad existing market.

B. Simulation set-up

In the following, the input data used for the NFS application
is described. The topology that has been considered is Nobel,
which is composed of 17 nodes and 52 links. We consider a

single line card per link. Regarding the traffic pattern, a set
of one-day span traffic matrices belonging to a month have
been taken as input from [12]. Concerning the parameters
required by the packet loss function, i.e., δt, fi, α (eq. 2),
different values have been determined for each of them, with
the aim of producing a big data set of combinations that
potentially represent a variety of behaviours for LCs, as well
as for deterioration rates. In particular, δt ∈ {1, 2, 4, 7} [days],
α ∈ [0, 1] ∈ R, and 4 fi function candidates (arcsin, logarithm,
quadratic, root).

Regarding the predictors, different non-linear functions have
been used, which can be split into three groups: classic
polynomial predictors, exponential predictors and logarithmic
predictors. These predictors allow the system to fit data as
close as possible and, therefore, improve the overall perform-
ance. The more varied predictors are used, the more probable
it is to find a good fit for the data. Data has been split into
different prediction environments, each of which has the same
values for α and fi. Moreover, a subset is also added to be
able to predict regardless of fi function, i.e., by being trained
only on the basis of α. This last case is referred to as generic.

C. Experimental Results

In order to evaluate our proposed LFP framework, two
performance analyses have been carried out. Firstly, the overall
accuracy of LFP has been tested. Secondly, an additional
binary accuracy test of LFP integrated with a rerouting system
has also been carried out.

A modified version of NFS comparing the remaining life-
time of the network LC, calculated using eq. 3, with the output
of the prediction system, has been used. This modified version
lets us get a good estimate of the error by simulating 25 times
each of the proposed models described in Sec. II-A.

LT (l, t, δt) = δt − (t− tf (l)) (3)

The first proposed analysis studies the Root Mean Square
(RMS) error, calculated using eq. 4, as a function of the α
parameter for different predictors. The main outcome of this
analysis is that the proposed LFP algorithm is unaware with
respect to the value of α. In fact, as it can be seen from the
results reported in Fig. 2, all the lines do not deviate too much
from the average value for different values of α. This is a
crucial property for the proposed framework, since the actual
value of α is unknown and might depend from several factors
(type of damage, entity of the damage, etc.) and changes over
time. Moreover, the overall precision of LFP is between 2.3748
TSs and 1.7816 TSs. The standard deviation ranges between
1.4830 and 0.5830.

RMS =

√√√√ 1

m

m∑
i=1

(hθ(x(i))− y(i))2 =
√

2J(θ) (4)

A second analysis has been performed to evaluate the impact
of LFP on a dynamic re-routing system. For this analysis,
a threshold θ is set to compare the predicted lifetime of
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Figure 2. RMS error values for all prediction
systems.
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Figure 3. Precision results of the re-routing
system.
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Figure 4. Recall results of the re-routing
system.

LCs with. For each failing LC, its lifetime LT is predicted
according to eq. 3 on every TS and compared with θ. If
LT > θ, no action is taken. On the contrary, if LT < θ,
network traffic is re-routed. Threshold values have been set
to θ ∈ [1, 7] ∈ N. Figs. 3 and 4 report the precision and
the recall of the obtained results, respectively. The precision
provides a measure of how many, among all the LCs predicted
as failed, have actually failed. The recall is a measure of how
many, among the failed LCs, have been correctly predicted. In
case of LFP algorithm, recall is a crucial parameter. In fact, a
poor recall means that some failing line cards are not correctly
predicted (false negative). It implies a high packet loss due to
the non activation of the fast re-route mechanism to by-pass
the failed LCs. On the contrary, a poor precision, meaning that
some LCs predicted as failing are actually working properly
(false positives), can be tolerable. In this case, some traffic
flows might be unnecessarily re-routed.

Results reported in Figs. 3 and 4 show that conservative
thresholds perform better. Specifically, from Fig. 3 it can be
seen that the precision monotonically increases with the value
of the threshold. The highest precision value obtained during
the tests is approximately 85%, meaning that about in the 15%
of cases the fast re-route mechanism is unnecessarily triggered.
Interestingly, from Fig. 4, it can be seen that the recall is
unaware of the value of the threshold, and very close to 100%.
It means that the percentage of false negatives is negligible,
making LFP algorithm applicable in real network scenarios.

To summarize, the presented performance evaluation has
shown that LFP algorithm can replace classical failure detec-
tion methods, allowing to reduce the packet loss thanks to
its ability to predict failures. Specifically, it is able to detect
almost all the failing LCs (recall close to 100%), at the cost of
doing some unnecessary re-routing (precision close to 85%).

Finally, a profiling test has also been performed in order
to test the time LFP needs to predict. These tests have been
performed on a machine with an Intel i7 7700HQ CPU, 8GB
of RAM and a NVIDIA GeForce GTX 1050 GPU. To do
so, the prediction function has been run 5000 times using the
most complex prediction system on randomly generated data.

Table I
PROFILING RESULTS.

Function # of calls Execution Time [s.] Execution time per call [ms.]
Full process 5000 346.058 69.2116

Generation of non-linear features 5000 1.053 0.2106
Prediction 5000 345.006 69.0012

As seen on Tab. I, the full process took 346.058 s., which
means that a single prediction with the most complex model
takes an average of 69.2116 ms. to complete, a very short time
that benefits its integration with other systems.

IV. CONCLUSION AND FUTURE WORKS

This paper proposes an ML-based framework to predict the
remaining lifetime of network LCs. Such prediction can be
used as a triggering event for the activation of a fast re-routing
mechanism which would lead to reduce the impact on QoS
performance. A LC failure model has been defined as a part
of the proposed framework, which has been evaluated on a real
network with varying traffic. Results show that our ML-based
framework can be applied to the problem of predicting the
lifetime of network LCs with approximately 100% of recall
and a good precision. As future work, we have considered
to add new features to the system and use neural networks
adapted for regression [7]. Moreover, we are currently working
on integrating the proposed solution into a POX-based SDN
controller.
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