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Impurity in a heteronuclear two-component Bose mixture
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We study the fate of an impurity in an ultracold heteronuclear Bose mixture, focusing on the experimentally
relevant case of a 41K - 87Rb mixture, with the impurity in a 41K hyperfine state. Our paper provides a com-
prehensive description of an impurity in a BEC mixture with contact interactions across its phase diagram. We
present results for the miscible and immiscible regimes, as well as for the impurity in a self-bound quantum
droplet. Here, varying the interactions, we find exotic states where the impurity localizes either at the center or
at the surface of the droplet.
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I. INTRODUCTION

The problem of a mobile impurity hosted in—and interact-
ing with—a reservoir is a paradigm of many-body quantum
theory [1]. In general, interactions alter the properties of
the impurity, starting from its inertia, in a way that criti-
cally depends on the excitation spectrum of the reservoir.
Early on, this problem appeared when considering a single
electron immersed in the environment of the ion lattice vi-
brations [2–5], now known as a polaron, more specifically a
Bose polaron, to indicate that the environment is composed
of bosonic modes, the lattice phonons [6], and recently ob-
served in Refs. [7,8]. In the last few years, initial studies
have addressed the Bose polaron in a host system composed
by two bosonic species, i.e., a Bose mixture [9–13], whose
spectrum is much richer than its single-species counterpart.
A remarkable property of Bose mixtures is the possibil-
ity to form liquidlike self-bound droplets, arising from the
interplay of mean-field attraction and beyond-mean-field re-
pulsion [14,15]. Tuning mean-field interactions through a
Feshbach resonance, quantum droplets have been observed
in a homonuclear spin mixture of 39K, both in the pres-
ence of an external potential [16,17] and in free space [18],
as well as in heteronuclear mixtures of 41K - 87Rb [19] and
23Na - 87Rb [20]. Quantum droplets, arising from the compe-
tition between contact and long-range interactions [21], have
been also observed in magnetic gases [22–27] and, recently
studied for dipolar mixtures [28–31].

In this paper, we provide a comprehensive description of a
mobile impurity in a (heteronuclear) Bose mixture of atoms
with contact interactions: We calculate the phase diagram of
the impurity in a realistic case where, in the proximity of
a Feshbach resonance, an external magnetic field controls
the interaction strength between the components of the Bose

mixture [32]. First, we apply a variational ansatz to compute
the impurity spectral function and the impurity energy in
the miscible and immiscible regimes. Then, we derive the
beyond mean-field correction to the impurity-mixture inter-
action, which leads to an effective interaction potential for the
impurity that supports several bound states localized at the
mixture surface. We apply our analysis to a specific atomic
mixture and discuss the experimental verification of these yet
unobserved surface polarons. Our findings pave the wave for
study and the detection of Bose polarons in collisionally stable
and long-lived Bose mixtures. We show how the impurity
states we find can provide a tool for probing the droplet, whose
study is currently hindered by the lack of adequate diagnos-
tics, allowing for the characterization of quantum fluctuations
at the single-particle level, while also permitting us to imple-
ment a scheme for the thermometry of the self-bound droplet.

II. THE SYSTEM

Let us consider a two-component, ultracold, interacting
Bose-Bose mixture [33]. The strength of the interspecies
contact interaction is determined by the parameter g12 =
2π h̄2a12/μ, where a12 is the interspecies scattering length,
μ = m1m2/(m1 + m2) is the reduced mass, mi is the mass of
ith species bosons. The strength of the intraspecies contact
interaction is determined by gii = 4π h̄2aii/mi, i = 1, 2, with
aii the intraspecies scattering length for the ith species, so the
system can be described by the Hamiltonian

Ĥbb =
∫

d3r
∑
i=1,2

φ̂
†
i (r)

(
− h̄2∇2

2mi
+ gii

2
|φ̂i(r)|2

)
φ̂i(r)

+ g12

∫
d3r|φ̂1(r)|2|φ̂2(r)|2, (1)

2469-9926/2022/106(2)/023301(10) 023301-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6161-8881
https://orcid.org/0000-0002-7778-8014
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.023301&domain=pdf&date_stamp=2022-08-04
https://doi.org/10.1103/PhysRevA.106.023301


G. BIGHIN et al. PHYSICAL REVIEW A 106, 023301 (2022)

where the φ̂
†
i (r) [φ̂i(r)] field operators create (annihilate) a

bosonic field excitation at position r in the ith component,
respectively. In addition to this, we also consider a third com-
ponent in the impurity limit, i.e., a third component much
more dilute than the other two, so we can neglect intercom-
ponent interactions and describe it in the first quantization
formalism via operators describing the impurity position R̂
and momentum P̂. The Hamiltonian describing the impurity
motion and the interaction with the other two components
reads

ĤI = P̂2

2mI
+

∑
i=1,2

gIi

∫
d3r ρ(r) |φ̂i(r)|2, (2)

where ρ(r) = δ(3)(r − R̂), mI is the impurity mass, gIi =
2π h̄2aIi/μIi, where aIi is the scattering length between the
impurity and the ith component, and μIi = mI mi/(mI + mi ).

III. FROM THE DENSITY-DENSITY INTERACTION
TO THE EFFECTIVE HAMILTONIAN

To describe the miscible phase, we begin by expanding the
field operators in the plane-wave basis

φ̂1(r) = 1√
V

∑
q

eiq·rαq,

φ̂2(r) = 1√
V

∑
q

eiq·rβq. (3)

Bogoliubov approximation consists of separating the macro-
scopic occupation of the ground state from the fluctuations,

α̂k = (2π )3√n1δ(k) + Âk �=0, (4)

subsequently retaining only terms linear in Â, neglecting
higher order terms, having introduced ni, the density of
the ith component. A completely analogous procedure is
employed for the β̂k operators. Subsequently, the Bogoliubov
transformation brings the bosonic part of the Hamiltonian
Hbos in a diagonal form. In the present case, the Bogoliubov
transformation is given by a 4 × 4 matrix that rotates the
creation and annihilation operators for the two species in the
following way [33]:⎛

⎜⎜⎜⎜⎜⎝

Âk

Â†
−k

B̂k

B̂†
−k

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

M11
k M12

k M13
k M14

k

M21
k M22

k M23
k M24

k

M31
k M32

k M33
k M34

k

M41
k M42

k M43
k M44

k

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

âk

â†
−k

b̂k

b̂†
−k

⎞
⎟⎟⎟⎟⎟⎠. (5)

A full derivation of the coefficients of the Bogoliubov
transformation for a general heteronuclear mixture considered
in the text is a lengthy calculation. We refer the reader to
Ref. [33] for the details. In this new basis, as anticipated, the
bosonic part of the Hamiltonian is diagonal and reads

Hbos =
∑

k

h̄ω
(A)
k â†

kâk +
∑

k

h̄ω
(B)
k b̂†

kb̂k, (6)

where ω
(i)
k is the effective dispersion relation for the ith

normal mode and the â†
k (b̂†

k) operator creates a Bogoliubov
excitation for the A (B) normal mode, respectively [33]. The
density-density interaction term describing a first-quantized
impurity in a bosonic many-body bath interacting with two
different bosonic species is given by

Ĥimp-bos = gI1

∑
k,q

ρ̂(q)α̂†
k−qα̂k + gI2

∑
k,q

ρ̂(q)β̂†
k−qβ̂k, (7)

where ρ̂(q) = exp(iq · R̂) is the Fourier transform of the
density of an impurity located at position R̂. In the case of
Eq. (7), the separation of Eq. (4) gives

Ĥ (1)
imp-bos = gI1

√
n1

∑
k �=0

eik·R̂(Âk + Â†
−k ), (8)

+ gI2
√

n2

∑
k �=0

eik·R̂(B̂k + B̂†
−k ), (9)

having neglected higher order terms in Â and B̂ and having
omitted a constant factor n1gI1 + n2gI2. Finally, after
Bogoliubov transformation and some algebra, the interaction
term can be rewritten as

Ĥ (1)
imp-bos =

∑
k �=0

UA(k)eik·R̂(âk + â†
−k ), (10)

+
∑
k �=0

UB(k)eik·R̂(b̂k + b̂†
−k ), (11)

having introduced the effective potentials:

UA(k) = gI1
√

n1
(
M11

k + M21
k

) + gI2
√

n2
(
M31

k + M41
k

)
,

(12)

UB(k) = gI2
√

n2
(
M33

k + M43
k

) + gI1
√

n1
(
M13

k + M23
k

)
.

(13)

The total Fröhlich-level Hamiltonian is then Ĥ =
Ĥbos + Ĥimp + Ĥ (1)

imp-bos.

IV. EXTENDED HAMILTONIAN

We now include the higher-order terms, i.e., terms ∼â†â†

and similar couplings, describing the scattering of the impu-
rity off the condensate. It has been shown [34] that these terms
are important for an accurate description of the physics of
quantum impurities in ultracold gases. We start from Eq. (7)
but now we do not discard terms quadratic in the fluctuations
fields; this gives rise to the following additional contribution:

Ĥ (2)
imp-bos = gI1

∑
k,k′

ρ̂(k + k′)Â†
−k′ Âk

+ gI2

∑
k,k′

ρ̂(k + k′)B̂†
−k′ B̂k, (14)

so after Bogoliubov transformation the interaction term of
Eq. (14) can be split as Ĥ (2)

imp-bos = Ĥ (2A)
imp-bos + Ĥ (2B)

imp-bos, with

Ĥ (2A)
imp-bos = gI1

∑
k,k′

ρ̂(k + k′)
(
M21

k′ ak′ + M22
k′ a†

−k′ + M23
k′ bk′ + M24

k′ b†
−k′

)(
M11

k ak + M12
k a†

−k + M13
k bk + M14

k b†
−k

)
(15)
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and

Ĥ (2B)
imp-bos = gI2

∑
k,k′

ρ̂(k + k′)
(
M41

k′ ak′ + M42
k′ a†

−k′ + M43
k′ bk′ + M44

k′ b†
−k′

)(
M31

k ak + M32
k a†

−k + M33
k bk + M34

k b†
−k

)
. (16)

An alternative way of writing the extended interaction term is in matrix form, with

H (2A)
imp-bos = gI1

∑
k,k′

ρ̂(k + k′)

⎛
⎜⎜⎜⎜⎜⎝

âk′

â†
−k′

b̂k′

b̂†
−k′

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

M11
k M21

k′ M12
k M21

k′ M13
k M21

k′ M14
k M21

k′

M11
k M22

k′ M12
k M22

k′ M13
k M22

k′ M14
k M22

k′

M11
k M23

k′ M12
k M23

k′ M13
k M23

k′ M14
k M23

k′

M11
k M24

k′ M12
k M24

k′ M13
k M24

k′ M14
k M24

k′

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

âk

â†
−k

b̂k

b̂†
−k

⎞
⎟⎟⎟⎟⎟⎠ (17)

and

H (2B)
imp-bos = gI2

∑
k,k′

ρ̂(k + k′)

⎛
⎜⎜⎜⎜⎜⎝

âk′

â†
−k′

b̂k′

b̂†
−k′

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

M31
k M41

k′ M32
k M41

k′ M33
k M41

k′ M34
k M41

k′

M31
k M42

k′ M32
k M42

k′ M33
k M42

k′ M34
k M42

k′

M31
k M43

k′ M32
k M43

k′ M33
k M43

k′ M34
k M43

k′

M31
k M44

k′ M32
k M44

k′ M33
k M44

k′ M34
k M44

k′

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

âk

â†
−k

b̂k

b̂†
−k

⎞
⎟⎟⎟⎟⎟⎠, (18)

which can easily be rewritten in a compact form by introduc-
ing a spinorlike object 	(k′) = (ak a†

−k bk b†
−k )T .

V. IMPURITY IN THE MISCIBLE AND IMMISCIBLE
PHASES

We now consider the impurity-condensate couplings—to
both normal modes—at the linear level in Ĥ (1)

imp-bos and at the
bilinear level in H (2)

imp-bos, as derived in the previous sections.
We stress that bilinear terms, describing the scattering of the
impurity off the condensate, are important for an accurate
description of impurities in ultracold gases [34,35]. We now
want to solve the full Hamiltonian:

Ĥ = Hbos + Himp + Ĥ (1)
imp-bos + H (2)

imp-bos. (19)

To do so, first we make use of a canonical transformation Ŝ =
exp(iR̂ · P̂A/h̄) exp(iR̂ · P̂B/h̄) so the transformed Hamilto-
nian H = Ŝ−1Ĥ Ŝ describes the system in a frame of reference
comoving with the impurity. Here P̂A = ∑

k h̄k â†
kâk and

the similarly defined P̂B are the bosonic momenta in the A
and B components, respectively, that we use as generators of
spatial translations for bosons. We can now study the dynam-
ics of the system by means of a time-dependent variational
ansatz [10,34,36,37],

|	(t )〉 = eiφ(t )e
∑

k αk (t )a†
k+βk (t )b†

k−H.c.|0〉A
bos|0〉B

bos, (20)

where |0〉i
bos is the boson vacuum for the i component. The

coherent-state ansatz of Eq. (20) constitutes an exact solution
for the ground state of an infinite-mass impurity. We sub-
sequently numerically determine the variational coefficients
αk(t ), βk(t ) via the Euler-Lagrange equation obtained from

the Lagrangian:

L = 〈	(t )|ih̄∂t − Ĥ|	(t )〉. (21)

The time evolution of the time-dependent phase φ(t ), on
the other hand, is found by projecting the Schrödinger
equation onto the chosen variational wave function, i.e.,
by evaluating 〈	(t )|ih̄∂t |	(t )〉 = 〈	(t )|Ĥ|	(t )〉 and numer-
ically solving for φ(t ). Finally, the dynamical overlap or
Loschmidt echo,

S(t ) = 〈	(0)|e−iĤt/h̄|	(0)〉 = 〈	(0)|	(t )〉, (22)

contains full information about the spectrum of the system,
allowing one to immediately obtain the spectral function as

A(ω) = 2 Re
∫ ∞

0
dt eiωt S(t ), (23)

which is immediately related to the Green’s function G via
A(ω) = Im G(ω + i0+), while also being experimentally ac-
cessible via radio-frequency spectroscopy [8].

As a concrete realization of this system, motivated by
recent experiments [19,38,39], we consider a heteronuclear
41K - 87Rb Bose mixture—which we shall dub species 1 and
2, respectively—on top of which we consider a dilute third
component realized with a different hyperfine state of 41K—
dubbed I species. The atoms forming the bosonic reservoir
are in their hyperfine ground state (F = 1, mF = 1) for both
species, while the 41K impurity is in the second-lowest hyper-
fine state (F = 1, mF = 0); this specific configuration is not
affected by spin-exchange collisions, which generally restrict
the lifetime of atomic mixtures. In the impurity limit for the
third component, the system is described by five scattering
lengths, namely, aK-K, aK-Rb, aRb-Rb, aI-K, aI-Rb. Importantly,
these scattering lengths are all known, and aK-Rb and aI-Rb

can be tuned thanks to experimentally accessible Feshbach
resonances [32,38,40–42]: In Fig. 1, we display the behavior
of aK-Rb and aI-Rb as a function of the magnetic field B in the
range B ∈ [60, 105] G. The other three scattering lengths are
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FIG. 1. Mobile impurity in a heteronuclear 87Rb - 41K mixture.
(a) Quantum phases of the mixture. In the self-bound phase (pink
region), the mixture forms a droplet, stabilized by quantum fluctua-
tions, on which the impurity can reside. In the miscible phase (green
region), the impurity lives in a bosonic mixture, whereas the yellow
region corresponds to the immiscible, phase-separated regime, in
which the impurity occupies the most energetically favorable of the
two domains. (b) Tunable scattering lengths aI-Rb between the impu-
rity and 87Rb (red) and the intercomponent scattering length aK-Rb

(orange) across the magnetic field interval B ∈ [60, 105] G; note the
Feshbach resonance at B = 78.9 G. In this magnetic field range, aI-K,
aRb-Rb, and aK-K are approximately constant (see main text). Dashed
blue: Effective scaled mean-field coupling δg̃ = δg

√
m1 m2/4π h̄2 of

the two-component mixture. When δg < 0, the system is unstable
toward collapse and is stabilized by quantum fluctuations into a
self-bound droplet phase (pink region). Full gray lines denote the
transitions of impurities localized at the center (light pink), at the
surface (pink) 63.5 G < B < 66.1 G, or expelled from the droplet
(dark pink) for ND = 4 × 104 particles in the droplet [see also
Figs. 3(c)–3(f)].

almost constant in the range considered, i.e., aK-K � aI-K �
62 a0, aRb-Rb � 100.4 a0.

The liquid-gas transition parameter,

δg = g12 + √
g11g22, (24)

also shown in Fig. 1, allows us to chart the Bose mixture phase
diagram: As the magnetic field is varied in the aforementioned
range, the mixture goes through the droplet, miscible and
immiscible phases. The main result of the present paper is the
analysis of the fate of the impurity across this phase diagram.

In Fig. 2, we consider this heteronuclear Bose mixture
and plot the impurity spectral function A(E ) as a function of
the (scaled) energy E and of the magnetic field B, aiming at
studying the polaron in the miscible phase. In the whole range
of magnetic field, both polaron couplings are off-resonant,
so the many-body environment simply shifts the energy of
a sharp quasiparticle peak—Fig. 2(a)—while maintaining a
relatively large quasiparticle weight Z—Fig. 2(b). The quasi-
particle weight is defined as Z = |〈ψ0|ψ〉|2, where |ψ0〉 is the
wave function of a bare particle and |ψ〉 that of a dressed,
i.e., interacting, quasiparticle [43]. We note that the energy
of the quasiparticle peak is well approximated by the mean-

B(G)

Z

A(E)

E
(u

ni
ts

of
2
n

2
/
3
/
m

I
)(a)

(b)

FIG. 2. Impurity properties in the miscible and immiscible
phase. (a) Polaron spectral function A(E ) in the miscible phase of the
mixture, as a function of external magnetic field B and the polaron
energy. The dotted white line shows the mean-field solution of the
equations of motion, whereas the dashed blue line in the immiscible
region shows the energy of the polaron coupled to a single compo-
nent, see main text. Energies are scaled by the peak density n of the
mixture. (b) Quasiparticle weight Z in the immiscible region, as a
function of magnetic field B.

field solution (dotted white line) obtained by setting α̇k(t ) =
β̇k(t ) = 0 in the equations of motion. In the same figure, we
also characterize the immiscible phase polaron energy (dashed
blue), considering that the polaron will reside in the most
energetically favorable component.

VI. IMPURITY IN A SELF-BOUND DROPLET

We now draw our attention to the droplet phase. Within the
Gross-Pitaevskii (GP) formalism, the two BEC components
are described by complex fields φi(r) with the associated
energy functional

Ebb[φi] =
∫

d3r
∑
i=1,2

(
h̄2|∇φi|2

2mi
+ gii

2
|φi|4

)

+ g12|φ1|2|φ2|2 + 8

15π2h̄3

×
(

m
3
5
1 g11|φ1|2 + m

3
5
2 g22|φ2|2

) 5
2
, (25)

where the last term is the beyond mean-field interaction for
a general two-component mixture [44,45]. The impurity and
interaction between the impurity and the Bose mixture are
described by the energy functional

EI =
∫

d3r
h̄2|∇ψ |2

2mI
+ (gID|φ(r)|2 + EBMF(r))|ψ (r)|2,

(26)
where now the impurity component is described by the
wave function ψ (r), the total density n(r) ≡ |φ(r)|2 =
n1(r) + n2(r), and gID is an effective mean-field coupling
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FIG. 3. Localized impurity in a self-bound droplet. (a), (b) Rep-
resentative impurity-droplet Feynman diagrams at second-order
perturbation theory in the small parameters aIi/ξi, i = A, B. The red
and green dashed lines refer to the first and second normal modes of
the condensate, respectively, each one being a different superposition
of an excitation in the first and second components; the blue lines
represent impurity propagators. (c)–(f) Effective impurity potential
Veff(r) (red curves) for an impurity in a self-bound droplet (yel-
low shaded region) with ND = 4 × 104. The impurity density (blue
shaded) and its ground-state energy (blue dashed lines) are shown
for several magnetic fields. (c) B = 63.5 G. The potential does not
support bound states in three dimensions. (d) B = 65.1 G and (e)
B = 66.0 G. The impurity is localized at the surface of the droplet at
a distance r ≈ 1μm from the center. (f) B = 66.6 G. The impurity is
centered in the self-bound droplet.

constant (see Appendix A). The last term EBMF(r) is the
beyond mean-field interaction for a general two-component
mixture. We obtain it by means of perturbation theory in the
small parameters (aIi/ξi ), i = 1, 2, where ξi = 1/

√
8πniaii

is the healing length for the ith component and ni is its
density. This approach is equivalent to summing 16 different
Feynman diagrams corresponding to second-order processes;
some of the diagrams do not mix the normal modes of the
condensate—as in Fig. 3(a) [46], whereas our binary mixture
also allows for processes mixing the two normal modes, as
in Fig. 3(b), each of the normal modes being a different su-
perposition of the two original components in the condensate.
We report here only the final results (see Appendix B). Within
local-density approximation, one obtains

EBMF(r) =
(

2π h̄2ξ1n

μI1

1

1 + α

)(
aI1

ξ1

)2 m1

μI1
I1

+
(

2π h̄2ξ2n

μI2

α

1 + α

)(
aI2

ξ2

)2 m2

μI2
I2, (27)

where the total density n(r) and the healing lengths ξi(r) are
evaluated at the impurity position and Ii, i = 1, 2 are dimen-
sionless regularized integrals depending on the condensate
Bogoliubov amplitudes, and the ratio α = √

g11/g22.

To probe the equilibrium properties of the impurity in a
droplet environment, we set the relative number of particles in
each of the two components to satisfy the constraint N1/N2 =√

g22/g11 [14]. Rescaling lengths by a11 and energies by
E1 = h̄2/(m1a2

11), we write a set of coupled generalized GP
equations for the impurity-droplet system and we analyze
the concrete case of the heteronuclear 41K-87Rb mixture. In
Figs. 3(c)–3(f) we report the radial density profiles for the
condensate (yellow shaded region) and for the impurity (blue
region) for four different values of the magnetic field. We
also plot the effective potential exerted by the mixture on the
impurity, Veff(r) = gID|φ(r)|2 + EBMF(r), sum of the mean-
field term proportional to n(r), and EBMF(r) scaling as n(r)3/2.
The latter is repulsive, while the former can be attractive
when gID < 0: In this case, occurring for our specific mixture,
Veff(r) is repulsive (attractive) in the high (low) density region
of the droplet, giving rise to a rich phenomenology. For B =
63.5 G, in three dimensions Veff(r) does not support bound
states. As the magnetic field is increased, for B = 65.1 G and
for B = 66.0 G we observe that the impurity is localized at
the surface of the droplet [Fig. 4(b)]. Finally, as the magnetic
field is further increased, we show that for B = 66.6 G the
impurity is localized at the center of the self-bound droplet.
Interestingly, these surface and center bound states occur in
a range of magnetic fields where long-lived droplets have
already been produced [19,39]. In current experiments, the ex-
istence of such states, in which the impurity either localizes at
the center of the droplet or its surface, could be probed by per-
forming high-resolution imaging [20]. Although we deal with
the case of a single impurity, we expect that the results are not
substantially affected for a small—but detectable—number of
impurities, e.g., a few percent of the droplet atom number.

Finally, in Figs. 4(c)–4(e), we study excited states of the
impurity. Depending on the magnetic field strengths, few
bound states appear, their number depending also on the impu-
rity angular momentum . We notice that, for localized states
at the surface, the lowest-energy impurity states of finite  is
well described by EI () = EI (0) + h̄2( + 1)/2m∗R2 [black
dashed line in Fig. 4(e)], where m∗ is the effective mass and
R−2 = 〈r−2〉: the centrifugal barrier affects localized surface
states at finite , providing essentially a constant energy shift
with respect to the  = 0 case (see Appendix C).

VII. CONCLUSIONS AND OUTLOOK

We studied the effect of an impurity in a two-component
heteronuclear Bose mixture. Focusing on collisionally stable,
long-lived Bose mixtures of 41K - 87Rb, we discovered a non-
trivial mechanism leading to the localization of the impurity
in a droplet environment, based on a delicate balance between
the mean-field attraction—scaling with nD(r)—and repul-
sive quantum fluctuations—scaling with nD(r)3/2. This has
far-reaching theoretical and experimental implications: Such
impurity states, experimentally accessible by magnetic tuning,
provide a tool for probing the droplet, whose study is currently
hindered by the lack of adequate diagnostics. Similar to the
case of doped helium droplets, one could unveil the droplet
properties by spectroscopic measurements of the dopant im-
purities [47]: The detection by the local imagining of these
polaronic states would permit the characterization of quantum
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FIG. 4. Densities and excited states of the impurity. (a)–(c) Impurity density of the ground and excited states for ND = 4 × 104. Main
figures: Isosurfaces of constant density. Planes display integrated densities along the axis orthogonal to the plane. Densities (color bar) are
scaled by the maximum density of each configuration. (a) Ground state of an impurity centered in the droplet at B = 66.6 G. (b) Ground
state of an impurity localized at the droplet surface at B = 65.8 G. (c) Excited state of an impurity at B = 65.8 G for  = 10 and m = 10.
(d) Effective potential Veff(r) and density of the impurity nI (r) for the n = 0, . . . , 3 s-wave bound states for a spherical droplet with density
nD(r) (yellow). The eigenstates are localized on the surface of the droplet at r ≈ 1.1 μm from the droplet center. e) Spectrum of the impurity
eigenstates in the presence of the effective potential Veff(r) of (a). The black dashed line is the analytical prediction EI () − EI (0) ∝ ( + 1)
discussed in the text. Eigenstates with n = 1 and  = 0 and  = 10, m = 10 are shown in (b) and (c) respectively. The parameters for (d) and
(e) are ND = 4 × 104 and B = 65.8 G.

fluctuations at the single-particle level of a complex many-
body environment. Also, our setup would permit us to imple-
ment a scheme for the thermometry of the self-bound droplet:
a weak quench of the magnetic field, �B ≈ 1 G, releases from
the confining potential several bosonic impurities populating
the lowest rovibronic states in thermal equilibrium with the
droplet. Time-of-flight detection of the impurities would then
permit the measurement of the temperature of the droplet.

Lastly, this study has far-reaching implications for fur-
ther research, e.g., by considering a similar scenario with
fermionic impurities [48], a finite Rabi coupling between the
two BEC components [49,50], lower dimensionalities [50,51],
the coupling to highly excited Rydberg states [52], he-
liophobic impurities residing on the surface of a 4He
nanodroplet [47], or an impurity hybridizing rotational de-
grees of freedom with a bath [53–56].
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APPENDIX A: ENERGY FUNCTIONAL OF A
HETERONUCLEAR SELF-BOUND DROPLET

To study the effect of an impurity in the droplet phase, we
assume that the two components are described by a complex
field φi(r) with the associated energy functional

Ebb =
∫

d3r

(∑
i=1,2

h̄2|∇φi|2
2mi

+ gii

2
|φi|4

)
+ g12|φ1|2|φ2|2 + 8

15π2 h̄3

(
m

3
5
1 g11|φ1|2 + m

3
5
2 g22|φ2|2

) 5
2
. (A1)

The last term in Eq. (A1) is the beyond mean-field interac-
tion for a general two-component mixture [44]. To probe the
equilibrium properties, we set the relative number of parti-
cles in each of the two components to satisfy the constraint
N1
N2

=
√

g22

g11
[14]. Introducing the mass ratio z = m2

m1
, the scaled

mass m∗ = m 1+√
za11/a22

1+√
a11/za22

, and the coupling constant ratio α =

√
g11

g22
= z1/2√a11/a22 we can rewrite the densities of each

component as follows

|φ1|2 = 1

1 + α
|φ|2, |φ2|2 = α

1 + α
|φ|2, (A2)

where |φ(r)|2 = |φ1(r)|2 + |φ2(r)|2. Using the definition
δg = g12 + √

g11g22 we can rewrite the energy functional
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(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(a)

FIG. 5. Feynman diagrams of the interaction between the two-component BEC (red and green lines) and the impurity (blue lines). The
arrows denote normal and anomalous propagators following the convention in Ref. [57].

Ebb as

Ebb[φ] =
∫

d3r
h̄2|∇φ|2

2m∗ + δg
α

(1 + α)2
|φ|4

+ 8m
3
2
1

15π2h̄3

(
g11|φ|2
1 + α

) 5
2
(

1 + z
3
2

α
1
2

) 5
2

. (A3)

Scaling lengths by a11 and energies by E1 = h̄2

m1a2
11

, we can
write a generalized GP equation for the self-bound droplet,

i ∂φ

∂t = (− ∇2

2m∗/m1
+ gMF|φ|2 + gLHY |φ|3)φ(r, t ), (A4)

where we introduced the effective couplings:⎧⎪⎪⎨
⎪⎪⎩

gMF = 4π α
(1+α)2

(
2
α

+ a12
a11

1+z
z

)

gLHY = 128
√

π

3

(
1+z

1
10

√
a22/a11

1+√
za11/a22

) 5
2

.

(A5)

We solve Eq. (A4) to obtain, e.g., the density profiles of Figs. 3
and 4(d) (yellow shaded areas). In Fig. 6, we plot the energy
of the droplet as a function of the number of particles ND in

the droplet [Fig. 6(a)] and as a function of the magnetic field
B [Fig. 6(b)].

APPENDIX B: BEYOND-MEAN FIELD IMPURITY-BEC
ENERGY EBMF(r)

The mean-field impurity-droplet potential reads

V mf
eff (r) = |φ(r)|2

(
1

1 + α
gI1 + α

1 + α
gI2

)
. (B1)

Introducing the effective coupling,

gID = 2π

1 + α

(
2aI1

a11 + αaI2
a11

1+z
z

)
, (B2)

one obtains the first term of the impurity-droplet potential of
Eq. (26) of the main text. We now compute the correction
to the mean-field impurity-droplet energy in the perturbative
limit for small aIi/ξi, (i = 1, 2), where ξi = 1/

√
8πniaii is the

healing length of the ith component of the BEC. We focus on
the second-order correction which can be derived using the
generalized Fröhlich Hamiltonian derived in Sec. III. Within
this approximation, the interaction Hamiltonian reads

Ĥimp-bos = √
n1

∑
q,k

VA(q) eiq·R̂ (Aq + A†
−q) + √

n2

∑
q,k

VB(q)eiq·R̂ (Bq + B†
−q)

= √
n1

∑
q,k

VA(q) eiq·R̂((
M11

q + M21
q

)
âq + (

M12
q + M22

q

)
â†

−q + (
M13

q + M23
q

)
b̂q + (

M14
q + M24

q

)
b̂†

−q

)+
+ √

n2

∑
q,k

VB(q) eiq·R̂((
M31

q + M41
q

)
âq + (

M32
q + M42

q

)
â†

−q + (
M33

q + M43
q

)
b̂q + (

M34
q + M44

q

)
b̂†

−q

)
. (B3)
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FIG. 6. Energies EI of the impurity (blue) and ED of the droplet (red) in units of h̄2/m1a2
11 as a function of (a) the number of particles in

the droplet ND and (b) the magnetic field B (G). In (a), we set B = 65.8 G and in (b) ND = 4 × 104.

We then apply perturbation theory to find the correction to the ground-state energy. The first-order correction �E (1) vanishes.
The second-order correction reads

�E (2) = n
1

1 + α

(
2π h̄2a1I

μ1I

)2 ∫
d3k

(2π )3

⎛
⎝−

∣∣(M12
k + M22

k

) + √
α a2I

a1I

μ1I

μ2I

(
M32

k + M42
k

)∣∣2

ω
(A)
k

+ 2μ1I

h̄2k2

⎞
⎠

+ n
α

1 + α

(
2π h̄2a2I

μ2I

)2 ∫
d3k

(2π )3

(
−

∣∣(M34
k + M44

k

) + (√
α a2I

a1I

μ1I

μ2I

)−1(
M14

k + M24
k )|2

ω
(B)
k

+ 2μ2I

h̄2k2

)
. (B4)

The last term in the two integrands acts as a regularizing
term for the pair integrals and has the same form as in the
Lippmann-Schwinger equation for each one of the two com-
ponents. The second-order energy shift can be equivalently
expressed as the sum of Feynman diagrams shown in Fig. 5.

Finally, Eq. (B4) can be recast as in Eq. (27)
of the main text upon introducing the healing lengths
of the each component ξi = (8πniaii )−1/2, i = 1, 2. With
the help of the substitutions h̄2k2

2mi
= K2ni

4π h̄2 aii
2mi

, i = 1, 2
we obtain

EBMF = 1

1 + α

(
2π h̄2ξ1 n

μI1

)(
aI1

ξ1

)2 m1

μI1
I1 + α

1 + α

(
2π h̄2ξ2 n

μI2

)(
aI2

ξ2

)2 m2

μI2
I2, (B5)

where we introduced the dimensionless integrals:

I1 = 2

π

∫
d3K

⎛
⎝−

∣∣(M12
K + M22

K

) + √
α a2I

a1I

μ1I

μ2I

(
M32

K + M42
K

)∣∣2

ω
(A)
K

+ μ1I

m1

1

K2

⎞
⎠,

I2 = 2

π

∫
d3K

⎛
⎝−

∣∣(M34
K + M44

K

) + (√
α a2I

a1I

μ1I

μ2I

)−1(
M14

K + M24
K

)∣∣2

ω
(B)
K

+ μ2I

m2

1

K2

⎞
⎠. (B6)

We employ local-density approximation to account for the
space-dependent condensate profiles, leading to a general-
ized Lee-Huang-Yang type of beyond-mean field energy shift
for the impurity. The sum of the contributions of Eqs. (B1)
and (B5) concludes the derivation of the effective potential in
Eq. (26) of the main text:

Veff(r) = gID|φ(r)|2 + EBMF(r). (B7)

Importantly, we notice that the mean-field correction is lin-
ear in the droplet density n(r), whereas the beyond-mean-field
contribution EBMF(r) scales as n(r)3/2. In Fig. 6, we plot the
energy of the impurity as a function of the number of particles
in the droplet (a) and as a function of the magnetic field
(b). We observe that the impurity energy is a nonmonotonic
function of the magnetic field. Finally, we notice that, due
to the large energy difference between the droplet and the
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FIG. 7. Effective mass in the droplet phase. m∗/m − 1 for the
first three vibrational states in Fig. 4(d).

impurity, we neglect the back action of the impurity on the
droplet.

APPENDIX C: EFFECTIVE MASS OF THE IMPURITY
IN THE DROPLET PHASE

In the uniform phase, the polaron effective mass m∗ is
expected to be very close to the impurity bare mass m since
the spectral weight Z is very close to one. This means that
the polaron is weakly dressed by the excitations of the mix-

ture. Another confirmation of this observation comes from
the relatively weak interaction between the impurity and the
two-component BEC (see Fig. 1), even in presence of strong
interactions in the mixture.

The estimate of the effective mass in the droplet phase is
a more intriguing case. As the droplet is an inhomogeneous
environment for the impurity, the effective mass m∗ cannot be
straightforwardly extracted with the standard approach from
the second derivative of the dispersion relation with respect
to a small momentum shift of the polaron [58]. Instead, one
could extract the effective mass by noting the analogy between
the localized impurity and a three-dimensional quantum rotor
(see Fig. 4) with both vibrational Fig. 4(d)] and rotational
states [Fig. 4(e)]. The procedure we describe here is routinely
applied to determine polaron effective masses of impurities
in helium clusters (see, for instance, Ref. [47]). Vibrational
and rotational states are discrete and labeled by quantum
numbers n and  (orbital angular momentum), respectively.
One can extract the effective mass of the impurity by fitting
the rotational energies in Fig. 4(e) with the equation

En() = Bn ( + 1), (C1)

and setting the rotation constant Bn = h̄2

2m∗R2
n
. The radius

R−2
n = 〈r−2〉n is determined from the expectation value in the

nth vibrational state. The results are shown in Fig. 7 for the
first three vibrational states.
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