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ON THE SHARP GEVREY REGULARITY FOR A

GENERALIZATION OF THE MÉTIVIER OPERATOR

G. CHINNI

Abstract. We prove a sharp Gevrey hypoellipticity for the operator

D2
x +

(
x2n+1Dy

)2
+ (xnymDy)2 ,

in Ω open neighborhood of the origin in R2, where n and m are positive

integers. The operator is a non trivial generalization of the Métivier operator

studied in [20]. However it has a symplectic characteristic manifold and a non
symplectic stratum according to the Poisson-Treves stratification. According

to Treves conjecture it turns out not to be analytic hypoelliptic.
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1. Introduction

In [20] G. Métivier studied the non-analytic hypoellipticity for a class of second
order partial differential operators with analytic coefficients in Ω, open neighbor-
hood of the origin in Rn, whose principal symbol vanishes exactly of order two on
a submanifold of T ∗Ω.
In the case of sum of squares of vector fields the most representative model of such
class is the following

(1.1) D2
x + x2D2

y + (yDy)
2
.

In [20] the author proves that the operator (1.1) is G2-hypoelliptic and not better
in a neighborhood of the origin.
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2 G. CHINNI

This means that if u is a smooth function in the neighborhood of the origin U
solving there the equation Pu = f , where P denotes the operator in (1.1) and f is
analytic in U , then u belongs to the Gevrey class G2(U) and there are no solutions
in Gs(U) with 1 ≤ s < 2.
Here Gs(U), s ≥ 1, denotes the space of Gevrey functions in U , i.e. the set of all
f ∈ C∞(U) such that for every compact set K ⊂ U there are two positive constants
CK and A such that for every α ∈ Zn+

|Dαf(x)| ≤ AC |α|K |α|
s|α|, ∀x ∈ K.

The Gevrey index 2 corresponds to that obtained by Derridj and Zuily, [13] (see
also [1]), when applied to this operator.
For this type of operators Hörmander, [18], stated the condition for C∞ hypoellip-
ticity:

(H) the Lie algebra generated by the vector fields and their commutators has
dimension equal to the dimension of the ambient space.

We recall that a sum of squares operator satisfying the Hörmander condition is said
to be Gs-hypoelliptic, s ≥ 1, in Ω, open subset of Rn, if for any U open subset of Ω
the conditions u ∈ D ′ (U) and Pu ∈ Gs(U ′) imply that u ∈ Gs(U ′), U ′ open subset
of U . Needless to say G1(U ′) = Cω(U ′), the class of real-analytic functions on U .

One of the main motivations to study the optimality of the Gevrey regularity of
solutions to sums of squares in two variables is due to the fact that in dimension
greater or equal than 4 the Treves conjecture has been proved to be false, see [2], [6].
In dimension 3 there are no results although in [7] a candidate has been produced
that should violate the conjecture. On the contrary there are good reasons to
surmise that the conjecture of Treves holds in two variables. We refer to [24], [10]
for more details on the statement of the conjecture, as well as to [7] for a discussion
of both the 3- and 2-dimensional cases.
This implies that it is of crucial importance to know if a certain Gevrey regularity,
which may be relatively easy to obtain by using L2 a priori estimates, is optimal
or not.
In two variables this becomes particularly difficult because if the characteristic set
is not a symplectic real analytic manifold, the Hamilton leaves corresponding to
the kernel of the symplectic form have injective projection onto the fibers of the
cotangent bundle, thus causing great technical complication in the construction of
a singular solution, which is the method of proving optimality.
In order to exhibit a singular solution, meaning a solution which is not more regular
than predicted, one constructs first a so called asymptotic formal solution. Once
this is done, the formal solution gives a true solution solving the same equation
with possibly a different right hand side and then one can finally achieve the proof.
The construction of the formal solution in [20], e.g. for the operator in (1.1), uses
the spectral theory of the harmonic oscillator, i.e. of the operator D2

x + x2, the
variable y being reduced to a parameter. For the eigenfunctions of the harmonic
oscillator there are three terms recurrence formulas relating the derivative of an
eigenfunction to those up and down one notch. As a result the k-th derivative with
respect to x of an eigenfunction can be expressed as a linear combination of 2k
eigenfunctions and this makes possible turning the formal solution into a true one.
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In the case of an anharmonic oscillator, which occurs if one considers cases vanishing
of order higher than 2, Gundersen has shown in [15] that such recurrence formulas
do not exist, so that the optimality for the operators

D2
x + x2(q−1)D2

y + (ykDy)2,

as well as

D2
x + x2(q−1)D2

y + x2(p−1)(ykDy)2, 1 < p < q,

is not known.
In 2001 Bender and Wang, [3], studied the following class of eigenvalue problems

−u′′(t) + t2N+2u(t) = tNE u(t), N = −1, 0, 1, 2, . . . ,(1.2)

on the interval −∞ < t < +∞. Such a kind of problem arises in different con-
texts in physics, like the fluid-flow with a resonant internal boundary layer and
in supersymmetric quantum mechanics. The eigenfunction u above is a confluent
hypergeometric function and moreover can be written as a product of a polynomial
and a function exponentially vanishing at infinity.
In this paper we study the optimality of the Gevrey regularity for the operator

(1.3) Mn,m(x, y;Dx, Dy) = D2
x +

(
x2n+1Dy

)2
+ (xnymDy)

2
,

in Ω open neighborhood of the origin in R2. Here n and m are positive integers.
We point out that Mn,m is a generalization of the Métivier operator, (1.1), which
corresponds to the case n = 0 and m = 1.
This operator allows us to use the recurrence relations between the eigenfunctions
of the operator in order to construct an asymptotic solution.
Here is the statement of the result.

Theorem 1.1. The operator Mn,m, (1.3), is G
2m

2m−1 -hypoelliptic and not better in
any neighborhood of the origin.

A few remarks are in order.

(a) The Gevrey regularity obtained for the operator Mn,m is in accordance with
that predicted in [9]. The Gevrey regularity obtained for the operator Mn,m

remains the same if we perturb the operator adding a pseudodifferential
operator of order less then (2n + 2)−1 as showed in [4]. The strategy
used to obtain the result could allowed, in same special cases, to show
the optimality of the Gevrey regularity obtained for the models studied in
[11].

(b) The characterization in terms of Gel’fand-Shilov spaces, see Theorem 5.1.12
below, of the eigenfunctions of the eigenvalue problem (5.1.1) allows us to
precisely compute the partial Gevrey regularity for Mn,m. This means
that we find the Gevrey regularity with respect to x and with respect
to y of the solutions: the operator (1.3) is Gevrey hypoelliptc of order
s0 = 1+ 1

(2m−1)(2n+2) with respect to the variable x and of order s1 = 2m
2m−1

with respect to the variable y and not better in any neighborhood of the
origin. We recall that a smooth function u(x, y) belongs to the non-isotropic
Gevrey space G(s0,s1)(U), U open subset of R2, if for every compact set
K ⊂ U there are two positive constants CK and A such that for every
α, β ∈ Z+

|Dα
xD

β
yu(x, y)| ≤ ACα+β

K αs0αβs1β , (x, y) ∈ K.
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(c) As well as the Métivier operator (1.1), the operator Mn,m, in (1.3), is not
globally analytic hypoelliptic on the two dimensional torus. This means
that if for instance we consider in T2 the operator

D2
x +

(
sin2n+1(x)Dy

)2
+ (sinn(x) sinm(y)Dy)

2
,

then it is not globally analytic hypoelliptic in T2, it is Gs-globally hypoel-
liptic for every s ≥ 2m

2m−1 . This can be obtained via Theorem 1.1 and or

following the proof of the Theorem 2.1 in [25] (p. 325) or following the proof
of the Proposition 1.1 in [5], concerning the subject see also [12]. We recall
that a partial differential operator P is said to be Gs-globally hypoelliptic,
s ≥ 1, in Tn if the condition u ∈ D ′ (Tn) and Pu ∈ Gs(Tn) imply that
u ∈ Gs(Tn). Here Gs(Tn) denotes the space of the Gevrey functions on
Tn.

Here is the plan of the paper. In the first section we construct a formal solution to
the problem Mn,mu = 0. More precisely first of all we construct a formal solution
and subsequently, in order to justify the formal steps we went through, we turn the
formal solution, u, into a true solution, ũ, with the aid of a family of smooth cutoff
functions. Then Mn,mũ belongs to a suitable function space.
In the second section we deduce the proof of the Theorem 1.1. In order to focus
on the construction of the formal solution, we shifted to the appendix a number of
both known and unknown facts about the properties of the eigenfunctions of the
eigenvalue problem (1.2), in the case N = 2n, as well as some auxiliary technical
lemmas.
Aknowledgements. The preparation of this manuscript has been done partially
while the author was supported by the Austrian Science Fund (FWF), Lise-Meitner
position, project no. M2324-N35. The author would like to thank the people of
the Department of Mathematics of Vienna University and in particular professor
B. Lamel, for their hospitality and the numerous mathematical discussions.

2. Formal solution of the operator (1.3)

Following the ideas in [20], the purpose of the present section is to construct a
formal and the associate “approximate” solution to the problem Mn,mu = 0 of the
form

K [u](x, y)=

∫ +∞

0

eiρ
θyρru (ργx, ρ) dρ =

∫ +∞

0

eiρ
θyρr [u (t, ρ)]|t=ργxdρ,(2.1)

where θ, γ and r are parameters that will be chosen later and the function u(t, ρ)
is an infinitely differentiable function in R2

t,ρ with support in the region ρ > 0 and
rapidly decreasing as ρ goes to infinity. The first step will be to establish the values
of the parameters θ and γ.
We have

(1) D2
xK [u] =

∫ +∞

0

eiρ
θyρrρ2γ

[
D2
t u(t, ρ)

]
|t=ργx

dρ;

(2)
(
x2n+1Dy

)2
K [u] =

∫ +∞

0

eiρ
θyρrρ2θ−2(2n+1)γ

[
t2(2n+1)u(t, ρ)

]
|t=ργx

dρ;

(3) and by applying the Lemma 5.2.3, see Appendix,

(xnymDy)
2 K [u] =

(
x2ny2mD2

y +
m

i
x2ny2m−1Dy

)
K [u]
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=

(
1

iθ

)2m∫ +∞

0

eiρ
θyρr+2θ−2nγ+2m(1−θ) [t2nP(t, ρ, ∂t, ∂ρ)u(t, ρ)

]
|t=ργx

dρ,

where

P(t, ρ, ∂t, ∂ρ) = ∂2m
ρ +

2m

ρ

(
2m+ 1

2
− θ(m− 1) + r + γt∂t

)
∂2m−1
ρ

+

2m∑
i=2

1

ρi
(
P1
i (t∂t)−mθP2

i−1(t∂t)
)
∂2m−i
ρ ,

here

P1
i (t∂t) =

i∑
j=0

¯pffl1
i,j

(t∂t)
j and P2

i−1(t∂t) =

i−1∑
j=0

¯pffl2
i−1,j

(t∂t)
j .

The coefficients ¯pffl1
i,j

and ¯pffl2
i,j

are obtained by the formulas (5.2.4) and

(5.2.5), Lemma 5.2.3, setting p = 2m, q = r + 2θ − 2nγ, f = 2n and
p = 2m− 1, q = r + θ − 2nγ, f = 2n respectively.

Choosing θ = 2m(2m− 1)−1 and γ = m(n+ 1)−1(2m− 1)−1 we obtain

Mn,mK [u] =
(
D2
x +

(
x2n+1Dy

)2
+ (xnymDy)

2
)

K [u] (x, y)(2.2)

=

∫ +∞

0

eiyρ
2m

2m−1
ρr+

2m
(n+1)(2m−1)

[
2m∑
i=0

1

ρi
Pi(t, ∂t, ∂ρ)u(t, ρ)

]
t=ρ

m
(n+1)(2m−1) x

dρ,

where

i) P0(t, ∂t, ∂ρ) = −∂2
t + t2(2n+1) +

(
2m−1
2im

)2m
t2n∂2m

ρ ;

ii) P1(t, ∂t, ∂ρ) = t2n
(

2m−1
2im

)2m ( (4m−1)2m
2m−1 + 2mr + 2m2

(n+1)(2m−1) t∂t

)
∂2m−1
ρ ;

iii) Pi(t, ∂t, ∂ρ) = t2n
(

2m−1
2im

)2m
Pi(t∂t)∂

2m−i
ρ , i = 2, 3, . . . , 2m, where Pi(t∂t) =∑i

j=0 ¯pffl
i,j

(t∂t)
j
; the coefficients ¯pffl

i,j
are obtained from the previous for-

mulas replacing θ and γ with the above assigned values.

We have to solve the following equation

2m∑
i=0

1

ρi
Pi(t, ∂t, ∂ρ)u(t, ρ) = 0.(2.3)

We do this formally. We set

u(t, ρ) =
∑
`≥0

u`(t, ρ),

with the purpose to obtain the functions u`(t, ρ) recursively taking advantage of
the eigenvalue problem, (5.1.1), studied in the Appendix. More precisely we want
to express the functions u`(t, ρ) in the following form:

u`(t, ρ) =
∑̀
p=0

g`,p(ρ)vp(t),

where vp(t) are the eigenfunctions given by (5.1.2) in the Appendix.
We remark that we allow the above sum for u` to be finite because of the relation
(5.1.9), Lemma 5.1.3. We point out that the relation (5.1.9), and more generally
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the relation (5.1.11), allow us to construct a suitable system in order to obtain
recursively the functions u`(t, ρ). We stress that Piu`−i can be expressed by a
linear combination of v0(t), . . . , v`(t). This gives us the possibility, at any step
of the process, to reduce the problem to solving a system of ordinary differential
equations.
We choose

u0(t, ρ) = g0,0(ρ)v0(t) = e−c1ρv0(t),(2.4)

where c1 = 2m
2m−1 (2n + 1)1/2m

(
sin
(
π

2m

)
− i cos

(
π

2m

))
and v0(t) is the even-parity

eigenfunction to the problem (5.1.1), see (5.1.2) for its explicit form, corresponding
to the eigenvalue E0 = 2n+ 1. We have

P0(t, ∂t, ∂ρ)u0(t, ρ) = 0(2.5)

We set c0 = <(c1).
Before constructing our formal solution we point out that, in order to have the
desired growth of the functions g`,p(ρ), since they have exponential nature, the
derivative with respect to the parameter ρ does not help to push down the order
with respect to negative power of ρ. The only instrument that allow to do it, it is
the multiplication by negative powers of ρ. In particular the growth of g`,0(ρ) will
be the most thorny; the precise choice of the parameter r plays a fundamental role
in this situation.
Let us start with the action of the operators Pi(t, ∂t, ∂ρ) on u`(t, ρ):

i) case of P0; by (5.1.1), for every ` ≥ 1 we have

P0u` =

(
−∂2

t + t2(2n+2) +

(
2m− 1

2mi

)2m

t2n∂2m
ρ

)(∑̀
p=0

g`,p(ρ)vp(t)

)

= t2n
(

2m− 1

2mi

)2m ∑̀
p=0

(
∂2m
ρ +

(
2mi

2m− 1

)2m

Ep

)
g`,p(ρ)vp(t)

.
= t2n

(
2m− 1

2mi

)2m ∑̀
p=0

Θpg`,p(ρ)vp(t);

where Θp = ∂2m
ρ +

(
2mi

2m−1

)2m

Ep, see Lemma 5.2.4 and (5.2.7) in the

Appendix, here Ep = 4p(n+ 1) + 2n+ 1 is the eigenvalue corresponding to
the even-parity eigenfunction vp(t) to the problem (5.1.1), see (5.1.2).

ii) case of P1; for every ` ≥ 2 we have

P1u`−1 = t2n
(

2m− 1

2mi

)2m (
¯pffl

1,0
+ ¯pffl

1,1
t∂t

)
∂2m−1
ρ

(
`−1∑
p=0

g`−1,p(ρ)vp(t)

)

= t2n
(

2m− 1

2mi

)2m ∑̀
p=0

g`,p,1(ρ)vp(t),

where ¯pffl
1,0

= (4m−1)2m
2m−1 + 2mr and ¯pffl

1,1
= 2m2

(n+1)(2m−1) , see ii) after the

equation (2.2). By the Lemma 5.1.3, in the Appendix, we have

g`,0,1(ρ) = ( ¯pffl
1,0

+ ¯pffl
1,1
δ0,1
0 )g

(2m−1)
`−1,0 (ρ) + ¯pffl

1,1
δ1,1
0 g

(2m−1)
`−1,1 (ρ),(2.6)
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g`,p,1(ρ) =¯pffl
1,1
δp−1,1
p g

(2m−1)
`−1,p−1(ρ) + g

(2m−1)
`−1,p (ρ)(¯pffl

1,0
+ ¯pffl

1,1
δp,1p )g

(2m−1)
`−1,p (ρ)(2.7)

+ ¯pffl
1,1
δp+1,1
p g

(2m−1)
`−1,p−1(ρ), p = 1, 2, . . . `− 2,

g`,`−1,1(ρ) = ¯pffl
1,1
δ`−1,1
`−1 g

(2m−1)
`−1,`−2(ρ) + ( ¯pffl

1,0
+ ¯pffl

1,1
δ`−1,1
`−1 )g

(2m−1)
`−1,`−1(ρ),(2.8)

g`,`,1(ρ) = ¯pffl
1,1
δ`−1,1
` g

(2m−1)
`−1,`−1(ρ);(2.9)

the symbols δj,pν are defined in (5.1.11), Lemma 5.1.3, in the Appendix. In
the case ` = 1 we have

P1u0 = t2n
(

2m− 1

2mi

)2m[(
¯pffl

1,0
+ ¯pffl

1,1
δ0,1
0

)
g

(2m−1)
0,0 (ρ)v0(t)

+ ¯pffl
1,1
δ0,1
1 g

(2m−1)
0,0 (ρ)v1(t)

]
.

Since the term ¯pffl
1,0

= (4m−1)2m
2m−1 + 2mr, see ii) after the equation (2.2),

is linear with respect to r with a non zero coefficient, we may make a
suitable choice of the parameter r cancelling the coefficient of v0 in the
above expression.

iii) case of Pi, i = 2, 3, . . . , 2m; we have

Piu`−i = t2n
(

2m− 1

2mi

)2m

Pi(t∂t)∂
2m−i
ρ

(
`−i∑
p=0

g`−i,p(ρ)vp(t)

)

= t2n
(

2m− 1

2mi

)2m ∑̀
p=0

g`,p,i(ρ)vp,

where

g`,p,i(ρ) =

min{p+i,`−i}∑
ν=max{p−i,0}

g
(2m−i)
`−i,ν (ρ)

 i∑
j=|p−ν|

¯pffl
i,j
δν,jp−ν

 .(2.10)

The symbols δj,pν are defined in (5.1.11), Lemma 5.1.3 in the Appendix, and
we have set δp,0p = 1.

We introduce the operator Π0 and its “orthogonal” (1−Π0) acting on the functions
u` in the following way

Π0u` = g0,`(ρ)v0(t) and (1−Π0)u` =
∑̀
p=1

g`,p(ρ)vp.

As consequence of the choice of the parameter r we have that

Π0P1Π0u0 = Π0P1u0 = 0.

Moreover

Π0P1Π0u` = 0 for every `.

This is crucial in order to obtain the right growth of the functions g`,0(ρ) with
respect to (negative) powers of ρ (see Lemma 5.2.7 in the Appendix).
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Following the idea in [20], to obtain the u`, we consider the system
(1−Π0)P0u` = − (1−Π0)

min{`,2m}∑
i=1

1

ρi
Piu`−i;

Π0P0u` = −1

ρ
Π0P1 (1−Π0)u` −Π0

min{`+1,2m}∑
i=2

1

ρi
Piu`+1−i.

(2.11)

This allows us, at any step of the process, to reduce the problem of computing the
u` to that of solving a system of ` + 1 ordinary differential equations yielding the
functions g`,p(ρ), p = 0, . . . `.
With the purpose of understanding how to construct and subsequently estimate
the functions g`,p(ρ), we begin to analyze the case ` = 1.
For ` = 1 system (2.11) in terms of the g1,p, p = 0, 1, becomes

Θ1g1,1(ρ) = −1

ρ
¯pffl

1,1
δ0,1
1 g

(2m−1)
0,0 (ρ);

Θ0g1,0(ρ) = −1

ρ
¯pffl

1,1
δ1,1
0 g

(2m−1)
1,1 (ρ)− 1

ρ2

(
¯pffl

2,0
δ0,0
0 + ¯pffl

2,1
δ0,1
0 + ¯pffl

2,2
δ0,2
0

)
g

(2m−2)
0,0 (ρ),

where g0,0(ρ) = e−c1ρ and Θk = ∂2m
ρ +

(
2mi(2m− 1)−1

)2m
Ek, k = 0, 1.

We stress the fact that the choice of the parameter r has allowed us to make the
right hand side of the second equation of order −2 with respect to the variable ρ.
We denote by f1,j(ρ), j = 1, 0, the functions on the right hand side of the above
system.
In order to be able to apply Lemmas 5.2.5, 5.2.7, we need to make sure that the
variable σ in those Lemmas belongs to the half line [C0(j+1),+∞[. To accomplish
this, we use cutoff functions χ` so that the hypotheses of those Lemmas are satisfied.
We define a family of smooth functions {χ`(ρ)}`≥0 such that

i) χ`(ρ) is identically zero for ρ < 2R1(` + 1) and identically one for ρ >
4R1(`+ 1), where R1 denotes a suitable positive constant;

ii) there is a constant Cχ, independent of ρ and `, such that

|χ(k)
` (ρ)| ≤ Ckχ ∀k ≤ 2m.(2.12)

The construction of the functions χ` can be done using the same strategy used to
construct the so called Ehrenpreis-Hörmander cut-off functions. More precisely the

function χ` can be optained in the following way. Let Ω̃ = {x ∈ R : |x| ≤ 2R1(`+
1)}. We choose a function ϕ ∈ D(R) with support in B1(0)

.
= {x ∈ R : |x| ≤ 1}

such that ϕ ≥ 0 and
∫
ϕdx = 1. For every δ > 0 we write ψδ(x) = δ−1ψ

(
x
δ

)
. Let

Θ̃ be the characteristic function of the set {x ∈ R : dist(x; Ω̃) ≤ 3R1(` + 1)}. We
set

χ̃` = ϕ ∗ ϕ ∗ · · · ∗ ϕ︸ ︷︷ ︸
2m−times

∗ ϕc1 ∗ · · · ∗ ϕc1︸ ︷︷ ︸
m−times

∗ Θ̃,

where c1 = (R1(`+ 1)− 2m)m−1, we assume that R1 > 2m. Since the support of
a convolution is contained in the vector sum of the supports of the factors in the
convolution the function χ̃` is supported in {x ∈ R : |x| ≤ 4R1(` + 1)} and it is
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identically one on Ω̃. Let k ∈ Z+ with k ≤ 2m, we have

Dk
ρ χ̃` = (Dρϕ) ∗ · · · ∗ (Dρϕ)︸ ︷︷ ︸

k−times

∗ ϕ ∗ · · · ∗ ϕ︸ ︷︷ ︸
(2m−k)−times

∗ϕc1 ∗ · · · ∗ ϕc1 ∗ Θ̃.

Via the Hölder inequality we obtain

‖Dk
ρ χ̃`‖∞ ≤

k∏
i=1

‖Dρϕ‖L1

2m∏
i=k+1

‖ϕ‖L1

m∏
j=1

‖ϕc1‖L1‖Θ̃‖∞ ≤ Ckχ,

where Cχ = ‖Dρϕ‖L1 .
Setting χ` = 1− χ̃`, the function χ` satisfies the properties in i) and ii) above.

We define the functions g1,p(ρ), p = 0, 1, as

g1,1(ρ) = (G1 ∗ (χ1f1)) (ρ),

and

g1,0(ρ) = (G0 ∗ (χ0f0)) (ρ)− h0(ρ)− hm−1(ρ),

where G0 and G1 are the fundamental solutions of Θ0 and Θ1, see Lemma 5.2.4,
and the functions h0(ρ) and hm−1(ρ) are the solutions of the linear homogeneous
equation Θ0h = 0 defined in Lemma 5.2.7.
By Lemma 5.2.5, see also Remark 5.2.6, and Lemma 5.2.7, see also (5.2.10), (5.2.11)
in Lemma 5.2.4, we obtain

|g1,p(ρ)| ≤ C2 1

ρ
e−c0ρ, p = 0, 1,

for ρ ≥ R1, where C is a positive constant depending on m and n.

Let us now consider the case ` > 1. To construct the functions g`,p(ρ) and con-
sequently the functions u`(t, ρ), we proceed recursively adopting the technique de-
scribed above.
We have to solve the following system of `+ 1 equations

Θ0g`,0(ρ) = f`,0(ρ);

Θ1g`,1(ρ) = f`,1(ρ);
...

Θ`g`,`(ρ) = f`,`(ρ).

(2.13)

Where due to (2.6), (2.7), (2.8), (2.9) and (2.10) we have

f`,p(ρ) = −
2m∑
i=1

1

ρi
g`,p,i(ρ), p = 1, . . . , `,(2.14)

or, more explicitly, for p = 1, . . . , `,

f`,p(ρ) =

min{`,2m}∑
i=1

1

ρi
(Piu`−i)p =

min{`,2m}∑
i=1

1

ρi

i∑
j=0

`−i∑
p1=0

¯pffl
i,j
δp,jp−p1

g
(2m−i)
`−i,p1

,

where (Piu`−i)p denotes the coefficient of vp in the expression of Piu`−i.
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Moreover

f`,0(ρ) = −1

ρ
g

(2m−1)
`,1 (ρ)¯pffl

1,1
δ1,1
0 −

min{`,2m}∑
i=2

min{i,`−i+1}∑
ν=0

1

ρi
g

(2m−i)
`−i+1,ν(ρ)

 i∑
j=ν

¯pffl
i,j
δν,j−ν

 .

(2.15)

To comply with the hypotheses of Lemmas 5.2.5, 5.2.7, we solve instead the system
Θ0g`,0(ρ) = f`,0(ρ)χ`;

Θ1g`,1(ρ) = f`,1(ρ)χ`;
...

Θ`g`,`(ρ) = f`,`(ρ)χ`.

(2.16)

We remark that all the sums involved in the above formulas, see (2.10), are finite
and they have at most 4m terms. We also point out that, due to the recurrence

relation described in Lemma 5.1.3 in the Appendix, we have that |δν,jp | ≤ Cj
(ν+j)!
ν! .

The function f`,0(ρ) has order −`− 1 with respect to ρ.
The system (2.16) is then solved by

(2.17)

g`,p(ρ) = Gp ∗ (χ`f`,p)(ρ), p = 1, . . . , `

g`,0(ρ) = G0 ∗ (χ`f`,0)(ρ)− h0(ρ)− hm−1(ρ),

where the functions h0(ρ) and hm−1(ρ) are the solutions ofthe linear homogeneous
equation Θ0h = 0 defined in Lemma 5.2.7
The next lemma gives the estimates of the derivatives of the coefficients g`,p.

Lemma 2.1. With the above notations we have that

|g`,p(ρ)| ≤ C`+1 (`+ 1)`(1− 1
2m )

ρ`
e−c0ρ, 0 ≤ p ≤ `,(2.18)

and more generally,

|g(k)
`,p (ρ)| ≤ C`+1+( k

2m−1)+
(`+ 1)`(1− 1

2m )+ k
2m

ρ`
e−c0ρ, 0 ≤ p ≤ `,(2.19)

with k ∈ Z+. Here x+ = x if x ≥ 0 and x+ = 0 if x < 0.

Proof. We apply Lemmas 5.2.5, 5.2.7 as well as Remark 5.2.6. We have

g
(k)
`,p (ρ) = G(k)

p ∗

−χ`(σ)

min{`,2m}∑
i=1

1

σi
g`,p,i(σ)

 (ρ), for p ≥ 1,(2.20)

where

g`,p,i(σ) =

min{p+i,`−i}∑
ν=max{p−i,0}

g
(2m−i)
`−i,ν (σ)

 i∑
j=|p−ν|

¯pffl
i,j
δν,jp−ν

 .(2.21)

We proceed by induction on `. Assume that for every `′ < `, for every k ∈ Z+ and
for every 0 ≤ p ≤ `′, we have

|g(k)
`′,p(ρ)| ≤ C`

′+1+( k
2m−1)+ (`′ + 1)

`′(1−1/2m)+ k
2m ρ−`

′
e−c0ρ.

Let us estimate first the quantity in (2.21). We have
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(2.22) |g`,p,i(σ)| ≤
min{p+i,`−i}∑
ν=max{p−i,0}

C`−i+1 (`− i+ 1)
(`−i)(1−1/2m)+ 2m−i

2m σ−(`−i)e−c0σ

· C¯pffl
i∑

j=|p−ν|

Cj1ν
j .

Hence

|g(k)
`,p (ρ)| ≤ C¯pffl

min{`,2m}∑
i=1

min{p+i,`−i}∑
ν=max{p−i,0}

i∑
j=|p−ν|

Cj1ν
j

C`−i+1 (`− i+ 1)
(`−i)(1−1/2m)+ 2m−i

2m

∫ +∞

R

|G(k)
p (ρ− σ)| 1

σ`
e−c0σdσ

≤ C¯pfflCG
min{`,2m}∑

i=1

min{p+i,`−i}∑
ν=max{p−i,0}

i∑
j=|p−ν|

Cj1ν
jC`−i+1 (`− i+ 1)

(`−i)(1−1/2m)+ 2m−i
2m

·
(

2m− 1

2m

)2m−1−k

E
k+1
2m −1
p

∫ +∞

R

e−cp|ρ−σ|
1

σ`
e−c0σdσ.

Let us now use Lemma 5.2.5 as well as the fact that the indices j, ν, i run over a
finite number of values.
We point out that there are two positive constants 1 < C− < C+ such that

C−(p+ 1) ≤ Ep ≤ C+(p+ 1).

As a consequence Eθp ≤ Cθ+(p+ 1)θ if θ ≥ 0, whereas Eθp ≤ Cθ−(p+ 1)θ ≤ (p+ 1)θ if

θ < 0. Setting CE = C+ we have that Eθp ≤ C
θ+
E (p+ 1)θ, where θ+ = θ for θ ≥ 0,

θ+ = 0 for θ < 0. We note that CE depends only on the problem data.
We then obtain

|g(k)
`,p (ρ)| ≤ C2

e−c0ρ

ρ`

min{`,2m}∑
i=1

min{p+i,`−i}∑
ν=max{p−i,0}

 i∑
j=0

Cj1

C`−i+1

· (`− i+ 1)(`−i)(1− 1
2m )+ 2m−i

2m +i C
( k

2m−1)+

E (p+ 1)
k

2m−1

≤ C`+1(`+ 1)`(1−
1

2m )+ k
2m
e−c0ρ

ρ`
C2C3C

( k
2m−1)+

E

min{`,2m}∑
i=1

C−i

≤ C`+1+( k
2m−1)+(`+ 1)`(1−

1
2m )+ k

2m
e−c0ρ

ρ`
,

provided C is chosen suitably large.
�

So far we proved the following

Proposition 2.2. There are functions u`, ` = 0, 1, . . ., such that

(2.23) u`(t, ρ) =
∑̀
p=0

g`,p(ρ)vp(t),
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where the vp are the eigenfunctions of the operator in (5.1.1) defined in (5.1.2). g0,0

is defined in (2.4) and the g`,p(ρ) are defined by (2.17), (2.14), (2.15) and satisfy
the estimates (2.19). Finally the function

u(t, ρ) =
∑
`≥0

u`(t, ρ)

is a formal solution of (2.3) in the sense that system (2.11) is verified and formally
equivalent to (2.3).
We say that K [u] is a formal solution of equation (1.3).

Next we need a lemma allowing us to estimate the derivatives with respect to t of
the functions u`, ` ≥ 0.

Lemma 2.3. For any ` ∈ N, any α, β, γ, we have the estimate

(2.24) |tα∂βt ∂γρu`(t, ρ)| ≤ C`+α+β+γ+1
u (`+ 1)`

2m−1
2m + γ

2mα!
1

2n+2 β!
2n+1
2n+2

1

ρ`
e−c0ρ,

where Cu denotes a positive constant independent of `, α, β, γ.

Proof. We apply Lemma 2.1 and Theorem 5.1.12 to

u`(t, ρ) =
∑̀
p=0

g`,p(ρ)vp(t).

Then

|tα∂βt ∂γρu`(t, ρ)| ≤
∑̀
p=0

|∂γρ g`,p(ρ)||tα∂βt vp(t)|

≤
∑̀
p=0

Cp+α+β+1
v α!

1
2n+2 β!

2n+1
2n+2C

`+1+( k
2m−1)+

g
(`+ 1)`(1− 1

2m )+ k
2m

ρ`
e−c0ρ

Then we reach the conclusion choosing Cu large enough. �

3. Turning a formal solution into a true solution

Our next task is to turn the formal solution just constructed into a true solution.
The obtained function is a solution of an equation of the form Mn,mu = f , with f ,

more regular than G
2m

2m−1 .
In order to define the “approximate” solution to the problem Mn,mu = 0, we need
another family of cutoff functions.

Lemma 3.1 ([8]). Let σ > 1. There exists a family of cutoff functions ωj ∈
Gσ(Rnx), 0 ≤ ωj(x) ≤ 1, j = 0, 1, 2, . . ., such that

1- ωj ≡ 0 if |x| ≤ 2R(j + 1), ωj ≡ 1 if |x| ≥ 4R(j + 1), with R an arbitrary
positive constant.

2- There is a suitable constant Cω, independent of j, α, R, such that

(3.1) |Dαωj(x)| ≤ C |α|+1
ω R−|α|, if |α| ≤ 3j.

and

(3.2) |Dαωj(x)| ≤ (RCω)|α|+1 α!σ

|x||α|
, for every α.
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Let ω` denote cutoff functions like those in the above lemma, with σ > 1 sufficiently
close to 1 and R large to be chosen later. We shall be more precise further on.
Define

ũ(t, ρ) =
∑
`≥0

u`(t, ρ)ω`(ρ),(3.3)

where u` is given by Proposition 2.2. We point out that the above series is actually
a locally finite sum, so that we do not have any convergence problem.
We consider

(3.4) K [ũ](x, y) =

∫ +∞

0

eiyρ
2m

2m−1
ρr+

2m
(n+1)(2m−1) ũ(t, ρ)∣∣t=ρ m

(n+1)(2m−1) x
dρ,

where ũ is given by (3.3).
Applying Mn,m to K [ũ](x, y), we obtain

K

 2m∑
i=0

ρ−iPi(t, ∂t, ∂ρ)
∑
`≥0

u`ω`

 (x, y).

Let us look at the quantity in square brackets. We have

2m∑
i=0

ρ−iPi(t, ∂t, ∂ρ)
∑
`≥0

u`ω` =

2m∑
i=0

∑
`≥0

2m∑
γ=0

1

ρi
∂γρω`

1

γ!
P(γ)
i (t, ∂t, ∂ρ)u`,

where P(γ)
i denotes the differential operator whose symbol is ∂γσPi(t, τ, σ).

We are going to consider separately the cases where the cutoff function ω` takes
derivatives and those where it does not take any derivative. The above quantity
becomes

2m∑
i=0

∑
`≥0

1

ρi
ω`Pi(t, ∂t, ∂ρ)u` +

2m∑
i=0

∑
`≥0

2m∑
γ=1

1

ρi
∂γρω`

1

γ!
P(γ)
i (t, ∂t, ∂ρ)u` = A1 +A2.

Let us consider A1 first. We have

(3.5) A1 =
∑
`≥0

ω`P0u` +
∑
`≥0

2m∑
i=1

1

ρi
ω`Pi(t, ∂t, ∂ρ)u`

=
∑
`≥0

ω`P0u` +
∑
`≥1

min{`,2m}∑
i=1

1

ρi
ω`−iPi(t, ∂t, ∂ρ)u`−i

=
∑
`≥1

ω`(1−Π0)P0u` +
∑
`≥1

min{`,2m}∑
i=1

1

ρi
ω`−i(1−Π0)Pi(t, ∂t, ∂ρ)u`−i

+
∑
`≥1

ω`Π0P0u` +
∑
`≥1

min{`,2m}∑
i=1

1

ρi
ω`−iΠ0Pi(t, ∂t, ∂ρ)u`−i

=
∑
`≥1

ω`(1−Π0)P0u` +

min{`,2m}∑
i=1

1

ρi
ω`−i(1−Π0)Pi(t, ∂t, ∂ρ)u`−i


+
∑
`≥1

ω`Π0P0u`+
∑
`≥2

1

ρ
ω`−1Π0P1(1−Π0)u`−1+

∑
`≥2

min{`,2m}∑
i=2

1

ρi
ω`−iΠ0Pi(t, ∂t, ∂ρ)u`−i
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=
∑
`≥1

ω`(1−Π0)P0u` +

min{`,2m}∑
i=1

1

ρi
ω`−i(1−Π0)Pi(t, ∂t, ∂ρ)u`−i


+
∑
`≥1

ω`Π0P0u` +
1

ρ
ω`Π0P1(1−Π0)u` +

min{`+1,2m}∑
i=2

1

ρi
ω`+1−iΠ0Pi(t, ∂t, ∂ρ)u`+1−i

 ,
where we used the fact that P0u0 = 0.
We immediately see that if the functions ω` are identically 1 or 0 the quantities
in brackets above are zero because of (2.11). As a consequence the quantities in
square brackets above have ρ–support for 2R(`+ 1− 2m) ≤ ρ ≤ 4R(`+ 1).
Consider now A2. Since γ runs over a finite interval, the derivatives of the functions
ω` are uniformly bounded and as a consequence

2m∑
γ=1

1

ρi
∂γρω`

1

γ!
P(γ)
i (t, ∂t, ∂ρ)u`

has ρ–support in the interval [2R(`+ 1), 4R(`+ 1)]. Hence

Mn,mK [ũ](x, y) = K
[∑
`≥1

w̃`

]
(x, y),

where the ρ–support of w̃` is contained in the interval [2R(`+ 1− 2m), 4R(`+ 1)].
We now show that K [w̃](x, y), where w̃ =

∑
`≥1 w̃` belongs to the following class

of functions.

Definition 3.2. Let s > 1, we denote by γs(Ω), Ω open subset of Rn, the set of
all ϕ ∈ C∞(Ω), for which, to every compact set K in Ω and every ε > 0, there is
a constant Cε such that, for every α ∈ Zn+,

|Dαϕ(x)| ≤ Cεε|α||α|s|α|, x ∈ K.(3.6)

The classes γs(Ω) are the (local) Beurling classes of order s and, for further reference
on the subject, we refer to [17]. We may also define the global version of the classes
γs, by using uniform constants. These classes are denoted as γsg(Ω).

Proposition 3.3. With the above notation the function Mn,mK [ũ](x, y) belongs

to γ
2m/(2m−1)
g (R2).

Proof. We start off by estimating the derivatives of K
[∑

`≥1 w̃`

]
(x, y). Set s0 =

2m
2m−1 and r′ = r + s0

n+1 . Then

(3.7)

|∂αy ∂βxK
[∑
`≥1

w̃`

]
(x, y)| =

∣∣∣∣∫ +∞

0

eiyρ
s0
ρr
′+αs0+

βs0
2(n+1) (∂βt w̃(t, ρ))∣∣t=ρ s0

2(n+1) x
dρ

∣∣∣∣ .
As we pointed out above the quantity ∂βt w̃(t, ρ) is the sum of two functions:

∂βt w̃(t, ρ) = ∂βt f1(t, ρ) + ∂βt f2(t, ρ), where f1 contains the terms where the cutoffs
ω` are not getting derived, while f2 has the terms where the ω` takes derivatives.

f1(t, ρ) =

2m∑
i=0

∑
`≥0

1

ρi
ω`Pi(t, ∂t, ∂ρ)u`,
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f2(t, ρ) =

2m∑
i=0

∑
`≥0

2m∑
γ=1

1

ρi
∂γρω`

1

γ!
P(γ)
i (t, ∂t, ∂ρ)u`.

Consider the above integral where ∂βt w̃ has been replaced by ∂βt f2. We have to
estimate∣∣∣∣∣∣∣
∫ +∞

0

eiyρ
s0
ρr
′+αs0+

βs0
2(n+1)

∂βt 2m∑
i=0

∑
`≥0

2m∑
γ=1

1

ρi
∂γρω`

1

γ!
P(γ)
i (t, ∂t, ∂ρ)u`

∣∣t=ρ s0
2(n+1) x

dρ

∣∣∣∣∣∣∣
≤

2m∑
i=0

∑
`≥0

2m∑
γ=1

∫ +∞

0

ρr
′+αs0+

βs0
2(n+1)

∣∣∣∣∂βt 1

ρi
∂γρω`

1

γ!
P(γ)
i (t, ∂t, ∂ρ)u`

∣∣∣∣∣∣t=ρ s0
2(n+1) x

dρ

≤
2m∑
i=0

∑
`≥0

2m∑
γ=1

∑
β′≤β

(
β

β′

)∫ +∞

0

ρr
′+αs0+

βs0
2(n+1)

∣∣∣∣ 1

ρi
∂γρω`

1

γ!
P(γ)
i,(β′)(t, ∂t, ∂ρ)∂

β−β′
t u`(t, ρ)

∣∣∣∣∣∣t=ρ s0
2(n+1) x

dρ,

Where P(γ)
i,(β′)(t, ∂t, ∂ρ) denotes the differential operator whose symbol is given by

∂γσ∂
β′

t Pi(t, τ, σ).

Next we need to bound |∂βt f2|. This derivative is a sum of terms of the form(
β

β′

)
1

ρi
|∂γρω`||t2n+j−β′∂j+β−β

′

t ∂2m−i−γ
ρ u`(t, ρ)|, j ≤ i,

modulo a constant independent of α, β. We apply Lemma 2.3 to obtain the bound
for the above quantity(

β

β′

)
1

ρi
|∂γρω`|C`+j−β

′+j+β−β′+2m−i−γ+1
u

· (`+ 1)`
2m−1

2m + 2m−i−γ
2m (j − β′)!

1
2n+2 (j + β − β′)!

2n+1
2n+2

e−c0ρ

ρ`
.

Since 0 ≤ i ≤ 2m, 1 ≤ γ ≤ 2m − i, j ≤ i, we may bound j by i and replace β′ by
zero. We also point out that the base of each factorial in the second line above is
bounded by `+ β + 2m. As a consequence we get the estimate(

β

β′

)
e−c0ρ

ρi+`
|∂γρω`|C

`+β+1
1 (`+ β + 2m)`

2m−1
2m +i 2m−1

2m + 2m−γ
2m +β 2n+1

2n+2

≤ e−c0ρ

ρi+`
|∂γρω`|C

`+β+1
2 (`+ β + 2m)`

2m−1
2m +β 2n+1

2n+2

≤ e−c0ρ

ρi+`
|∂γρω`|C

`+β+1
3 ``

2m−1
2m ββ

2n+1
2n+2 .

Now the support of ∂γρω` is contained in the interval [2R(`+ 1), 4R(`+ 1)], so that
` ≤ ρ

2R − 1. As a consequence

1

ρ`
``

2m−1
2m ≤

(
1

2R

)` 2m−1
2m

ρ−
`

2m ≤
(

1

2R

)` 2m−1
2m

ρ−ρ
1

4mR+ 1
2m .

This allows us to conclude that

|∂βt f2(t, ρ)| ≤
∑
`≥0

(
C4

2R

)` 2m−1
2m

Cβ+1
4 ββ

2n+1
2n+2 ρ

1
2m e−

1
4mRρ log ρ−c0ρ.
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Choosing R large enough allows us to bound the sum over ` and absorb it into the
constant.
Going back to (3.7) where ∂βt w̃ has been replaced by ∂βt f2 we obtain∣∣∣∣∫ +∞

0

eiyρ
s0
ρr
′+αs0+

βs0
2(n+1) (∂βt f2(t, ρ))∣∣t=ρ s0

2(n+1) x
dρ

∣∣∣∣
≤ Cβ+1

4 ββ
2n+1
2n+2

∫ +∞

2R

ρs0(α+ β
2(n+1) )e−

1
4mRρ log ρρr

′+ 1
2m e−c0ρdρ.

Since ρr
′+ 1

2m e−c0ρ ≤ C5, C5 independents by α, β and s0, and applying Lemma
5.2.9, for any ε > 0, the right hand side of the above relation is bounded by

C5C
β+1
4 ββ

2n+1
2n+2 εα+ β

2n+2Cε

(
α+

β

2n+ 2

)(α+ β
2n+2 )s0

.

With a slight change of notation we see that the above quantity is estimated by

(3.8) Cεε
α+βααs0ββs0 ,

since

s0

2n+ 2
+

2n+ 1

2n+ 2
< s0.

Consider now ∫ +∞

0

eiyρ
s0
ρr
′+αs0+

βs0
2(n+1) (∂βt f1(t, ρ))∣∣t=ρ s0

2(n+1) x
dρ,

where f1 has been defined after (3.7). Arguin as in (3.5) we may rewrite the integral
above as∫ +∞

0

eiyρ
s0
ρr
′+αs0+

βs0
2(n+1)

[
∂βt
∑
`≥1

(
ω`(1−Π0)P0u`

+

min{`,2m}∑
i=1

1

ρi
ω`−i(1−Π0)Pi(t, ∂t, ∂ρ)u`−i

)]∣∣t=ρ s0
2(n+1) x

dρ

+

∫ +∞

0

eiyρ
s0
ρr
′+αs0+

βs0
2(n+1)

[
∂βt
∑
`≥1

(
ω`Π0P0u` +

1

ρ
ω`Π0P1(1−Π0)u`

+

min{`+1,2m}∑
i=2

1

ρi
ω`+1−iΠ0Pi(t, ∂t, ∂ρ)u`+1−i

)]∣∣t=ρ s0
2(n+1) x

dρ.

The quantities in square brackets above have ρ–support for 2R(`+ 1− 2m) ≤ ρ ≤
4R(`+ 1).
The estimate of the derivatives of order β with respect to t of the above terms
is made according to the same lines of the estimate above, since the order of ρ-
derivative of ω` played no role in the above estimate.
Hence we get (3.8) also in this case. This ends the proof of the proposition. �
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4. Proof of Theorem 1.1

For the sake of completeness and to make the paper self contained, we recall, in the
Gevrey setting, the following result due to Métivier.

Theorem 4.1 ([19]). Let P be a differential operator with analytic coefficient.
Assume that in Ω open neighborhood of x0 ∈ Rn there exist a continuous operator
R from L2(Ω) in L2(Ω) such that PR = Id. Then P is Gs-hypoelliptic in x0 if and
only if for any neighborhood Ω2 ⊂ Ω of x0, there exists a neighborhood Ω3 b Ω2 of
x0 and constants C and L such that for any k ∈ Z+ and any u ∈ D ′(Ω2) we have:

i) Pu ∈ Hk (Ω2)⇒ u|Ω3
∈ Hk(Ω3);

ii) the following estimate holds

‖u‖k,Ω3 ≤ CLk
(
‖|Pu|‖k,Ω2 + ksk‖u‖0,Ω2

)
,(4.1)

where

‖|Pu|‖k,Ω2
=
∑
|α|≤k

ks(k−|α|)‖DαPu‖0,Ω2
.

We are going to use the above theorem to prove Theorem 1.1. Since the operator
Mn,m in (1.3), as well as its adjoint, satisfies the Hörmander condition in Ω, open
neighborhood of the origin, both Mn,m and its adjoint are subelliptic with a loss of
2(1− 1/(2n+ 1)) derivatives (see [18] and [21].) As a consequence there is Ω1 b Ω,
neighborhood of the origin, where Mn,m satisfies the assumption of Theorem 4.1.
Arguing by contradiction, assume that Mn,m is Gs-hypoelliptic in a neighborhood
of the origin for s < 2m

2m−1 .

We showed before, in Proposition 3.3, that Mn,mK [ũ] ∈ γ2m/(2m−1)
g (R2); due to

estimate (4.1) and to the fact that Gs1(Ω2) ⊂ γs2(Ω2) if s1 < s2 (see Lemma
5.2.10,) we have that K [ũ] ∈ γ2m/(2m−1)(Ω3), Ω3 b Ω2 open neighborhood of the
origin.
Next we need to prove the following

Proposition 4.2. For any ε > 0 there exists a Cε > 0 such that for any α ∈ N we
have

(4.2) ‖〈y〉2∂αy K [ũ](0, y)‖L∞(R) ≤ Cεεαα!s0 ,

where

s0 =
2m

2m− 1
.

Let us show first that Proposition 4.2 allows us to prove Theorem 1.1.

Lemma 4.3. For any ε > 0 there exists a Cε > 0, B > 0, B independents of ε,
such that

(4.3) |F
(
K [ũ]

)
(0, η)| ≤ Cεe−B( |η|ε )

1
s0
.

Proof. Since

|F
(
K [ũ]

)
(0, η)| ≤ 1

|η|α

∫
R
|〈y〉2∂αy K [ũ](0, y)| 1

〈y〉2
dy

≤ Cεεαα!s0 |η|−α
∫
R

1

〈y〉2
dy ≤ C ′εεαα!s0 |η|−α.
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Hence

|F
(
K [ũ]

)
(0, η)|

1
s0

(
|η|
2ε

) α
s0 1

α!
≤ C ′′ε

(
1

2

) α
s0

,

so that, summing over α we finally obtain

|F
(
K [ũ]

)
(0, η)|

1
s0 e(

|η|
2ε )

1
s0 ≤ C ′′′ε ,

from which we conclude the proof of the lemma. �

We need also a bound from below of the same quantity of Lemma 4.3.

Lemma 4.4. There are constants M > 0, µ ∈ R such that for η ≥ 4R, R large
enough, we have

(4.4) |F
(
K [ũ]

)
(0, η)| ≥M |η|µe−c0|η|

1
s0 ,

where c0 = <(c1), c1 = 2m
2m−1 (2n+ 1)1/2m

(
sin
(
π

2m

)
− i cos

(
π

2m

))
.

Proof. Since

K [ũ](0, y) =

∫ +∞

0

eiyρ
s0
ρrũ(0, ρ)dρ =

1

s0

∫ +∞

−∞
eiyηη

r+1
s0
−1ũ(0, η

1
s0 )dη,

we have that

F
(
K [ũ]

)
(0, η) =

2π

s0
η
r+1
s0
−1ũ(0, η

1
s0 ).

Then, using Lemma 2.3 we may write that

|F
(
K [ũ]

)
(0, η)| ≥ 2π

s0
|η|

r+1
s0
−1
(
ω0(η

1
s0 )v0(0)e−c0|η|

1
s0 −

∑
`≥1

ω`(η
1
s0 )|u`(0, η

1
s0 )|
)

=
2π

s0
|η|

r+1
s0
−1
(
ω0(η

1
s0 )v0(0)e−c0|η|

1
s0 −

∑
`≥1

ω`(η
1
s0 )e−c0|η|

1
s0 |u`(0, η

1
s0 )|ec0|η|

1
s0
)

≥ 2π

s0
|η|

r+1
s0
−1
(
ω0(η

1
s0 )v0(0)e−c0|η|

1
s0 −e−c0|η|

1
s0
∑
`≥1

ω`(η
1
s0 )C`+1

u (`+1)
`
s0 |η|−

`
s0

)
.

On the other hand, on suppω`, η
1
s0 ≥ 2R(` + 1), so that the above inequality

becomes, if

|F
(
K [ũ]

)
(0, η)| ≥ 2π

s0
|η|

r+1
s0
−1
(
ω0(η

1
s0 )v0(0)e−c0|η|

1
s0

− e−c0|η|
1
s0
∑
`≥1

(
1

2R

)`
C`+1
u (`+ 1)

`
(

1
s0
−1
))
.

Since 1
s0
− 1 = − 1

2m and taking R > Cu, we have

∑
`≥1

(
1

2R

)`
C`+1
u (`+1)−

`
2m ≤ Cu

∑
`≥1

(
Cu
2R

)`
= Cu

(
1

1− Cu
2R

− 1

)
=

C2
u

2R− Cu
.

Then

|F
(
K [ũ]

)
(0, η)| ≥ 2π

s0
|η|

r+1
s0
−1e−c0|η|

1
s0
(
ω0(η

1
s0 )v0(0)− C2

u

2R− Cu

)
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≥M |η|
r+1
s0
−1e−c0|η|

1
s0 ,

provided |η|
1
s0 ≥ 4R and R is large enough, so that v0(0)− C2

u(2R− Cu)−1 > 0.
This ends the proof of the lemma. �

Lemma 4.3 and Lemma 4.4 for η large and ε small give a contradiction. Hence the
operator Mn,m is Gevrey 2m

2m−1 hypoelliptic and this value is optimal.

To finish the proof we have to show that (4.2) holds, or, in other words, that

K [ũ](0, y) belongs to the global Beurling class γ
2m

2m−1
g (R).

Proof of Proposition 4.2. Since K [ũ] ∈ γ
2m

2m−1 (Ω), where Ω is a neighborhood of

the origin in R2, we need only to show that K [ũ](0, y) ∈ γ
2m

2m−1
g ({|y| ≥ δ}), for a

suitable positive δ.
Actually we are going to prove (4.2) for |y| ≥ δ.
For α ∈ N, consider

y2∂αy K [ũ](0, y).

If the factor y2 is missing the argument is the same, hence we skip it.
Let us compute the above quantity:

y2Dα
y

∫ +∞

0

eiyρ
s0
ρrũ(0, ρ)dρ = y2

∫ +∞

0

eiyρ
s0
ρr+αs0 ũ(0, ρ)dρ.

Now

eiyρ
s0

=
1

ys0ρs0−1
Dρe

iyρs0 ,

so that

y2Dα
y

∫ +∞

0

eiyρ
s0
ρrũ(0, ρ)dρ = y2

∫ +∞

0

eiyρ
s0

(
−Dρ

1

ys0ρs0−1

)β
ρr+αs0 ũ(0, ρ)dρ,

where we made β integrations by parts using the fact that ũ(0, ρ) is rapidly vanishing
at infinity.
As for the factor y2 we transform it into derivatives with respect to ρ, finally
obtaining

y2Dα
y

∫ +∞

0

eiyρ
s0
ρrũ(0, ρ)dρ

=

∫ +∞

0

eiyρ
s0

(
−Dρ

1

s0ρs0−1

)2(
−Dρ

1

ys0ρs0−1

)β
ρr+αs0 ũ(0, ρ)dρ

=
1

yβ

∫ +∞

0

eiyρ
s0

(
−∂ρ

1

is0ρs0−1

)β+2

ρr+αs0 ũ(0, ρ)dρ.

We use the formula

(4.5)

(
−∂ρ

1

is0ρs0−1

)β+2

=

β+2∑
h=0

γβ+2,h
1

ρs0(β+2)−h ∂
h
ρ ,

where

(4.6) |γβ+2,h| ≤ C ′β+2+h
γ

(β + 2)!

h!
≤ Cβ+2+h

γ (β + 2− h)!.
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Here C ′γ , Cγ are positive constants independent of β, h. In particular we have

γβ+2,β+2 =
(
i
s0

)β+2

, and for convenience we set γ00 = 1. Thus the above integral

becomes

1

yβ

β+2∑
h=0

γβ+2,h

∫ +∞

0

eiyρ
s0 1

ρs0(β+2)−h ∂
h
ρ

(
ρr+αs0 ũ(0, ρ)

)
dρ.

We use the formula

(4.7) ∂pρ
(
ρλu

)
=

p∑
k=0

(
p

k

)
(λ)p−kρ

λ−p+k∂kρu,

where (λ)β is the Pochhammer symbol defined by

(4.8) (λ)β = λ(λ− 1) · · · (λ− β + 1), (λ)0 = 1, λ ∈ C.

Then the above integral becomes

(4.9)
1

yβ

β+2∑
h=0

h∑
k=0

(
h

k

)
(r+αs0)h−kγβ+2,h

∫ +∞

0

eiyρ
s0
ρr+αs0+k−s0(β+2)∂kρ ũ(0, ρ)dρ.

Consider now

∂kρ ũ(0, ρ) =
∑
`≥0

∂kρ (u`(0, ρ)ω`(ρ)) =
∑
`≥0

k∑
i=0

(
k

i

)
∂iρu`(0, ρ)∂k−iρ ω`(ρ).

by (3.3). The absolute value of the quantity in (4.9) for |y| ≥ δ can be estimated,
applying Lemma 3.1 and Lemma 2.3, by

δ−β
β+2∑
h=0

h∑
k=0

∑
`≥0

k∑
i=0

(
k

i

)(
h

k

)
|(r + αs0)h−k||γβ+2,h|

·
∫ +∞

0

ρr+αs0+k−s0(β+2)|∂iρu`(0, ρ)||∂k−iρ ω`(ρ)|dρ

≤ δ−β
β+2∑
h=0

h∑
k=0

∑
`≥0

k∑
i=0

C ′β+2−h
γ

(
k

i

)(
h

k

)
|(r + αs0)h−k|

(β + 2)!

h!

· (RCω)k−i+1(k − i)!σC`+i+1
u (`+ 1)

`
s0

+ i
2m

∫ +∞

2R(`+1)

ρr+αs0+i−s0(β+2)−`e−c0ρdρ

Choose β + 2 = α. There is no problem in assuming that α > 2, since we are
interested in large values of α. Furthermore on the domain of integration we have
that

1

ρ
≤ 1

2R(`+ 1)
,

so that the quantity on the right hand side of the above inequality is bounded by

δ−α+2Cα
α∑
h=0

h∑
k=0

∑
`≥0

k∑
i=0

C−h+k+1

(
C

R

)`
α!

i!

|(r + αs0)h−k|
(h− k)!

(k − i)!σ−1

·Rk−i+1− i
2m (`+ 1)

`
(

1
s0
−1
) ∫ +∞

2R(`+1)

ρr+i(1+ 1
2m )e−c0ρdρ.
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The sum over ` ≥ 0 yields a constant independent of α:

δ−α+2Cα+1
α∑
h=0

h∑
k=0

k∑
i=0

C−h+k+1α!

i!

|(r + αs0)h−k|
(h− k)!

(k − i)!σ−1

·Rk−i+1− i
2m

∫ +∞

0

ρr+i(1+ 1
2m )e−c0ρdρ.

Now

|(r + αs0)h−k|
(h− k)!

=
|r + αs0| |r + αs0 − 1| . . . |r + αs0 − h+ k + 1|

(h− k)!

≤ (|r|+ αs0)(|r|+ αs0 − 1) . . . (|r|+ αs0 − (h− k) + 1)

(h− k)!

= sh−k0

(
|r|
s0

+ α
)(
|r|
s0

+ α− 1
s0

)
. . .
(
|r|
s0

+ α− h−k+1
s0

)
(h− k)!

≤ sh−k0

(
|r|
s0

+ α
)h−k

(h− k)!

≤ Ch−k0

αh−k

(h− k)!
= Ch−k0

α!

(α− (h− k))!

αh−k

α!

(α− (h− k))!

(h− k)!

= Ch−k0

(
α

h− k

)
(α− (h− k))!

αh−k

α!
≤ Cα1

(α− (h− k))!

αα−(h−k)
≤ Cα2 .

Here we assumed, without loss of generality, that α ≥ |r|
s0

and we also used the
estimate n! ≥ Cnnn. Plugging this into the above expression we get

δ−α+2Cα+1
α∑
h=0

h∑
k=0

k∑
i=0

C−h+k+1α!

i!
(k − i)!σ−1

·Rk−i+1− i
2m

∫ +∞

0

ρr+i(1+ 1
2m )e−c0ρdρ,

with a different meaning of the constant involved. As a consequence the above
quantity can be further estimated as

δ−α+2Cα+1
α∑
h=0

h∑
k=0

k∑
i=0

C−h+k+1α!

i!
(k − i)!σ−1Rk−i+1− i

2mM ii!1+ 1
2m .

If we choose σ such that σ − 1 = 1
2m , we have

δ−α+2Cα+1
α∑
h=0

h∑
k=0

k∑
i=0

C−h+k+1α!Rk−i+1− i
2mM ik!

1
2m ≤ δ−α+2Cα+1

1 α!1+ 1
2m .

Hence for |y| ≥ δ we have that K [ũ](0, y) belongs to G1+ 1
2m ({|y| ≥ δ}) and, since

1 +
1

2m
<

2m

2m− 1
= s0,

we proved that K [ũ](0, y) belongs to γ
2m

2m−1
g (R) and, moreover, each derivative is

L1 summable in the variable y.
�
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5. Appendix

In this appendix we collect some results on the eigenfunctions of the Bender and
Wang operator. We also include here some estimates we use in the preceding
sections.

5.1. On a special eigenvalue problem. In [3], Bender and Wang study the
eigenvalue problem(

−∂2
t + t2N+2

)
u(t) = EtNu(t), N = −1, 0, 1, 2, . . . ,

on the interval −∞ ≤ t ≤ +∞. The eigenfunction u(t) is required to obey the
boundary conditions that u(t) vanish exponentially rapidly as t→ ±∞.
In this paragraph we focus on the case N = 2n, n ∈ Z+,(

−∂2
t + t2(2n+1)

)
u(t) = Et2nu(t).(5.1.1)

In [3] the authors show that the even-parity eigenfunctions have the form

vk(t) = e−
t2n+2

2n+2 L
(−1/(2n+2))
k

(
t2n+2

n+ 1

)
, k ∈ Z+,(5.1.2)

with corresponding eigenvalue

Ek = 4k(n+ 1) + 2n+ 1;

and the odd-parity eigenfunctions have the form

wk(t) = e−
t2n+2

2n+2 t L
(1/(2n+2))
k

(
t2n+2

n+ 1

)
, k ∈ Z+(5.1.3)

with corresponding eigenvalue

Ẽk = 4k(n+ 1) + 2n+ 3.

L
(α)
k (·), α = ±1/(2n+ 2), are the generalized Laguerre polynomials given by

L
(α)
k

(
t2n+2

n+ 1

)
=

k∑
i=0

(−1)i
(
k + α

k − i

)
t2i(n+1)

(n+ 1)ii!
.

In the next Proposition we list some properties of the Laguerre polynomials that
we use in what follows:

Proposition 5.1.1. The following properties concerning the generalized Laguerre
polynomials hold:

(L-1) let k ∈ Z+ and α ≥ −1/2 then

(k + 1)Lαk+1(s)− (2k + 1− α− s)Lαk (s) + (k + α)Lαk−1(s) = 0,(5.1.4)

and

s
d

ds
Lαk (s) = kLαk (s)− (k + α)Lαk−1(s);(5.1.5)

(L-2) let k, q ∈ Z+ and α > −1 then∫ +∞

0

e−ssαLαk (s)Lαq (s)ds = Γ(α+ 1)

(
k + α

k

)
δk,q,(5.1.6)

where δk,q is the Kronecker symbol;
(L-3) due to the Theorem 6.23, [22], if α > −1 and k ∈ Z+ then Lαk (s) has k

positive zeros.
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Remark 5.1.2. Due to the property (L-3), Proposition 5.1.1, we have that vk(t),
(5.1.2), has 2k zeros each one of multiplicity 2n+ 2 and wk(t), (5.1.3), has 2k+ 1
zeros, 2k of them with multiplicity 2n+ 2, 0 is a zero.
From the property (L-2), Proposition 5.1.1, we obtain

‖tnvk(t)‖20 =
1

2

(
1

n+ 1

) 1
2n+2

Γ(1− α)

(
k − α
k

)
(5.1.7)

and

‖tnwk(t)‖20 =
1

2

(
1

n+ 1

) 1
2n+2

Γ(1 + α)

(
k + α

k

)
(5.1.8)

where α = (2n+ 2)−1.
Moreover we have 〈tnvk, tnvm〉 = 0 and 〈tnwk, tnwm〉 = 0 for any k,m ∈ Z+ with
k 6= m. From now on we shall consider the eigenfunctions, vk, wk, as normalized
with respect the norms in (5.1.7), (5.1.8).

The next lemma gives us a three terms recurrence relation for some derivative of
the eigenfunctions. This relation is crucial for our computation of the asymptotic
solution.

Lemma 5.1.3. The following recurrence relation holds

t
d

dt
vk(t) = (n+ 1)

(
(k + 1)vk+1(t)− (1 + α)vk(t)− (k + α)vk−1(t)

)
, k ≥ 1,

(5.1.9)

and

t
d

dt
v0(t) = (n+ 1) (v1(t)− (1 + α)v0(t)) ,(5.1.10)

where α = − 1
2n+2 . More in general for every i, k ∈ Z+ we have(

t
d

dt

)i
vk(t) =

i∑
j=−i

δk,ij vk+j(t) =

k+i∑
j=max{k−i,0}

δk,ij−kvj(t).(5.1.11)

where:

(i) δk,ii = (n+ 1)i (k+i)!
k! , and, more generally,

(ii) |δk,ij | ≤ Ci
(k+i)!
k! , j = −i, . . . , i, where C is a suitable positive constant.

In the first sum in (5.1.11) we used the convention that v`(t) is identically zero if `
is negative.

Proof. Taking advantage of the relations (5.1.4) and (5.1.5) in (L-1), Proposition
5.1.1, it easy to obtain the recurrence relation (5.1.9) and (5.1.10).

Setting δk,ij = (n+ 1)iδ̃k,ij a direct computation allows us to obtain recursively the

coefficients in the sum (5.1.11):

• δ̃k,ii = (k + i)δ̃k,i−1
i−1 ;

• δ̃k,ii−1 = (k + i− 1)δ̃k,i−1
i−2 − (1 + α)δ̃k,i−1

i−1 ;

• δ̃k,ij = (k+j)δ̃k,i−1
j−1 −(1+α)δ̃k,i−1

j −(k+j+1+α)δ̃k,i−1
j+1 , j = −i+2, . . . , i−2;

• δ̃k,i−i+1 = (k + α− i+ 2)δ̃k,i−1
−i+2 − (1 + α)δ̃k,i−1

−i+1 ;

• δ̃k,i−i = (k + α− i+ 1)δ̃k,i−1
−i+1 ;



24 G. CHINNI

where δ̃k,i−1
` , ` ∈ {i − 1,−i + 1}, are the coefficients of (n + 1)−i+1

(
t ddt
)i−1

vk(t).

From the above relations and arguing by induction we obtain δ̃k,ii = (k+i)!
k! , |δ̃k,ii−1| ≤

i(1 +α) (k+i−1)!
k! , δ̃k,i−i =

∏i−1
`=0(k+α− `) and |δ̃k,ij | ≤ Ci

(k+i)!
k! , j = −i+ 1, . . . , i− 2,

where C is a suitable positive constant. �

Remark 5.1.4. From the above Lemma and taking advantage of relation (5.1.7),
Remark 5.1.2, we can describe the action of the operators Pi(t∂t), (5.2.3), on the
even-parity eigenfunctions. We have

(1) for p ≤ i

Pi(t∂t)vp(t) =

i+p∑
ν=0

 i∑
j=|ν−p|

¯pffl
i,j
δp,jν−p

 vν(t);(5.1.12)

(2) for p ≥ i

Pi(t∂t)vp(t) =

p+i∑
ν=p−i

 i∑
j=|ν−p|

¯pffl
i,j
δp,jν−p

 vν(t).(5.1.13)

Next we show that the eigenfunctions vk(t) belong to the Gel’fand-Shilov space

S
(2n+1)/(2n+2)
1/(2n+2) (R); the same approach can be used in the case of the odd-parity

eigenfunctions wk(t).

Definition 5.1.5. Let α and β be real positive numbers. By Sαβ (R) we denote the

set of infinitely differentiable functions f(t), in R, satisfying the inequality

|tkf (q)(t)| ≤ CAkBqkαkqβq(5.1.14)

where the positive constants C, A and B depend only on f(t).

Fore more details on the subject we refer to [14].
In order to prove the following proposition we follow the ideas of Gundersen, [16],
and of Titchmarsh, [23].

Proposition 5.1.6. There exists a positive constant C0, such that the following
estimates hold

‖vk(t)‖∞ ≤ C0E
3
2 + 1

4n+4

k and ‖wk(t)‖∞ ≤ C0Ẽ
3
2 + 1

4n+4

k .(5.1.15)

Proof. We set Qk(t)
.
= t2n

(
t2n+2 − Ek

)
. Even though Qk is not a polynomial of

the form considered in [16], [23], we observe that it differs from a polynomial of
that form by the factor t2n. Hence if we work on the complement of a small interval
centered at the origin, we may argue along the same lines of [16], [23], Sections 5.4
and 8.4.1.
In what follows we work for t > 0. A symmetric argument holds for t < 0.

Set Tk
.
= E

1/(2n+2)
k , so that Qk(Tk) = 0 and Qk(t) 6= 0 if t > Tk.

Since vk(t) and v′′k (t) have the same sign for t > Tk, all the zeros of vk(t) are in the
interval (0, Tk).
Let t1 be a zero of vk(t), so that v′′k (t1) = 0, and let t2 > t1 be the next critical point
of vk(t). To be definite we assume that t2 is a maximum, the case of a minimum
being treated in the same way.
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Let s be a point in the interval [t1, t2]. Since v′′k (t) = −Qk(t)vk(t) we have

|vk(t2)| =
∣∣∣∣∫ t2

t1

v′k(s) ds

∣∣∣∣ =

∣∣∣∣∫ t2

t1

∫ t2

s

t2n
(
Ek − t2n+2

)
vk(t) dt ds

∣∣∣∣
≤ Ek

∣∣∣∣∫ t2

t1

∫ t2

s

t2nvk(t) dt ds

∣∣∣∣ ≤ Ek|Tk|n ∫ t2

t1

(t2 − s)1/2 ‖tnvk(t)‖L2(R) ds

≤ 2

3
E

1+ n
2n+2

k (t2 − t1)
3/2 ≤ 2

3
E

1+ n
2n+2

k T
3/2
k .

Same argument if t2 is a minimum. As a consequence the first of the estimates in
(5.1.15) follows from the fact that both vk is rapidly decreasing at infinity.
The same argument gives the second estimate in (5.1.15). �

Proposition 5.1.6 allows us to estimate how the L∞ norm of vk depends on k.

Corollary 5.1.7. There is a positive constant, Cv, such that

(5.1.16) ‖vk‖∞ ≤ Cv(k + 1)
3
2 + 1

4n+4 .

Proposition 5.1.8. There exists a positive constant C1, such that the following
estimates hold

‖v′k(t)‖∞ ≤ C1E
7
2−

1
4n+4

k and ‖w′k(t)‖∞ ≤ C1Ẽ
7
2−

1
4n+4

k .(5.1.17)

Proof. Let t0 be such that |t0| < Tk and let t1 denote the closest critical point for
vk(t). Then

|v′k(t)| ≤
∣∣∣∣∫ t0

t1

v′′k (s) ds

∣∣∣∣ =

∣∣∣∣∫ t0

t1

s2n
(
s2n+2 − Ek

)
vk(s) ds

∣∣∣∣
≤ EkT 2n

k ‖vk‖∞|t0 − t1| ≤ EkT 2n+1
k ‖vk‖∞.

On the other hand, since |vk(t)| → 0 and |v′k(t)| → 0 for t → ±∞ we obtain the
first of the estimates in (5.1.17).
Same argument for the second estimate in (5.1.17). �

Proposition 5.1.9. The following estimate holds

|vk(t)| ≤ Ck+1
0 e−Bt

2n+2

,(5.1.18)

where

B =
1− δ2n+1

2n+ 2
where δ ≤ 1/2 and C0 is a suitable constant independent of k.

Proof. Let t0 be such that Qk(t0) and vk(t0) are both positive. (In the odd-parity
case, wk(t), we have to consider |wk(t0)| since for t0 < −Tk, Qk(t0) > 0 and
wk(t0) < 0.)
We assume that t0 > Tk. We have that for t > t0, Qk(t) > 0, vk(t) > 0 and
v′k(t) < 0, vk(t) → 0 as t → +∞ (in the odd parity case wk(t) < 0 and w′k(t) > 0
as t→ −∞.) We have

−v′k(t)v′′k (t) = Qk(t)vk(t)(−v′k(t)) ≥ Qk(t0)vk(t)(−v′k(t)).

We have∫ t1

t0

v′k(t)v′′k (t)dt =
(v′k(t))

2

2

∣∣∣∣∣
t1

t0

and

∫ t1

t0

vk(t)v′k(t)dt =
(vk(t))

2

2

∣∣∣∣∣
t1

t0

.
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We obtain

− (v′k(t1))
2

2
+

(v′k(t0))
2

2
≥ Qk(t0)

[
− (vk(t1))

2

2
+

(vk(t0))
2

2

]
.

Taking t1 → +∞, since both vk(t1)→ 0 and v′k(t1)→ 0, we have

(v′k(t0))
2 ≥ Qk(t0) (vk(t0))

2
or equivalently

(
−v
′
k(t0)

vk(t0)

)2

≥ Qk(t0).

Without loss of generality we replace t0 by t, t > Tk. Integrating both side on the
interval (t0, t) we have

−
∫ t

t0

v′k(s)

vk(s)
ds = log vk(t0)− log vk(t) >

∫ t

t0

(Qk(s))
1/2

ds.

We obtain

vk(t) ≤ vk(t0)e
−
∫ t
t0

(Qk(s))1/2 ds
.

In the region s ≥ E
1/(2n+2)
k = Tk we have

(
s2n+1 − E1/2

k sn
)2

≤ s4n+2 − Eks2n.

We set Z0 = δ−2E
1/(2n+2)
k (≥ Tk), δ ≤ 1/2. Taking t0 = Z0 in the above formula

we have

vk(t) ≤ vk(Z0)e
−
∫ t
Z0

(Qk(s))1/2 ds ≤ vk(Z0)e
−
∫ t
Z0

(s2n+1−E1/2
k sn) ds

≤ vk(Z0)e
Z

2n+2
0
2n+2 −E

1/2
k

Z
n+1
0
n+1 e−

t2n+2

2n+2 +E
1/2
k

tn+1

n+1 = C(Z0)e−
t2n+2

2n+2 +E
1/2
k

tn+1

n+1 .

Let B = 1−2δ2(n+1)

2n+2 , we have

vk(t) ≤ C(Z0)e−Bt
2n+2

, for t ≥ Z0.

We remark that

C(Z0) = vk(Z0)e
δ−4(n+1)

2n+2 Ek−Ek δ
−2(n+1)

n+1 ≤ ‖vk‖∞eδ
−4(n+1) Ek

2n+2 .

On the other side if t ∈ [0, Z0] we have

vk(t) ≤ ‖vk‖∞eBδ
−4(n+1)Ek .

Hence we have obtained the estimate

|vk(t)| ≤ Ck+1
0 e−Bt

2(n+1)

.

where C0, B are suitable positive constants independent of k. �

Proposition 5.1.10. The following estimate holds

|v′k(t)| ≤ C1C
k
0 e
−B′t2n+2

,(5.1.19)

where 0 < B′ < B, B, C0 are given in Proposition 5.1.9 and C1 suitable independent
of k and such that C1 = O((B −B′)−2).

Proof. Let t > Tk. By the Mean-Value Theorem we have

|vk(t+ 1)− vk(t)| = |v′k(t1)|, t < t1 < t+ 1.

Since both |v′k(t)| and |vk(t)| tend to zero as t→∞, we have

|v′k(t+ 1)| ≤ |v′k(t1)| ≤ |vk(t)|+ |vk(t+ 1)| ≤ 2|vk(t)|.
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Arguing as above we have

|v′k(t+ 1)− v′k(t)| = |v′′k (t2)| = |t2n2 (Ek − t2n+2
2 )vk(t2)|, t < t2 < t+ 1.

For t ≥ Tk we obtain

|v′k(t)| ≤ |v′k(t+ 1)|+ |t2n2 (Ek − t2n+2
2 )vk(t2)|

≤ |vk(t)|
(

2 + t4n+2(Ekt
−(2n+2) + 1)

)
≤ 2|vk(t)|

(
1 + t4n+2

)
.

We apply the result in Proposition 5.1.9:

|v′k(t)| ≤ 2
(
1 + t4n+2

)
Ck+1

0 e−Bt
2n+2

.

Then we may conclude that

|v′k(t)| ≤ C1C
k
0 e
−B′t2n+2

,

where 0 < B′ < B and C1 = O((B −B′)−2). This proves the assertion. �

We consider vk(z), z ∈ C, which is the entire continuation of vk(t). We are inter-
ested to the order of vk(z). We recall that an entire function f(z) is of finite order
if there exist C, α > 0 such that

|f(z)| ≤ e|z|
α

, ∀ |z| ≥ C.

We have

Proposition 5.1.11. vk(z) has order 2n + 2, is of finite type, and the following
estimate holds

|vk(z)| ≤ Ck+1ec1|z|
2n+2

,(5.1.20)

for some c1 and C positive, independent of k.

Proof. We set f0(z) = f0 = vk(0) and

f`(z) = f0(z) +

∫ z

0

Qk(ζ)f`−1(ζ)(z − ζ)dζ ` = 1, 2, . . . .

We have

|f1(z)−f0(z)|=
∣∣∣∣∫ z

0

Qk(ζ)f0(ζ)(z − ζ)dζ

∣∣∣∣
=

∣∣∣∣∫ z

0

Qk(ζ) (vk(0) + ζv′k(0)) (z − ζ)dz

∣∣∣∣ ≤ S Q̃k(z)|z|2

2
,

where S = |vk(0)| = |f0| and Q̃k(z) = |z|2n
(
|z|2n+2 + Ek

)
. Using the above

estimate at the step two we have

|f2(z)− f1(z)| =
∣∣∣∣∫ z

0

Qk(ζ) (f1(ζ)− f0(ζ)) (z − ζ)dζ

∣∣∣∣ ≤ S Q̃2(z)|z|4

4!
.

By induction argument we obtain

|f`(z)− f`−1(z)| ≤ S Q̃
`(z)|z|2`

(2`)!
, ∀` ≥ 2.
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Due to the above estimate we have that the series
∑
`≥1 (f`(z)− f`−1(z)) converges

uniformly on compact sets and the term by term differentiation is permitted. Hence
we may take a term by term second derivative of it. We consider the function

f(z) = f0(z) +

∞∑
`=1

(f`(z)− f`−1(z)) .

We have that

f ′′(z) = Qk(z)f(z).

f(z) satisfies our equation with the same initial conditions at z = 0 as vk(z), so
that

vk(z) = f0(z) +

∞∑
`=1

(f`(z)− f`−1(z)) .

If |z| ≥ cE1/(2n+2)
k we have

|vk(z)| ≤ S

(
1 +

∞∑
`=1

(
c1|z|2n+2

)2`
(2`)!

)
= S cosh(c1|z|2n+2) ≤ Cec1|z|

2n+2

,

where c1 ≥ 1 + c−2(n+1) and C > 0 does not depend on k.
On the other side since vk(z) is a holomorphic function in the bounded domain

|z| ≤ cE
1/(2n+2)
k , its absolute value attains its maximum at some points on the

boundary of the disc |z| ≤ cE1/(2n+2)
k :

|vk(z)| ≤ Cec2Ek ≤ Ck+1
2 .

We conclude that

|vk(z)| ≤ Ck+1
2 ec1|z|

2n+2

,

where C2 is a suitable positive constant independent of k. This shows that the
order of vk(z) is less or equal than 2n + 2; on the other hand Proposition 5.1.9
shows that the order is greater or equal than 2n+ 2. �

Due to the Propositions 5.1.9 and 5.1.11 and by the Remark at page 220 of [14] we
have

Theorem 5.1.12. For any k the function vk(t) belongs to the Gel’fand-Shilov space

S
1

2n+2
2n+1
2n+2

(R) and moreover satisfies the estimates

(5.1.21) |tα∂βt vk(t)| ≤ Ck+α+β+1
v α!

1
2n+2 β!

2n+1
2n+2 .

Proof. The proof is contained in [14] and we sketch it here for convenience.
By estimates (5.1.18), (5.1.20) we may apply Theorem 1 of [14], p. 213, and con-
clude that on a domain of the complex plane of the form |s| ≤ K1(1 + |t|), K1 a
suitable positive constant independent of k, we have

(5.1.22) |vk(t+ is)| ≤ Ck+1
3 e−B

′t2n+2

,

where C3 = max{C,C0} and B′ differs as little as desired from B.
Applying Theorem 2 of [14], p. 216, because of the above estimate, we obtain that

(5.1.23) |vk(t+ is)| ≤ Ck+1
3 e−B

′t2n+2+c2s
2n+2

,

for any t+ is = z ∈ C. Here c2 is a constant depending on B′, c1 and K1.
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Finally we apply Theorem 3 of [14], p. 219, and obtain that

(5.1.24) |∂βt vk(t)| ≤ Ck+1
3 Bβββ

2n+1
2n+2 e−B

′′t2n+2

,

where B′′ differs as little as desired from B′ and B is a positive constant independent
of k.
This concludes the proof of the theorem. �

5.2. Technical Lemmas. The following paragraph is devoted to list several tech-
nical results used in the first two Sections.

Lemma 5.2.1. Let θ be a positive real number. Then for every positive integer p
the following identity holds[

ρ−θ (1− θ + ρ∂ρ)
]p

= ρ−θp
p∑
`=1

(−θ)l−1bp,` (1− θ + ρ∂ρ)
p+1−`

,(5.2.1)

where the constants bp,` satisfy the estimate

bp,` ≤ 2p−1(p− 1)`.

In particular bp,1 = 1, bp,2 = p(p− 1)/2, bp,p = (p− 1)!.

Proof. By induction we have that the coefficients bp,` satisfy the recurrence re-
lations: bp,1 = 1, bp,p = bp−1,p−1(p − 1) and bp,` = bp−1,` + (p − 1)bp−1,`−1,
` = 3, . . . , p − 1, where bp−1,` are the coefficients of (AB)p−1. By induction we
have the estimate. �

Lemma 5.2.2. Let ν be a positive integer number. Then the following identity
holds

(ρ∂ρ)
ν

=

ν∑
i=1

dν,i ρ
ν+1−i∂ν+1−i

ρ ,

where the constants dν,i satisfy the estimate

dν,i ≤ 2ν+i(ν + 1− i)i.
In particular dν,1 = 1 = dν,ν , dν,2 = ν(ν − 1)/2 and dν,i, i = 3, . . . , ν − 1.

Proof. By induction we have that the coefficients dν,i satisfy the recurrence rela-
tions: dν,1 = 1 = dν,ν , dν,2 = ν(ν − 1)/2 and dν,i = dν−1,i + (ν + 1 − i)dν−1,i−1,
i = 3, . . . , ν−1, where dν−1,i are the coefficients of (ρ∂ρ)

ν−1. By induction we have
the estimate. �

Lemma 5.2.3. Let θ, f , q and γ real number, θ > 0. Then for every integer p the
following identity holds

[
ρ−θ (1− θ + ρ∂ρ)

]p
ρq
[
tfu(t, ρ)

]
|t=ργx

= ρq−θp

[
tf

p∑
i=0

ρ−iPi(t∂t)∂
p−i
ρ u(t, ρ)

]
|t=ργx

(5.2.2)

= ρq−θp
[
tf
(
∂pρ +

p

ρ

(
p+ 1

2
(1− θ) + q + γf + γt∂t

)
∂p−1
ρ

+

p∑
i=2

ρ−iPi(t∂t)∂
p−i
ρ

)
u(t, ρ)

]
|t=ργx

,
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where

Pi(t∂t) =

i∑
j=0

¯pffl
i,j

(t∂t)
j .(5.2.3)

The coefficients ¯pffl
i,j

, i = 2, . . . , p− 1, are given by

γj
i∑

ν=j

i∑
µ=ν

(p+ ν−µ)!

j!(ν − j)!(p− µ)!
(−θ)µ−ν(1−θ+q +γf)ν−jbp,µ−ν+1dp−µ,i−µ+1,(5.2.4)

and

¯pffl
p,j

=

p∑
ν=j

(
ν

j

)
(−θ)ν−j(1− θ + q + γf)ν−jbp,p−ν+1.(5.2.5)

The constants bp,µ−ν+1 and dp−µ,i−µ+1 are the same of the previous Lemmas.

Proof. We have

(1− θ + ρ∂ρ) ρ
q
[
tfu(t, ρ)

]
|t=ργx

= ρq (1− θ + q + ρ∂ρ)
[
tfu(t, ρ)

]
|t=ργx

= ρq
[
tf (1− θ + q + γf + γt∂t + ρ∂ρ)u(t, ρ)

]
|t=ργx

.

Applying the Lemma 5.2.1 we can rewrite the left hand side of (5.2.2) in the fol-
lowing form

ρ−θp
p∑
`=1

(−θ)l−1bp,` (1− θ + ρ∂ρ)
p+1−`

ρq
[
tfu(t, ρ)

]
|t=ργx

(5.2.6)

= ρq−θp

[
tf

p∑
`=1

(−θ)l−1bp,` (1− θ + q + γf + γt∂t + ρ∂ρ)
p+1−`

u(t, ρ)

]
|t=ργx

.

We observe that if Q1 and Q2 be two operators such that [Q1, Q2] = 0 for every
positive integer ν we have

(Q1 +Q2)ν =

ν∑
i=0

(
ν

i

)
Qi1Q

ν−i
2 .

Taking advantage from the above formula and from the Lemma 5.2.2 we obtain
(5.2.2) from (5.2.6). �

Lemma 5.2.4. Let Θk be the ordinary differential equation of order 2m, m ∈ Z+,
given by

Θk =

(
d

dρ

)2m

+

(
2mi

2m− 1

)2m

Ek,(5.2.7)

where Ek = 4k(n + 1) + 2n + 1 is the eigenvalue of the eigenfunction vk(t), (see
(5.1.2).) We shall use the following fundamental solution of Θk

Gk(ρ) = (ick)−(2m−1) 1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| sin (ck|ρ| cos θj + θj) ,(5.2.8)

where ck = 2m(2m − 1)−1E
1/2m
k , θj = π

2m (1 + 2j), j = 0, 1, . . . , 2m − 1 and
[x] = max{n ∈ Z+ | n ≤ x}, x ≥ 0. We point out that when m is odd the
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summand in (5.2.8) corresponding to j = m−1
2 is e−ck|ρ| and [sin θj ] = 0 if j < m−1

2 ,

[sin θj ] = 1 when j = m−1
2 .

Moreover we have

|Gk(ρ)| ≤ c−(2m−1)
k e−ck sin(π/2m)|ρ|.(5.2.9)

Moreover for every `, 0 ≤ ` ≤ 2m− 1, we have
(5.2.10)

G
(`)
k (ρ) = i−(2m−1)c

−(2m−1−`)
k

1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| cos (ck|ρ| cos θj + (`+ 1)θj) sign(ρ),

if ` is odd and
(5.2.11)

G
(`)
k (ρ) = i−(2m−1)c

−(2m−1−`)
k

1

m

[m−1
2 ]∑
j=0

e−ck sin θj |ρ| sin (ck|ρ| cos θj + (`+ 1)θj) ,

if ` is even.

Proof. Using e.g. the residue theorem we have that

Gk(ρ) =
1

2π

∫
R
eiρσ

(−1)m

σ2m + c2mk
dσ.

If ρ ≥ 0 we have

Gk(ρ) = (ick)
−(2m−1)

i

m−1∑
j=0

1

2m ei(2m−1)θj
eicke

iθj ρ.

If ρ ≤ 0 we have

Gk(ρ) = − (ick)
−(2m−1)

i

2m−1∑
j=m

1

2m ei(2m−1)θj
eicke

iθj ρ.

Since θ`+m = θ` + π for 0 ≤ ` ≤ m− 1, we deduce that

(5.2.12) Gk(ρ) = (ick)
−(2m−1)

i

m−1∑
j=0

1

2m ei(2m−1)θj
eicke

iθj |ρ|.

Further we have that ei(2m−1)θj = −e−iθj for every j, 0 ≤ j ≤ 2m − 1, and
θm−1−` = π− θ`. Plugging this into the expression of Gk we, if m is even, can sum
the j-th summand and the (m− 1− j)-th summand obtaining that

− eiθjeicke
iθj |ρ| − eiθm−1−jeicke

iθm−1−j |ρ|

= −eiθjeicke
iθj |ρ| + e−iθje−icke

−iθj |ρ|

= −eiθj+ick cos θj |ρ|e−ck sin θj |ρ| + e−iθj−ick cos θje−ck sin θj |ρ|

= −2ie−ck sin θj |ρ| (sin θj cos (ck cos θj |ρ|) + cos θj sin (ck cos θj |ρ|))

= −2ie−ck sin θj |ρ| sin (ck cos θj |ρ|+ θj) .
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Plugging this into (5.2.12) and taking into account that the number of summands
is even, we obtain

Gk(ρ) = (ick)
−(2m−1) 1

m

m
2 −1∑
j=0

e−ck sin θj |ρ| sin (ck cos θj |ρ|+ θj) ,

which is (5.2.8) for m even.
Consider now the case of m odd. The number of summands in (5.2.12) is odd, so
that we may proceed as above for all but one summand, obtained when j = m−1

2 .
Now for this value of j, θj = π

2 , which implies that the corresponding summand is
written as

(ick)
−(2m−1) 1

2m
e−ck|ρ|

which gives (5.2.8). Deriving (5.2.9) is straightforward.
Let us now turn to the derivatives of Gk when m is odd. We have

d

dρ
Gk(ρ) = (ick)−(2m−1) 1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| [−ck sin θj sin (ck|ρ| cos θj + θj)

+ck cos θj cos (ck|ρ| cos θj + θj)] sign(ρ)

= i−(2m−1)c
−(2m−2)
k

1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| cos (ck|ρ| cos θj + 2θj) sign(ρ),

which is (5.2.10) when ` = 1. Again

d2

dρ2
Gk(ρ) = i−(2m−1)c

−(2m−2)
k

1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| [−ck sin θj cos (ck|ρ| cos θj + 2θj)

−ck cos θj sin (ck|ρ| cos θj + 2θj)]

+ i−(2m−1)c
−(2m−2)
k

1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| cos (ck|ρ| cos θj + 2θj) 2δ(ρ)

= i−(2m−3)c
−(2m−3)
k

1

m

[m−1
2 ]∑
j=0

2−[sin θj ]e−ck sin θj |ρ| sin (ck|ρ| cos θj + 3θj)

+ i−(2m−1)c
−(2m−2)
k

2

m

[m−1
2 ]∑
j=0

2−[sin θj ] cos (2θj) δ(ρ).

The last sum in the above formula gives zero:

[m−1
2 ]∑
j=0

2−[sin θj ] cos (2θj) = 0.

In fact we have—we recall that m is odd and that θm−1
2

= π
2m (1 + 2m−1

2 ) = π
2 —

m−1
2∑
j=0

2−[sin θj ] cos (2θj) =

m−3
2∑
j=0

cos (2θj) +
1

2
cos(2θm−1

2
)
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= −1

2
+ <

ei πm m−3
2∑
j=0

ei
2π
m j

 = −1

2
+ <

(
ei

π
m

1− eiπm−1
m

1− ei 2π
m

)

= −1

2
+ <

(
1 + e−i

π
m

e−i
π
m − ei πm

)
= −1

2
+ <

1 + cos π
m − i sin π

m

−2i sin π
m

= 0.

This proves (5.2.11) for ` = 2. For ` odd we see that the `-th derivative is a multiple
of sign(ρ) and (5.2.10) can be derived with an argument completely analogous to
the above. Assume that ` is even. Then the `-th derivative is the sum of a term of
the form (5.2.11) and a multiple of the distribution δ. The latter contains the sum

m−1
2∑
j=0

2−[sin θj ] cos (`θj) .

This is zero since arguing as above we isolate the summand corresponding to j =

m−1
2 obtaining the value (−1)

`
2

2 . The remaining sum then gives the opposite using
the same argument as above.
This proves (5.2.11) and (5.2.10) when m is odd.
Assume m even. Then the factor 2−[sin θj ] ≡ 1. Again, arguing as above, we find
that the distribution δ has a factor containing the sum

m
2 −1∑
j=0

cos (`θj) = 0.

This completes the proof of the lemma.
�

Lemma 5.2.5. Let a and b be two positive constants such that a > b. Then there
is a positive constant C0 such that for every R ≥ C0(j + 1), j ∈ Z+, the following
inequality holds ∫ +∞

R

1

τ j
e−a|ρ−τ |−bτdτ ≤

(
1

a
+

2

a− b

)
e−bρ

ρj
.(5.2.13)

Proof. We write the right hand side of (5.2.13) as∫ ρ

R

eaτ−aρ
1

τ j
e−bτdτ +

∫ +∞

ρ

e−aτ+aρ 1

τ j
e−bτdτ

.
= (I) + (II).

Since ρ < τ then ρ−1 > τ−1 and e−bτ < e−bρ we have

(II) ≤ e−bρ

ρj

∫ +∞

ρ

e−a(τ−ρ)dτ =
e−bρ

aρj

∫ +∞

0

e−sds =
e−bρ

aρj
.

Let us estimate of term (I). We take τ−j = e−j log τ and we consider the function
f(τ) = 2−1(aτ − bτ)− j log τ . Since f (1)(τ) = 2−1(a− b)− jτ−1, f(τ) is decreasing
function for τ < 2(a − b)−1j and increasing function for τ > 2(a − b)−1j. Since
einf f(τ) ≤ ef(τ) ≤ esup f(τ) taking R > 2(a−b)−1j so that f(τ) is increasing function
in the region [R, ρ] we have that sup f(τ) = f(ρ). We have

ef(τ) ≤ 1

ρj
e

(a−b)
2 ρ.
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For R > 2(a− b)−1j we have

(I) ≤ 1

ρj
e−

(a+b)
2 ρ

∫ ρ

R

e
(a−b)

2 τdτ ≤ 1

ρj
e−

(a+b)
2 ρ

∫ ρ

0

e
(a−b)

2 τdτ

=
1

ρj
e−

(a+b)
2 ρ 2

a− b

(
e

(a−b)
2 ρ − 1

)
≤ 2

a− b
1

ρj
e−bρ.

Summing up we obtain (5.2.13). �

Remark 5.2.6. Setting a = ck sin(π/2m) = 2m(2m − 1)−1E
1/2m
k sin(π/2m) and

b = c0 sin(π/2m) = 2m(2m − 1)−1E
1/2m
0 (sinπ/2m), Ek = 4k(n + 1) + 2n + 1,

k ∈ Z+, in the above Lemma we have∫ +∞

R

1

τ j
e−ck sin(π/2m)|ρ−τ |−c0 sin(π/2m)τdτ ≤ C

(k + 1)1/2mρj
e−c0 sin(π/2m)ρ,(5.2.14)

for R ≥ C0(j + 1). Here C denotes a suitable constant depending only on m; C0

can be chosen greater than two and independent of j and k.

Lemma 5.2.7. Let G0(ρ) be the fundamental solution of Θ0 used in Lemma 5.2.4.
Then there is a positive constant C0 greater than two such that for every R ≥
C0(j + 1), j ∈ Z+, we have∣∣∣∣∫ +∞

R

G0(ρ− τ)
1

τ j+1
e−c0λ

′′
0 τdτ − h0(ρ)− hm−1(ρ)

∣∣∣∣ ≤ C1
e−c0λ

′′
0 ρ

ρj(j + 1)
,(5.2.15)

where C1 is a positive constant independent by j, c0 = 2m(2m− 1)−1E
1/2m
0 and

h0(ρ) = (ic0)−(2m−1) 1

2im
ei(c0λ0ρ+θ0)

∫ +∞

R

eic0λ
′
0τ

1

τ j+1
dτ,

hm−1(ρ) = (ic0)−(2m−1) 1

2im
ei(c0λm−1ρ+θm−1)

∫ +∞

R

eic0λ
′
m−1τ

1

τ j+1
dτ,

with λ0 = λ′0 +iλ′′0 = cos θ0 +i sin θ0, θ0 = π
2m , λm−1 = λ′m−1 +iλ′′m−1 = cos θm−1 +

i sin θm−1, θm−1 = π(2m−1)
2m .

Proof. We recall that

G0(ρ) = (ic0)−(2m−1) 1

m

[m−1
2 ]∑

k=0

2−[sin θk]e−c0 sin θk|ρ| sin (c0|ρ| cos θk + θk) .

We have

(5.2.16)

∫ +∞

R

G0(ρ− τ)
1

τ j+1
e−c0λ

′′
0 τdτ = (ic0)−(2m−1) 1

m

×
[m−1

2 ]∑
k=0

2−[sin θk]

∫ +∞

R

e−c0 sin θk|ρ−τ | sin (c0|ρ− τ | cos θk + θk)
1

τ j+1
e−c0λ

′′
0 τdτ.

We begin to handle the term k = 0. Since

e−c0 sin θ0|ρ| sin (c0 cos θ0|ρ|+ θ0)

= e−c0 sin θ0|ρ| (sin θ0 cos (c0 cos θ0|ρ|) + cos θ0 sin (c0 cos θ0|ρ|))

=
1

2i

(
eiθ0+ic0 cos θ0|ρ|e−c0 sin θ0|ρ| − e−iθ0−ic0 cos θ0e−c0 sin θ0|ρ|

)
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1

2i

(
eiθ0eic0e

iθ0 |ρ| − e−iθ0e−ic0e
−iθ0 |ρ|

)
=

1

2i

(
eiθ0eic0e

iθ0 |ρ| + eiθm−1eic0e
iθm−1 |ρ|

)

=
1

2i

(
eiθ0eic0λ0|ρ| + eiθm−1eic0λm−1|ρ|,

)
.

we have∫ +∞

R

e−c0 sin θ0|ρ−τ | sin (c0|ρ− τ | cos θ0 + θ0)
1

τ j+1
e−c0λ

′′
0 τdτ

=
1

2i

(
eiθ0

∫ +∞

R

eic0λ0|ρ−τ | 1

τ j+1
e−c0λ

′′
0 τdτ + eiθm−1

∫ +∞

R

eic0λm−1|ρ−τ | 1

τ j+1
e−c0λ

′′
0 τdτ

)
=

1

2i

[
eiθ0

(∫ ρ

R

eic0λ0(ρ−τ) 1

τ j+1
e−c0λ

′′
0 τdτ +

∫ +∞

ρ

eic0λ0(τ−ρ) 1

τ j+1
e−c0λ

′′
0 τdτ

)
+eiθm−1

(∫ ρ

R

eic0λm−1(ρ−τ) 1

τ j+1
e−c0λ

′′
0 τdτ +

∫ +∞

ρ

eic0λm−1(τ−ρ) 1

τ j+1
e−c0λ

′′
0 τdτ

)]
=

1

2i

[
ei(c0λ0ρ+θ0)

(∫ +∞

R

e−ic0λ
′
0τ

τ j+1
dτ +

∫ +∞

ρ

e−ic0λ
′
0τ

τ j+1
dτ +

∫ +∞

ρ

eic0λ
′
0τ

τ j+1
e−2c0λ

′′
0 τdτ

)

+ei(c0λm−1ρ+θm−1)

(∫ +∞

R

e−ic0λ
′
m−1τ

τ j+1
dτ +

∫ +∞

ρ

e−ic0λ
′
m−1τ

τ j+1
dτ

+

∫ +∞

ρ

eic0λ
′
m−1τ

τ j+1
e−2c0λ

′′
0 τdτ

)]
,

where we used that λ′m−1 = −λ′0 and λ′′m−1 = λ′′0 . We obtain that

(ic0)−(2m−1) 1

m

∫ +∞

R

e−c0 sin θ0|ρ−τ | sin (c0|ρ− τ | cos θ0 + θ0)
1

τ j+1
e−c0λ

′′
0 τdτ

= h0(ρ) + hm−1(ρ)

+ (ic0)−(2m−1) 1

2im

[
ei(c0λ0ρ+θ0)

(∫ +∞

ρ

e−ic0λ
′
0τ

τ j+1
dτ +

∫ +∞

ρ

eic0λ
′
0τ

τ j+1
e−2c0λ

′′
0 τdτ

)

+ei(c0λm−1ρ+θm−1)

(∫ +∞

ρ

e−ic0λ
′
m−1τ

τ j+1
dτ +

∫ +∞

ρ

eic0λ
′
m−1τ

τ j+1
e−2c0λ

′′
0 τdτ

)]
= h0(ρ) + hm−1(ρ) + (I)

The absolute value of (I) can be estimated by

C ′
e−c0λ

′′
0 ρ

ρjj
,

where C ′ is a positive constant independent by j.
Concerning the other terms in sum (5.2.16),∫ +∞

R

e−c0 sin θk|ρ−τ | sin (c0|ρ− τ | cos θk + θk)
1

τ j+1
e−c0λ

′′
0 τdτ, k = 2, . . . , [

m− 1

2
],
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we can apply the Lemma 5.2.5. Since sin θk > sin θ0 = λ′′0 the absolute value of the
above quantity can be bonded by∫ +∞

R

e−c0 sin θk|ρ−τ | 1

τ j+1
e−c0λ

′′
0 τdτ ≤ C ′′ e

−c0λ′′0 ρ

ρj+1
,

where C ′′ is a positive constant independent by j.
Putting the above considerations together we obtain the (5.2.15). �

Remark 5.2.8. The functions h0(ρ) and hm−1(ρ) are both solutions of the problem
Θ0h = 0.

Lemma 5.2.9. Let a, s be two positive real numbers and j ∈ Z+. Then for every
ε > 0 there exist a positive constant Cε, independent of j, such that∫ +∞

0

e−aρ log ρρsjdρ ≤ Cεεjjjs.(5.2.17)

Proof. We have∫ +∞

0

e−aρ log ρρsjdρ =

∫ +∞

0

e−aρ log ρ+cρρsje−(c−1)ρe−ρdρ,

where c is a positive real number such that s(2−1ε)−1/s + 1 > c > sε−1/s + 1. We
have

sup
ρ
ρsje−(c−1)ρ =

[(
s

c− 1

)s]j
e−jsjsj ≤ εjjjs.

On the other hand f(ρ) = −aρ log ρ + cρ take its maximum in ρ0 = e(c−a)/a. We

have that ef(ρ0) ≤ exp(ae(s(2ε1/s)−1−a+1)a−1

)
.
= C. Setting C = Cε we have the

assertion. �

Lemma 5.2.10. Let s1 and s2 two positive real number such that s1 < s2 then
Gs1(Ω) ⊂ γs2(Ω).

Proof. We have that AC |α||α|s|α| = AC |α||α|(s1−s2)|α||α|s2|α|. We want to see that

C |α||α|(s1−s2)|α| ≤ Cεε|α| ∀ ε > 0.

We observe that since s2 > s1 than C |α||α|(s1−s2)|α| → 0 for |α| → +∞.
We take the logarithm of both side of above inequality

|α| log

(
C

ε

)
− (s2 − s1) log |α| ≤ logCε.

Consider the function f(t) = t log(C/ε)−(s2−s1)t log t in (1,+∞). We have f ′(t) =
0 for t0 = e−1(C/ε)1/(s2−s1). Setting Cε = exp(f(t0)) we have the assertion. �
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