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Abstract
Entropy is widely used in ecological and environmental studies, where data often 
present complex interactions. Difficulties arise in linking entropy to available covar-
iates or data dependence structures, thus, all existing entropy estimators assume 
independence. To overcome this limit, we take a Bayesian model-based approach 
which focuses on estimating the probabilities that compose the index, accounting 
for any data dependence and correlation. An estimate of entropy can be constructed 
from the model fitted values, returning an observation-specific measure of entropy 
rather than an overall index. This way, the latent heterogeneity of the system can be 
represented by a curve in time or a surface in space, according to the characteristics 
of the survey study at hand. An empirical study illustrates the flexibility and inter-
pretability of our results over temporally and spatially correlated data. An applica-
tion is presented about the biodiversity of spatially structured rainforest tree data.

Keywords  Bayesian multinomial regression · Biodiversity · Correlated data · 
Entropy estimation · Rainforest trees

1  Introduction

Ecology can be seen as a quantitative discipline: ecologists use data to “understand 
how populations and communities are structured and to make predictions about 
how ecological systems might change over space or time, or in response to exter-
nal forces” (Magurran 2004). Ecological issues can be faced from a spatial and/or 
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temporal point of view, by documenting patterns, but also by considering the under-
lying processes. A current challenge is assessing the extent of short-term and local 
changes in ecological communities, and scientists have a limited understanding of 
such processes (Magurran 2004). Studies on biological diversity are a fundamental 
part of every ecological survey, for biodiversity plays a crucial role in the deliv-
ery of a range of ecosystem services such as natural harvests, carbon sequestration, 
pollination and soil formation (Frosini 2004). At the same time, it is threatened by 
climate changes, over-harvesting, pollution, habitat loss and invasive species, due to 
human activities. Widespread concern about the extent of habitat and species loss 
led the United Nations to declare 2010 as its International Year of Biodiversity, rec-
ognizing that the conservation of biological diversity is a major policy issue. The 
UN Convention on Biological Diversity set a target to significantly reduce the rate 
of biodiversity loss, and this has stimulated the development of a large set of diver-
sity indices. One of the most popular descriptive measures is entropy, as defined by 
Shannon (1948); in the remainder of the paper, the term “entropy” follows Shan-
non’s definition.

Shannon’s entropy is a successful measure in many fields, able to synthesize sev-
eral concepts in a single number: entropy, information, heterogeneity, surprise, con-
tagion. The flexibility of such index and the possibility to describe any kind of data, 
including categorical variables, motivate its diffusion across applied fields such as 
geography, ecology, biology and landscape studies, whenever synthetic measures of 
heterogeneity may be of interest (Frosini 2004). In biodiversity studies, the advan-
tages of Shannon’s entropy lie on its ability to synthesize both information about 
the number of species over an area and information about their distribution: the 
index quantifies the uncertainty in predicting the species identity of an individual 
that is taken at random from the dataset. Entropy increases when species richness 
(the number of species) and/or species evenness (the even distribution of species) 
increase, while it decreases when one or few species are predominant; it is com-
monly used to evaluate � diversity, defined as the mean diversity of species in differ-
ent sites or habitats within a local scale (Anderson et al. 2011).

Typically, in environmental and ecological applications, the amount of data for 
different categories (species) depends on several factors, such as environmental 
covariates, spatial location, temporal structures; a major drawback of Shannon’s 
entropy is that it cannot account for auxiliary information or data dependence. 
Recently, scientists have shown interest in the topic of data structures and entropy; 
for example, ecological studies attempt to find a relationship between quantities 
related to entropy, such as species abundance and richness, and environmental fac-
tors or temporal/spatial effects using regression or mixed models (Ventrucci et  al. 
2020; Martinez-Minaya et al. 2018). Such studies, though providing interesting con-
tributions, do not consider the relationship between the occurrence probabilities of 
each species and covariates or effects, besides, they do not account for absent spe-
cies and for the possibility that species are not the same across observation sites. 
Besides, Gelfand and Shirota (2019) and Gelfand (2022) raise the issue of pres-
ence/absence data that ignore the abundance on the spatial unit. A further limit of 
recent studies trying to compute local entropy measure is that they may be unreli-
able if they are based on very few local data. In addition, failing to consider data in 
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neighbouring areas (or time points) produces a noisy set of entropy values, which is 
usually non-informative and difficult to interpret. Since entropy measures are often 
employed to describe spatial data, the inclusion of spatial information has been the 
target of intensive research (Batty 1976; Leibovici et al. 2014; Altieri et al. 2018, 
2019). Gelfand (2022) reviewed recent literature on the distribution of species, high-
lighting the need to incorporate spatial dependence in indices such as entropy: very 
little of the literature is spatial, despite the evident dependence within site as well 
as across sites. In biodiversity studies, space is investigated with � diversity indi-
ces, which look for variation in the identities of species among sites, but Shannon’s 
entropy is not one of them. Anderson et al. (2011) highlight the need for diversity 
measures able to detect latent processes driving observed patterns.

Latent processes regard a different branch of studies, which estimate the entropy 
of a phenomenon. The standard approach relies on the Maximum Likelihood 
(ML) estimator, which substitutes the unknown probability distribution of inter-
est with relative frequencies and performs well when independence is an accept-
able assumption (see Antos and Kontoyiannis (2001) and details in Appendix A). 
To our knowledge, no study faces the task of estimating entropy for data presenting 
dependence on available covariates, spatial/temporal association or other types of 
dependence. In the literature of entropy estimation, the assumption of independence 
is never relaxed; on the other side, spatial entropy studies never consider the aspect 
of inference.

The aim of this paper is to present a new, model-based approach to entropy esti-
mation. We take a new perspective that moves from an overall measure of entropy 
under the assumption of independence, which is untenable in most survey studies, to 
provide an estimate of entropy that can vary in time, space, or according to available 
covariates. We build a Bayesian hierarchical model for multinomial data, where the 
species occurrence probabilities are modelled based on available information, such 
as environmental covariates and/or spatial coordinates. The proposed models can be 
conveniently implemented in R-INLA (Integrated Nested Laplace Approximation, 
Rue et al. (2009)), which is particularly useful from a user perspective, as it allows 
to handle a wide range of spatial and temporal random effects to model depend-
ence. The use of a multinomial response is a key novelty of our work, that exploits 
the information about the abundance of each category (species) in real data studies, 
and avoids reducing data to presence/absence, with related issues raised by Gelfand 
and Shirota (2019). After obtaining a posterior distribution for all parameters, the 
posterior distribution of entropy is straightforward, since the entropy formula only 
depends on the probabilities (see Equation (1)). Any diversity index based on prob-
abilities can also be derived, such as Hill’s number (Hill 1973). A point entropy esti-
mator can be, e.g., the mean of the entropy posterior distribution. Our approach also 
provides standard errors to quantify the estimation uncertainty, addressing one of 
the present challenges of spatial ecological analysis (Gelfand 2022). For time series 
data, the estimate can be represented by a curve, that takes into account the temporal 
neigbourhood of each observation point, smoothes out any random variation in the 
data and allows to grasp the general behaviour of entropy. In the spatial context, the 
estimation output is a spatial surface for the entropy over the area under study.
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The proposed framework is suitable for different types of ecological surveys and 
of data. When biodiversity studies involve an observation area, they may be based 
on three types of spatial data. Sometimes the researcher does not have the precise 
location of individuals and only has “patches” (irregular areas or a grid) with data 
aggregated as local abundances: an example is raster data in discrete space. In other 
studies, the researcher fixes the observation points, collects data at those points only 
and then needs to interpolate the information over the rest of the area; these are 
geostatistical data studies. Other works are based on data collected over the whole 
observation area and record their exact location: these are point process data, where 
points are random and part of the response. A usual issue with point process data 
is computational complexity. The most common option is to discretize space with 
a very fine grid: the approximated model is known to converge to the true process 
(Moller and Waagepetersen 2007) and results are very accurate in most applications. 
Many papers on point process models, though continuous in theory, turn to very fine 
gridding when it comes to practical computations (Gelfand and Shirota 2019; Moller 
and Waagepetersen 2007), and the widest and most up-to-date R package for point 
processes, spatstat (Baddeley et al. 2015) largely relies on grid approximations. 
In Sect. 4, we show an application with the gridding approach, which might be a 
satisfying trade-off between the complexity and accuracy of the results. Moreover, 
gridding overcomes the issues of spatial misalignment due to the fact that covari-
ates are available at a grid resolution (Gelfand 2022). Our approach solves the grid 
limit of reducing local abundances to presence/absence data: we are able to take into 
account the exact amount of individuals for each species. In addition, if wished, the 
proposed model includes a sophisticated option that avoids gridding, by estimating 
models with the Stochastic Partial Differential Equation (SPDE) approach, available 
with INLA (Krainski et al. 2019).

Once we obtain entropy estimates, we focus on the interpretation for biodiversity 
data. Biological diversity is related to the number of species: if a lot of individuals 
are present, but they all belong to the same species, there is no biodiversity; if there 
are few individuals, but they all belong to different species, biodiversity is larger. 
In descriptive studies, entropy and biodiversity are considered as synonyms; when 
it comes to evaluation of the underlying process, the two concepts are not the same 
thing, though strongly related. Entropy estimates evaluate heterogeneity, which 
is not analogous to the observed biodiversity of a dataset, rather it describes the 
latent biodiversity of the process under study. When entropy is low, one (or few) 
of the species probabilities is predominant, i.e. no matter how many individuals are 
present, they tend to belong to one (or few) species. Therefore, low entropy corre-
sponds to low biodiversity, both observed and latent. When entropy is high, species 
probabilities are more evenly distributed; the observed biodiversity may be low if 
very few observations are available, but the latent biodiversity of the system is high. 
Comments along the paper follow this interpretation of entropy.

The paper is organized as follows. Section 2 presents the methodology for deriv-
ing the entropy value, curve or surface for both binary and multinomial data. Sec-
tion 3 illustrates our proposal over a selection of scenarios and highlights its advan-
tages in information and interpretability. The real data example is presented in 
Sect. 4. Finally, Sect. 5 summarizes the work and contains concluding comments. 
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Additional details about both the state of the art in entropy estimation and the empir-
ical study are in the Appendices.

2 � Models and methods

Let X be a categorical variable of interest with I categories (species), i = 1,… , I . 
Shannon’s entropy of X is (Shannon 1948):

where p(xi) is the probability of occurrence of the i-th category, and 
pX = (p(x1),… , p(xI))

� is the probability mass function of X. Entropy ranges in 
[0, log I] , where 0 is obtained when p(xi∗ ) = 1 for some category i∗ and p(xi) = 0 for 
i ≠ i∗ , and log I derives from p(xi) = 1∕I for all i. Shannon’s entropy is a particular 
case of the increasingly popular Hill’s number (Hill 1973), which weights each spe-
cies by its relative abundance: D(X) =

�∑I

i=1
p(xi)

q
�1∕1−q

, where q defines the 
weights: the limit for q = 1 is the exponential of Shannon’s entropy. Our results hold 
for any Hill’s number; we refer to Sect. 5 for additional comments.

Under the perspective of estimation, a stochastic process is assumed to generate 
data according to an unknown probability function; one realization of the process is 
observed and employed to estimate the underlying entropy. In this Section, we show 
how to relax the assumption of independence by building a flexible model for the 
estimation of the main components of an entropy index p(xi) for i = 1,… , I ; then, 
we derive our entropy estimator.

2.1 � Bayesian multinomial regression

For simplicity of presentation, let us start with the binary case I = 2 (e.g. species 
A and B), and assume Xu ∼ Ber(pu) with observations indexed by u = 1,… , n , 
where pu is the probability of occurrence of species A at u. If we are dealing with 
observations in space or time, we can think of u as the spatial or temporal location 
index. Let us consider the associated binomial variable Yu ∈ {0,… ,Nu} represent-
ing the number of individuals of species A among the total number of individuals Nu

observed at u. We assume the model:

where gu is the probability of occurrence in the logit scale, modelled as gu = z
�

u
� , 

where zu is a vector of observed covariates at location u.
When the number of species I > 2 , an extension to the multinomial logit model 

arises naturally. Let Yu1,… , YuI be the number of individuals of each species at 
site u, that may be equal or greater than 0 with the constraint 

∑I

i=1
Yui = Nu , and 

(1)H(X) =

I∑

i=1

p(xi) log
1

p(xi)
,

(2)Yu ∣ gu ∼ Bin

(
Nu, pu =

exp(gu)

1 + exp(gu)

)
,
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probabilities pu1,… , puI , with 
∑I

i=1
pui = 1 . The generic species occurrence prob-

ability can be expressed as:

where the linear predictor is modelled as a function of covariates and random 
effects. Precisely, z′

ui
 are species-specific covariates observed at u and �u1,… ,�uI 

are species-specific random effects at location u; some modelling options for the 
random effects are discussed in Sect. 2.2. Note that both the covariates and the fixed 
effects in Equation (3) are species-specific; for identifiability purposes, the linear 
constraints 

∑I

i=1
�i = 0 and 

∑I

i=1
�ui = 0 are needed. In ecology studies, it is com-

mon to work with environmental and climate variables that only vary at observation 
level (e.g. space or time); thus, we can assume z�

ui
= z

�

u
 in Equation (3).

Fitting a  multinomial model with R-INLA (Rue et  al. 2009) needs additional 
care, as detailed in Serafini (2019). INLA requires that each response depends on the 
linear predictor through a linear combination of its elements, a condition that does 
not hold for (3). We exploit the Multinomial-Poisson transform (Baker 1994), which 
re-expresses the multinomial likelihood into a Poisson likelihood at the cost of add-
ing model parameters. For a tutorial on the implementation of the multinomial-Pois-
son transform in INLA, see Serafini (2019); for further details on the required con-
straints in multinomial regression and how these can be implemented in INLA, see 
Barmoudeh et al. (2022).

2.2 � Modelling temporal and spatial dependence

Temporal/spatial random effects can be introduced in the linear predictor gui in (3) 
to capture variations over time/space of the species-specific occurrence probabili-
ties, which lead to the evaluation of the temporal/spatial heterogeneity in the latent 
entropy. INLA allows user-friendly implementation of various types of spatial and 
temporal random effects, with the inclusion of constraints to ensure model identifi-
ability. In the following, we outline standard available options to model temporal 
and spatial variations in entropy levels.

Let us assume that u is the time index in the linear predictor in (3), so that 
�i = (�1i,… ,�ni)

� becomes the vector of temporal effects for species i. Temporal 
dependence in the species occurrence probabilities can be modelled using first or 
second-order random walk models, i.e. RW1 and RW2 (Rue and Held 2005). A 
RW1 is suitable when the interest is to penalize deviations from an overall constant 
level. Under a RW1, the joint density of � (dropping the species index i in the right-
hand side of (4) for simplicity of notation) is:

(3)pui =
exp(z

�

ui
�i + �ui)

∑
i exp(z

�

ui
�i + �ui)

, i = 1,… , I,

(4)�(�|� ) ∝ �(n−1)∕2 exp

(
−
�

2

n−1∑

u=1

(
�u+1 − �u

)2
)
,
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where � is the precision parameter controlling/penalizing the amount of deviation 
from the overall constant. The RW2 permits to penalize second order differences 
between temporally-adjacent random effects, hence it is more suitable when smooth-
ness is anticipated. Under a RW2, the joint density of � is (dropping the species 
index i):

If an intercept is added, the constraint 
∑

u �u = 0 is needed for identifiability.
When u is the spatial location index, spatial dependence in the species occur-

rence probabilities can be modelled using Conditional Auto Regressive (CAR) 
(Cressie 2015) models. A CAR model is generally defined by a Normal multi-
variate distribution (dropping the species index i):

The random effects covariance matrix � in (6) depends on the precision param-
eter � , a dependence parameter � ∈ [−1, 1] quantifying the strength of correlation 
between spatial units, and a known adjacency matrix A encoding spatial relation-
ships between locations. D is a diagonal matrix, with the row sums of A . The adja-
cency matrix A encapsulates neighbouring relationships between areas, reflecting 
the assumption that �u is influenced by what happens at surrounding locations, i.e. 
those values �u′ where u� ∈ N(u) , the set of neighbours of u: A = {auu� }u,u�=1,…,n is 
a square n × n matrix such that auu� = 1 when units u and u′ are neighbours, auu� = 0 
otherwise, with diagonal elements all zero by default.

Different neighbourhood rules give rise to different types of CAR. For 
instance, a standard neighbourhood system for grid data is called ‘nearest neigh-
bours’ (Cressie 2015), i.e. each unit is influenced by the pixels sharing a border 
along the cardinal directions; another one is the ‘12 nearest neighbours’, includ-
ing two pixels in each cardinal direction plus the four ones along the diagonals. 
A model implementing the nearest neighbour dependence is the Intrinsic CAR 
(ICAR) model (Rue and Held 2005), where the density of � (dropping the spe-
cies index i for simplicity of notation) is:

Model (7) corresponds to setting � = 1 in Equation (6), as well as adopting the near-
est neighbours rule to build A . The extension of this model to 12 nearest neighbours 
for grid data has recently become of standard use thanks to its implementation with 
INLA under the name of RW2d effect (Rue and Held 2005).

(5)�(�|� ) ∝ �(n−2)∕2 exp

(
−
�

2

n−2∑

u=1

(
�u − 2�u+1 + �u+2

)2
)
.

(6)� ∼ MVNn(� = 0,� = [�(D − �A)]−1

(7)�(�|�) ∝ �(n−1)∕2 exp

(
−
�

2

∑

u�∈N(u)

(�u − �u� )
2

)
.
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2.3 � Estimation of entropy components

Once the probabilities are estimated for each category and observation, the estimate 
for entropy is straightforward, as it is a function of the probabilities, which returns 
values in [0, log I] . The point entropy estimator is:

where BMB stands for Bayesian Model-Based estimator, and Ĥu is the local entropy 
estimate at u. To obtain p̂BMB

ui
 , samples are drawn from the probability posterior 

distribution for each category i and observation u, and each local posterior mean 
becomes the basis for computing Ĥu ; by sampling from the posterior distribution, 
standard errors may be associated to the estimator value to give an idea of the esti-
mation uncertainty.

By taking this approach for estimation, the entropy estimate ĤBMB
u

(X) varies with 
u. According to the structure of the linear predictor in (3), we may have one local 
entropy value for each unit u, or aggregate units into subsets with a common entropy 
value. For example, if data depend on a binary covariate, they can be split in two 
subsets according to the covariate value; each subset will have one estimated entropy 
value. If, instead, we have a model with two covariates, say one binary and one tak-
ing five values, we obtain 2 × 5 = 10 combinations of values for the covariates that 
influence the probabilities. Thus, data can be split into 10 groups, each having its 
own estimated probabilities and its own entropy estimate, and we obtain 10 local 
values for ĤBMB

u
(X) . For a continuous covariate, temporal or spatial effects, we have 

n different entropy estimates, one for each unit u. We obtain a curve for a continuous 
covariate or temporal data, and a surface for georeferenced data.

Two main improvements must be highlighted wrt a local (unit-specific) computa-
tion of any of the existing estimators. Firstly, with the BMB approach, estimates can 
be computed even when very few observations of X (even one or none) are avail-
able for each unit. Secondly, when random effects are included, estimates take the 
neighbourhood into account (according to the specific dependence structure) and we 
obtain smooth curves/surfaces that catch the main behaviour of the data under study 
and remove the noise. Even when the model only includes covariates and does not 
have random effects, the whole dataset is exploited to estimate the fixed effect coef-
ficients and returns results with solid ground. The resulting entropy value/curve/sur-
face is obtained by exploiting all the information.

3 � Empirical illustration of the BMB approach

The present Section is aimed at illustrating the benefit of using a model-based 
approach for entropy estimation in scenarios where data are collected over space, time 
or relate to covariates. Bayesian models are well known in the literature of temporal 
and spatial statistical studies as regards properties and performance and evaluating 

(8)ĤBMB
u

(X) =

I∑

i=1

p̂BMB
ui

log
1

p̂BMB
ui
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them is out of the scopes of this work (see, e.g. Cressie (2015)). We focus on conclu-
sions and interpretation about the latent biodiversity of the system under study.

We show results for a multinomial variable, i.e. the abundance of species 
at each location; a preliminary study on presence/absence data can be found 
in Altieri and Cocchi (2021). We build two standard scenarios in ecological 
surveys, i.e. temporal and spatial dependence; the reference case of independ-
ence and the dependence on a covariate are in Appendix B. For each scenario, 
we generate S = 1000 replicated sequences of n = 2500 observations from the 
variable X representing species, taking values in {A,B,C} with category- and 
observation-specific probabilities puA, puB, puC , where u = 1,… , 2500 is the 
observation index. We simulate a multinomial variable with one trial for each 
observation point, so that the response variable is a 2500 × 3 binary matrix, 
where each row sums to 1 (see the example Table 1, where the matrix is trans-
posed to save space). This produces the maximum uncertainty (Serafini 2019): 
estimates become more stable as the number of trials for each observation point 
increases; uncertainty may be accurately evaluated for all results. For the spa-
tial scenario, we also test a second option with more trials.

The BMB estimator is derived with a fully Bayesian approach. For each replicate, 
we estimate the model with INLA. Then, we simulate 500 samples from the prob-
abilities’ posterior distribution and we obtain a posterior distribution for entropy; its 
mean is chosen as a point entropy estimate. The same procedure is used to estimate 
the standard error.

We focus the comment on estimated values for entropy and practical conse-
quences for real data studies. For comparative comments, we choose a selec-
tion of existing estimators (detailed in Appendix A): the ML estimator (ML), the 
Miller-Madow correction (MM), Zhang’s non-parametric estimator (Zh), and the 
Bayesian estimator with a Laplace prior (BLapl) and with Jeffrey’s prior (BJeff). 
If the interest lies in a comparative evaluation of the estimators’ accuracy, the 
Mean Square Error is suitable (MSE, presented in Appendix B). All computa-
tions are run on the R software. The ML estimator is computed using the data 
relative frequencies as probability estimates in the entropy formula. The MM, 
BLapl and BJeff estimators are computed using the entropy package (https://
CRAN.R-project.org/package=entropy), while Zh is obtained using Entro-
pyEstimation (https://CRAN.R-project.org/package=EntropyEstimation). 
The code for the present proposal is produced by the authors, with the support 
of the INLA package (https://www.r-inla.org) for parameter estimation, and is 
available as Supplementary Material.

Table 1   Data example for 6 out 
of 2500 observations, one trial 
for each observation point

u 1 2 3 4 5 6 …

A 1 0 0 0 1 0 …

B 0 1 1 0 0 1 …

C 0 0 0 1 0 0 …
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3.1 � Data with temporal dependence

In the temporal scenario, data are generated with a category-specific intercept 
and a smooth temporal effect in the linear predictor gui = �i + I(i = A)�u , where 
� = {1, 4, 3} and � is modelled as an Autoregressive Integrated Moving Average 
(ARIMA) model. The indicator function I(i = A) ensures the  identifiability of the 
model by applying the effect to category A (Serafini 2019). The fitting model has a 
simple RW1 temporal effect (other options do not change results substantially).

Figure  1 shows the time-correlated probabilities (left panel), entropy together 
with its BMB estimate (middle panel), and the estimation error (right panel). The 
dashed red line represents the posterior estimate, averaged over the 1000 replicates 
(grey band), and is a smooth version of the true entropy, which captures the main 
behaviour and removes local variations, despite the difference between generating 
and estimating model.

A few highlights for this scenario follow:

•	 The BMB estimate captures the temporal structure of the data, illustrating that 
the species’ probabilities vary smoothly over time;

•	 The system’s entropy is not constant: it increases over time (as the predominance 
of specie B decreases), reaches a peak around time 2000, when probabilities are 
more evenly distributed and the system has the maximum latent biodiversity, and 
then decreases again;

•	 A plot of the estimatet uncertainty sides the resulting entropy, to make scientists 
more aware of the validity of the conclusions, and shows what time points are 
linked to higher or lower uncertainty;

•	 With only one trial per observation point, uncertainty is at its maximum: it is 
expected to decrease as species’ abundance increases;

•	 Despite the complexity of the procedure, results are achieved in a few seconds 
with R and INLA, therefore the computational burden is not an issue;

•	 The model can be tested against others to choose the most suitable option.

Table  2 shows the global estimates for the existing approaches, and the global 
entropy value BMB =

1

n

∑
u Ĥ

BMB
u

 . We report the standard deviation for pre-
cision evaluation. The available estimators return a number lacking associ-
ated uncertainty and interpretability, since they are based on the assumption of 

Fig. 1   Temporal effect—probabilities (left), entropy (middle), uncertainty (right)
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independence. Conversely, the global BMB  value takes the temporal dependence 
into account and is a more accurate estimator (MSEs in Appendix B).

3.2 � Data with spatial dependence

We build a square observation area with 50 × 50 cells, to have n = 2500 obser-
vation sites. We generate varying probabilities for the three categories over the 
area, by setting the category-specific intercepts as � = (1.5, 1, 0.5) and by adding a 
spatial structure to category A as a Thomas Process, i.e. a Poisson cluster process 
(Moller and Waagepetersen 2004). The true entropy surface is shown in Fig. 2, 
left panel; it varies smoothly, taking low values in the centre, where category A is 
predominant over the others, and approaching its maximum ( log 3 ) at the corners, 
where the probability distribution is almost uniform.

We then generate data over each observation site with two options: option 1, 
with one trial per site, and option 2, with a number of trials per site randomly 
generated between 1 and 20, to produce a similar scenario to the application of 
Sect. 4 and to check the performance of ML estimators with enough data. The tri-
als are assigned to category A, B, C based on the probabilities. One data replicate 
for option 1 is shown in Fig. 2, right panel.

The model for BMB estimation includes a category-specific intercept and a 
spatial effect in the linear predictor gui = �i + I(i = A)�u . For � , we tried dif-
ferent Intrinsic CAR and Besag models and ran model selection via WAIC 
(Widely Applicable Information Criterion, Watanabe (2013)). The best option 
was the Random Walk in two dimensions (RW2d, see Sect.  2) applied to cat-
egory A. Despite the estimation model not being the same as the generating one 
as regards the spatial effect, our model is able to produce accurate estimates over 
both options and is displayed in Fig. 3, along with the estimation standard error 
(in gray scale). Both entropy surfaces, even the left-hand-side one produced by 
option 1, prove to be very smooth and accurate estimates. The estimation stand-
ard error is very small and decreases when increasing the number of trials.

Table 3 shows the global estimators. A few highlights for this last scenario:

Table 2   Temporal effect-
entropy estimation

ML MM Zh BLapl BJeff BMB (sd)

Ĥ 0.8964 0.8969 0.8966 0.8970 0.8967 0.8577(0.0104)

Fig. 2   Spatial effect—generat-
ing entropy (left), data with 1 
trial per site (right)
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•	 The system’s latent biodiversity has a spatially structured behaviour, with a cold-
spot at the centre and increasing heterogeneity when moving to the corners: one 
can be confident about what species is found in the middle, while at the corners, 
subjects may belong to any species;

•	 If desired, a “baseline” biodiversity level can be quantified over the surface, 
using only the estimates of the intercepts in the model;

•	 The uncertainty plot shows where local estimates are more or less reliable;
•	 Model comparison helps finding the best fit for the data;
•	 The global BMB  value is different from the results of the available estimators 

(Table 3) and proves to be more accurate (MSEs in Appendix B);
•	 The available estimators detect a low level of heterogeneity (around 62% of the 

maximum entropy, i.e. log(3) ), but cannot explain what this is due to; on the con-
trary, we can show it is due to a spatial structure;

•	 Local estimates with the existing methods are not possible for option 1, as the 
number of trials per site is too small; they can be computed for option 2, but are 
very noisy, less accurate (Appendix B) and lack motivation.

4 � A study on rainforest tree data

The motivating dataset regards the presence of lowland tropical rainforest tree spe-
cies over Barro Colorado Island, Panama (https://stri.si.edu). We have a rectangular 
observation window of size 1000 × 500 metres, with four tree species; information is 
available about the soil elevation and slope (Fig. 4).

The dataset is a marked point pattern with n = 5639 trees, where the point cate-
gorical mark X is the tree species, with I = 4 : x1 = Inga sapindoides, x2 = Heisteria 
concinna, x3 = Beilschmiedia pendula, x4 = Astronium graveolens, with n1 = 487 , 
n2 = 1141 , n3 = 3887 , n4 = 124 . Elevation ( ZE ) is a continuous variable repre-
senting the soil altitude in meters, and ranges from 119 to 159 with a mean value 
of 144. Slope ( ZS ) is also continuous, displaying values between 0.001 and 0.328 

Fig. 3   Spatial effect—BMB estimated entropy and estimation error with different data options: one trial 
per site (left panels), 1–20 trials (right panels)

Table 3   Spatial effect - entropy estimation

ML MM Zh BLapl BJeff BMB (sd)

Opt 1: one trial/site 0.6773 0.6777 0.6777 0.6784 0.6778 0.5483 (0.1657)
Opt 2: 1-20 trials/site 0.6780 0.6779 0.6780 0.6781 0.6781 0.5483 (0.1056)
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(mean 0.082) to measure the slope of the terrain. It is plausible that the two covari-
ates somehow affect the growth of trees over the area as regards both richness and 
abundance, and thus influence the biodiversity of the system. By visually compar-
ing the patterns in Fig. 4, one can detect similarities. The BMB approach is able to 
check this possibility.

We partition the area into 50×100 cells, that contain 0 to 40 trees and mimic 
the spatial resolution of the environmental covariates. This produces a very fine 
grid that the human eye perceives as a nearly continuous surface; we tried differ-
ent grid options that return analogous entropy behaviours, except for the quality of 
the image. A discussion on the spatial resolution is left to Sect. 5. Each cell is one 
observation site u, with its spatial location represented by the centroid’s coordinates. 
For each cell, we know the values of the covariates and the counts of all species: the 
multinomial response variable is a 5000 × 4 matrix of species counts.

The most general model for the BMB estimation approach has a linear predic-
tor of the form gui = �0i + �1izEu + �2izSu + I(i = i∗)�u : all fixed effect coefficients 
are allowed to be category-specific; the covariates and the random effect are obser-
vation-specific. The spatial effect may be applied to any of the four tree species; 
we consider two CAR models with different structures for the precision matrix: the 
ICAR model with  nearest neighbours and the RW2d model with 12 nearest neigh-
bours (Sect.  2). We fit the general model and all possible sub-models: with/with-
out intercept, with covariate elevation, slope, both or no covariate, with a ICAR or 
RW2d spatial effect; results take only a few seconds for each option. We take the 
WAIC, returned by INLA, to select the best one for entropy estimation. Other selec-
tion methods may be used, but this point is not the main core of the present paper 
(see Kadane and Lazar (2004) for a review). The chosen model is fitted to the data, 
and parameter estimates are used to estimate the tree species probabilities pui . Fol-
lowing Equation (8), the entropy surface is estimated.

4.1 � Biodiversity evaluation

According to WAIC, the best fitting model includes covariate slope and a RW2d 
spatial effect applied to species 2, i.e. Beilschmedia Pendula. The estimated entropy 
surface is displayed in the left panel of Fig. 5 in relative terms, i.e. ranging in [0, 1]. 
The biodiversity of the rainforest tree system depends on the soil slope, whose effect 
is significant on three of the four species: the coefficient is estimated equal to −0.71 
(sd=0.112) for species Astronium graveolens, 0.21 (sd=0.116) for Beilschmiedia 

Fig. 4   Rainforest tree data 
(upper panel), soil elevation 
(left) and slope (right)
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pendula and 0.67 (sd=0.112) for species Heisteria concinna. Indeed, by comparing 
the data behaviour of Fig. 4 to the slope values, it can be seen that Astronium trees 
tend to grow over flat areas, while Beilschmiedia and Heisteria trees tend to follow 
the pattern of the steepest areas. Moreover, the latent biodiversity shows a spatial 
structure, whose effect particularly affects species Beilschmiedia pendula. The esti-
mated entropy surface ranges from 12% to 99% of the maximum possible heteroge-
neity, with the central half of the distribution concentrated between 60% and 90%; 
by looking at Fig. 5, one can detect the cold- and hot-spots as regards the latent bio-
diversity level. The estimation procedure has no issues with areas containing few or 
zero trees, thanks to the exploitation of a model.

Literature entropy estimators start from the estimated probability distribution 
based on the relative frequencies p̂ML

X
= (0.087, 0.202, 0.689, 0.022) . Results for all 

global estimators are shown in Table 4, and their difference is negligible, except for 
the BMB .

In relative terms, the available estimates correspond to 63% of the maximum pos-
sible entropy ( log 4 ), hinting at a low biodiversity level, but no explanation or inter-
pretation can be drawn. Conversely, the global BMB  value can be motivated with 
the above comments, since it is computed using the whole model information and 
after careful checking of the model fitting to the data. The estimation error (Fig. 5, 
right panel) is affected by the number of trials, but also depends on the covariate 
and on the neighbourhood structure: borrowing information from surrounding sites 
improves the stability of the estimates.

The computation of a local ML estimator is unreliable with 50 × 100 cells, since 
only 26% of them have more than 1 tree. A rougher grid must be chosen to have a 
satisfactory amount data in most observation sites. With a partition into 20× 40 cells 

Table 4   Global estimators for 
rainforest tree data

ML MM Zh BLapl BJeff BMB (sd)

Ĥ 0.875 0.875 0.875 0.876 0.876 0.912(0.076)

Fig. 5   BMB estimate (upper left); standard error (upper right); local ML estimate (lower)
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of size 25×25 ms, 78 cells contain one single tree (entropy equal to zero), and 47 
have no trees (no entropy); in most cells at least one species is absent and influences 
the results, but there is no way to control which species are absent for each site. The 
local ML estimate is in the right panel of Fig. 5, in relative terms: many cells are 
white (zero/non-computable values) and the remaining ones look like white noise. 
Some resemblance to the BMB estimated pattern can be detected over the area; for 
example, the cold spots (light blue areas) are placed at similar locations and indi-
cate low biodiversity, but the BMB approach is the only one giving  motivation and 
associating uncertainty to the result. The high entropy areas identified by the model-
based approach sometimes correspond to hot (orange/red) spots in the ML panel, 
sometimes correspond to 0- or 1-individual sites (white cells in the ML estimate): 
the BMB approach identifies the areas with a high latent biodiversity according to 
the structure of the environmental covariate and of the spatial effect; conversely, ML 
values only rely on local observations.

5 � Discussion and conclusion

The present work proposes a novel approach for entropy estimation suitable for eco-
logical and environmental data, where independence is an unrealistic assumption. 
In the methodological Sect. 2, we highlight some key novel contributions of such 
proposal to the field of biodiversity studies. First, entropy is related to covariates 
and/or data dependence structures, exploiting all the available information. Sec-
ond, it allows to include information about local abundance and about which spe-
cies are present/absent at each observation point and at neighbouring points, by 
using multinomial data instead of presence/absence. Third, it uses INLA instead of 
MCMC (Markov Chain Monte Carlo) for estimation, overcoming many computa-
tional issues, and allows for extensions to continuous space if wished. The empiri-
cal illustration of Sect. 3 underlines the ability of the BMB estimation approach to 
draw conclusions on the latent biodiversity of the system over a variety of situations, 
to check assumptions, select the most suitable model and evaluate the estimation 
uncertainty. We also show how to easily deal with empty, or nearly empty, observa-
tion points, thanks to the exploitation of a model structure. When wished, results 
can be further synthesized in a global entropy value for the whole dataset, that is 
well-grounded as it is built out of consideration of the data structures and not only of 
relative frequencies. In the application Sect. 4, we analyse the biodiversity of a sys-
tem of four rainforest tree species. We describe the relationship between biodiversity 
and the terrain slope; a smooth spatial effect is included in the model, and the BMB 
estimation result is an entropy surface that captures the latent biodiversity of the 
system, where cold- and hot-spots can be identified, sided by uncertainty evaluation.

We conclude with a few points for discussion and further work.
First, results may be extended to other diversity indices, such as Hill’s numbers, and 

to species distribution models, where interpretation should focus on the latent process, 
rather than on observations and description. In addition, our model captures the spatial 
variation in biodiversity often referred to as � diversity; the possibility to use Shannon’s 
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entropy to quantify simultaneously � and � diversity at a local scale might stimulate this 
study area, normally more focused on description.

Second, we grid the observation area for a simpler presentation to applied studies, 
with advantages for computations and for covariate matching. Thanks to the computa-
tional fastness of INLA, in many cases we do not have limits to the grid resolution and 
results are very accurate (Moller and Waagepetersen 2004; Illian 2012). Computational 
difficulties may arise when the model includes a large number of random effects, or 
when the dataset is really large. For such situations, we suggest an approach presented 
in Altieri et al. (2016) that exploits advanced computational techniques in R and the use 
of Bayesian P-splines to substantially speed up computations. Alternatively, more com-
plex approaches for continuous space are possible, such as Gaussian Random Fields 
based on the Matérn family of covariances, or the SPDE approach (Lindgren et  al. 
2011) implemented in INLA.

Last, it is worth mentioning the choice of priors for the precision hyperparameters in 
the model. We show how the degree of smoothness may be tuned by the random effect, 
and different types of models may be compared to choose the most suitable one. How-
ever, in cases where data are not informative enough about the underlying entropy pat-
tern, the prior choice on the precision parameter of the random effect may play a role in 
determining the degree of smoothness and this may need further investigation.

Appendix A: A State of the art in entropy estimation

A.1 Frequentist approach

Given X, suppose we have a number of observations n, where each observation is 
indexed by u = 1,… , n and takes values in the I categories: xu ∈ {1,… , I} . The 
total number of observations for each category is ni , with 

∑I

i=1
ni = n . The maxi-

mum likelihood estimate for H(X) is:

where p̂ML(xi) = ni∕n for i = 1,… I . This is also the non-parametric estimator for 
entropy, known as plug-in or naive estimator (Paninski 2003). Following the Central 
Limit Theorem, for n → ∞ , then p̂ML

X
 is asymptotically normal with mean pX and 

variance decreasing with 1∕
√
n . As a consequence, ĤML(X) is also asymptotically 

normal with bias and variance decreasing with 1/n, assuming I < ∞ (Zhang 2012). 
When I = ∞ the upper limit for the variance is V(ĤML(X)) ≤ log n2

n
 , which goes to 

zero for n → ∞ . A standard correction proposed in the literature to improve the esti-
mator bias is known as the Miller-Madow correction (Miller 1955):

(9)ĤML(X) =

I∑

i=1

p̂ML(xi) log
1

p̂ML(xi)
,

(10)ĤMM(X) = ĤML(X) +
I − 1

2n
.
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Note that I may be an unknown quantity, whose estimation is not trivial. See Miller 
(1955) for some work in this direction.

It is proved (Antos and Kontoyiannis 2001) that the estimation error does not have a 
unique decay speed with any of the above estimators. Moreover, when I < ∞ , the esti-
mator variance V(ĤML(X)) ≤ 1

n
 decays much faster, and the difference in performance 

across estimators may be negligible. Furthermore, the ML estimator is negatively 
biased: E(ĤML(X)) ≤ H(X) , with E(ĤML(X)) = H(X) iff H(X) = 0 , i.e. only one cat-
egory is present. The bias B(ĤML(X)) goes to zero for n∕I → ∞ , i.e. when the number 
of observations is much larger than the number of categories; it increases with increas-
ing I and small n.

A.2 Non‑parametric approach

Zhang (2012) proposes an alternative non-parametric estimator:

This approach starts from a rewriting of Simpson’s diversity index (Frosini 2004), 
combined with Taylor’s series expansion and Fubini’s Lemma. It can be proved 
that for H(X) < ∞ the estimator is consistent and asymptotically normal, but with a 
faster decaying variance wrt the ML estimator for I = ∞ , and a faster decaying bias 
for I < ∞.

A.3 Bayesian approach

For a Bayesian approach, a hierarchical model is needed: we have n observa-
tions xobs = (xobs

1
,… , xobs

n
) from an unknown probability distribution pX depend-

ing on parameters � . For instance, for a multinomial distribution � contains the cat-
egory-specific probabilities of success. The factorization of the joint distribution is 
�(H, xobs, pX ,�) = �(H|pX)�(xobs|pX)�(pX|�)�(�).

In this case, the entropy H is a variable that takes different values in [0, log I] accord-
ing to pX , therefore it has its own probability distribution (Paninski 2003):

where H is the unknown entropy and � is a function measuring the similarity 
between H and all possible values of H(X), so that �(H|pX) increases as we approach 
the true value.

Let us take a uniform proper prior for pX , called �(pX) . The likelihood is �(xobs|pX) ; 
consequently, the posterior is �(pX|xobs) ∝ �(xobs|pX)�(pX) and the Bayesian point 
estimator can be its expected value:

(11)

ĤZ(X) =

n−1∑

v=1

1

v

[
nv+1[n − (v + 1)]!

n!
×

I∑

i=1

(
p̂ML(xi)

v−1∏

j=0

(
1 − p̂ML(xi) −

j

n

))]
.

(12)�(H|pX) = �(H − H(pX)) = �

(
H −

I∑

i=1

p(xi) log
1

p(xi)

)
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with credibility intervals coming from the posterior distribution.
An intuitive choice for the prior distribution �(pX) is Dirichlet’s prior (Nemen-

man et  al. 2002), as it is conjugate to the multinomial distribution for I < ∞ : 
�D(pX) ∝

∏I

i=1
p(xi)

a−1 , where a tunes how much a uniform distribution is favoured 
(large values of a) or discouraged (small values of a). For specific choices of a dif-
ferent estimators may be derived: the most common options are a = 0 , which pro-
duces the ML estimator, a = 1∕2 defining Jeffrey’s prior and a = 1 for Laplace’s 
prior (Paninski 2003).

Appendix B: Empirical study—additional details

We refer to Sect. 3 for a suitable introduction.

B.1 Independent data and dependence on covariates

The simplest case of independence coincides with constant probabilities of occur-
rence for each of the three species puA = pA , puB = pB and puC = pC , so that entropy 
takes a single value for the whole dataset. The linear predictor is gui = �i , where 
i = A,B,C and we fix the three values for � as (0.5, 4, 3), tuning how close prob-
abilities are to a uniform distribution. Other options for � do not affect the scope of 
this work and are not reported here. Table 5 shows the generated probabilities and 
the consequent entropy.

The distribution for ĤBMB is approximately Gaussian. Table 6 shows the results 
across estimators, where the point estimate is reported for the BMB approach, 
together with a standard deviation computed over the posterior samples, which eval-
uates the estimation uncertainty.

A few highlights for the independence scenario are:

•	 All estimates are very similar: the BMB approach is a safe option;

(13)ĤB = E(H|xobs) = ∫ H(X)�(H|pX)�(pX|xobs)dpX

Table 5   Independence—true 
probabilities and entropy

pA pB pC H

0.0351 0.7054 0.2595 0.7139

Table 6   Independence - entropy estimation

ML MM Zh BLapl BJeff BMB(sd)

Ĥ 0.7133 0.7137 0.7137 0.7145 0.7139 0.7135(1.768e−04)
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•	 Despite the complexity of the procedure, results are achieved in a few seconds 
with R and INLA: the computational burden is not an issue;

•	 The BMB approach is the only one where uncertainty can be assessed, since it 
allows to compute the estimate’s standard deviation. The Mean Square Errors 
across replicates would be useless in real cases, where only one dataset is avail-
able;

•	 The independence model can be tested against more complex models, to check 
whether data are actually independent; instead, the existing methods simply 
assume independence with no possibility to check its validity.

Advantages increase substantially when moving away from independence.
A simple departure from independence consists on data depending on a 

binary covariate. The linear predictor is gui = zu�i , where covariate Z is the same 
for the three categories, but varies across observations taking one of two values: 
zu ∈ {0.1, 2} for u = 1,… , n , while, again, � = (0.5, 4, 3) for the three categories 
A, B and C. The dataset is split into two subsets according to the covariate value; 
each subset is made of n∕2 = 1250 observations. The two data subsets conditional 
on each covariate value have different entropy levels, as shown in Table 7: one set 
has an entropy close to its maximum log(3) , due to evenly spread probabilities, 
while the second has a very low entropy, due to a predominance of pB . Other options 
have been tried and do not change the substance of the results.

The BMB estimation procedure differentiates between the two behaviours, as 
can be seen in Table 7. All existing estimators ignore the covariate and estimate 
entropy based on the estimated ML probabilities, i.e. the overall data relative 
frequencies p̂ML

A
= 0.126 , p̂ML

B
= 0.643 and p̂ML

C
= 0.231 . The resulting estimates 

are in Table 8, where the global entropy value BMB  for the BMB approach is 
computed as a weighted mean of the two estimates in Table 7.

A few key points for this scenario are:

•	 BMB is able to include the covariate and check how it affects the presence of 
species and the latent biodiversity of the system. A larger value for Z induces the 
predominance of species B and decreases heterogeneity;

Table 7   Binary covariate—true 
probabilities, entropy and BMB 
entropy estimates

pA pB pC H ĤBMB (sd)

Z = 0.1 0.2700 0.3832 0.3467 1.0884 1.0870 (9.169e−06)
Z = 2 0.0008 0.8801 0.1191 0.3716 0.3715 (3.564e−04)

Table 8   Binary covariate - 
entropy estimation

ML MM Zh BLapl BJeff BMB (sd)

Ĥ 0.9001 0.9005 0.9005 0.9006 0.9004 0.7292(0.1285)
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•	 If a global entropy value is needed, the BMB  estimate takes the covariate into 
account, therefore it differs and is more accurate than the available estimates (see 
Section B.2) and allows uncertainty evaluation;

•	 The standard deviation may be computed to measure local uncertainty and check 
whether the accuracy changes for different covariate values;

•	 Standard tools for model comparison can help checking the model;
•	 It is not recommendable to compute separate estimates for entropy conditional 

on the two covariate values. In Section B.2, we show that such local estimates are 
less accurate, and we refer to Sect. 5 for a discussion of the major limits of this 
procedure.

The same conclusion holds for categorical or discrete covariates with a limited num-
ber of values. The case of a continuous covariate is analogous to the one of temporal 
dependence: the model takes a different value for each observation.

B.2 Comparative evaluation of the estimators

The BMB approach is compared to the existing estimators at a global level for all 
scenarios with a departure from independence; in addition, a local entropy compari-
son is run for the binary covariate scenario and for the spatial scenario, option 2 
(1–20 trials per observation site), where the amount of data is sufficient for comput-
ing local relative frequencies. The comparison is run in terms of mean square error 
(MSE); the dataset-specific MSE for s = 1,… , S is:

where Ĥ is the global entropy estimate for any of the considered methods (shown 
in Tables 2, 3, 8), while Hu is the observation-specific true entropy, that may vary 
according to the scenario. The dataset-specific MSE for the local estimates is com-
puted as in (14), where the local Ĥu substitutes the global Ĥ . A distribution of 
S = 1000 values is obtained for each scenario and for each estimation method; the 
MSE boxplots over the 1000 datasets are in the log scale. Figures 6, 7 and 8 show 
that the MSE of the BMB approach is the smallest for all scenarios.

For data with a binary covariate, Fig. 6 displays the (log)MSEs for the global esti-
mate (Table 8) in the left panel, and the (log)MSEs for the local estimates (Table 7) 
in the right panel. The local existing estimates perform quite well, since a large num-
ber of observations ( n∕2 = 1250 ) contributes to the estimation of each conditional 
probability given the covariate value. Nevertheless, Fig. 6 highlights the improve-
ment in the estimation accuracy with the BMB approach with both global and local 
estimates,

For data with temporal dependence, MSEs are shown in Fig. 7, referring to the 
estimates in Table 2: despite the great loss of information linked to a global value, 
and despite the fitting model being different than the generating model, the BMB 
approach leads again to the smallest (log)MSE.

(14)MSEs =
1

n

n∑

u=1

(Ĥ − Hu)
2,
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Fig. 6   Binary covariate—MSE boxplots, log scale, for global (left) and local (right) estimate

Fig. 7   Temporal effect—MSE 
boxplots, log scale, for global 
estimate

Fig. 8   Spatial effect—MSE boxplots, log scale, for global estimate: option 1-1 trial per site (top-left 
panel), option 2-1-20 trials (top-right panel). MSE boxplots, log scale, for local estimate with 1-20 trials 
(bottom panel)
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For data with spatial dependence, MSEs for the global estimates of Table 3 are 
shown in Fig.  8, top panels: again, even if the fitting model is different than the 
generating one, the (log)MSE is the smallest; we can appreciate the difference in the 
uncertainty wrt to the existing approaches, especially when the amount of available 
data is small. For spatial option 2, the local comparison is in Fig. 8, bottom panel, 
and shows the improvement of the BMB proposal.
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