
13 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Herrera Gonzalez, J.L., Montebugnoli, S., Scotece, D., Foschini, L. (2024). xSTART: xApp Simulated
Evaluation Environment for Developers [10.1109/metroind4.0iot61288.2024.10584214].

Published Version:

xSTART: xApp Simulated Evaluation Environment for Developers

Published:
DOI: http://doi.org/10.1109/metroind4.0iot61288.2024.10584214

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/980791 since: 2024-09-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/metroind4.0iot61288.2024.10584214
https://hdl.handle.net/11585/980791


xSTART: xApp Simulated Evaluation Environment
for Developers

Juan Luis Herrera Gonzalez, Sofia Montebugnoli, Domenico Scotece, Luca Foschini
Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
Email: {juanluis.herrera, sofia.montebugnoli3, domenico.scotece, luca.foschini}@unibo.it

Abstract—The advent of the Open Radio Access Network
(Open RAN) in 5G, as delineated in the standards introduced by
3GPP and O-RAN Alliance, posed a pivotal shift in revolution-
izing the telecommunications landscape. Central to this trans-
formation is the Open RAN control-plane architecture. Control
plane encompasses containerized network functions, operating
as intelligent controllers for RAN nodes and resources with
non-Real-Time and near-Real-Time constraints. These functions,
called Near Real-Time RAN Intelligent Controller (Near-RT
RIC) and Non Real-Time RAN Intelligent Controller (Non-RT
RIC), include operators-defined applications, respectively named
xApps and rApps, serving as common cloud-native applications
controlling and optimizing Open RAN elements. Understanding
the entire development process and runtime behaviour for these
applications becomes an essential prerequisite for providing
support for next-generation networks. However, the lack of
ready-to-use tools that allow developers to test and evaluate
their applications in simulated and real environments makes
it difficult to study and experiment with xApps. In this work,
we propose xSTART, a ready-to-deploy environment based on
Docker technology that allows xApp developers to quickly deploy
and incorporate their xApps in a simulated ns-3 environment to
test and evaluate their functionalities. Then, we evaluate an IIoT
Network use-case scenario showing a machine learning (ML)-
based xApp applied to the O-RAN environment. The results
compare the use of different ML techniques and show the correct
behavior of the simulation. Finally, we make xSTART available to
the community to ease the development and evaluation of future
xApps.

Index Terms—Open RAN, xApp, DevOps, Industrial IoT, 5G

I. INTRODUCTION

The Industrial Internet of Things (IIoT) revolutionizes in-
dustrial processes by integrating a multitude of heterogeneous
devices and sensors within a single network [1]. These devices,
generate a vast amount of data critical for monitoring and
optimizing industrial operations. To ensure seamless data col-
lection and high-performance communication, IIoT networks
often leverage network standards like 5G, offering elevated
Quality of Service (QoS). However, achieving high availability
and avoiding production downtime remains paramount in in-
dustrial scenarios. This necessitates the utilization of predictive
tools capable of analyzing and testing network behaviour under
various conditions [2].

Network simulation emerges as a powerful solution for
evaluating innovative network implementations within the IIoT
5G domain [3]. However, deploying existing simulation tools
requires several efforts, particularly for Open Radio Access
Network (Open RAN) simulations, which include numerous

components like gNodeBs (gNBs), the Near-Real Time RAN
Intelligence Controller (Near-RT RIC), xApps, Non-Real Time
RAN Intelligence Controller (Non-RT RIC), rApps, and all the
involved interfaces. In particular, Near-RT RIC simulations
offer a valuable testing ground for operator-defined control
applications, called xApps, which are designed to quickly
learn and adjust the behaviour of RAN components to User
Equipment (UE) devices, like IIoT sensors, within an indus-
trial environment [4]. Nonetheless, existing simulation tools
often lack the necessary ease of deployment and adaptability
required for efficient testing across diverse industrial networks
[5].

This paper addresses these challenges by proposing xS-
TART, a novel environment specifically designed for the easy
deployment of 5G Open RAN simulations in IIoT network
contexts. xSTART prioritizes rapid deployment across hetero-
geneous industrial settings, ensuring adaptability to a wide
range of network configurations. Furthermore, we propose
novel Machine Learning (ML)-based xApps specifically tai-
lored for seamless integration with network data, facilitating
efficient data processing and analysis within the simulated
network environment. Through the implementation of our pro-
posed framework and ML-based xApps, we aim to empower
researchers and engineers to effectively test and optimize
network performance within simulated IIoT and industrial
network environments, ultimately contributing to enhanced
reliability and efficiency in modern industrial operations.

The remainder of this paper is structured as follows. Sec-
tion II provides the necessary background to fully understand
the proposal as well as an overview of the state of the art
in O-RAN. Section IV describes the architecture of xSTART
and details our deployment proposal for a simulated evaluation
environment in IIoT networks. Section V shows a set of perfor-
mance results, showing the usefulness of xSTART through the
evaluation of ML-based xApps. Finally, Section VI concludes
the paper.

II. BACKGROUND

In this section, we briefly introduce background concepts
about the Open RAN framework and the Near-RT RIC ar-
chitecture, in Section II-A. Finally, we discuss the research
directions of the literature in the area of Open RAN simulation
in Section II-B.



A. Open RAN and Near-RT RIC Architecture

The definition of Open RAN represents a revolutionary
approach within the realm of RANs, fostering seamless in-
teroperability among cellular network equipment from diverse
vendors. It pursues a revolution of the conventional, hardware-
focused design of RANs by embracing a modular framework
comprised of distinct components, each featuring open and
standardized interfaces. To accommodate more flexibility in
the design of RANs, the O-RAN Alliance has developed O-
RAN protocols, allowing the base stations or gNBs to be
split into three different modules and their protocol layers [6],
[7]. In particular, the Radio Unit (RU) processes the Radio
Frequency and lower part of the physical layer, while the
Distributed Unit (DU) takes on tasks of the upper part of
the physical layer, Medium Access Control, and Radio Link
Control. Finally, the Central Unit (CU) manages the Packet
Data Convergence Protocol, Service Data Adaptation Protocol,
and Radio Resource Control entities.

The Near-RT RIC constitutes a network function within the
Open RAN architecture. It is designed to deliver near real-time
control and optimization of services and resources associated
with the E2-managed gNBs [8]. The primary functionalities
of the Near-RT RIC encompass fine-grained data collection
through the E2 interface, which involves gathering data about
the gNBs, and fast data aggregation and inference within
xApps. The collected data undergoes rapid aggregation and
analysis using xApps, that leverage inference techniques to
extract meaningful insights from the data. Moreover, the Near-
RT RIC encompasses data exchange with Non-RT RIC via the
A1 interface [9]. This enables the Non-RT RIC to perform
elaborate analysis on the Near-RT RIC data, albeit without
the constraints of real-time processing. Nonetheless, due to its
smaller timeframe (10-1000 ms), which is of higher relevance
in the IIoT environment, and its higher Technology Readi-
ness Level [10], we focus on the Near-RT RIC and xApps.
Essentially, the Near-RT RIC plays a pivotal role within the
RAN control loop, since it facilitates the steering of RAN
behavior through the implementation of xApps, which allow
O-RAN operators and xApp developers to have full control of
the RAN. Moreover, The reason for the importance of near-RT
RIC for IIoT networks lies in the shared time constraints [4].
Industrial networks require efficient automation, monitoring,
and optimization of industrial processes, alongside the sen-
sitivity of protocols that are required to maintain consistent
communication amongst devices without interruption [1]. The
majority of this communication is microsecond dependent,
making the xApps the best container for hosting low latency
network-centered industrial applications in the 5G stack [4].
Figure 1 illustrates the interaction of Open RAN components
with industrial machinery.

B. Network Simulation

Communication simulators are pivotal tools for industrial
experimentation, enabling the exploration of diverse network
architectures, configurations, and controlled environments.

Service management and orchestration Framework

Non RT RIC

Near RT RIC

rApp rApp rApp

xApp xApp xApp

gNB

Y1

E2

eNB

E2

Y1

O1

UU UU UU UU UU UU

O1

A1

Fig. 1: O-RAN Architecture in an industrial scenario, with
network functions integration with industrial devices and ma-
chinery

They furnish a platform for analyzing network behavior, iden-
tifying potential bottlenecks, and evaluating the performance
of network protocols across a spectrum of network conditions,
all without the need for costly physical deployments. Network
simulation is crucial in industrial networks since is capable
of preventing chaotic behaviors in which the introduction of
small changes in the network architecture can cause major
communication fails, offering a testbed for the overall de-
ployment. Within the context of O-RAN, the Near-RT RIC,
and xApps, network simulation becomes a key enabler. As
xApps are being developed, it is necessary to test them with
instrumented tests, i.e., using a similar environment to its real
application. Moreover, especially when xApps that rely on
automated techniques, such as ML, are being developed, it
becomes key to evaluate them in a comparable environment,
both to assess their performance compared to other systems
and to obtain some estimations on their future performance in
the real O-RAN IIoT network. However, performing these tests
and evaluations in a real environment can prove complicated
and costly, as one would need to build a separate testbed
that replicates the real O-RAN IIoT network. Furthermore, not
performing these tests can be even worse, as deploying xApps
with unknown performance and behavior to the production
IIoT network can prove fatal for its effectiveness. Hence, using
a network simulator for the testing and evaluation of xApps
can be a relevant alternative to a real testbed.

III. RELATED WORKS

Recent academic interest has led to the development of
evaluation environments tailored for xApp deployment and
their assessment within the Near-RT RIC framework. In this
section, we review pertinent literature contributing to xApp
development and integration within this ecosystem.



In their paper [11], the authors delve into the challenges con-
fronted by third-party application developers within the Open
RAN paradigm. Their study conducts a comparative analysis
of various open platforms designed for xApp development and
testing, elucidating encountered obstacles.

Meanwhile, [10] presents a comprehensive framework for
the implementation and deployment of xApps within the Near-
RT RIC environment. This framework encompasses xApp
lifecycle management facilitated through an xApp software
development kit and HELM charts. Furthermore, the study
evaluates the platform utilizing metrics such as session estab-
lishment time, configuration establishment time, and indication
processing time.

Furthermore, in [12], the authors explore the design consid-
erations for AI/ML applications aimed at intelligent closed-
loop control of the Open RAN. This paper offers practical
guidelines and insights drawn from exemplary solutions il-
lustrating the integration of AI/ML applications into xApps
instantiated on the O-RAN Near-RT RIC. Notably, the authors
introduce OpenRAN Gym, a toolbox facilitating data-driven
O-RAN experimentation at scale.

Our study introduces an assessment framework for xApps
based on Docker for easily incorporating xApps in Near RT
RIC, leveraging the advantages of isolation and reproducibility
offered by containerization. Moreover, our experimentation on
an ML xApp specifically tailors to an IIoT scenario. Therefore,
we employ simulation to evaluate the performances of xApps
under real-world conditions, before their release.

IV. XSTART: O-RAN SIMULATED ENVIRONMENT

To support the developers of xApps in IIoT O-RAN net-
works, we propose the xSTART evaluation environment. The
aim of xSTART is, on the one hand, the provision of a
unified environment where developers can test and compare
their xApps and, on the other hand, the simplification of
the testing and evaluation process of xApps. We envision a
future where developers of IIoT-oriented xApps are tested
and evaluated using xSTART, in a similar manner to how
current developers test and evaluate their Android apps with
the AVD simulated environment [13]. The overall architecture
of xSTART is shown in Fig. 2, and each of its components
will be detailed in the remainder of this section. Concretely,
Section IV-A provides details on the xApp development and
usage with xSTART, while Section IV-B presents the near-RT
RIC and its components, and Section IV-C details how the
RAN is simulated.

A. xApps

The first element we find, at the top of Fig. 2, are three
xApps. It is important to note that xSTART does not impose
any concrete constraints on the number of xApps that may be
deployed in its environment: it is possible to evaluate a single
xApp or two xApps, as well as more than three xApps, within
a single xSTART environment. xApps are an important part
of the architecture, as, while one example xApp is provided
with xSTART, xApps are not envisioned to be directly part of

Fig. 2: Architecture of the xSTART environment with 3 sample
xApps.

the environment. Instead, xApp developers should be the ones
that provide the xApp software, simply integrating it with the
existing xSTART environment.

To maintain a clean environment, xSTART strongly recom-
mends developing and deploying xApps as illustrated: each
xApp should be provided in a separate Docker container,
neither deploying multiple xApps in a single container nor de-
ploying a single xApp that deploys multiple containers. xApps
that need to communicate with each other should either do it
using the RIC, or using external, out-of-band communications,
but it is not recommended to perform these communications
between processes in the same container. Similarly, if an
xApp must communicate with multiple components, it is
recommended to make a single container with the xApp and its
dependencies. These are, nonetheless, recommendations that
are not directly enforced by xSTART, as we understand there
may be niche use cases where the one-to-one relationship
between containers and xApps cannot be achieved or are
otherwise undesirable (e.g., multiple xApps may need to
communicate with common components to share information,
and thus, these common components are given an additional
container that xApps must communicate with).

Similarly, xSTART does not impose any constraint on the
programming language or frameworks used to develop xApps.
On the one hand, this design decision is aimed at enabling
xSTART to cover a wide range of use cases, not necessarily
limited to ML-based xApps implemented with traditionally
ML-aimed technologies (e.g., Python, TensorFlow). On the
other hand, it is also aimed at minimizing the limitations to the
development of new xApps, ensuring they are not constrained
to any given framework or programming language and can



freely choose the tools that are best suited for their use case. To
be compatible with xSTART, these xApps must, nonetheless,
be able to communicate with the near-RT RIC through its’
Shared Data Layer (SDL). In the case of xSTART, the API
offered by the near-RT RIC’s SDL is the Redis API [14].
Hence, as long as the xApps can provide communication
with the Redis API, either through libraries for Redis, xApp
development frameworks or by directly implementing it, they
can be tested and evaluated with xSTART.

B. Near-RT RIC

The next elements we find in Fig. 2 are encompassed in a
block: the near-RT RIC. From the perspective of a developer,
the near-RT RIC must fulfill two roles: it must provide xApps
with information about the RAN through the SDL, and it must
also serve as a broker between the xApps and the RAN. xApps
should, thus, not be concerned with the RAN itself (e.g.,
controlling directly each gNB, filtering the messages aimed at
the xApp from messages for other xApps, implementing and
controlling the E2 interfaces, getting notifications on messages
from the RAN), and it should just interface with it through
the SDL to gather the necessary information and subscribe to
the relevant messages. It is the near-RT RIC’s responsibility
to ensure the information is gathered and updated from the
RAN, that messages from xApps are delivered to the correct
gNBs, that messages from the RAN are routed only to the
xApps that subscribed to them, and to implement, control,
and maintain an E2 termination to control the RAN. For this
task, xSTART makes use of the state-of-the-art ColO-RAN
RIC [14]. This RIC was chosen for three reasons: it is the state-
of-the-art RIC that best supports developer-provided software,
it provides an easier deployment, as it only requires Docker,
and it is fully O-RAN compliant [14]. The ColO-RAN RIC
comprises four different elements, each deployed in a separate
Docker container, and its role is detailed in the remainder of
this section.

The first element of the ColO-RAN RIC is the SDL itself.
It has two roles: on the one hand, it serves as a traditional
SDL, storing information from the RAN as the RIC gathers it
and updating it accordingly, and on the other hand, it offers
a publish-subscribe mechanism that is leveraged by xApps
to communicate with the RIC. In the case of ColO-RAN,
this SDL is a Redis instance, and hence the SDL API is
the Redis API. The next element is the E2 message router,
which determines the gNB or gNBs to which each xApp
message should go, as well as which xApp or xApps should
receive each of the messages sent by the RAN. These two
elements, however, do not collaborate directly, and instead, the
E2 manager is the element that controls it. The E2 manager
can be seen as the overall controller of the RIC: it must
control the E2 communications, put the messages through the
router, and send them to the SDL appropriately. Moreover,
obtaining and updating the information stored in the SDL is
also the role of the E2 manager. Finally, the E2 interface is not
directly implemented in the E2 manager or the E2 message
router. Instead, a dedicated E2 termination element is tasked

with the implementation of the E2 interface, including its
connection to the E2 terminations of gNBs. This design allows
the rest of the near-RT RIC modules to remain independent:
the E2 termination provides the gNBs in the RAN for a single
endpoint to connect to, regardless of whether the ColO-RAN
RIC elements are deployed in the same node or different,
distributed notes.

C. RAN simulation

The final component of xSTART is the RAN simulator.
This simulation is key for xSTART to fulfill its purpose, as
it gives xApps a realistic environment where they can be
tested. Moreover, as the xApps are interfacing with an O-RAN
compliant near-RT RIC, which at the same time interfaces with
the simulated RAN, xApps tested in xSTART should also work
in real O-RAN testbeds: if the simulated RAN is changed by
a real one, the near-RT RIC will be able to manage it, and
thus, the xApps will not experience any change, as they only
interface directly with the RIC.

To play the crucial role of simulation in xSTART, we
propose the use of a state-of-the-art simulator: ns-O-RAN [3].
This simulator is based on the well-known ns-3 simulator,
a prominent open-source, discrete-event network simulator
tailored to replicate modern communication networks and
protocols. Distinguished by a modular, object-oriented design,
ns-3 facilitates the creation of bespoke network components
and protocols. It offers realistic modeling capabilities for var-
ious network elements, including routers, switches, links, and
channels, configurable to emulate real-world attributes such
as bandwidth, delay, and packet loss. Additionally, ns-3 ac-
commodates the instantiation of traffic patterns and movement
patterns for the users. The simulation process encompasses the
collection of detailed statistics on diverse network metrics on
the data plane, comprehending throughput, delay, jitter, and
packet loss. ns-O-RAN provides additional functionalities to
ns-3 that enable it to simulate O-RAN networks. In terms of
the simulation of the RAN environment, ns-O-RAN builds on
top of the ns-3-mmWave modules, which provide the simula-
tion of the data plane of RAN networks, from the simulation of
UEs and their antennas to the simulation of the physical plane
of the RAN and the network core. Moreover, as it is integrated
with ns-3, other traditional networks, such as IP networks,
can also be simulated as part of a scenario. ns-O-RAN also
provides the O-RAN interface to ns-3, simulating not only its
data plane but its control plane. gNBs simulated within ns-O-
RAN can provide information and receive commands through
a simulated E2 interface, which is also O-RAN compliant.

However, the simulation is a single process, and as such,
ns-O-RAN is a single Docker container, and thus, it can
only expose one E2 interface. To solve this issue, ns-O-RAN
integrates a modified version of the E2 simulator e2sim, which
enables this single termination to become a multiplexed E2
termination. Hence, as depicted in Fig. 2, there is no need for
each gNB to have its own E2 interface. Instead, the simulated
E2 interfaces of all gNBs are all connected to a single E2
termination, ready to manage this multiplexed situation. This



design is very interesting for our purpose as, while the data
plane is fully simulated, the control plane is partially simu-
lated, and partially implemented in a real manner. Therefore,
O-RAN-compliant software can directly control the simulated
RAN without the need for specific integration with ns-3 or ns-
O-RAN. Instead, they can be fully decoupled and evaluated
as if the simulated RAN was a real testbed.

In summary, by simulating a RAN using ns-O-RAN, which
provides a realistic control plane implementation, and by
making use of the ColO-RAN RIC, which serves as a broker
between the RAN and the xAppps, it is possible to perform
realistic testing and evaluation of xApps, and thus, xSTART
can provide a valuable environment for xApp developers.

V. EXPERIMENTAL RESULTS

This section pursues the validation of xSTART by showing
evaluation results within START of different ML-based xApps,
aimed at comparing the performance and precision of ML
techniques in the prediction of RAN measurements. The
environment used for this evaluation is discussed in Sec. V-A,
while the obtained results are described in Sec. V-B.

A. Evaluation setup

To evaluate xSTART, we developed different xApps whose
role is to predict the average Signal-to-Interference-plus-Noise
Ratio (SINR) experienced UEs in a cell, using as features the
timestamp and the ID of the physical cell. These xApps would
allow, within the IIoT field, to predict interferences in given
cells to lead to more efficient handovers, hence maintaining
the necessary QoS. There are, however, different ML models
that could perform such prediction tasks, and it is complex
to know which one is most suitable a priori. Hence, we
developed a total of 6 xApps, each of them able to perform
these predictions through a different machine learning model:
Ridge, Support Vector Regressor (also known as Support Vec-
tor Machine), K-Nearest Neighbors, Radius-based K-Nearest
Neighbors, Multi-Layer Perceptron (also known as Neural
Network), and Histogram-based Gradient Boosting. Each of
these models has been trained using data obtained from the
simulated RAN, and their hyperparameters have been tuned
using ten-fold cross-validation techniques to ensure their qual-
ity. Finally, these xApps have been evaluated using xSTART’s
default configuration. The xSTART implementation used for
this evaluation can be publicly accessed in its repository1.

The objective of this evaluation is to show the usefulness
of xSTART in the evaluation of xApps. To do so, however, it
is necessary to rely on the evaluation of xApps themselves.
Hence, the secondary objectives of the evaluations are to
assess the precision and execution times of the six evaluated
ML models using xSTART, to thus show the usefulness of
xSTART. Nonetheless, it is key to understand that the scoring
of the ML models themselves, whether they are high or low,
are not relevant in our evaluation of xSTART, as our proposal
are not ML models to perform these predictions, but the
xSTART framework.

1https://gitlab.com/MMw Unibo/o-ran-public/xstart

B. Evaluation results

The obtained results are depicted as scatter plots in Fig. 3.
Each of the predictions made by an ML model is shown as
a point within the scatter plot, where the size of the point
refers to the time taken to train the model. On the other
hand, the time represented on the Y-axis refers to the time
the model requires to execute, i.e., to perform a prediction.
Finally, the X-axis depicts the score of the predictions in terms
of different metrics: R2 score in Fig. 3a, Mean Square Error
(MSE) in Fig. 3b, and Mean Absolute Error (MAE) in Fig. 3c.
The first model we find is thus the Support Vector Regressor,
which exhibits the worst results across all six models: its
predictions have an average R2 score of 0.012, lower than
any other model, with an MSE of 16002.81 and an MAE
of 49.41, as some of the values do not appear on the plots
due to their huge difference to the rest. Moreover, it is the
slowest model to train (13.33 seconds on average), as well
as the one providing the slowest predictions (53.58 ms on
average, 2.03 ms standard deviation). The next model, in this
case, would be the Ridge model, which, although still the
second-worst model, provides much better precision than the
Support Vector Regressor (0.035 average R2 score, 265.41
MSE, 13.93 MAE), while being the fastest model to train (2
ms on average) and among the fastest providing predictions
(1.35 ms on average, 0.25 ms standard deviation). The next
model in terms of precision is the Multi-Layer Perceptron,
with an average R2 score of 0.063, an average MSE of 257.84,
and an average MAE of 13.93. It is, however, notably slow
to train, being the second slowest model to train (3.422 s on
average), although fairly fast providing its predictions (2.71
ms on average, 0.29 ms standard deviation). Radius-based K-
Nearest Neighbors is next, with a two-fold improvement in
precision (0.121 average R2 score, 247.24 MSE, 12.28 MAE).
It is also fast to train this model (3.12 ms on average), although
it is the second slowest model to predict (23.75 ms on average,
1.16 ms standard deviation). The second best model in terms
of precision is K-Nearest Neighbors, with an average R2 score
of 0.160, an average MSE of 230.93, and an average MAE of
12.43, while being both fast to train (2.87 ms on average)
and use (3.49 ms on average, 0.19 ms standard deviation).
Finally, in a similar level of precision is the Histogram-based
Gradient Boosting model, with an average R2 score of 0.161,
an average MSE of 309.26, and an average MAE of 13.32. It
is, however, notably slower to train (719.94 ms on average)
and on its predictions (4.93 ms on average, 0.61 ms standard
deviation) than the K-Nearest Neighbors model.

In summary, to provide a highly reconfigurable, ML-based
xApp for SINR prediction in O-RAN, K-Nearest Neighbors is
the best overall model, nearly as precise as Histogram-based
Gradient Boosting, but much faster to train and use. These
insights are only possible thanks to xSTART, and thus, the
usefulness of the environment for the evaluation of xApp has
been made clear, achieving the objective of the evaluation.



0.00 0.05 0.10 0.15 0.20
Prediction R2 score

0

10

20

30

40

50

60

M
od

el
 e

xe
cu

tio
n 

tim
e 

(m
s)

Ridge
Support Vector Regressor
K-Nearest Neighbors
Radius-based K-Nearest Neighbors
Multi-Layer Perceptron (Neural Network)
Histogram-based Gradient Boosting

(a) R2 score

0 100 200 300 400 500 600
Prediction MSE

0

10

20

30

40

50

60

M
od

el
 e

xe
cu

tio
n 

tim
e 

(m
s)

Ridge
Support Vector Regressor
K-Nearest Neighbors
Radius-based K-Nearest Neighbors
Multi-Layer Perceptron (Neural Network)
Histogram-based Gradient Boosting

(b) Mean Square Error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Prediction MAE

0

10

20

30

40

50

60

M
od

el
 e

xe
cu

tio
n 

tim
e 

(m
s)

Ridge
Support Vector Regressor
K-Nearest Neighbors
Radius-based K-Nearest Neighbors
Multi-Layer Perceptron (Neural Network)
Histogram-based Gradient Boosting

(c) Mean Absolute Error

Fig. 3: Evaluation of the precision and execution time of the xApp.

VI. CONCLUSION

In summary, this paper addressed the challenge of providing
xApp developers in the industrial domain with an environment
to test and evaluate their xApps. To do so, we propose
xSTART, an integrated, simulation-based environment for the
testing and evaluation of xApps available to the community.
The evaluation using ML-based xApps has shown the use-
fulness of xSTART during xApp development, testing, and
evaluation, especially for ML-based xApp aimed at IIoT O-
RAN networks. We expect xSTART to become a tool that
will not only make the development of xApps easier but also
enhance the adoption of O-RAN as a whole within IIoT.
The first version of the xSTART simulator is available to
the community at the link: https://gitlab.com/MMw Unibo/o-
ran-public/xstart. In the future, we plan to release a further
version of xSTART that switches the ns3-based simulation
environment with the OAI 5G RAN emulation environment.

ACKNOWLEDGMENT

This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan
(NRRP) of NextGenerationEU, partnership on “Telecommuni-
cations of the Future” (PE00000001 - program “RESTART”)
CUP: J33C22002880001

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] A. Mahmood, L. Beltramelli, S. Fakhrul Abedin, S. Zeb, N. I. Mowla,
S. A. Hassan, E. Sisinni, and M. Gidlund, “Industrial iot in 5g-
and-beyond networks: Vision, architecture, and design trends,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4122–4137,
2022.

[3] A. Lacava, M. Bordin, M. Polese, R. Sivaraj, T. Zugno, F. Cuomo,
and T. Melodia, “ns-o-ran: Simulating o-ran 5g systems in ns-
3,” in Proceedings of the 2023 Workshop on ns-3, ser. WNS3
2023. ACM, Jun. 2023. [Online]. Available: http://dx.doi.org/10.1145/
3592149.3592161

[4] T. F. Rahman, M. Zhang, and V. Marojevic, “O-ran perspective on in-
dustrial internet of things: A swot analysis,” in 2023 IEEE International
Conference on Industrial Technology (ICIT), 2023, pp. 1–6.

[5] D. Morato, C. Pérez-Gómara, E. Magaña, and M. Izal, “Network
simulation in a tcp-enabled industrial internet of things environment-
reproducibility issues for performance evaluation,” IEEE Transactions
on Industrial Informatics, vol. 18, no. 2, pp. 807–815, 2022.

[6] O-RAN Working Group 2, “O-RAN Non-RT RIC Architecture 1.0,”
O-RAN Alliance, Technical specification (TS) O-RAN.WG2.Non-RT-
RIC-ARCH-TS-v01.00 Technical Specification, 2021.

[7] O-RAN Working Group 3, “O-RAN Near-RT RAN Intelligent Controller
Near-RT RIC Architecture 2.00,” O-RAN Alliance, Technical specifica-
tion (TS) O-RAN.WG3.RICARCH-v02.00, 2021.

[8] O-RAN ALLIANCE e.V., “O-ran work group 1 (use cases and overall
architecture), o-ran architecture description,” in Proceedings of the 2023
Workshop on ns-3. O-RAN Alliance, Feb. 2023. [Online]. Available:
https://orandownloadsweb.azurewebsites.net/specifications

[9] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding o-ran: Architecture, interfaces, algorithms, security, and
research challenges,” 2022.

[10] H.-T. Thieu, V.-Q. Pham, A. Kak, and N. Choi, “Demystifying the near-
real time ric: Architecture, operations, and benchmarking insights,” in
IEEE INFOCOM 2023-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2023, pp. 1–8.

[11] M. Hoffmann, S. Janji, A. Samorzewski, L. Kulacz, C. Adamczyk,
M. Dryjański, P. Kryszkiewicz, A. Kliks, and H. Bogucka, “Open ran
xapps design and evaluation: Lessons learnt and identified challenges,”
IEEE Journal on Selected Areas in Communications, vol. 42, no. 2, pp.
473–486, 2024.

[12] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Intelligent
closed-loop ran control with xapps in openran gym,” in European
Wireless 2022; 27th European Wireless Conference, 2022, pp. 1–6.

[13] Google, “Android virtual device (avd) as a development platform,”
2024. [Online]. Available: {https://source.android.com/docs/automotive/
start/avd/android virtual device}

[14] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-
ran: Developing machine learning-based xapps for open ran closed-loop
control on programmable experimental platforms,” IEEE Transactions
on Mobile Computing, 2022.


