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Macroprogramming: Concepts, State of the Art, and
Opportunities of Macroscopic Behaviour Modelling

ROBERTO CASADEI, Alma Mater Studiorum–Università di Bologna

Macroprogramming refers to the theory and practice of expressing the macro(scopic) behaviour of a collective
system using a single program. Macroprogramming approaches are motivated by the need of effectively
capturing global/system-level aspects and the collective behaviour of multiple computational components,
while abstracting over low-level details. Previously, this programming style had been primarily adopted to
describe the data-processing logic in sensor networks; recently, research forums on spatial computing, collective
systems, and the Internet of Things have provided renewed interest in macro-approaches. However, related
contributions are still fragmented and lack conceptual consistency. Therefore, to foster principled research, an
integrated view of the field is provided, together with opportunities and challenges.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering →
System description languages; Software system structures; Software development techniques; • Computing
methodologies→Multi-agent systems; Distributed computing methodologies.
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1 INTRODUCTION
Macroprogramming refers to the theory and practice of conveniently expressing the macro(scopic)
behaviour of a system using a single program, often leveraging macro-level abstractions (e.g., collec-
tive state, group, or spatiotemporal abstractions). This is not to be confused with the use of macros
(abbreviation for macroinstructions), i.e., the well-known mechanism for compile-time substitution
of program pieces (e.g., characters, tokens, or abstract syntax trees), available in programming
languages ranging from C and Common Lisp to Scala and Rust. Macros may be a mechanism
for implementing macroprogramming, but not all uses of macros are macroprogramming, which
concerns programming the overall behaviour of a system of multiple computational entities. Macro-
programming is a paradigm driven by the need of designers and application developers to capture
system-level behaviour while abstracting, in part, the behaviour and interaction of the individual
components involved. It can be framed as a paradigm since it embodies a (systemic) view or per-
spective of programming, and accordingly provide lenses to the programmer for understanding
and working on particular aspects of systems—especially those related to collective behaviour,
interaction, and global, distributed properties.
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2 Casadei

In the past, this style of programming has been primarily adopted to describe the behaviour of
wireless sensor networks (WSN) [Mottola and Picco 2011], where data gathered from sensors are to be
processed, aggregated, and possibly moved across different parts or regions of the network in order
to be consolidated into useful, actionable information. More recently, certain research trends and
niches have provided renewed interest in macro approaches. Research in the contexts of Internet
of Things (IoT) and cyber-physical systems (CPS) has proposed macroprogramming approaches (cf.
[Azzara et al. 2014; Mizzi et al. 2018]) to simplify the development of systems involving a multitude
of connected sensors, actuators, and smart devices. In the spatial computing thread [Beal et al.
2012], space can represent both a means and a goal for macroprogramming. Indeed, declaring
what has to be done in a spatiotemporal region allows systems to self-organise to effectively carry
out the task at hand, dynamically adapting to the specifics of the current deployment and spatial
positions of the components involved. Similarly, one can program a system, such as a drone fleet, in
a high-level fashion to make it seek and maintain certain shapes and connectivity topologies. Indeed,
swarm-level programming models have been proposed in robotics research [Pinciroli and Beltrame
2016]. In distributed artificial intelligence (DAI) and multi-agent systems (MAS) research [Adams
2001], an important distinction is made between the micro level of individual agents and the macro
level of an “agent society”, sometimes explicitly addressed by organisation-oriented programming
approaches [Boissier et al. 2013]. In the field of collective adaptive systems (CAS) engineering [De
Nicola et al. 2020; Ferscha 2015], macroprogramming abstractions can promote collective behaviour
exhibiting self-* properties (e.g., self-organising, self-healing, self-configuring) [de Lemos et al.
2010; Kephart and Chess 2003]. In software-defined networking (SDN), the centralised view of the
control plane has promoted programming networks as “one big switch” [Kang et al. 2013].

This work draws motivation from a profusion of macroprogramming approaches and languages
that have been proposed in the last two decades, aiming to capture the aggregate behaviour of
certain classes of distributed systems. However, contributions are sparse, isolated in research niches,
and tend to be domain-specific as well as technological in nature. This survey aims to consolidate
the state of the art, provide a map of the field, and foster research on macroprogramming.
This article is organised as follows. Section 2 covers the method adopted for carrying out the

survey. Section 3 provides an overview of the research fields where macroprogramming techniques
have been proposed, also tracing the history of the field. Section 4 defines a conceptual framework
and taxonomy for macroprogramming. Section 5 is the core of the survey: it classifies and presents
the selected primary studies. Section 6 provides an analysis of the surveyed approaches and discusses
opportunities and challenges of macroprogramming. Section 7 covers related work, discussing the
contributions of other secondary studies. Finally, Section 8 provides a wrap-up.

2 SURVEY METHOD
This section briefly describes how the survey has been carried out. It focusses on motivation,
research questions, data sources, presentation of results, and terminology.

2.1 Survey Method
Though this is not a systematic literature review (SLR), the survey has been developed by considering
guidelines by SLR methodologies like [Kitchenham and Charters 2007]. More details follow.

2.1.1 Reviewmotivation. As anticipated in Section 1, the survey drawsmotivation by the emergence
of a number of works that more or less explicitly identify themselves as macroprogramming
approaches. Related secondary studies have been carried out in the past: they are reviewed in
Section 7. However, they focus on particular perspectives or domains (e.g., spatial computing, or
WSN programming), are a bit outdated, and consider macroprogramming as a particular class of

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



Macroprogramming: Concepts, State of the Art, and Opportunities of Macroscopic Behaviour Modelling 3

approaches in their custom scope. Critically,macroprogramming has never been investigated as a field
per se, yet. Another major motivation lies in the fragmentation of macroprogramming-related works
across disparate research fields and domains. Thus, a goal of this very survey is to provide a map of
macroprogramming-related literature, promoting interaction between research communities and
development of the field. More motivation is given by the urge of the following research questions.

2.1.2 Research goals and questions. The goal of this article is to explore the literature on macropro-
gramming in breadth, synthesise the major contributions, and provide a basis for further research.
The focus is on the programming perspective, rather than e.g. modelling formalisms for analysis and
prediction; namely, the contribution can be framed in language-based software engineering [Gupta
2015]. To better structure the investigation, we focus on the following research questions, inspired
by the “six honest serving men” [Kipling 1902] as e.g., in [Flood 1994].

RQ0) Why, where, and for who is macroprogramming most needed?
RQ1) What is macroprogramming and, especially, what is not?
RQ2) How is macroprogramming implemented? Namely, what are the main macroprogramming

approaches and abstractions?
RQ3) What opportunities can arise from research on macroprogramming?
RQ4) What are the key challenges in macroprogramming systems?

RQ0 is addressed in Section 3. RQ1 is addressed in Section 4. RQ2 is addressed in Section 5. Finally,
RQ3 and RQ4 are addressed in Section 6.

2.1.3 Identification, selection, and quality assessment of primary research. Primary research studies
have been identified by searching literature databases (such as Google Scholar, DBLP, IEEEXplore,
ACM DL) for keywords such as “macroprogramming”, “global-level programming”, “network-
wide programming”, and “swarm programming”, Terminology is fully covered and discussed in
Section 2.2. Additional sources include other secondary and primary studies, which are surveyed
in Section 7 and Section 5, respectively.
The survey scope is wide and includes PhD theses, technical reports, and papers presented at

workshops, conferences, and journals as well as across different domains and research communities.
Works that are deemed too preliminary (e.g., position papers), not enough “macro” (refer to Sec-
tion 4), or neglecting the “programming” aspects (e.g., describing a middleware but no programming
language) have been excluded, after being manually inspected.

2.1.4 Data extraction, synthesis, and dissemination. For each primary study, notes are taken regard-
ing its self-positioning (i.e., how the authors define their contribution), its programming model (i.e.,
what main abstractions are provided), its implementation (i.e., how macro-abstractions are mapped
to micro-level operations), and source-code examples. The data is synthesises using the conceptual
framework introduced in Section 4. When covering and summarising the primary works in the
survey ( Section 5), we tend to keep and report the terminology originally used in the referenced
papers, possibly explained and compared with the terminology used in this manuscript. This should
help to preserve the richness and nuances of each work while the common perspective is ensured by
proper selection and emphasis of the information included in the descriptions. Examples – adapted
from those already included in the primary studies or created anew from composing code snippets
described in those papers – are provided when they are reasonably “effective” or “diverse” from
those already presented: i.e., they are brief and simple in transmitting how the reviewed approach
looks like and works.
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4 Casadei

2.2 A Note on Terminology
A first issue in macroprogramming research is the fragmentation and ambiguity of terminology,
which – together with domain fragmentation (see Section 3) – leads to (i) difficulty when searching
for related work, and (ii) obstacles in the formation of a common understanding. Across literature,
multiple terms such as macroprogramming, system-level programming, and global-level program-
ming are used to refer to the same or similar concepts: this does not promote a unified view of the
field and hinders progress by preventing the spread of related ideas. At the same time, there is a
problem of usage of both over- and under-specific terms. Overly general terms both witness the lack
and prevent the formation of a common ground. On the other hand, overly specific terms, mainly
due to domain specificity of research endeavours, fail at recognising the general contributions or at
advertising the effort in the context of a bigger picture.

In the following, we list some terms that have been used (or might be used) – with more or less
good reason – when referring to macroprogramming, and analyse their semantic precision (by
reasoning on their etymology and other common uses) as well as alternative meanings in literature
(for conflicts with more or less widespread acceptations).

Macroprogramming, macro-programming, macro programming, macro-level programming. These
are the premier terms for the subject of this article and may indeed refer to programming macro-
scopic aspects of systems (often, by leveraging macro-level abstractions). However, these terms are
sometimes also used in other computer programming-related contexts. The potentially ambiguity
stems from word “macro”, which is and can be used to abbreviate both term “macroscopic” and
term “macroinstructions”—often used in the sense of macros, i.e., the well-known programming
language mechanism for compile-time substitutions of program pieces. Indeed, it is common to say
that macros are written using a macro (programming) language. The result is that searching for
these terms leads to a mix of results from both worlds. Unfortunately, being macros a very common
mechanism [Lilis and Savidis 2020], macroscopic programming-related entries remain relatively
little visible in search results, unless other keywords are used to narrow the context scope—but
then, only a fragment of the corpus can be located.

System programming, system-level programming, system-oriented programming. All these terms
are also ambiguous. Indeed, they strongly and traditionally refer to low-level programming, i.e.,
programming performed at a level close to the (computer) system (i.e., to the machine) [Appelbe and
Hansen 1985]. System programming languages include, e.g., C, C++, Rust, and Go. A better name for
these would probably be, as suggested by Dijkstra, machine-oriented languages, but such a “system”
acceptation is a sediment of the field by now. The scarce accuracy of the term was also somewhat
acknowledged by researchers in the object-oriented programming community [Nygaard 1997].
However, in some cases, system-level programming is contrasted with device-level programming,
to mean approaches that address “a system as a whole” [Liang et al. 2016].

Centralised programming. This term [Gude et al. 2008; Lima et al. 2006] commonly refers to
programming a distributed system through a single program where distribution is (partially [Waldo
et al. 1996]) abstracted away, i.e., like if the distributed system were a centralised system, namely a
software system on a single computer deployment. An example of centralised programming ismulti-
tier programming [Weisenburger et al. 2020]. This notion is certainly related to macroprogramming,
since a “centralised perspective” where several distributed components can be addressed at once is
a macroscopic perspective. However, as discussed in Section 4, programming the macro level often
implies more than programming the individual components from a centralised perspective.
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High-level programming. This term, identifying a style of programming that abstracts many
details of the underlying platform, lacks of precision. Macroprogramming is a form of high-level
programming, but not all the high-level programming is macroprogramming (for a conceptual
framework for macroprogramming, refer to Section 4).

Domain-specific or alternative terminology: global-level programming, network-wide programming,
organisational programming, swarm programming, aggregate programming, ensemble programming,
global-to-local programming, team-level programming, organisation-oriented programming etc. These
terms will be explained and properly organised in the following sections. From this list of terms,
however, it is already possible to get a sense of (i) an intimate need, from different research
communities, to linguistically emphasise a focus on macroscopic aspects of systems, and (ii) the
urge for a common conceptual framework where such disparate contributions can be framed.

3 SCOPE AND HISTORICAL DEVELOPMENT OF MACROPROGRAMMING
Here, we provide an overview of the main research fields and application domains where macropro-
gramming techniques have been proposed, also tracing a historical development of the paradigm.
To the best of our knowledge, the term “macroprogramming” – in the acceptation used in this

manuscript – first appeared in [Newton andWelsh 2004]. Multiple occurrences of the term appeared
in other papers published later in the same year and in the following ones.

3.1 Wireless Sensor and Actuator Networks (WSAN)
WSANs are networks of embedded units capable of processing, communication, and sensing and/or
acting [Mottola and Picco 2011]. They are a technology providing relatively low-cost monitoring and
control of physical environments. Given the large number of involved devices, and the reasonable
levels of heterogeneity and dynamicity for a given application, it became apparent that a benefit
could be provided by high-level programming models abstracting from a series of low-level network
details while still seeking to preserve efficiency. When a system consists of a large number of
rather homogeneous entities, individuals tend to become less important to the functionality (while
may well contribute to non-functional aspects): a WSN with 50 devices might perform worse
than a 100-devices network, but these two networks can be programmed the same. Additionally,
developers and researchers started realising that the individual sensors are actually a proxy or a
probe for more important application abstractions such as information, streams, and events. At
a next step, those abstractions started to become more high-level, and to address larger portions
of the system beyond individual sensors, such as neighbourhoods [Whitehouse et al. 2004], or
regions [Welsh and Mainland 2004]; accordingly, abstractions related to those more coarse-grained
entities emerged, denoting contexts, aggregate views, fields—increasingly non-local abstractions.
Among the high-level approaches, languages providing a centralised view of the WSN emerged;
then, the step to macroprogramming was short. This is, indeed, one of the first domains where
macroprogramming was introduced. Early works like TinyDB [Madden et al. 2002], Pieces [Liu
et al. 2003], Abstract Regions [Welsh and Mainland 2004], and Regiment [Newton et al. 2007] are
among the first contributions explicitly defining themselves as macroprogramming. A survey on
macroprogramming for WSNs can be found in [Mottola and Picco 2011].

3.2 Spatial Computing
Space is generally important in ICT systems. This has been especially motivated and investigated in
the ComputingMedia and Languages for Space-Oriented Computation seminar in Dagstuhl [dag 2007],
where three key issues are found to be recurrent in many computer-based applications: (i) coping
with space, for efficiency in computation; (ii) embedding in space, as in embedded and pervasive
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6 Casadei

computing; and (iii) representing space, for spatial awareness.What became apparent, also fromWSN
programming research, is that devices situated in space can become representatives of the spatial
region they occupy and of the corresponding context. In this view, distributed systems and networks
can be seen as discrete approximations of continuous space-time regions and behaviours [Bachrach et al.
2010]. Therefore, macroprogramming abstractions may abstract individual devices and rather focus
on spatial patterns that such devices should cooperatively (re-)create—e.g., for morphogenesis [Jin
andMeng 2011]. In general, dealing with situated systems [Lindblom and Ziemke 2003] – i.e., systems
where components have a location in and coupling with (logical or physical) space, with typical
corresponding consequences such as partial observability and local (inter)action – is simplified
when recurring to spatial abstractions such as, e.g., computational fields [Mamei et al. 2004]. Spatial
computing approaches are extensively surveyed in [Beal et al. 2012] (see Section 7 for details on
the study) and include exemplars of macroprogramming such as Regiment [Newton et al. 2007]
and MacroLab [Hnat et al. 2008].

3.3 Internet of Things, Cyber-Physical Systems, Edge-Fog-Cloud Computing Systems
The Internet of Things (IoT) [Atzori et al. 2010] refers to a paradigm and set of technologies supporting
interconnection of smart devices and the bridging of computational systems with physical systems—
the latter element being emphasised also through term Cyber-Physical Systems (CPS) [Serpanos
2018]. IoT systems share many commonalities withWSANs, so it is not surprising that contributions
from the latter field have been extended to address IoT application development. Actually, the IoT
can be considered as a superset of WSANs, with additional complexity due to the exacerbation
of issues like heterogeneity, mobility, topology, dynamicity, infrastructural complexity, as well as
functional and non-functional requirements. However, an IoT system can still be considered as a
collective of interconnected smart devices, amenable to be considered by a macroscopic perspective.

Moreover, IoT systems tend to be more heterogeneous and infrastructurally rich, comprising edge,
fog, and cloud computing layers [Yousefpour et al. 2019] to support various requirements including
low-latency and low-bandwidth consumption. Interestingly, also the edge, the fog, and the cloud
can be considered as computational (eco-)systems programmable at the macro-level [Pianini et al.
2021a]. This idea also underlies orchestration approaches based on Infrastructure-as-Code [Morris
2016], which can be considered a form of centralised, declarative programming.
Examples of IoT/CPS macroprogramming approaches include PyoT [Azzara et al. 2014],

DDFlow [Noor et al. 2019], and MacroLab [Hnat et al. 2008], whereas preliminary approaches also
considering edge/fog/cloud comprise ThingNet [Qiao et al. 2018].

3.4 Swarm robotics
A set of interacting robots can work as a collective, also known as a swarm. In this case, the focus of
external observers tends to shift from the activity of individual robots to the activity of the swarm
as a whole. Various tasks make sense at such a macro-perspective. For instance, we could ask a
swarm to: move in flock formation towards a destination; split and later merge for avoiding a large
obstacle; use, in a coordinated way, the sensing capabilities to estimate physical quantities (e.g.,
the mean temperature in a certain area) or other indicators (e.g., the risk of fire in a forest); or
use, in a coordinated way, sensing and actuation capabilities to efficiently perform actions and
tasks (e.g., quickly collecting toxic waste in industrial plants) possibly going beyond individual
capabilities (e.g., moving heavy objects). Another prominent sub-field in robotics with emphasis on
macroscopic features is modular, morphogenetic robotics [Jin and Meng 2011; Zykov et al. 2007],
which considers collections of building-block modules that should dynamically self-reconfigure into
functional shapes in order to address tasks, change, or damage. Indeed, the overall morphology of
a modular swarm is a macro-level structure that must be dynamically sought through activity and
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cooperation of the individual robots. The traditional question is: how can the individual robots be
programmed such that the desired overall shape is produced? By a macroprogramming perspective,
this question turns into: how can a swarm as a whole be programmed such that the overall shape is
produced? Of course, this ultimately entails a definition of the behaviour of the individuals as well;
however, the idea is to encapsulate the complexity of such a collective behaviour at the middleware
level, behind proper macroscopic abstractions. Examples of macroprogramming languages for
swarm robotics include Meld [Ashley-Rollman et al. 2007] (for modular robotics), Voltron [Mottola
et al. 2014] (for drone teams), Buzz [Pinciroli and Beltrame 2016], TeCoLa [Koutsoubelias and Lalis
2016], and WOSP [Varughese et al. 2020] (for elementary robots).

3.5 Complex and Collective Adaptive Systems
Complex and collective adaptive systems (CAS) are collectives (i.e., collections of individuals)
exhibiting a non-chaotic behaviour that is adaptive to the environment and cannot be (easily)
reduced to the behaviour of the individuals, but that rather emerges from complex networks of
situated interactions. These kinds of systems were originally observed in nature, but researchers
have tried to bring those principles and ideas for development artificial, ICT-based CASs [De
Nicola et al. 2020; Ferscha 2015]. The field of CAS engineering emerges from swarm computational
intelligence [Kennedy 2006] and autonomic, self-adaptive computing [de Lemos et al. 2010; Kephart
and Chess 2003]. The goal of CAS programming is to program the collective adaptive behaviour
of a system. In general, two approaches are possible: local-to-global, where local behaviour is
specified in order to promote emergence of a target global behaviour; or global-to-local, where the
idea is to specify the intended global behaviour and come up with a mechanism to synthesise the
corresponding local behaviour.

Since the notion of a collective (also known as ensemble) is per se a macro-level abstraction, it is
natural to adopt macroprogramming techniques. Examples are provided in Section 5 and include
ensemble-based approaches such as DEECo [Bures et al. 2013] and SCEL [De Nicola et al. 2014],
and aggregate programming [Beal et al. 2015].

3.6 Other domains
In the following domains, macroprogramming has not actually been proposed explicitly, but similar
needs can be perceived and very related ideas have indeed been considered.

3.6.1 Software-defined networking. Software-defined networking (SDN) [Kreutz et al. 2015] is an
approach for the management of computer networks based on the idea of separating the data plane
(forwarding) and the control plane (routing). Thanks to this separation, network devices become
just entities responsible for forwarding, whereas control logic can be logically centralised in a single
component. This logical centralisation directly leads to centralised programming (cf. Section 2.2)
and hence to a macroprogramming viewpoint. This is also visible in the editorial note [Beckett
et al. 2019], which provides a brief historical reflection on the development of such a vision, also
known as network-centric or network-wide programming [Martins and McCann 2017].
Examples of network-wide programming include NetKAT [Anderson et al. 2014] and

SNAP [Arashloo et al. 2016].

3.6.2 Parallel Programming and High-Performance Computing (HPC). Literature on parallel pro-
gramming does include some germs of macroprogramming ideas, even though the focus on perfor-
mance and low-level system programming arguably has hindered adoption of high-level abstractions.
However, these can be found in parallel, global-view languages, such as those implementing the
Partitioned Global Address Space (PGAS) model [Wael et al. 2015], where, e.g., directives have
been proposed to represent “high-level expressions of data distributions, parallel data movement,
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8 Casadei

Ref. Definition

[Bakshi and
Prasanna
2005]

“The objective of macroprogramming is to allow the programmer to write a distributed sensing application without explic-
itly managing control, coordination, and state maintenance at the individual node level. Macroprogramming languages
provide abstractions that can specify aggregate behaviors that are automatically synthesized into software for each node in
the target deployment. The structure of the underlying runtime system will depend on the particular programming model.”

[Whitehouse
et al. 2006]

“Macroprogramming is a term often used to refer to the process of writing a program that specifies global network behavior
as opposed to the behavior of individual nodes.”

[Awan et al.
2007]

“ Macroprogramming specifies aggregate system behavior, as opposed to device-specific programs that code distributed
behavior using explicit messaging. [...] Composing applications with reusable components allows the macroprogrammer to
focus on application specification rather than low-level details or inter-node messaging.”

[Sookoor
2009]

“Macroprogramming provides the user with the illusion of programming a single machine by abstracting away the low-level
details of message passing and distributed computation.”

[Pathak and
Prasanna
2011]

“In macroprogramming, abstractions are provided to specify the high-level collaborative behavior at the system level, while
intentionally hiding most of the low-level details concerning state maintenance or message passing from the programmer”

Table 1. Some descriptions of macroprogramming from the literature.

processor arrangements and processor groups”. Indeed, addressing the behaviour of multiple proces-
sors in terms of macroscopic patterns rather than in terms of micro-instructions could simplify
programmability and still reach good performance through smart global-to-local mapping.
Other elements of similarities can be traced between Valiant’s Bulk Synchronous Parallel (BSP)

model [Valiant 1990] and the execution model of macroprogramming approaches such as aggregate
computing [Beal et al. 2015], where multiple parallel processors work in supersteps involving
communication and computation as specified by a single global program. Moreover, this tendency
towards programming by a macroscopic perspective has been witnessed by some BSP-based models.
For instance, in the domain of graph-processing, as discussed in the paper From “Think Like a
Vertex” to “Think Like a Graph” [Tian et al. 2013], the Giraph++ framework has been proposed
by replacing the vertex-centric model of Giraph with a graph-centric model to provide efficiency
benefits by directly exposing graph partitions and optimising communications.

4 A CONCEPTUAL FRAMEWORK AND TAXONOMY
In this section, after some preliminaries (Section 4.1), we define macroprogramming, describe
its essential elements (Section 4.2), and distinguish it from other related notions like centralised
programming (Section 4.3). Then, we propose a taxonomy and conceptual framework (Section 4.4)
for classifying and studying the macroprogramming approaches surveyed in Section 5.

4.1 Preliminaries
Consider the problem of programming the behaviour of a computational system S composed of
multiple computational entities. Let𝐴 and 𝐵 be two different entities of that system. We have three
main modes for affecting their behaviour in order to promote the behaviour or properties ascribable
to the overall system S (which, as we will shortly see, is essentially the goal of macroprogramming).
(1) Change their context (e.g., inputs). The entities will be indirectly influenced by the different

context. For instance, if 𝐴 is a sensor, it might sense a different value, which may in turn
affect 𝐵 and so on.

(2) Interaction (e.g., trigger/orchestrate their behaviour). For instance, if 𝐴 is an actuator, it might
be commanded to act upon the environment, which may in turn affect 𝐵 and so on.

(3) Set their behaviour. Part of the behaviour of 𝐴 and 𝐵 may be set or changed such that, when
activated (e.g., in a reactive or proactive way), certain global outcomes will be produced.
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Fig. 1. The general idea of macroprogramming.

Let us use term program to mean an (abstract) description that can be executed by some (abstract)
computational entity. Note that modes (1) and (2) allow a program to affect 𝐴 or 𝐵, and hence S, by
having it executed by another entity, say 𝐶 , assumed to be external to the arbitrary boundary of S.

4.2 Macroprogramming: Definition and Basic Concepts
We define macroprogramming as an abstract paradigm for programming the (macro)scopic behaviour
of systems of computational entities1. As a paradigm (see Section 4.3.2 for a discussion on this), it
is “an approach to programming based on a mathematical theory or a coherent set of princi-
ples” [Van Roy 2009] (bold is added). Macroprogramming is based on the following principles,
which can be partially extracted from the various definitions given in literature (cf. Table 1):

P1 Micro-macro distinction. Two main levels of a system are considered: a macro level (of global
structures, of state, of behaviour) and a micro level (of computational entities).

P2 Macroscopic perspective. The programming activity tends to focus on macroscopic aspects of
a system, which may include summary observations and views whereby micro-level entities
are considered by a global (or non-local) and conceptually centralised perspective.

P3 Macroprogram.The output of themacroprogramming activity is a program that is conceptually
executed by the system as a whole and whose intended meaning adopts the macroscopic
perspective.

P4 Macro-to-micro mapping. A macroprogramming implementation has to define how a macro-
program is executed, by the system as a whole, which entails defining a macro-to-micro
mapping logic—sometimes also known as global-to-local mapping [Hamann 2010]. I.e., from
a macroprogram, micro-level programs or behaviours are derived or affected (cf. Section 4.1).

Figure 1 shows the general idea of the approach, graphically.

4.2.1 On micro-macro and local-global distinction. The micro-macro levels and the local-global
scales usually used as equivalent concepts to distinguish smaller elements/scopes and larger
elements/scopes somewhat “containing” or “being implied by” the former. The micro-macro distinc-
tion [Alexander 1987] (sometimes also space out by an intermediate, ormeso level) is typical in many
scientific areas including social sciences, systemics, and distributed artificial intelligence [Schillo
et al. 2000] (cf. multi-agent systems [Wooldridge 2009]). For the sake of programming, just like a
system (as an ontological and epistemological element) can be defined according to a boundary
condition [Mobus and Kalton 2014], the distinction between two dimensions, micro and macro, is
1Possibly corresponding to physical devices through a notion of digital twin [Rasheed et al. 2020] or physical computa-
tion [Horsman et al. 2013].
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similarly made through a design-oriented boundary or membership decision defining what belongs
to one level or the other.
The intended meaning of macroprograms, and hence the ultimate goal of macroprogramming,

seems to be related to the notion of emergence [Gignoux et al. 2017; Holland 1998; Kalantari et al.
2020; Wolf and Holvoet 2004]. In [Gignoux et al. 2017], the authors use graph theory to provide
formal definitions of macroscopic states and microscopic states, and characterise emergence by
analysing the general relationships between microscopic and macroscopic states.
What can we say, in general, about the entities at the micro and macro levels in macropro-

gramming? Micro entities have a computational behaviour, which may be autonomous (proactive),
active, or reactive; and may or may not interact with other micro entities. So, for instance, data
elements do not make for micro entities (they have no behaviour), while agents, actors, objects, and
microservices do2. Regarding the macro level, we can distinguish between macro-level observables
and macro-level constructs. A macro-level observable is a high-level observation of the system
behaviour, i.e., a macro state as defined in [Gignoux et al. 2017], which is associated to the system
as a whole and might be difficult to derive from micro state (the set of observations about the
micro-level entities). The intended meaning, or goal, of a macroprogram, is generally a function of
macro-level observables over some notion of time. A macro-level construct or abstraction is, instead,
a description that can be mapped down to affect the behaviour of two or more micro-level entities (cf.
Section 4.1). Implementing such a mapping is the macro-to-micro problem of macroprogramming.

4.2.2 On collectives. Macroprogramming usually targets so-called collectives—see Section 3. Term
“collective” derives from Latin colligere, which means “to gather together”. Typically [Masolo et al.
2020], a collective is an entity that gathers multiple congeneric elements together by some notion
of membership. “Congeneric” means “belonging to the same genus”, namely, of related nature. In
other words, a collective is a group of similar individuals or entities that share something (e.g., a
trait, a goal, a plan, a reason for unity, an environment, an interface) which justifies seeing them as
a collective, overall. A group of co-located workers, a swarm of drones, the cells of an organ are
examples of collectives, whereas a gathering of radically different or unrelated entities such as cells,
rivers, and monkeys is not, intuitively. Being congeneric, the elements of a collective generally
share goals and mechanisms for interaction and hence collaboration. The differences among the
elements, often promoting larger collective capabilities by collaboration, may be due to genetic
factors, individual historical developments, and the current environmental contexts driving diverse
responses on similar inputs.

Heterogeneous collectives also exist (e.g., aggregates involving humans, autonomous robots, and
sensors) and can be addressed by macroprogramming [Scekic et al. 2020]. However, heterogeneity
tends to complicate macroprogramming by posing more importance on individuals’ perspectives
or widening the macro-to-micro gap—see Section 6.4.3 for a discussion.

4.2.3 On declarativity. A typical aspect of macroprogramming is declarativity. Declarative pro-
gramming [Lloyd 1994] is a paradigm which focusses on expressing what the goal of computation
is rather than how it must be achieved. Common and concrete aspects of a computation that can be
abstracted away include the order of function evaluation (cf. functional programming), proving
theorems from facts (cf. logic programming), and the specifics of data access (cf. query plans in
databases and SQL). The general idea is to provide high-level abstractions capturing system-wide
concerns by making assumptions promoting convenient mapping to component-level concerns.
As such assumptions tend to be specific to an application domain, macroprogramming languages
typically take the form of domain-specific languages (DSLs) [Beal et al. 2012].

2Possibly, even humans and other physical entities [Horsman et al. 2013].
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4.3 What Macroprogramming Is (Not)
Programming essentially always deals with multiple interacting software elements, be them func-
tions, objects, actors, or agents. Even though paradigms are more a matter of mindset and abstrac-
tions, rather than a matter of strict demarcation, a demarcation issue may be considered to better
delineate a (nevertheless, fuzzy) boundary of macroprogramming. Macroprogramming is often
centred around macro-abstractions: informally, constructs that involve, in some abstract way, (the
context, state, or activity of) two or more micro-level entities. For instance:

• macro-statements (or macro-instructions), for imperative macroprogramming languages (e.g.,
“move the entire swarm to that target location”, or “update the WSN state history to record
the current temperature of the area”);

• macro-expressions, evaluating to a macro-value (e.g., “the direction vector of the swarm
towards the target location”, “the mean temperature of the area covered by the network”);

Other examples of macro-abstractions can be found in Section 6.2.
Consider the following artificial Scala program:

1 // Library code (non -macroprogramming)
2 object swarm {
3 def robots = // ...
4 def move(target: Pos): Unit = robots.foreach(robot => robot.move(target))
5 def energyLevel (): Double = robots.map(_.energyLevel).sum / robots.size
6 def positions (): Set[Pos] = robots.map(_.position)
7 def monitor(area: Area): Unit = // ...
8 // ...
9 }
10
11 // User code (macroprogramming)
12 if(swarm.energyLevel () < WARNING_ENERGY_LEVEL){
13 swarm.move(rechargingStation ())
14 } else {
15 swarm.monitor(targetArea ())
16 }

The swarm object provides a macro-abstraction over the set of underlying robots. Indeed, such a
code might be written to abstract from a series of low-level details: the obstacle avoidance behaviour
of individual robots; the fact that robots of the swarm move collectively in flock formation; the
way sensors and actuators perceive distances to other robots, obstacles, and acceleration, to control
stability and speed of each moving robot. The intended meaning of the program may refer to
macro-observables that may or not may accessible by the program (cf. side-effects). The library
code provides an implementation of the macroprogramming system. It maps the expressions of the
user macro-program down to micro-level behaviour. Here, the macro-to-micro approach may be
interpreted as an interaction mode – it is the running thread that interacts with the micro-level
entities through the program control flow – or an execution mode – the macro-program is executed
by the micro-level entities. This simplified example shows a macroprogramming language as an
library/API within an existing host language, also called an internal DSL; actual examples of internal
macroprogramming DSLs include Chronus [Wada et al. 2010] and ScaFi [Casadei et al. 2020b].

Doing macroprogramming is very much a matter of perspective. If the micro-macro distinction
we are considering is robots vs. a swarm, then the library code (Lines 1-9), individually addressing
each robot of the swarm with a specific instruction, is not macroprogramming, properly; vice
versa, the user code (Lines 11-16), addressing the swarm as a whole, does represent an example of
macroprogramming. However, the library code could be considered macroprogramming under a
micro-macro viewpoint of sensors/actuators vs. a robot.

4.3.1 Weak vs. strong macroprogramming. In a nutshell, the central idea of macroprogramming
is considering the entire system as the abstract machine for the operations. Notice that adopting a
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centralised perspective to programming, where a centralised program has access to all the individual
entities, is not generally sufficient for effective macroprogramming: there should typically be at
least one intermediate level of indirection3, where macro-operations turn into micro-operations. In
the example above, while the library code can directly access the individual robots, the user code
indirectly accesses them through the swarm macro-abstraction.

Essentially, directly feeding micro-operations to the micro-level entities or specifying the individ-
ual behaviours of the parts breaks the macroprogramming abstraction, or makes it leaky [Kiczales
1992; Spolsky 2004]. This is one reason (in addition to limited emphasis on behaviour) for which,
e.g., formalisms for concurrent systems such as process-algebraic approaches [Baeten 2005], certain
component-based approaches, and multi-tier programming [Weisenburger et al. 2020] are not gen-
erally considered macroprogramming. However, several approaches in literature defined themselves
as macroprogramming despite basically embodying merely a form of centralised programming.
Some of these may provide some macroprogramming abstractions (e.g., an object from which
individual entities can be dynamically retrieved), but would nevertheless appear as a weak form
of macroprogramming. We may consider the macroscopic stance as a degree, and hence define
strong macroprogramming approaches those where only macro-abstractions are provided. For
demarcation purposes, we propose to call those centralised programming approaches that inher-
ently adopt a macro-level, global perspective but directly address individuals through micro-level
instructions as weak macroprogramming or meso-programming. Considering the “macro-ness” as a
continuum, and hence admitting that languages can be “more macro” or “less macro”, allow us to
be more comprehensive in these early stages.

4.3.2 Macroprogramming as a Paradigm. [Van Roy 2009] defines a programming paradigm as “an
approach to programming a computer[-based system] based on a mathematical theory or a coherent
set of principles” (bold is added). Van Roy classifies paradigms according to (i) whether or not they
can express observable nondeterminism and (ii) how strongly they support state (e.g., according
to whether it is named, deterministic, and concurrent). Also interesting is Van Roy’s view of
computer programming as a way to deal with complexity (e.g., number of interacting components)
and randomness (non-determinism) to make aggregates (unorganised complexity) and machines
(organised simplicity) into systems (organised complexity). Macroprogramming effectively deals
with aggregates, turning them into programmable systems.

We argue the principles outlined in this section form sufficient ground for macroprogramming
to be considered a paradigm, and hence aggregate multiple approaches under its umbrella. It is
a paradigm in a way similar to declarative programming [Lloyd 1994], which is “concerned with
writing downwhat should be computed and much less with how it should be computed” [Finkelstein
et al. 2003]. Then, paradigms like functional and logic programming are considered as more specific
forms of declarative programming. As shown in Section 5, also concrete macroprogramming
languages can adopt a specific paradigm (e.g., functional, logic, or object-oriented).

The notion itself of a paradigm has sometimes been criticised in teaching programming [Krish-
namurthi and Fisler 2019] for its fuzziness and coarse grain, preferring epistemological devices
like notional machines [Fincher et al. 2020]. However, our stance is that the notion of a paradigm
may still be useful as a lens or perspective for observing, comparing, and relating several concrete
programming approaches, and as a core notion around which researchers on disparate topics can
self-identify and connect through shared terms and ideas.

3Informally, indirection refers to the ability to reference some object through another object.
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Macroprogramming
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Fig. 2. A taxonomy of macroprogramming.

4.4 Taxonomy
We propose to classify and analyse macroprogramming approaches according to the following
elements, succinctly represented in Figure 2.

1) Target domain. It refers to the application domain explicitly addressed by amacroprogramming
approach. This is relevant since domain-specific abstractions and assumptions are typically
leveraged to properly deal with the abstraction gap induced by declarativity. Label “General”
is used to indicate that an approach addresses distributed systems in general, whereas “Other”
means that the approach addresses a specific domain different from the others.

2) Approach. We propose to classify macroprogramming languages according to the main
approach they follow.
– Control-oriented. Emphasis is on specifying control flow and instructions for the system.
– Data-oriented. Emphasis is on specification of data and data flow.
– Space-time-oriented. Emphasis is on specification of spatial, geometric, or topological aspects
and their evolution over time.

– Ensemble-oriented. Emphasis is on specification of organisational structures as well as tasks
and interaction between groups of components.

– Ad-hoc. The approach is peculiar and cannot be easily related with the previous ones.
3) Characteristics.
3a) Paradigm. The paradigm upon which macroprogramming abstractions are supported (the

main one in case of multi-paradigm languages).
3b) Macroprogramming design. Elements characterising a particular macroprogramming language.

– Micro-level: the individual components and aspects that collectively make up the system.
– Macro-level: the system as a whole and its macroscopic aspects.
– Macro-to-micro: the approach followed by macro-programs to affect micro-level behaviour.
We distinguish four main modalities based on the discussion in Section 4.1: (i) context,
where global state, inputs, or node parameters are set; (ii) interaction, where a process
is used to orchestrate micro-level entities; (iii) compilation, where the macroprogram is
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translated into the micro-programs; (iv) execution, where the macro-program is executed
by the micro-level entities according to some (ad-hoc) execution model. .

– Macro-goals: the objectives that macro-programs are meant to reach (typically, abstraction,
flexibility, and optimisability—as a result of declarativity).

– Macro-abstractions: the abstractions provided by a macroprogramming approach that are
instrumental for achieving or capturing macroscopic aspects or goals of the system.

– Micro-level dependency: the extent to which the macroprogramming language depends on
micro-level components or aspects. We consider three levels: (i) Dependent (if micro-level
elements are always visible), (ii) Independent (if micro-level elements are abstracted away),
or (iii) Scalable (if micro-level elements can be abstracted away as well as accessed, in case).

Elements of this taxonomy integrate and are partially inspired by some perspectives of previous
work covered in Section 7.
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Table 2. Summary of the surveyed macroprogramming approaches. The first column tells whether the approach is explicitly advertised as macroprogramming.

Name/Ref. Domain Approach Paradigm Micro-level Macro-level Macro-to-
micro Macro-abstractions Micro-

dependency

•
Market-Based Macroprogram-
ming [Mainland et al.
2004]

WSANs ad-hoc specification nodes WSN context virtual markets; good price independent

• BNM [Mamei 2011] General ad-hoc specification nodes network execution Bayesian network tasks dependent
Graph-centric programming,
Giraph++ [Tian et al. 2013] Other ad-hoc imperative nodes graph execution subgraph dependent

NetKAT [Anderson et al.
2014]; SNAP [Arashloo et al.
2016]

Other ad-hoc imperative switches network compilation network state; network slices dependent

WOSP [Varughese et al. 2020] Robotics ad-hoc specification robots swarm execution common behaviour dependent

PIECES [Liu et al. 2003] Other control-
oriented object-oriented (sensor)

nodes WSAN interaction global state; state pieces;
groups dependent

• Kairos [Gummadi et al. 2005] WSANs control-
oriented imperative nodes WSN compilation

centralised view; node
iterators; neighbourhoods;
remote data access

dependent

• PyoT [Azzara et al. 2014] IoT/CPS control-
oriented object-oriented resources IoT system interaction resource groups dependent

Buzz [Pinciroli and Beltrame
2016] Robotics control-

oriented imperative robots swarm execution swarm; neighbourhood;
virtual stigmergy dependent

Dolphin [Lima et al. 2018] Robotics control-
oriented imperative vehicles vehicle

network interaction vehicle sets; vehicle selection
expressions dependent

• makeSense mPL [Mottola et al.
2019] WSANs control-

oriented object-oriented nodes WSN compilation distributed actions (report,
tell, collective actions) dependent

Warble [Saputra et al. 2019] IoT/CPS control-
oriented object-oriented things IoT system interaction things selectors; bindings dependent

TinyDB [Madden et al. 2002] WSANs data-oriented specification nodes WSN compilation database independent
• ATaG [Bakshi et al. 2013] WSANs data-oriented specification nodes WSN compilation data flow graph independent

•
Semantic
Streams [Whitehouse et al.
2006]

WSANs data-oriented logic nodes WSN execution
event streams; semantic
services; inference units;
regions

independent

• Regiment [Newton et al. 2007] WSANs data-oriented functional nodes WSN compilation time-varying signals; regions scalable
• COSMOS [Awan et al. 2007] WSANs data-oriented specification nodes WSN compilation data flow graph independent

• Flask [Mainland et al. 2008] WSANs data-oriented functional nodes WSN execution nfold macroprogramming
combinator independent

• SOSNA [Karpinski and Cahill
2008] WSANs data-oriented functional nodes WSAN execution streams of spatial values scalable

• MacroLab [Hnat et al. 2008] IoT/CPS data-oriented imperative nodes CPS compilation macrovector; neighbourhoods scalable
• Nano-CF [Gupta et al. 2011] WSANs data-oriented specification nodes WSN execution services; jobs dependent

• Pico-MP [Dulay et al. 2018] WSANs data-oriented logic nodes WSAN compilation global formula on network
data dependent

• D’Artagnan [Mizzi et al. 2018];
Porthos [Mizzi et al. 2019] IoT/CPS data-oriented functional IoT devices IoT system compilation data streams independent

DDFlow [Noor et al. 2019] IoT/CPS data-oriented specification IoT devices IoT system execution data flow graph independent
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Table 2. Summary of the surveyed macroprogramming approaches. The first column tells whether the approach is explicitly advertised as macroprogramming.

Name/Ref. Domain Approach Paradigm Micro-level Macro-level Macro-to-
micro Macro-abstractions Micro-

dependency

MOISE [Hübner et al. 2007] General ensemble-
oriented specification agents multi-agent

system execution organisations; roles; groups;
missions dependent

Scopes [Jacobi et al. 2008] WSANs ensemble-
oriented specification nodes WSN execution scope (ensemble); scope

membership independent

• EcoCast [Tu et al. 2011] WSANs ensemble-
oriented object-oriented nodes WSN compilation group handles; group-wide

operations dependent

DEECo [Bures et al. 2013] General ensemble-
oriented specification components distributed

system execution ensemble dependent

SCEL [De Nicola et al. 2014];
AbC [Alrahman et al. 2015];
CARMA [Loreti and Hillston
2016]; AErlang [De Nicola
et al. 2018]

General ensemble-
oriented specification components self-* system execution ensembles; group-oriented

communication dependent

• Voltron [Mottola et al. 2014] Robotics ensemble-
oriented imperative drones swarm compilation teams; spatially situated tasks dependent

Comingle [Lam et al. 2015] General ensemble-
oriented logic app nodes distributed

system compilation collective information; system
state evolution dependent

TECOLA [Koutsoubelias and
Lalis 2016] Robotics ensemble-

oriented object-oriented robots robotic team execution team-level services; mission
groups; membership rules dependent

PaROS [Dedousis and
Kalogeraki 2018] Robotics ensemble-

oriented object-oriented robots swarm execution abstract swarms; path
planning; task partitioning dependent

Aggregate
Programming [Viroli et al.
2019]; Proto [Beal and
Bachrach 2006];
Protelis [Pianini et al. 2015];
ScaFi [Casadei et al. 2020b]

General ensemble-
oriented functional devices distributed

system execution
computational fields;
neighbourhoods;
macro-behaviour functions

scalable

SmartSociety [Scekic et al.
2020] General ensemble-

oriented object-oriented
human and
machine
peers

socio-
technical
system

interaction collectives; collective-based
tasks independent

Abstract Regions [Welsh and
Mainland 2004] WSANs space-time-

oriented imperative nodes WSN compilation regions; region-aware data
access independent

SpatialViews [Ni et al. 2005] General space-time-
oriented imperative devices MANET interaction spatial views (virtual

networks) dependent

• STOP [Wada et al. 2007];
Chronus [Wada et al. 2010] WSANs space-time-

oriented object-oriented nodes WSN interaction space-time slices independent

Meld [Ashley-Rollman et al.
2007] Robotics space-time-

oriented logic modular
robots

robot
ensemble compilation collective information;

collective deduction independent

• Sense2P [Choochaisri et al.
2012] WSANs space-time-

oriented logic nodes WSN execution logical rule independent

PLEIADES [Bouget et al. 2018] General space-time-
oriented functional nodes distributed

system execution shape templates dependent
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5 MACROPROGRAMMING APPROACHES
This section provides a survey of macroprogramming languages, which are analysed as per the
conceptual framework of Section 4. The contributions are classified and organised as per the
approach classes proposed in Section 4.4. A summary of the survey is provided in Table 2.

5.1 Control-oriented approaches
Control-oriented approaches emphasise an imperative macroprogramming style where control
flow is specified and/or explicitly controlled for the system and instructions are issued to query or
act on system components. This contrasts with data-driven approaches where control flow is a
consequence of relationships among data. With control orientation, implicit or explicit sequences,
conditionals, and loops may be used to describe what the macro-system or its components have to
perform.

Representative example: Kairos [Gummadi et al. 2005]. It is a procedural macroprogramming
language for WSNs that assumes loose synchrony and leverages eventual consistency to keep
low overhead. The approach is control-driven and node-dependent—i.e., nodes and node state are
explicitly manipulated at the programming level. In Kairos, the programmer writes a centralised
program expressing the global specification of a distributed computation, which is compiled to
a node-specific program. Kairos exposes three main abstractions: addressing of arbitrary nodes
(e.g., by names or iterators like node_list), inspection of one-hop neighbour nodes (e.g., via function
get_neighbors), and remote data access at nodes (e.g., with expressions variable@node). As an example,
consider a simple self-healing hop-gradient computation, i.e., an algorithm that makes each node in
the system yield the corresponding hop-by-hop distance towards a root node [Audrito et al. 2017].

1 node_list nodes = get_available_nodes ();
2 int dist;
3 for(node n = get_first(nodes); n!=NULL; n=get_next(nodes)){
4 // Initialisation
5 if(n==root){ dist = 0 } else { dist = INF };
6 // Event loop
7 for (;;){
8 sleep(sleep_interval);
9 node_list nbrs = get_neighbors(n);
10 for(node nbr = get_first(nbrs); nbr!=NULL; nbr=get_next(nbrs){
11 if(dist@nbr +1 < dist){ dist = dist@nbr +1; }
12 } } }

Concerning macro-to-micro mechanics and implementation, during the translation of the macro-
program into node-level programs, references to remote data are expanded into calls to the Kairos
runtime, a software component which is assumed to be available in every node of the system.
Specifically, the Kairos runtime deals with managed objects (objects owned by a node that are to
be made available to remote notes) and cached objects (local views of managed objects owned by
remote nodes), through asynchronous hop-by-hop communication—contrast this with synchronous
data access calls in Kairos programs. Issues at the middleware level include supporting end-to-end
reliable routing and management of dynamic topologies.

5.2 Data-oriented and database abstraction approaches
Data-oriented approaches define the macro-level behaviour of a system in terms of goals and
activities of data gathering and processing. Sometimes, this is taken to the extreme, considering
the system as a kind of distributed database keeping spatiotemporal or aggregated data.
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Representative example #1: TinyDB [Madden et al. 2002]. TinyDB is a query processing system
that considers a WSAN as a database. TinyDB supports an SQL-like language for expressing queries
and actuations. A query looks like the following:

1 SELECT nodeId , temperature WHERE temperature > k FROM sensors
2 SAMPLE PERIOD 5 minutes

Therefore, the approach is fully declarative and the system must find itself a strategy to map
the global goal to local behaviour of the sensor nodes. We remark that the behaviour of the
individual nodes is driven partly by the query-like macroprogram and partly by a basic “execution
protocol” (providing a structure for the emergence of global behaviour) which is the same for all
the nodes. Nodes work in epochs, corresponding to sampling periods, in a synchronised fashion.
They sleep for most of the time; they wake up to sample sensors, gather neighbour data, process
data, and send results to their parent node. This execution protocol is very similar to those used by
other macroprogramming approaches, such as aggregate computing [Viroli et al. 2019] which is a
paradigm for self-organising systems of agents.

Representative example #2: Semantic Streams [Whitehouse et al. 2006]. Semantic Streams is a
logic-based, declarative language for expressing semantic queries over WSN data. It builds on two
main abstractions: event streams and inference units (processes on event streams). For instance, the
following program

1 stream (Y), isa (Y, histogram), % histogram events
2 property (Y , X, stream), % a histogram event has a stream X
3 property (Y , time , property), % and a time property
4 stream (X), isa(X, objectDetected), % stream X consists of object detection events
5 property (X, [[0,0,0],[50,50,0]], region). % ... within a given region

can be used to query for and plot objectDetected events in a given area across time. The macro-
programming system implementation is based on service composition and embedding. The query
planner builds a task graph to be deployed to individual nodes, which will dynamically instantiate
services, resolve conflicts between tasks and resources, and execute the queries.

5.3 Space-time oriented approaches
Space-time-oriented macroprogramming approaches are those that leverage spatial and temporal
abstractions to organise the behaviour of a system. These approaches work by defining ways to
connect devices (or their data, activities, and interactions) to space-time locations or regions.

Reference example #1: SpatialViews [Ni et al. 2005]. This approach works by abstracting a MANET
into spatial views (i.e., collections of virtual nodes) of a configurable space-time granularity, that
can be iterated on to visit nodes and request services. In detail, the model is as follows. A physical
network consists of physical nodes. A physical node has a spatio-temporal location and a set of
provided services. A virtual node is the digital twin of a physical node: its programming abstraction.
A spatial view defines a virtual network over the physical network which is discovered and
instantiated when iterated. Operationally, the system works by migratory execution of the program
during iteration. The SpatialViews language is implemented as an extension to Java.

1 // Spatial views are collections of virtual nodes
2 spatialview sv1 = Camera @ BuildingC.Floor3;
3 spatialview sv2 = TemperatureSensor @ CampusB % 50; // 50 meters space granularity
4
5 // Discover virtual nodes in a spatial view
6 visiteach x : sv1 every 5 forever { x.getPicture ().upload (); }
7
8 // Take average of temperatures
9 sumreduction float s = 0;
10 sumreduction int n = 0;
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11 visiteach y : sv2 { s += y.read(); n++; }
12 float avg = s/n;

Space-time granularities are used to distinguish virtual nodes, which are visited once per iter-
ation; instead, the underlying physical nodes might be visited more than once (e.g., because of
mobility or after a quantum of time granularity). We remark that this work did not use any
“macroprogramming”-like term to label SpatialViews, though clearly embracing the paradigm.

Reference example #2: SpaceTime Oriented Programming (STOP) [Wada et al. 2007], a.k.a.
Chronus [Wada et al. 2010]. This WSN macroprogramming system exposes a spacetime abstraction
to support collection and processing of past or future data in arbitrary spatio-temporal resolu-
tions. Architecturally, it consists of a network of battery-powered sensors (where data is gathered)
and base stations (where data is processed) linked to a gateway connected to the STOP server,
which holds network data in the so-called spatiotemporal database. Operationally, the system is
implemented through mobile agents carrying data to the STOP server, which in turn updates the
database: event agents detect events and replicate themselves to move hop-by-hop towards a base
station, where they finally push data; by contrast, query agents move across a spatial region in
order to pull relevant data. The STOP/Chronus language is an object-oriented, Ruby DSL enabling
on-command and on-demand (event-driven) data collection and processing. An example, selected
and adapted from [Wada et al. 2007], is the following.

1 sp = Spacetime.new(Polygon.new(points), RelativePeriod.new(NOW , Hr -1))
2 spaces = sp.get_spaces_every(Min 5, Sec 10, 80)
3 values = spaces.collect { |space|
4 space.get_data('f-spectrum ', MAX , Min 2){
5 |event_type , value , space , time |
6 # ...
7 } }

This program queries data in space-time “slices” that abstract the data generation activity of the
underlying collection of sensor nodes. Indeed, it focusses on a macroscopic perspective.

5.4 Collective adaptive systems and ensemble-based approaches
Macroprogramming is also popular in the field of multi-agent (MAS) [Wooldridge 2009] and
collective adaptive systems (CAS) [Ferscha 2015] engineering. CASs approaches are quite related
to spatiotemporal approaches since CASs are often situated and space represents a foundational
structure for coordination. In these approaches, it is common to consider large, dynamic groups
of devices as first-class abstractions, which are commonly referred to as ensembles, collectives, or
aggregates. The general idea is to support interaction between (sub-)groups of devices by abstracting
certain details away (e.g., membership, connections, concurrency, failure). With respect to the
network abstraction and other macroprogramming approaches, the works focus more on addressing
the specification of dynamic ensembles, do not take an explicit, spatial space or are not limited to
data gathering and processing.

Reference example on CAS programming: Aggregate programming [Viroli et al. 2019]. Aggregate
programming is a macroprogramming paradigm, founded on field calculi [Viroli et al. 2019], for
programming CASs. It builds on the computational field abstraction, a conceptually distributed data
structure that maps any device of a system to a value, over time. Then, macroscopic behaviour can
be expressed in terms of a single program which manipulates fields through constructs for state
management, neighbourhood-based interaction, and domain partitioning (i.e., the ability to run a
computation on a subset of the system nodes). Aggregate programming is supported by languages
such as the Scala-internal DSL ScaFi [Casadei et al. 2020b] and the standalone DSL Protelis [Pianini
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et al. 2015]. For instance, the problem of counting, in any device, the number of neighbour devices
experiencing a high temperature can be expressed in ScaFi as follows:

1 foldhood (0)(_+_)(if(nbr(sense("temperature"))) 1 else 0)

where foldhood(init)(acc)(f) folds over the neighbourhood of each device by aggregating the
neighbours’ evaluation of f through accumulation function acc, starting with init. The interesting
aspect about aggregate programming is that it is possible to capture collective behaviour into
reusable functions (from which libraries of domain-specific features can be defined) and compose
functions “from fields to fields” to define increasingly complex behaviour. For instance, the following
channel functionality reuses functions provided by the ScaFi library to build a minimum-width
path field from a source to a destination device, which is – crucially – able to self-adapt to input
changes (i.e., different source or destination) and topology changes (e.g., as devices move or leave
the system).

1 // source: input Boolean field (true only in the source device)
2 // target: input Boolean field (true only in the target device)
3 // width: input floating -point field for enlarging the channel
4 def channel(source: Boolean , target: Boolean , width: Double): Boolean = {
5 distanceTo(source)+distanceTo(target) <= distanceBetween(source ,target)+width
6 } // output: true if the device belongs to the channel , false otherwise

Notice how this program abstracts from the individual devices at the micro-level: such a channel

function denotes a macro-level structure that is sustained by repeated computation and interaction
from the underlying network of devices. In virtue of this flexibility, aggregate programming can
be deemed a scalable macroprogramming approach as it retains the ability to address individual
devices but provides tools for raising the abstraction level.

Reference example for ensemble-based programming: PaROS (PROgramming Swarm) [Dedousis and
Kalogeraki 2018]. PaROS is a framework for programming swarms of robots. It proposes an abstract
swarm abstraction, implemented through a Java API, to promote swarm orchestration and spatial
organisation. The API consists of functions for: path planning, declaration of points of interest or
spatial areas to be inspected, enumeration of the robots in the swarm, task partitioning, setting
handlers for detection events or robot failure. A program in PaROS looks like the following.

1 // Build a swarm from a set of drones
2 Swarm swarm = new Swarm(setOfDrones);
3 // Create flight plans by splitting an area and assigning sub -areas
4 swarm.areaDeclaration(targetArea);
5 // Define a collective task
6 swarm.setTask(Task.COVERAGE);
7 // Adds a handler for event detection
8 swarm.eventHandler ((drone) -> { System.out.print("Event detected by " + drone); });
9 // Starts the mission: will run pathPlanning () and droneManipulation ()
10 swarm.startMission ();
11 // While the mission is running ...
12 while(swarm.isMissionRunning ()){
13 for(Drone drone : swarm.getListOfDrones ()){
14 if(drone.isTaskComplete ()){
15 doSomethingWith(drone.getCameraImage(camera));
16 } } }

Many details regarding the coordination of the swarm are abstracted away. Therefore, PaROS
promotes a multi-paradigm approach comprising elements from imperative, declarative, and event-
driven programming.

5.5 Ad-hoc approaches
Ad-hoc approaches are those that make very peculiar assumptions on the programming model or
on the underlying system.
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For instance, in Market-Based Macroprogramming (MBM) [Mainland et al. 2004], a sensor
network is programmed as a virtual market. The nodes of the network follow a fixed behaviour
protocol where they “sell” actions to get a profit. They choose actions according to a local utility
function that expresses a trade-off between the profit and the cost of performing the action.
Another example is Wave-Oriented Swarm Programming (WOSP) [Varughese et al. 2020], an

approach for swarm-level programming that requires minimalistic communication, inspired by two
biological mechanisms: (i) scroll waves in slime mould and (ii) periodic light emission in fireflies.
Each robot of the swarm follows a protocol where it is initially inactive, listening for incoming
pings; upon reception of a ping, it runs a “relay code block” and goes into an active state where
it emits a ping; after the emission of a ping, it goes in the refractory state, where it does nothing,
being insensible to pings, and finally turns back to the inactive state after a refractory period.
Other examples are given by languages for Software-Defined Networking (SDN), like

NetKAT [Anderson et al. 2014], SNAP (Stateful Network Abstractions for Packet process-
ing) [Arashloo et al. 2016]. These consider the network as “one big switch” [Kang et al. 2013]
with state. The NetKAT language is based on KAT (Kleene Algebra with Tests) plus constructs
for networking. Conceptually, a macro-program in these languages is a function of a packet and
network state (represented through global variables) that produces a set of packets and a new
network state as output. In practice, a program consists of the classical imperative constructs
(assignment, conditionals, loops) which are however interpreted in the SDN domain. The compiler
translates the macro-program into micro-programs for the network devices dealing with traffic
routing and placement of state variables.

6 ANALYSIS AND OUTLOOK
In this section, we analyse some data from the survey (Section 6.1), the surveyed approaches by a
technical point of view (Section 6.2), and then review significant opportunities (Section 6.3) and
challenges (Section 6.4) related to macroprogramming.

6.1 Data and Trends
In this survey, we have considered a total of 66 works, and have included (i.e., considered as a
macroprogramming approach, after manual analysis) 49 works, of which 39 core works have been
identified (i.e., some approaches have been implemented through multiple published languages or
DSLs) corresponding to the number of rows of Table 2.

The distribution of the included works by (publication) year is reported in Figure 3a. From this
histogram, we observe the rise of macroprogramming from WSN research in early 2000s, a loss of
hype in early 2010s, and a new wave from 2014 as a result of recent trends and developments in
fields like the IoT, CPSs, and CASs (cf. Section 3). The distribution of works across domains is shown
in Figure 3b, where we observe a predominance of the WSN domain; the domain fragmentation
seems to be a characteristic of the second wave of macroprogramming. Another interesting datum is
how many of the surveyed works explicitly advertise themselves as macroprogramming: according
to Figure 3c, this is only the case for 18 out of 39 core works.

Another significant aspect concerns the availability of accessible software for a macroprogram-
ming language. According to Figure 3d, the number of works for which a repository or website
exists that provides access to software is 18 out of 49 works. Arguably, this low score is partially
due to the limited practice of providing artifacts in early 2000s, as well as to the obsolescence of
some of the proposed languages from those years.
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Fig. 3. Collected data about non-technical aspects, from the survey.

6.2 Analysis of Macroprogramming Approaches
6.2.1 Paradigms. The distribution of macroprogramming languages across the approach clusters
and the basic paradigms (cf. Section 4.4) is shown in Figure 4a and Figure 4b, respectively. Apparently,
the majority of works follow a data-oriented approach; arguably, this reflects the fact that most
of the works target the WSN domain, where the main goal is to extract data from the sensor
network. This is also coherent with the fact that most of the macroprogramming languages take a
declarative, specification stance. Beside that, all the main paradigms (logic, functional, imperative,
object-oriented) have a discrete number of representatives—showing the orthogonality of the macro
viewpoint to programming, as well as the consequence of embedding . On the other hand, only
a handful of works take an ad-hoc approach that could not be framed as either control-, data-,
space-time-, or ensemble-oriented.

6.2.2 Underlying platforms and languages. In Figure 4c, there is a hint about the underlying plat-
forms or languages in which a given macroprogramming is supported or implemented. We denote
with “*” that an approach supports multiple target platforms; with “None” that no implementation
is provided or described; and we use a label “Other” to collect platforms for which only a single
occurrence exists (this is the case, e.g., of embedded platforms, simulators, or individual languages
such as Embedded Matlab, PeerSim, or Groovy, respectively). Several approaches found on the Java
language and platform; various approaches target TinyOS, an operating system for WSN motes;
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however, it is most frequent to address specific platforms (as a reflection of a rather wide coverage
of target domains and paradigms).

6.2.3 Micro-level dependency. In Figure 4d, we observe that the majority of works do depend on
micro-level entities (e.g., because they need to be addressed individually); however, there are also
many works that abstract completely from the underlying set of components. Not surprisingly, only
a few approaches are “scalable”, allowing both to address individual nodes as well as to abstract from
them entirely: these include Regiment [Newton et al. 2007] and aggregate programming [Viroli et al.
2019]. Indeed, the main goal of the surveyed macroprogramming approaches is to provide zero-cost
abstractions to simplify the programming activity without renouncing to performance. Moreover,
in several cases, the programming models aim to provide specific benefits: communication or
execution efficiency (cf. WSN programming models), dynamic binding and architectures (cf. Scopes,
DEECo, Warble, TECOLA), and self-organisation (cf. aggregate programming, Pleiades).

6.2.4 Macro-to-micro mapping. As it can be observed from Figure 4e, The implementation of
macro-to-micro mapping is generally based on either compilation of the macro-program into the
programs for the individual nodes (also known as deglobalisation or global-to-local compilation) or
interpretation of the macroprogram according to some execution protocol (e.g., involving migratory
execution of agents or orchestration of individuals). Quite frequent is also the approach based
on orchestration, such as in Dolphin [Lima et al. 2018] or SmartSociety [Scekic et al. 2020], or
the definition of additional entities like mobile agents which interact with micro-level entities to
promote desired emergents, as in PIECES [Liu et al. 2003] or STOP/Chronus [Wada et al. 2010]. The
less frequent mechanism is “context change”, e.g., parameter setting as found in WOSP [Varughese
et al. 2020] or market-based macroprogramming [Mainland et al. 2004], though these may not even
be considered a “programming approach”, strictly speaking.

Unfortunately, the macro-to-micro mapping is often not described formally (or even explicitly),
which exceptions like SCEL [De Nicola et al. 2014], and aggregate programming [Beal et al. 2015].
For instance, in the latter approach, the core language – namely the field calculus – has a macro-
level denotational semantics linked to the local operational semantics [Viroli et al. 2019], using
computational fields (global data structures) as bridging abstraction.

6.2.5 Macroprogramming abstractions. Finally, we can observe that a number of abstractions or
features recur in macroprogramming approaches. These include:

• first-class groups—the ability to directly express and manipulate groups of individuals (cf.
group handles in EcoCast, swarms in Buzz or PaROS);

• group lifecycle management—the ability to evolve groups dynamically (cf. dynamic binding
in Warble);

• group addressing—the ability to address a group, e.g., in terms of the individuals found
in a certain spatial region or that share certain capabilities (cf. Regiment, SpatialViews,
STOP/Chronus);

• distributed state—the ability to address the state of a group of stateful entities (cf. fields in
aggregate programming, state rewriting in Comingle);

• group inspection—the ability to inspect or iterate over the individuals of a group (cf. node
iteration in Kairos, resources in PyoT);

• group goal decomposition—the ability to consider a global goal and ways to split it across
multiple individuals (cf. task partitioning in PaROS, spatial decomposition in Karma);

• group communication—the ability to get data from or push data to a group (cf. report/tell/-
collective actions in makeSense, or neighbourhood-based communication in COSMOS, and
aggregate programming);
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• information flow patterns—the ability to specify how information should flow independently
of structure or concrete communication mechanisms (cf. ATaG);

• group-level actions—the ability to express what a group should do (cf. functions in aggregate
programming, activity nodes in DDFlow).

Sometimes, some of these aspects are abstracted away and implemented at the middleware layer:
for instance, approaches that consider a WSN “like a database” let the programmer express a query
(global goal) and then handle its partitioning into micro-actions through underlying mechanisms
and execution protocols.

6.2.6 On implementation and abstracted concerns. A major goal of macroprogramming is abstract-
ing from a series of low-level concerns. This is also strikingly evident from the quotes reported
in Table 1, which suggest that the programmer can be relieved from “explicitly managing control,
coordination, and state maintenance at the individual node level” [Bakshi and Prasanna 2005] in
order to retrieve “simplicity and productivity” [Wada et al. 2008] through “focus on application
specification rather than low-level details or inter-node messaging” [Awan et al. 2007]. Besides pro-
ductivity, there is also the idea that low-level details can be addressed efficiently or opportunistically
at the middleware level—see Section 6.3.2 for further considerations on this point.

The concerns that are abstracted may be classified according to the fundamental dimensions of
structure, behaviour, and interaction. Structural concerns include connections between components
and membership relationships. As these elements tend to change dynamically, expressing them in a
declarative fashion enables the underlying platform to adopt flexible strategies for their reification.
For instance, in Buzz [Pinciroli and Beltrame 2016], each robot follows a protocol to keep track
of its membership in swarms, which further affects the set of its neighbours. In ScaFi [Casadei
et al. 2021], groups self-organise by playing the logic expressed by the macroprogram in repeated
sense-compute-interact rounds to continuously evaluate the “spatiotemporal boundary” of the
process/ensemble. Therefore, we may conclude that often the macro-program is a piece of behaviour
that is used to parametrise a larger behaviour, supported by a proper runtime system or middleware,
which provides the “basic principle” for the collection of micro-level entities to act as a system.

Behavioural concerns that can be abstracted include specific decisions (e.g., what data must be
stored or propagated), processing operations, and time aspects (e.g., when a certain behaviour
is to be executed). For instance, in SNAP [Arashloo et al. 2016], the individual switches must
determine how to route traffic and where the place state variables. As another example, macro-
programs in aggregate computing [Beal et al. 2015], abstract from scheduling aspects, which enables
dynamic tuning of the frequency at which devices operate, making time a “fluid” notion in such
systems [Pianini et al. 2021b].

Interactional concerns are also often abstracted. In many cases, indeed, the details of communica-
tion, such as the specific format of the messages, the specific set of recipients, can be determined at
runtime. Macroprogramming approaches for WSN, for instance, generally provide abstractions
over routing and hop-by-hop information flows.
Among implementation strategies, a number of patterns recur The macroprogram can, as in

PIECES [Liu et al. 2003] or STOP/Chronus [Wada et al. 2010], instruct mobile agents to move across
the nodes of the network to access and process local state to infer global information. Orchestration
– cf. Dolphin [Lima et al. 2018] and SmartSociety [Scekic et al. 2020] – is similar but does not
involve moving agents. Related is also the approach, used for instance in Pyot [Azzara et al. 2014],
based on inferring tasks from the macroprogram and distributing them over the set of micro-level
entities. Round-based execution of macro-programs or projected micro-programs is also frequent
and can be found both in asynchronous variants, as in aggregate computing [Beal et al. 2015], and
in synchronous variants as in Giraph++ [Tian et al. 2013], SOSNA [Karpinski and Cahill 2008], and
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Fig. 4. Collected data about technical aspects of the surveyed macroprogramming approaches.

WOSP [Varughese et al. 2020]. Such implementation strategies, beside “filling the abstraction gap”,
are also aimed at optimising application-specific concerns, which may include saving resources
(e.g., energy or bandwidth) or promoting Quality of Service metrics like latency or reliability.
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6.3 Opportunities
Research on macroprogramming provides opportunities (with corresponding challenges, covered
in Section 6.4) in terms of synergies with related research fields and application domains.

6.3.1 Model- and Language-based Software Engineering. Models, as abstract representations of
some aspect of a real or imagined object, play a key role in software engineering [Ludewig 2004].
Systems are generally described through multiple models covering different perspectives or view-
points [Finkelstein et al. 1992]. As covered in Sections 3 to 5, macroscopic perspectives can be
instrumental for directly addressing global properties, collective tasks, or system-level aspects. In-
deed, we can observe that prominent perspectives in software modelling (e.g., structure, behaviour,
and interaction) can be considered at a microscopic or a macroscopic level. For the latter:

• The macro-structural view considers the structural arrangement of multiple components of
a system. The creation of macro-structures is sometimes a goal of macroprogramming (cf.
topology programming in Pleiades [Bouget et al. 2018]).

• The macro-behavioural view considers behaviours emerging from multiple components of
a system. This is generally the goal of macroprogramming: expressing the behaviour of a
system as a whole (cf. swarm macroprogramming in Buzz [Pinciroli and Beltrame 2016]).

• The macro-interactional view considers interaction and communication at increasingly non-
local levels. This is often instrumental to drive macro-behaviour by expressing how informa-
tion flows among several components or across large structures (cf. collective communication
interfaces in Abstract Regions [Welsh and Mainland 2004]).

Models have to be expressed in some language (also called a meta-model). Languages exist for
specification, design, implementation, and verification of software, and contribute to a vision of
language-based software engineering [Gupta 2015], which promotes the use of high-level DSLs
for building software. Related notions such as goal-oriented [van Renesse 1998] or declarative
programming [Baldoni et al. 2010; Lloyd 1994] are used to denote a similar idea: the use of languages
to express an abstract model of a system emphasising what has to be achieved rather than how. The
benefit is that the complexity for efficiently mapping the what to the how can be encapsulated in a
middleware layer, while application developers can focus on domain abstractions and the business
logic. In this sense, macroprogramming can be considered as a particular domain of declarative
programming; however, we think that research in this field can potentially provide insights on the
general principles and foundations of declarative programming.

6.3.2 Intelligent middlewares. Beside expressiveness, the abstraction provided by macroprogram-
ming can foster the implementation of smart solutions at the middleware level. In early macro-
programming approaches on WSNs, the goal was often simplifying the programming activity (i.e.,
productivity) while keeping performance overhead at acceptable levels. In time, the idea of actually
improving performance started to be considered as a research goal. Indeed, overfitting solutions
may not be able to adequately generalise their performance to the various situations a system
may experience in practice. On the other hand, more abstract architectures could adapt to diverse
situations and do that opportunistically—by proactively looking for opportunities of optimisation.
Of course, there is a trade-off between overfitting and underfitting models, and this revolves around
a careful design of macroprogramming solutions in terms of (domain-specific) assumptions.
The middleware could be the part of the software system that implements the global-to-local

mapping logic, possibly in a smart way. Such a smartness could serve to avoid unnecessary computa-
tions or communications, change structure to promote functionality, or re-configure the application
to improve performance or resiliency. For instance, in aggregate computing [Casadei et al. 2020a]
and MacroLab [Hnat et al. 2008], the logical macro-programmed system can be deployed variously
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on available infrastructure, where different deployments may result in different non-functional
trade-offs; moreover, their middleware can in principle adapt the deployment opportunistically as
infrastructure, user preferences, or environmental conditions change. Indeed, a key opportunity
would be to leverage recent advances in self-adaptive software and autonomic computing as well
as artificial intelligence and machine learning.

6.3.3 Collective Intelligence, Soft Computing, Social Computing. There are several systems that
are amenable to be studied and engineered by a collective perspective, as well as several research
fields that address aspects of such collective systems [Tumer and Wolpert 2004]. Works on macro-
programming are often found in such research areas (see Section 3 and Section 5.4), and might
contribute (from its construction-oriented perspective) to the overall research endeavour about
collective systems.

Computational collective intelligence (CCI) is a sub-field of AI that focusses on “the form of intelli-
gence that emerges from the collaboration and competition of many individuals (artificial and/or
natural)” [Szuba 2001]. The affinity with macroprogramming is evident, as the latter generally
provides a means for expressing what collective intelligent behaviour should be like or work at,
encapsulating the logic for building it in terms of rules of individual behaviour and interaction.
However, the abstraction provided by strong macroprogramming languages tends to favour im-
plementations achieving approximated solutions in complex situations. This is especially evident
in macroprogramming languages for collective adaptive systems (Section 5.4), such as aggregate
computing [Viroli et al. 2019], where macro-programs express global outcomes that are to be sought
progressively in a self-organising fashion. In this sense, macroprogramming promotes a language-
based approach to soft computing [Liang and He 2020], i.e. the use of computing to approximately
solve very complex problems despite uncertainty, perturbations, and partial knowledge.
A recent systematic literature review on “collective intelligence” [Suran et al. 2020], covers

conceptual frameworks and models for “collaborative problem solving and decision making”, in
the broad sense of social computing [Wang et al. 2007]—namely the paradigm where humans,
society, and computing technology integrate to promote information representation, processing,
communication, and use. The survey focusses on a high-level view and purposefully abstracts
from specific domains—not even mentioned, the programming viewpoint is completely neglected.
However, macroprogramming DSLs could work as inter-disciplinary artifacts capturing relationship
and behaviour of groups and ecosystems. Benefits could be obtained by addressing issues at the
right perspective.

6.4 Challenges
There are a number of challenges related to the engineering of macroprogramming systems. These
include, e.g., designing macro-level abstractions, bridging macro-level abstractions with micro-level
activity, formalising the macro-to-micro mapping, giving formal guarantees about the correctness
of such a mapping, and integrating macroprogramming with more traditional approaches.

6.4.1 Abstraction and global-to-local mapping. A key challenge in macroprogramming is defining
a good, coherent set of macro-level abstractions and identifying a proper way to map those to
micro-level activity while promoting both functional and non-functional requirements. This also
includes finding a balance between over-fitting and under-fitting solutions: the former may hinder
reusability and extensibility, while the latter, as an attempt to achieve a one-size-fits-all support, may
complicate implementations. As discussed previously, effective, highly-productive programming
and smartness in implementations is where the most opportunities arise and arguably the major
concerns for any macroprogramming language. The challenge revolves around ensuring that
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global-to-locally mapped behaviour results, when actually carried out, in local-to-global effects in
a consistent (and possibly efficient) way.

Moreover, somemacroprogramming approaches such as, e.g., DEECo [Bures et al. 2013], SCEL [De
Nicola et al. 2014], and aggregate programming [Beal et al. 2015], target complex/collective adaptive
systems [Ferscha 2015]—see Section 5.4. Such systems feature complex networks of interactions
that typically result in emergent properties (emergents) [Wolf and Holvoet 2004], namely macro-
level properties that cannot be easily traced back to micro-level activity, because they are not –
by definition – the result of mere summation of individual contributions (i.e., they are based on
non-linear dynamics) [Holland 1998]. Due to its very nature, promoting desired emergents is a
challenge. However, in some cases, emergence can be “steered”. Existing research [Casadei et al.
2021] seems to suggest that macroprogramming may provide a privileged perspective and approach
for steering emergent behaviour towards the desired emergents. In a sense, the development
of a macroprogramming system might force its designers to approach the problem by a mixed
top-down/bottom-up strategy.

6.4.2 Formal approaches to macroprogramming. In software engineering, the use of formal meth-
ods enables specification of non-ambiguous models of systems and promote their analysis and
verification, possibly automated. In macroprogramming, languages backed by formal theories and
calculi may be analysed to verify qualitative or quantitative properties. For instance, in aggregate
programming it has been possible, by considering its core language (the field calculus), to prove
Turing-like universality for space-time computations, identify language fragments supporting
self-stabilising and density-independent computations, prove optimality theorems for specific
algorithms or encodings, and promote deployment-independence at the middleware level [Viroli
et al. 2019]. In SCEL [De Nicola et al. 2014], statistical model checking tools can be used to ver-
ify reachability properties, i.e., to compute the probability that a certain system configuration
(e.g., expressed as a predicate on collected information) is reached within a certain deadline. Vice
versa, several other macroprogramming languages focus mainly on providing a high-level API,
simplifying the programming activity but providing little support for analysis and verification. In
some cases, the semantics of the DSL is not even specified formally. Other approaches, such as
WOSP [Varughese et al. 2020], provide certain properties (e.g., low communication overhead) by
construction and use empirical methods (e.g., simulation) for verification. Therefore, a challenge
related to the identification of good abstractions and global-to-local mapping strategies is the
definition of formal frameworks supporting both correct and efficient implementations as well as
discovery of properties and results (both at the application and middleware level). We note that this
challenge (and opportunity) is also recognised by other fields of research including self-adaptive
software and robotics threads [Farrell et al. 2018; Weyns et al. 2012].

Besides applying formal methods for verification and analysis within specific macroprogramming
systems, another challenge lies in devising a general, formal theory of macroprogramming that
abstracts from specific languages and possibly even from concrete paradigms. One possibility
would be to rigorously identify a minimal but complete set of concepts or predicates applicable
to programming systems to classify them as (a form of) macroprogramming. The basic principles
provided in Section 4.2 could make for a starting point in this research. The use of such a formal
framework could then be used to provide alternative, possibly more precise, classifications of
macroprogramming approaches with respect to the one provided in Section 4.4.

6.4.3 Heterogeneity. A system is heterogeneous if it comprises different kinds of components.
Macroprogramming a system of multiple heterogeneous components or individuals is challenging
because making use of the different capabilities of these requires an individual-level viewpoint. Vice
versa, macroprogramming homogeneous collectives (such as swarms of homogeneous robots) tends
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to be simpler as any robot is assimilable to another. In principle, heterogeneity may be abstracted
at the programming level and encapsulated at the middleware level, or code may be organised such
that specific behaviour is modularised.
Moreover, heterogeneity is not only in shape or capabilities but also in aspects like autonomy

and programmability. For instance, consider a heterogeneous cyber-physical collective made of
smart city components (e.g., smart traffic lights, cloudlets, autonomous vehicles) and augmented
human operators (e.g., through smartphones, smart watches or glasses), which may be programmed
to support decentralised crowdsensing applications; the digital devices worn by those humans
will move according to those humans’ deliberation, and hence their mobility could not be pro-
grammed (but only “requested”, at best). Among the surveyed approaches, only the SmartSociety
platform [Scekic et al. 2020] provides some support for human orchestration, where humans and
machines are considered peers.

While collectives tend to be homogeneous, heterogeneity is typically more present in composites,
namely collections of entities related by a notion of componenthood [Masolo et al. 2020]. An example
is a car, which builds on components such as engine, wheels, etc. However, it would be very hard
to imagine the possibility of programming a car as a whole.
To conclude this reflection, macroprogramming does not need to assume homogeneity, but it

does need to take heterogeneity into account at some level of its engineering stack (middleware,
application, model). Moreover, we also observe that macroprogramming is not to be thought as a
comprehensive approach meant to define all aspects of a system behaviour, which also leads to the
following challenge.

6.4.4 Integration with other programming paradigms and toolchains. As discussed in previous
sections, macroprogramming embodies a particular viewpoint of system development, which may
not capture all the relevant functional and non-functional requirements. Indeed, a complex system
may involve the solution of multiple different problems, each one best addressed by a specific
paradigm. This is the idea of multi-paradigm programming [Albert et al. 2005; Spinellis et al. 1994].
On a more pragmatic side, supporting macroprogramming on top of existing development platforms
(such as the JVM or .NET) may enable quick prototyping as well as reuse of features and tools
from the host platform. This has fostered the emergence of internal DSLs [Voelter et al. 2013] for
macroprogramming, which are embedded as expressive APIs on top of existing general-purpose
languages: this is the case of PyoT (Python) [Azzara et al. 2014], Chronus (Ruby) [Wada et al.
2010], jDEECo (Java) [Bures et al. 2013], ScaFi for aggregate programming (Scala) [Casadei et al.
2020b], Dolphin (Groovy) [Lima et al. 2018], D’Artagnan (Haskell) [Mizzi et al. 2018], and AErlang
(Erlang) [De Nicola et al. 2018]. However, this aspect of integration of paradigms poses architectural
challenges, as macroprogramming tends to permeate various dimensions of the system—including
structure, behaviour, and interaction. In summary, multi-paradigm programming is appealing but
must be carefully analysed at the level of models, architecture, and development practice.

7 RELATEDWORK
This work integrates, extends upon, and differentiates with respect to other survey papers. The
main difference is that the secondary studies presented in the following, while similarly rich and
detailed, adopt a narrower perspective (spatial computing, WSN, microelectromechanical systems,
and swarm robotics, respectively). By contrast, this survey aims to relate various macroprogram-
ming approaches across disparate domains, and adopts a general software engineering viewpoint.
Moreover, due to their publication time, other surveys only cover works published before 2012.
Indeed, by analysing the twenty-year time-frame from early 2000s to 2020, we can also make
considerations about trends (see Section 3).
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The most related survey is [Beal et al. 2012], which however focusses on spatial computing
languages. It proposes a conceptual framework where spatial computation can be described in
terms of constructs for (i) measuring space-time (sensors); (ii) manipulating space-time (actuators);
(iii) computation; and (iv) physical evolution (inherent spatiotemporal dynamics). The device model
accounts for the way devices are discretised in space-time (distinguishing between discrete, cellular,
and continuous models), the way they are programmed (e.g., by giving them a uniform programs,
heterogeneous programs, or leveraging mobile code), their communication scope (e.g., through
local, neighbourhood, global regions), and their communication granularity (e.g., unicast, multicast,
or broadcast). The survey classifies languages in the following groups: (i) amorphous computing
(including pattern languages and manifold programming languages); (ii) biological modelling; (iii)
agent-based modelling (including multi-agent and distributed systems modelling); (iv) wireless
sensor networks (distinguishing between region-based, dataflow-based, database abstraction-based,
centralised-view, and agent-based languages); (v) pervasive computing; (vi) swarm and modular
robotics; (vii) parallel and reconfigurable computing (including dataflow, topological, and field
languages); (viii) formal calculi for concurrency and distribution (i.e., process algebras/calculi).
Languages are further analysed based on: characteristics of the language (type, DSL implementation
pattern, platform, layers), supported spatial computing operators, and abstract device characteristics.
Language type ranges over functional, imperative, declarative, graphical, process calculus, and any.

Very related is also [Mottola and Picco 2011], a 2011 survey that covers programming approaches
for wireless sensor networks. In their taxonomy, the interaction pattern is classified into (i) one-to-
many, (ii) many-to-one, and (iii) many-to-many. Moreover, the extent of distributed processing in
space can be (i) global, e.g., in environment monitoring applications; or (i) regional, e.g., in intrusion
detection or HVAC systems in buildings. Other dimensions include goal (sense-only or sense-and-
react), mobility (static, mobile), time (periodic or event-driven). Regarding WSN programming
abstractions, they define a taxonomy as follows. Communication aspects cover: scope (system-wide,
physical neighbourhood-based, or multi-hop group); addressing (physical or logical); and awareness
(implicit or explicit). Computation aspects include scope of computation (local, group, or global).
The model of data access could be database, data sharing, mobile code, or message passing. Finally,
the paradigm could be: imperative (sequential or event-driven); declarative (functional, rule-based,
SQL-like, special-purpose); or hybrid.

The review [Brambilla et al. 2013] of swarm robotics from an engineering perspective neglects the
programming viewpoint. However, they provide a taxonomywhere collective behaviour is classified
into behaviour for (i) spatial organisation (e.g., pattern formation, morphogenesis), (ii) navigation
and mobility (e.g., coordinated motion and transport), (iii) collective decision making (e.g., consensus
achievement and task allocation), and (iv) other.Design methods are categorised into behaviour-based
(e.g., finite state machines, virtual physics-based) and automatic (e.g., evolutionary robotics and
reinforcement learning-based methods). Analysis methods are categorised into microscopic models,
macroscopic models (e.g., via rate/differential equations or control theory), and real-robot analysis.
Finally, certain works proposed concepts useful for classifying and understanding macropro-

gramming approaches. These elements have been considered and integrated into the taxonomy
provided in Section 4.4. A possible classification of macroprogramming approaches [Choochaisri
et al. 2012] distinguishes between

(1) node-dependent macroprogramming—where the nodes (or, more generally, the components
of the micro-level) and their states are referred to explicitly by the macroprogram; and

(2) node-independent macroprogramming—where the underlying nodes are not visible at all to
the programmer.
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As per the discussion of Section 4.3, node-dependent approaches tend to enact a weak form of
macroprogramming. Examples of node-independent approaches include, e.g., those that abstract a
WSN as a database. Another distinction can be made between:

(1) data-driven macroprogramming [Pathak and Prasanna 2010]—where macro-programs define
tasks consuming and producing data; and

(2) control-driven macroprogramming [Bakshi and Prasanna 2005]—where macro-programs
specify control flow and instructions operating on distributed memory.

The classification in data-driven and control-driven approaches has been applied in other fields
such as coordination [Papadopoulos and Arbab 1998], where the latter are also known as task- or
process-oriented coordination models.

8 CONCLUSION
For the first time, we provide an explicit and integrated view of research on macroprogramming—
the paradigm aimed at expressing and executing the global behaviour of systems of computational
entities. The manuscript discusses what macroprogramming is per se, its core application domains,
its main concepts, and analyses and classifies a wide range of works addressing system development
by a more-or-less macroscopic perspective. Thus, it provides a more general, comprehensive, and
up-to-date coverage of macroprogramming with respect to previous works, which covered it in the
context of engineering approaches for wireless sensor networks [Mottola and Picco 2011], spatial
computing systems [Beal et al. 2012], and swarm robotics [Brambilla et al. 2013].
We argue that a macro-level stance could be beneficial for software engineering especially

in forthcoming distributed computing scenarios (cf. swarm robotics, large-scale CPSs, the IoT,
and smart cities), and for promoting language-based solutions to collective adaptive behaviour
and intelligence [De Nicola et al. 2020]. Indeed, for the collective computing revolution [Abowd
2016] to fully unfold, there will be needed tools to harness the complexity of large ecosystems
involvingmachines as well as humans [Hendler and Berners-Lee 2010]. In particular, the macro-level
perspective could represent a complementary viewpoint for addressing structure, behaviour, and
interaction in complex socio-technical systems. However, macroprogramming comes with peculiar
challenges, at the border of science and engineering, such as those related to “steering emergent
behaviour” (i.e., promoting desired emergents while avoiding undesired emergents [Schmeck 2005]),
“guiding self-organisation” [Prokopenko 2014], promoting collective intelligence [Suran et al. 2020],
and, in general, formally expressing global/system-level intents, and mapping those to micro-level
instructions—possibly with guarantees.

We suggest that macroprogramming can be considered as an abstract paradigm (e.g., similarly to
the notion of declarative programming), for it conveys a distinguishing perspective to programming
and a coherent set of principles (cf. Section 4). Then, concrete macroprogramming languages can
adopt specific programming paradigms (e.g., imperative, functional, logic, or object-oriented), ap-
proaches (e.g., control-, data-, space-time-, and ensemble-oriented), and mechanisms (e.g., first-class
groups, collective communication interfaces, distributed state/data structures, etc.). Macroprogram-
ming languages tend to be domain-specific (e.g., addressing data collection and transformation in
WSANs, or behaviour and actuation in robot swarms), since domain assumptions are generally
instrumental to properly and efficiently map high-level abstractions to activity on the low-level
platform. However, there is arguably margin for recovering general principles through inter-domain
discussion and sharing of ideas, but this would require a more integrated and structured view of
macroprogramming as a field, which this article aims to cultivate.
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