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Abstract
Affine Bruhat–Tits buildings are geometric spaces
extracting the combinatorics of algebraic groups.
The building of PGL parameterizes flags of sub-
spaces/lattices in or, equivalently, norms on a fixed
finite-dimensional vector space, up to homothety. It
has first been studied by Goldman and Iwahori as a
piecewise-linear analogue of symmetric spaces. The
space of seminorms compactifies the space of norms
and admits a natural surjective restriction map from
the Berkovich analytification of projective space that
factors the natural tropicalization map. Inspired by
Payne’s result that the analytification is the limit of
all tropicalizations, we show that the space of semi-
norms is the limit of all tropicalized linear embeddings
𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 and prove a faithful tropicalization result
for compactified linear spaces. The space of seminorms
is in fact the tropical linear space associated to the
universal realizable valuated matroid.
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INTRODUCTION

Let 𝐾 be a complete non-Archimedean field (possibly carrying the trivial absolute value). The
non-Archimedean analytic approach to tropical geometry (see, e.g., [2, 14, 19, 32]) makes crucial
use of non-Archimedean analytic spaces in the sense of Berkovich [5]; the particular topological
properties of these Berkovich spaces let us think of the analytification 𝑋an of an algebraic variety
𝑋 as a form of universal tropicalization that is independent of the chosen coordinate system. In
this regard, the central result presented in [32] tells us that the analytification 𝑋an of a quasi-
projective algebraic variety 𝑋 over 𝐾 is the projective limit of all tropicalizations with respect to
all the embeddings in toric varieties (also see [16, 17, 29] for generalizations of this result).
In this article, we argue that when considering only the tropicalization of projective spaces

linearly embedded into higher dimensional projective spaces, the role of Berkovich analytic space
is played by the Goldman–Iwahori space 𝑟(𝐾) of homothety classes of nontrivial seminorms on
(𝐾𝑟+1)∗ (see [18] but also [35, 36, 43]). The locus 𝑟(𝐾) of diagonalizable seminorms in 𝑟(𝐾) is
(a compactification of) the affine Bruhat–Tits building of PGL𝑟+1(𝐾), when 𝐾 carries a nontrivial
valuation, and the cone over the spherical building of PGL𝑟+1(𝐾), when the valuation on 𝐾 is
trivial. When 𝐾 is spherically complete, we have 𝑟(𝐾) = 𝑟(𝐾).
Let 𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 be a linear closed immersion. The tropicalization Trop(ℙ𝑟, 𝜄) of ℙ𝑟 with respect

to the embedding 𝜄 is the projection of 𝜄(ℙ𝑟)an ⊆ (ℙ𝑛)an under the natural tropicalization map

tropℙ𝑛 ∶ (ℙ𝑛)an ⟶ 𝕋ℙ𝑛

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12850 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 3 of 37

to 𝕋ℙ𝑛 = ℝ
𝑛+1

− {(∞,… ,∞)}∕ ℝ ⋅ 𝟙 that is essentially given by taking coordinate-wise valuations
(see Section 2 for details). The tropicalization Trop(ℙ𝑟, 𝜄) is a projective tropical linear space in
𝕋ℙ𝑛 and is associated to a realizable valuated matroid (see Section 4 for details).
We shall see in Section 2 that there is a natural continuous and surjective restriction map

𝜏∶ (ℙ𝑛)an → 𝑛(𝐾) that factors the tropicalization map as

(ℙ𝑛)an
𝜏
�→ 𝑛(𝐾)

trop
𝑛

������→ 𝕋ℙ𝑛

such that the tropicalization Trop(ℙ𝑟, 𝜄) is given as the projection of𝑟(𝐾) ⊆ 𝑛(𝐾) under trop
𝑛
.

The connection between affine buildings and Berkovich analytic spaces is well-established in the
literature. We refer the reader in particular to [5] as well as to [34–36].
Denote by 𝐼 the category whose objects are linear closed immersions 𝜄 ∶ ℙ𝑟 ↪ 𝑈 ⊆ ℙ𝑛 into a

torus-invariant open subset 𝑈 ⊆ ℙ𝑛; a morphism between 𝜄 ∶ ℙ𝑟 ↪ 𝑈 ⊆ ℙ𝑛 and 𝜄′ ∶ ℙ𝑟 ↪ 𝑈′ ⊆
ℙ𝑛′ is given by a linear toric morphism 𝜑∶ 𝑈 → 𝑈′ such that 𝜑◦𝜄 = 𝜄′. The tropicalization with
respect to 𝜄 ∶ ℙ𝑟 ↪ 𝑈 is naturally homeomorphic to the tropicalization with respect to the com-
position ℙ𝑟 ↪ 𝑈 ⊆ ℙ𝑛. For a toric morphism 𝜑∶ 𝑈 → 𝑈′ such that 𝜑◦𝜄 = 𝜄′, we have a natural
induced map 𝜑trop ∶ 𝑈trop → 𝑈′ trop such that 𝜑trop(Trop(ℙ𝑟, 𝜄)) ⊆ Trop(ℙ𝑟, 𝜄′), making 𝐼 into a
cofiltered category. Requiringmorphisms only to be defined on an open subset of projective space
provides us with the added flexibility that we need in the following.

Theorem A. The tropicalization maps induce a natural homeomorphism

𝑟(𝐾)
∼
�→ lim

←��
𝜄∈𝐼

Trop (ℙ𝑟, 𝜄),

where the projective limit is taken over the category 𝐼.

Let 𝐼′ be the full subcategory of 𝐼, whose objects are linear embeddings 𝜄 ∶ ℙ𝑟 ↪ 𝑈 ⊆ ℙ𝑛

whose images meet the big torus 𝔾𝑛
𝑚 ⊆ ℙ𝑛. Then Theorem A provides us with a homeomorphism

between the space of norms𝑟(𝐾) and the projective limit of all noncompactified tropicalizations
Trop(𝜄(ℙ𝑟) ∩ 𝔾𝑛

𝑚). When 𝐾 is spherically complete, the Goldman–Iwahori space 𝑟(𝐾) is equal to
𝑟(𝐾), and therefore we have a natural homeomorphism

𝑟(𝐾)
∼
�→ lim

←��
𝜄∈𝐼′

Trop
(
𝜄(ℙ𝑟) ∩ 𝔾𝑛

𝑚

)
.

In addition to Theorem A, we also prove the following, which one may think of as a new
addition to the literature on faithful tropicalization (see, e.g., [2, 9, 20, 21] for other instances).

Theorem B. Let 𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 be a linear closed immersion. Then there is a natural piecewise linear
embedding 𝐽 ∶ Trop(ℙ𝑟, 𝜄) → 𝑟(𝐾) that makes the following diagram commute

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12850 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 37 BATTISTELLA et al.

It is worth emphasizing that in Theorem B the compactified tropical linear space Trop(ℙ𝑟, 𝑖),
which may be thought of as a finite polyhedral approximation of the affine building 𝑟(𝐾), nat-
urally embeds into 𝑟(𝐾) and not just into the Goldman–Iwahori space 𝑟(𝐾), even when 𝐾 is
not spherically complete. This curious fact is, at least heuristically, explained by the observation
that the difference between 𝑟(𝐾) and 𝑟(𝑋) is only visible in nondiagonalizable seminorms on
(𝐾𝑟+1)∗ that are defined via an asymptotic process (e.g., by the projective limit in Theorem A).
Suppose now that 𝐾 is discretely valued. Then, for one, the section in Theorem B recovers the

so-called membrane of a realization of Trop(ℙ𝑟, 𝜄) from [26, Lemma 4]. If 𝐾 is also local, there is
a natural embedding of 𝑟(𝐾) = 𝑟(𝐾) into the Berkovich analytic space (ℙ𝑟)an (see [35, section
3] for details). Theorem A then tells us that the collection of all linear re-embeddings ℙ𝑟 ↪ ℙ𝑛

recovers exactly 𝑟(𝐾) = 𝑟(𝐾). The main result of [32], on the other hand, tells us that, once we
also allow nonlinear algebraic re-embeddings of ℙ𝑟 into suitable toric varieties, we recover the
whole Berkovich analytification of ℙ𝑟.
Theorems A and B together provide us with a heuristic saying that 𝑟(𝐾) is in some sense

a universal (realizable) tropical linear space. This goes hand in hand with the work of Dress and
Terhalle [11], in which the authors realize the building𝑟(𝐾) as the tight span of a suitable infinite
valuated matroid, see Subsection 7.2.
In Subsection 7.1, we build on this observation and construct a tropical linear space for any

infinite valuated matroid (expanding on the finite case, see [41, 42] as well as [30, chapter 4]).
This allows us to make precise the idea that the Goldman–Iwahori space is the tropical linear
space (𝑤univ) of the universal realizable valuated matroid 𝑤univ that is given by the map

𝑤univ ∶

(
(𝐾𝑟+1)∗

𝑟 + 1

)
⟶ ℝ

induced by the permutation-invariant map val ◦ det∶ 𝐾(𝑟+1)×(𝑟+1) → ℝ.

Theorem C. Let 𝑤univ be the universal realizable valuated matroid. Then the Goldman-Iwahori
space is the tropical linear space associated to the universal realizable matroid 𝑤univ , that is,

𝑟(𝐾) = (𝑤univ).

Our approach, in particular, provides uswith a notion of tropicalization for a finite-dimensional
linear space embedded into an infinite-dimensional space, see again Subsection 7.1 for details.
Theorem C is also, in spirit, very similar to the universal (possibly nonlinear) tropicalization
of [17], which may be identified with Berkovich analytic space. An order-theoretic approach to
the problem has been developed by Hirai: generalizing the cryptomorphic characterization of
matroids in terms of their lattice of flats, he proved that tropical linear spaces are characterized
by their integer points forming a uniform semimodular lattice [23]. From this point of view, affine
buildings of type𝐴 correspond to uniformmodular lattices [24]. Thus, roughly speaking, they are
identified with tropical linear spaces with many symmetries.
It is well-known that Bruhat–Tits buildings also admit a simplicial structure that can be

described in terms of filtrations by linear subspaces, when 𝐾 carries the trivial absolute value,
and by sublattices, when 𝐾 carries a nontrivial discrete absolute value. We incorporate those per-
spectives into our story in Examples 1.10 and 1.12, while, in Subsection 4.5, we recall the analogous
story of how valuated matroids over a field with trivial absolute value are nothing but matroids.
In Section 6, we illustrate our main results using this alternative point of view on buildings.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 5 of 37

Conventions

We write ℝ for ℝ ∪ {∞} with tropical operations min as well as +, and 𝕋ℙ𝑛 for ℝ
𝑛+1

⧵
{(∞,… ,∞)}∕ ∼, where ∼ is the equivalence relation generated by translation by a real multiple
of the vector 𝟙 = (1, … , 1). We write [𝑛] for the set {0, … , 𝑛} and

(𝐸
𝑟

)
for the set of subsets of cardi-

nality 𝑟 of a given set 𝐸. By 𝐾 we denote a complete non-Archimedean field, with ring of integers
𝐾 and residue field 𝑘; in the discretely valued case, 𝐾 is Noetherian and its maximal ideal is
generated by one element, called a uniformizer and denoted by 𝜋.

1 THE AFFINE BUILDING AND ITS COMPACTIFICATION

Let 𝐾 be a complete non-Archimedean field. In this section, we recall some fundamentals about
the space of seminorms on a finite-dimensional vector space 𝑉 over 𝐾. The (compactification of
the) affine building of PGL𝑛 is the a priori proper subset of diagonalizable (semi)norms. If 𝐾 is
spherically complete these two spaces will turn out to be the same.
Let 𝑉 be a vector space over 𝐾 of dimension 𝑛.

Definition 1.1. A norm on 𝑉 is a map ||.||∶ 𝑉 → ℝ that fulfills the following axioms.

(i) For all 𝑣 ∈ 𝑉, we have ||𝑣|| ⩾ 0 and ||𝑣|| = 0 if and only if 𝑣 = 0.
(ii) For all 𝑣 ∈ 𝑉 and 𝜆 ∈ 𝐾, we have

||𝜆 ⋅ 𝑣|| = |𝜆| ⋅ ||𝑣||.
(iii) For all 𝑣, 𝑤 ∈ 𝑉 the strong triangle inequality

||𝑣 + 𝑤|| ⩽ max
{||𝑣||, ||𝑤||}

holds.

If in (i) we only require ||𝑣|| ⩾ 0 and allow vectors 𝑣 ∈ 𝑉 − {0}with ||𝑣|| = 0, we say that ||.|| is a
seminorm. A seminorm ||.|| is said to be nontrivial if there is a 𝑣 ∈ 𝑉 such that ||𝑣|| ≠ 0.

Example 1.2. Pick a basis 𝐞 = (𝑒1, … , 𝑒𝑛) of𝑉 and �⃗� = (𝑎1, … , 𝑎𝑛) ∈ ℝ
𝑛
. Wemay associate to this

datuma seminorm ||.||𝐞,�⃗� on𝑉 given by associating to 𝑣 =
∑𝑛

𝑖=1 𝜆𝑖𝑒𝑖 the valuemax𝑖=1,…,𝑛{|𝜆𝑖|𝑒−𝑎𝑖 }.
The seminorm is nontrivial if and only if at least one 𝑎𝑖 ≠ ∞ and it is a norm if and only if all
𝑎𝑖 ≠ ∞.

A seminorm of the form ||.||𝐞,�⃗� for a basis 𝐞 and coefficients �⃗� ∈ ℝ
𝑛
is said to be diagonalizable.

Definition 1.3. A non-Archimedean field 𝐾 is said to be spherically complete if any decreasing
sequence of closed balls has nonempty intersection.

A valued field extension 𝐿∕𝐾 is said to be immediate if it has the same value group and the
same residue field. A field is calledmaximally complete if it does not admit any proper immediate
extension. By a classical result from Kaplansky (see, e.g., [39], II.6, Theorem 8), it turns out that
this concept is equivalent to spherical completeness. We thus have the following:
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6 of 37 BATTISTELLA et al.

Theorem 1.4 [28, Satz 24]. Every non-Archimedean field admits a (nonunique) immediate
extension that is spherically complete.

The following observation will be central for our result:

Proposition 1.5. Let 𝐾 be a non-Archimedean field. Then 𝐾 is spherically complete if and only if
every seminorm on a finite-dimensional 𝐾-vector space is diagonalizable.

Proof. By [6, Lemma 1.12], the non-Archimedean field 𝐾 is spherically complete if and only if
all norms on a finite-dimensional vector space over 𝐾 are diagonalizable. Our statement follows
from the fact that a seminorm is diagonalizable if and only if the induced norm on the quotient
modulo the kernel is diagonalizable. □

Example 1.6.

(i) Every trivially valued field is obviously maximally (hence spherically) complete.
(ii) Every discretely valued complete field is spherically complete, as by [35, Proposition 3.1]

every norm on a finite-dimensional vector space is diagonalizable.
(iii) In particular, for any prime number 𝑝 the field of 𝑝-adic numbersℚ𝑝 is local and spherically

complete.
(iv) The algebraic closure ℚ𝑎

𝑝 of the 𝑝-adic numbers is not complete (see [38, section 3.1.4]).
(v) The completion ℂ𝑝 of ℚ𝑎

𝑝 is still algebraically closed, but not spherically complete.
(vi) Over ℂ, the field of rational functions ℂ(𝑡) is not Cauchy complete, as the Cauchy sequence

(
∑𝑛

𝑖=0
1
𝑖!
𝑡𝑖)𝑛∈ℕ has no limit. Its completion is the field of (formal) Laurent seriesℂ((𝑡)), which

is spherically complete, because the valuation is discrete.
(vii) For any field 𝑘 let 𝑘{{𝑡}} =

⋃
𝑛⩾1 𝑘((𝑡

1∕𝑛)) be the field of Puiseux series. It is not complete. Its
completion is the Levi–Civita field [3, Theorem 4.10], in which the exponents of a series
need not have a common denominator, but for any upper bound, there are only finitely
many exponentswith nonzero coefficients. The Levi–Civita field is not spherically complete,
its spherical completion is the Malcev–Neumann field 𝑘((𝑡ℚ)) of power series with rational
exponents and well-ordered support (see [6, Example 1.1]).

Let  (𝑉) and  (𝑉) be the set of norms and, respectively, nontrivial seminorms on the
dual vector space 𝑉∗ (note the dualization!). For 𝑥 ∈  (𝑉) we denote by ||.||𝑥 the associated
seminorm. We endow (𝑉) with the coarsest topology that makes the natural evaluation maps

 (𝑉) ∋ 𝑥 ⟼ ‖𝑣‖𝑥 ∈ ℝ

for all 𝑣 ∈ 𝑉∗ continuous. The space (𝑉) has been first introduced by Goldman and Iwahori in
[18] over 𝐾 = ℚ𝑝.

Remark 1.7 (Topology of (𝑉)).

(i) Equivalently, onemay define the topology on (𝑉) as the topology of pointwise convergence:
a net (𝑥𝛼) in (𝑉) converges to a seminorm 𝑥 ∈  (𝑉) if and only if ‖𝑣‖𝑥𝛼

converges to ‖𝑣‖𝑥
in ℝ for all 𝑣 ∈ 𝑉∗.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 7 of 37

(ii) A basis of the topology on (𝑉) is given by open subsets of the form

𝑈 =
{
𝑥 ∈  (𝑉) || ‖‖𝑣𝑖‖‖𝑥 ∈ (𝑎𝑖, 𝑏𝑖) for all 𝑖 = 1, … , 𝑙

}
= 𝑒𝑣−1

𝑣1
((𝑎1, 𝑏1)) ∩⋯ ∩ 𝑒𝑣−1

𝑣𝑙
((𝑎𝑙, 𝑏𝑙))

for some 𝑣1, … , 𝑣𝑙 ∈ 𝑉∗ and open intervals (𝑎1, 𝑏1), … , (𝑎𝑙, 𝑏𝑙) ⊆ ℝ, where 𝑒𝑣 denotes the
natural evaluation map.

Two points 𝑥, 𝑦 ∈  (𝑉) are said to be homothetic, written as 𝑥 ∼ 𝑦, if there is a constant 𝑐 > 0

such ||.||𝑥 = 𝑐 ⋅ ||.||𝑦 . Homothety defines an equivalence relation on  (𝑉) that restricts to an
equivalence relation on (𝑉).

We denote by diag(𝑉) ⊆  (𝑉) the subspace of diagonalizable norms and
diag

(𝑉) ⊂  (𝑉)
the subspace of diagonalizable seminorms. Note that seminorms that are homothetic to a
diagonalizable one are themselves diagonalizable. Let (𝑉) =  (𝑉)∕∼.

Definition 1.8. The affine Bruhat–Tits building of PGL(𝑉) is defined to be the quotient space of
diagonalizable norms by homothety:

(𝑉) =  diag(𝑉)∕∼.

The quotient(𝑉) = 
diag

(𝑉)∕∼ ⊆ (𝑉) =  (𝑉)∕∼ forms a natural bordification of(𝑉) (in
fact, by Corollary 2.8 (𝑉) is compact). In particular, for a spherically complete field 𝐾 the quo-
tient (𝑉) = (𝑉) is a natural compactification of (𝑉). This expands on the construction in
[43].
When 𝑉 = 𝐾𝑛+1, we write 𝑛(𝐾) and 𝑛(𝐾) for (𝐾𝑛+1) and (𝐾𝑛+1) as well as 𝑛(𝐾) and

𝑛(𝐾) for (𝐾𝑛+1) and (𝐾𝑛+1), respectively.

Remark 1.9. (Topological structure)

(i) By [6, Theorem 1.19], the locus diag(𝑉) of diagonalizable seminorms is dense in (𝑉)with
respect to the Goldman–Iwahori metric

𝑑
(‖⋅‖𝑥, ‖⋅‖𝑦) = sup

𝑣∈𝑉∗

(
log ‖𝑣‖𝑥 − log ‖𝑣‖𝑦).

The finiteness of the supremum follows from the fact that any two norms are equivalent (see
[6, p. 10]). The topology induced by this metric is finer than the one defined above because
uniform convergence implies pointwise convergence. It follows that (𝑉) is dense in (𝑉).
Hence, also (𝑉) is dense in (𝑉). Indeed, a stratum of (𝑉) of seminorms with a fixed
kernel𝑊 ⊂ 𝑉 can be identified with (𝑉∕𝑊).

(ii) Despite the notation suggesting that (𝑉) ⊂  (𝑉) is open, this need not be true in general,
as we will show in Remark 2.10. On the other hand, it is when 𝐾 is local. Indeed, let {𝑥𝛼}𝛼
be a net of seminorms, converging to �̄�, and let {𝑣𝛼}𝛼 be a net of unit vectors (with respect to
some fixed norm on 𝑉) such that ||𝑣𝛼||𝑥𝛼

= 0. As the field is local, the unit sphere is compact
and so we can find a convergent subnet converging to 𝑣 ≠ 0. We conclude that ||𝑣||�̄� = 0 by
continuity and thus �̄� is also a proper seminorm.
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8 of 37 BATTISTELLA et al.

Example 1.10. Let 𝐾 have trivial valuation. Then we can give an explicit description of the
space of seminorms up to homothety on a vector space 𝑉 of dimension 𝑟 + 1. First recall that
by Example 1.6 Item (i), the field 𝐾 is spherically complete and hence by Proposition 1.5 we have
(𝑉) = (𝑉). We claim that there is a bijection:

(𝑉)
1∶1
⟷

{
(0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = 𝑉∗, 𝑐1 > … > 𝑐𝑙−1) || 𝑐1, … , 𝑐𝑙−1 ∈ ℝ>0

}
𝑙=1,…,𝑟+1

,

where 0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = 𝑉∗ is a flag of subspaces of 𝑉∗. We allow the special case of 𝑙 = 1
where we just have the flag (0 ⊊ 𝑉∗) without any coordinates.

Proof. Let ‖ ⋅ ‖ ∈  (𝑉) be a representative of 𝑥 ∈ (𝑉), that is, a nontrivial seminorm on 𝑉∗.
Then all balls around 0 in𝑉∗ are subspaces. By letting the radius vary, we obtain a unique filtration
0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = 𝑉∗ such that for all 𝑖 = 1, … , 𝑙 the restriction of ‖ ⋅ ‖ to 𝑉𝑖 ⧵ 𝑉𝑖−1 is a
constant function and the values are strictly increasing.
Let 𝑑𝑖 denote the constant value on 𝑉𝑖 ⧵ 𝑉𝑖−1 and set for 𝑖 = 1, … , 𝑙 − 1

𝑐𝑖 ∶= − log
𝑑𝑖

𝑑𝑙
.

Note that any seminorm homothetic to ||.|| yields the same filtration of subspaces and only multi-
plies all the 𝑑𝑖 simultaneously by a common scalar. This does not change the 𝑐𝑖 and thus we obtain
a well-defined map.
Vice versa, every flag of subspaces 0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = 𝑉∗ together with coordinates 𝑐1 >

… > 𝑐𝑙−1 ∈ ℝ>0 gives rise to coordinates 𝑑𝑖 via the formula above by setting 𝑑𝑙 = 1, and thus we
obtain a well-defined diagonalizable seminorm with

||.||||𝑉𝑖⧵𝑉𝑖−1
= 𝑑𝑖

and generic value 1. By construction, these maps are inverses of each other. □

Remark 1.11. The bijection in Example 1.10 restricts to a bijection

(𝑉)
1∶1
⟷

{
(0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = 𝑉∗, 𝑐1 > … > 𝑐𝑙−1) || 𝑐1, … , 𝑐𝑙−1 ∈ ℝ>0

}
.

This can be identified with the cone over the order complex of the lattice of nontrivial subspaces
of𝑉∗. The latter comes with a natural weak topology, where a set is open if and only if its intersec-
tion with each cone is relatively open in that cone. This turns this set into the colimit of all cones
corresponding to a fixed filtration. However, the topology on the building is much coarser than
the weak topology of the cone complex, as the following example will show.

Example 1.12. We consider the case where 𝐾 is any infinite field with trivial valuation. Then we
can identify 1(𝐾) with the set{

(0 ⊊ 𝑉1 ⊊ (𝐾2)∗, 𝑐) || 𝑐 ∈ ℝ⩾0

}
∪
{
(0 ⊊ (𝐾2)∗)

}
.

See Figure 1. Here 𝜂 ∶= (0 ⊊ (𝐾2)∗) corresponds to the homothety class of a norm that is constant
away from 0. Each cone corresponds to a 1-dimensional subspace and the point at infinity of each
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 9 of 37

F IGURE 1 The building 1(𝐾) of a trivially valued field, where  is shorthand for “0 ⊊ 𝑉1 ⊊ (𝐾2)∗”. The
coordinate 𝑐 is a positive real number. A norm in the homothety class corresponding to ( , 𝑐) has generic value 1,
and value 𝑒−𝑐 on 𝑉1 ⧵ {0}. In the case of 𝑐 = ∞, we have a proper seminorm with kernel 𝑉1.

cone corresponds to the homothety class of a proper seminorm. In rank 1, the homothety class of
a proper seminorm is uniquely determined by its kernel, and thus we can identify 1(𝐾) ⧵ 1(𝐾)
with ℙ1(𝐾).
A basis of the topology of 1(𝐾) is given as follows: choose finitely many vectors 𝑣1, … , 𝑣𝑙 ∈

(𝐾2)∗ and intervals (𝑎1, 𝑏1), … , (𝑎𝑙, 𝑏𝑙) ⊂ ℝ and define

𝑈 =
{
𝑥 ∈ 1(𝐾) ||∃ a representative ||.|| ∈ 𝑥 with ||𝑣𝑖|| ∈ (𝑎𝑖, 𝑏𝑖) for all 𝑖 = 1, … , 𝑙

}
.

In particular, if such a set is a neighborhood of 𝜂, then it contains all cones correspond-
ing to subspaces that do not contain any vector 𝑣1, … , 𝑣𝑙, that is, all but finitely many. This
is of course not necessarily true for open neighborhoods of 𝜂 in the weak topology of the
cone complex.

The space (𝑉) has the structure of an affine building in the sense of [36, Definition 1.9] (see,
e.g., [31, III.1.2] for a proof). We refer the reader also to [4] for a discussion of the various axiom
systems for affine buildings over possibly nondiscretely valued fields. For us, however, the most
important notion is the following:

Definition 1.13. An apartment(𝐞) in (𝑉) (associated to a basis 𝐞 of 𝑉∗) is given by the image
in (𝑉) of

ℝ𝑛+1 ��→  diag(𝑉)

�⃗� ⟼ ||.||𝐞,�⃗�.
Every apartment is a closed subset homeomorphic to ℝ𝑛+1∕ℝ ≃ ℝ𝑛. The above parameteriza-

tion can be extended to ℝ
𝑛+1

− {(∞,… ,∞)}. Its image, denoted by (𝑒), is the closure of (𝑒)

and may be naturally identified with 𝕋ℙ𝑛 = ℝ
𝑛+1

− {(∞,… ,∞)}∕ ℝ ⋅ 𝟙. We refer to (𝑒) as a
compactified apartment.
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10 of 37 BATTISTELLA et al.

F IGURE 2 The affine Bruhat–Tits building 1(ℚ2).

Example 1.14. In Example 1.12, every apartment is the union of exactly two 1-dimensional cones:
a (homothety class of a) seminorm is diagonalizable by a basis {𝑣1, 𝑣2} ⊂ (𝐾2)∗ if and only if it lies
in the cone corresponding to ⟨𝑣1⟩ or ⟨𝑣2⟩.
Our conventions are chosen so that the associations 𝑉 ↦ (𝑉) and 𝑉 ↦ (𝑉) are co variant

functors from finite-dimensional 𝐾-vector spaces to topological spaces. In particular, any embed-
ding 𝜄 ∶ 𝑉 ↪ 𝑊 induces an embedding (𝜄) ∶ (𝑉) ↪ (𝑊). We have a natural operation of
PGL(𝑉) on (𝑉), which respects diagonalizability and nondegeneracy. It is easy to show, that
for dim𝑉 > 1 this operation of PGL(𝑉) on (𝑉) is transitive if and only if the valuation on 𝐾 is
surjective.

Example 1.15. In the case of a discretely valued field 𝐾, the affine building 𝑟(𝐾) is a flag sim-
plicial complex whose vertices correspond to equivalence classes of lattices (see Subsection 6.2).
Let 𝐾 denote the valuation ring, 𝜋 a uniformizer, and 𝑘 = 𝐾∕(𝜋) the residue field. A lattice in
𝐾𝑟+1 is a free𝐾-submodule of rank 𝑟 + 1. Two lattices 𝐿1, 𝐿2 are homothetic if 𝐿1 = 𝑐𝐿2 for some
𝑐 ∈ 𝐾∗. Two homothety equivalence classes Λ1, Λ2 of lattices are adjacent if there are representa-
tives 𝐿1 and 𝐿2 such that 𝜋𝐿1 ⊆ 𝐿2 ⊆ 𝐿1. The simplices of 𝑟(𝐾) correspond to flags of adjacent
lattices 𝜋𝐿1 ⊊ 𝐿𝑘 ⊊ … ⊊ 𝐿2 ⊊ 𝐿1. A lattice 𝐿 corresponds to an integral norm |.|𝐿 given by

|𝑥|𝐿 ∶= inf
{|𝜆| || 𝜆 ∈ 𝐾∗, 𝜆−1𝑥 ∈ 𝐿

}
for 𝑥 ∈ 𝐾𝑟+1, and one recovers the lattice as the closed unit ball of the norm. Given a lattice 𝐿,
the star of [𝐿] in 𝑟(𝐾) can be identified with the spherical building 𝑟(𝑘) (see Example 1.10)
by sending a flag of lattices 𝜋𝐿 ⊊ 𝐿𝑘 ⊊ … ⊊ 𝐿2 ⊊ 𝐿 to its image in 𝐿∕𝜋𝐿, which is a flag of 𝑘-
linear subspaces.

Example 1.16. Let 𝑟 = 1 and 𝐾 = ℚ𝑝. Then the affine Bruhat–Tits building1(ℚ𝑝) is an infinite
tree whose vertices have valency 𝑝 + 1. Let 𝐞 = (𝑒1, 𝑒2) be a basis of (ℚ2

𝑝)
∗. The apartment(𝐞) is

an infinite path in the tree that uses all ℤ𝑝-lattices with basis (𝑝𝑢1𝑒1, 𝑝
𝑢2𝑒2) where (𝑢1, 𝑢2) ∈ ℤ2.

See Figure 2 for the compactified Bruhat–Tits tree of ℚ2. The open part is the usual trivalent infi-
nite tree 1(ℚ2). The boundary 1(ℚ2) ⧵ 1(ℚ2) (illustrated by the circle) can be identified with
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 11 of 37

ℙ1(ℚ2) because any homothety class of a nontrivial proper seminorm on (ℚ2
2)

∗ can be identified
with its kernel, which is a 1-dimensional subspace of (ℚ2

2)
∗.

2 ANALYTIFICATION AND TROPICALIZATION

For a complete non-Archimedean field 𝐾, we recall the Berkovich analytification for any locally
finite type scheme over 𝐾. We describe the relations between the Berkovich space, the space of
seminorms on (𝐾𝑟+1)∗, and the compactified building. This allows us to define a tropicalization
map from the space of seminorms on (𝐾𝑟+1)∗ to tropical projective space.
Let 𝐴 be a finitely generated 𝐾-algebra and write 𝑈 = Spec𝐴.

Definition 2.1. A (multiplicative) seminorm on 𝐴 is a map |.|∶ 𝐴 → ℝ such that

(i) |𝑓| ⩾ 0 for all 𝑓 ∈ 𝐴 as well as |𝑎| = |𝑎|𝐾 for all 𝑎 ∈ 𝐾;
(ii) |𝑓 ⋅ g| = |𝑓| ⋅ |g| for all 𝑓, g ∈ 𝐴; and
(iii) |𝑓 + g| ⩽ max{|𝑓|, |g|} for all 𝑓, g ∈ 𝐴.

We think of the set 𝑈an of multiplicative seminorms on 𝐴 as a space, the analytification of 𝑈
in the sense of Berkovich [5]; we write 𝑥 ∈ 𝑈an for a point in𝑈an as well as |.|𝑥 for the associated
seminorm. The (analytic) topology of 𝑈an is the coarsest that makes all evaluation maps

𝑈an ⟶ ℝ

𝑥 ⟼ |𝑓|𝑥
for 𝑓 ∈ 𝐴 continuous. For a scheme 𝑋 that is locally of finite type over 𝐾, we define its analytifi-
cation 𝑋an locally as above, and globally by gluing over affine open covers. See [5, chapter 3] for
details.

Remark 2.2. For an affine scheme𝑈 of finite type over𝐾, we have a natural inclusion𝑈(𝐾) → 𝑈an

via 𝑥 ↦ [𝑓 ↦ |𝑓(𝑥)|]. For any scheme 𝑋, locally of finite type over 𝐾, these inclusions on affine
open subsets glue to an inclusion 𝑋(𝐾) → 𝑋an. If the valuation on 𝐾 is nontrivial, the image of
𝑋(𝐾) is dense in 𝑋an for an algebraic closure 𝐾 of 𝐾.
The association 𝑋 ↦ 𝑋an is a covariant functor that commutes with the inclusion of the 𝐾-

points of a scheme into its analytification. See [19, section 2.6] for details.

Remark 2.3. To distinguish between multiplicative seminorms on a 𝐾-algebra and seminorms on
a finite-dimensional 𝐾-vector space, we denote the former by |.|𝑥 and the latter by ||.||𝑥 .
Let 𝑉 be a vector space over 𝐾 of dimension 𝑟 + 1.

Remark 2.4 (Analytification of projective spaces). As explained in [36, section 2.1.1], the ana-
lytification of the projective space ℙ(𝑉) can be identified with the quotient of 𝔸(𝑉)an − {0}
modulo homothety.
Let 𝑆∙𝑉∗ be the symmetric algebra of the dual vector space 𝑉∗. This is a finitely generated

graded 𝐾-algebra. Every choice of a basis (𝑒0, … , 𝑒𝑟) of 𝑉∗ induces an isomorphism of 𝑆∙𝑉∗ with
the polynomial ring over 𝐾 in 𝑟 + 1 indeterminates. The affine space 𝔸(𝑉) and projective space
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12 of 37 BATTISTELLA et al.

ℙ(𝑉) are defined as

𝔸(𝑉) = Spec(𝑆∙𝑉∗) and ℙ(𝑉) = Proj(𝑆∙𝑉∗).

As said above, 𝔸(𝑉)an consists of all multiplicative seminorms on 𝑆∙𝑉∗. Then the analytification
ℙ(𝑉)an is the quotient of 𝔸(𝑉)an − {0} by homothety: we define 𝑥 ∼ 𝑦 if and only if there exists
a constant 𝑐 > 0 such that for all 𝑓 ∈ 𝑆𝑛𝑉∗ we have |𝑓|𝑥 = 𝑐𝑛|𝑓|𝑦 . Here the analytic topology on
ℙ(𝑉)an is equal to the quotient topology.

A multiplicative seminorm on 𝑆∙𝑉∗ induces a seminorm on 𝑉∗ = 𝑆1𝑉∗ by restriction, hence
we have a natural continuous map 𝜏 ∶ 𝔸(𝑉)an ⟶  (𝑉) such that 𝜏(𝑥) = 0 if and only if 𝑥 = 0.
As this map is compatible with the equivalence relations, it descends to a continuous restriction
map

𝜏 ∶ ℙ(𝑉)an ⟶ (𝑉).

Proposition 2.5. Let 𝐾 be spherically complete. Then the restriction map admits a section

𝐽 ∶ (𝑉) = (𝑉) → ℙ(𝑉)an.

Given a diagonalizable seminorm ||.||, we may choose a basis 𝑒0, … , 𝑒𝑟 of 𝑉∗ and 𝑐0, … , 𝑐𝑟 ∈ ℝ⩾0

such that

||||||∑ 𝜆𝑖𝑒𝑖
|||||| = max

𝑖
{𝑐𝑖|𝜆𝑖|}.

The multiplicative seminorm 𝐽(||.||) on 𝑆∙𝑉∗ is defined by

𝐽(||.||)⎛⎜⎜⎝
∑

𝐼=(𝑖0,…,𝑖𝑟)

𝑎𝐼𝑒
𝑖0
0 … 𝑒

𝑖𝑟
𝑟

⎞⎟⎟⎠ = max
𝐼

{|𝑎𝐼|𝑐𝑖00 … 𝑐
𝑖𝑟
𝑟

}
.

When 𝐾 is a local field, the section 𝐽 is continuous.

Proof. We refer the reader to [35, section 3] for details on this construction. Note that in [35] the
authors assume that 𝐾 is local, although everything but the continuity of 𝐽 goes through when 𝐾
is spherically complete. □

Remark 2.6. We do not knowwhether 𝐽 is continuous, when𝐾 is not local. Luckily this statement
is not needed in the remainder of this article.

Proposition 2.7. Let 𝐾 be any complete non-Archimedean field. Then the restriction map

𝜏 ∶ ℙ(𝑉)an → (𝑉)

is surjective.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 13 of 37

Proof. We want to construct a section (𝑉) → ℙ(𝑉)an in the general case. We pick any spherically
complete extension 𝐿∕𝐾 and denote 𝑉 ⊗𝐾 𝐿 by 𝑉𝐿. Then for any seminorm ||.|| on 𝑉∗ we have an
induced seminorm ||.||𝐿 on 𝑉∗

𝐿 given by

||𝑤||𝐿 = inf max
𝑖

{|𝜆𝑖| ⋅ ||𝑣𝑖||}
where the infimum runs over all possible decompositions𝑤 =

∑
𝑖 𝜆𝑖𝑣𝑖 with 𝜆𝑖 ∈ 𝐿 and 𝑣𝑖 ∈ 𝑉∗. It has

been shown in [6, Proposition 1.25] that themap(𝑉) → (𝑉𝐿) given by ||.||↦ ||.||𝐿 is injective and
that this map is a section of the natural restriction map (𝑉𝐿) → (𝑉). Now, we define a section of
𝜏 by composing

(𝑉) ⟶ (𝑉𝐿) = (𝑉𝐿)
𝐽
�→ ℙ(𝑉𝐿)

an ⟶ ℙ(𝑉)an

where the last map is the restriction of a multiplicative seminorm on the symmetric algebra 𝑆∙𝑉∗ ⊆
𝑆∙𝑉∗

𝐿 . □

Corollary 2.8. The space (𝑉) is compact.

Proof. This follows immediately from surjectivity of 𝜏 ∶ ℙ(𝑉)an → (𝑉) and compactness of
ℙ(𝑉)an (see, e.g., [5, Theorems 3.4.8 and 3.5.3]). □

Remark 2.9. We do not know if the section constructed in the proof of Proposition 2.7 is indepen-
dent of the choice of the spherical completion (which need not be unique in some cases in positive
characteristic, see [3, Theorem 6.17]), or if the section is continuous.

Remark 2.10. We can now show that  (𝑉) ⊆  (𝑉) need not be open. Let 𝐾 be algebraically
closed. The set of 𝐾-points of ℙ(𝑉) is dense in ℙ(𝑉)an and gets mapped to homothety classes of
proper diagonalizable seminorms in (𝑉), thus its image is also dense. Consequently, neither
inclusion (𝑉) ⊆ (𝑉), nor (𝑉) ⊆ (𝑉), nor (𝑉) ⊆  (𝑉) can be open in this case.

From now on we consider the vector space 𝑉 = 𝐾𝑛+1 together with its standard basis 𝐞 =
(𝑒0, … , 𝑒𝑛) and the associated dual basis 𝐞∗ = (𝑒∗0 , … , 𝑒∗𝑛) of𝑉

∗. This identifies𝔸(𝑉) and ℙ(𝑉)with
𝔸𝑛+1 = Spec𝐾[𝑡0, … , 𝑡𝑛] and ℙ𝑛 = Proj 𝐾[𝑡0, … , 𝑡𝑛], respectively. As explained, for example, in
[32], there is a natural continuous tropicalization map

trop𝔸𝑛+1 ∶ (𝔸𝑛+1)an ⟶ ℝ
𝑛+1

𝑥 ⟼ (− log |𝑡0|𝑥, … ,− log |𝑡𝑛|𝑥)
that is compatible with the diagonal 𝔾𝑚-operation. Therefore, this induces a tropicalization map

tropℙ𝑛 ∶ (ℙ𝑛)an ⟶ 𝕋ℙ𝑛

𝑥 ⟼ [− log |𝑡0|𝑥 ∶ ⋯ ∶ − log |𝑡𝑛|𝑥].
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14 of 37 BATTISTELLA et al.

Tropicalizing the analytification of the big torus in ℙ𝑛 yields only elements with finite
coordinates:

tropℙ𝑛(𝔾𝑛
𝑚)an = ℝ𝑛+1∕𝟙.

Proposition 2.11. The tropicalization map tropℙ𝑛 factors as

(ℙ𝑛)an
𝜏
�→ 𝑛(𝐾)

trop
𝑛

������→ 𝕋ℙ𝑛 (1)

where trop
𝑛

∶ 𝑛(𝐾) → 𝕋ℙ𝑛 is a continuous and surjectivemap given by associating to a seminorm||.||𝑥 ∶ 𝑉∗ → ℝ the tuple

trop
𝑛

(𝑥) =
[
− log ||𝑒∗0 ||𝑥 ∶ ⋯ ∶ − log ||𝑒∗𝑛||𝑥] ∈ 𝕋ℙ𝑛.

Proof. The tropicalization map trop
𝑛

is well-defined, as, for two seminorms ||.||𝑥, ||.||𝑦 on 𝑉∗

together with a homothety 𝑥 ∼ 𝑦 we have a 𝑐 > 0 such that ||.||𝑥 = 𝑐 ⋅ ||.||𝑦 and thus
trop

𝑛
(𝑥) =

[
− log ||𝑒∗0 ||𝑥 ∶ ⋯ ∶ − log ||𝑒∗𝑛||𝑥]

=
[
− log 𝑐 − log ||𝑒∗0 ||𝑦 ∶ ⋯ ∶ − log 𝑐 − log ||𝑒∗𝑛||𝑦]

=
[
− log ||𝑒∗0 ||𝑦 ∶ ⋯ ∶ − log ||𝑒∗𝑛||𝑦]

= trop
𝑛

(𝑦).

It is continuous, as it is given by evaluation maps in each coordinate, and surjective, as the
compactified apartment map

ℝ
𝑛+1

−
{
∞𝑛+1}⟶ 𝑛(𝐾)

(𝑎0, … , 𝑎𝑛) ⟼ ||.||𝐞∗,(𝑎0,…,𝑎𝑛)

induces a continuous section 𝕋ℙ𝑛 → 𝑛(𝐾) ⊆ 𝑛(𝐾) of trop
𝑛
. The factorization (1) follows from

the observation that, under the identification 𝑆∙𝑉∗ ≃ 𝐾[𝑡0, … , 𝑡𝑛] the linear one-form 𝑒∗
𝑖
is natu-

rally identifiedwith the linear polynomial 𝑡𝑖 . Therefore, we have |𝑡𝑖|𝑥 = ||𝑒∗
𝑖
||𝜏(𝑥) for all 𝑥 ∈ (ℙ𝑛)an

and 𝑖 = 0, … , 𝑛. This implies

trop
𝑛

(𝜏(𝑥)) =
[
− log ||𝑒∗0 ||𝜏(𝑥) ∶ ⋯ ∶ − log ||𝑒∗𝑛||𝜏(𝑥)]

= [− log |𝑡0|𝑥 ∶ ⋯ ∶ − log |𝑡𝑛|𝑥]
= tropℙ𝑛(𝑥)

for all 𝑥 ∈ (ℙ𝑛)an. □
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 15 of 37

Similarly, tropicalizing the noncompactified space of norms, one obtains all finite points:

trop
𝑛

(𝑛(𝐾)) = ℝ𝑛+1∕𝟙.

Let 𝑌 ⊆ ℙ𝑛 be a Zariski-closed subscheme. Then, following [19, 32], the tropicalization of 𝑌 is
defined to be the projection

Tropℙ𝑛(𝑌) = tropℙ𝑛(𝑌an)

of 𝑌an under tropℙ𝑛 into 𝕋ℙ𝑛. Let 𝐿 be an algebraically closed extension of 𝐾 with nontrivial
absolute value |.|𝐿. By [19, Proposition 3.8], the tropicalization Tropℙ𝑛(𝑌) is equal to the closure
of {

[− log(|𝑡0|𝐿) ∶ ⋯ ∶ − log(|𝑡𝑛|𝐿)] ||| [𝑡0 ∶ ⋯ ∶ 𝑡𝑛] ∈ 𝑌(𝐿) ⊆ ℙ𝑛(𝐿)
}

⊆ 𝕋ℙ𝑛.

Proposition 2.12. For a linear embedding 𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 the tropicalization Trop(ℙ𝑟, 𝜄) =
tropℙ𝑛(𝜄(ℙ𝑟)an) is equal to the projection of (𝜄)(𝑟(𝐾)) ⊆ 𝑛(𝐾) under trop

𝑛
into 𝕋ℙ𝑛.

Proof. As the restriction map 𝜏 is surjective, the commutativity of

implies that (𝜄)(𝑟(𝐾)) = 𝜏(𝜄an(ℙ𝑟)an). The factorization of the tropicalization map in Proposi-
tion 2.11 then yields the claim. □

Henceforth, we will define for any linear embedding 𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 the composition 𝜋𝜄 by

𝜋𝜄 ∶= trop
𝑛

◦ (𝜄) ∶ 𝑟(𝐾) ⟶ Trop(ℙ𝑟, 𝜄).

Note that 𝜋𝜄 is continuous and surjective. A direct computation shows that if 𝜄 = [𝑓0 ∶ … ∶ 𝑓𝑛] for
𝑓0, … , 𝑓𝑛 ∈ (𝐾𝑟+1)∗ we have

𝜋𝜄(𝑥) = [− log(||𝑓0||𝑥) ∶ ⋯ ∶ − log(||𝑓𝑛||𝑥)]
for all 𝑥 ∈ 𝑟(𝐾).

3 LIMITS OF LINEAR TROPICALIZATIONS

In this section, we will set up and prove Theorem A. We first set up a category of linear
embeddings such that tropicalization yields a covariant functor into the category of topological
spaces.
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16 of 37 BATTISTELLA et al.

Definition 3.1. Let 𝐼 be the category of linear embeddings ℙ𝑟 ↪ 𝑈 ⊆ ℙ𝑛, where 𝑈 is a torus-
invariant open subset of ℙ𝑛, with morphisms given by commutative triangles

where 𝑈 → 𝑈′ is a toric morphism.

Remark 3.2. The codimension of the complement of 𝑈 ⊆ ℙ𝑛 in Definition 3.1 must be at least
𝑟 + 1. Thus, for all 𝑗 = 0,… , 𝑟, the Chow group of𝑈 of codimension 𝑗 is isomorphic to that of ℙ𝑛.
The degree of 𝜄′ being 1 can be measured by intersecting its image with a generic linear subspace
of codimension 𝑟. As the same is true for 𝜄, we see that hyperplanes must pull back to hyperplanes
along 𝑈 → 𝑈′, that is, this morphism is forced to be linear.

Remark 3.3. Allowing the toric morphism to be defined on a smaller torus-invariant open subset
instead of the whole projective space endows our index category with many more morphisms,
most notably coordinate projections. This makes 𝐼 into a cofiltered category: indeed, for any two
objects 𝜄𝑖 ∶ ℙ𝑟 ↪ 𝑈𝑖 ⊆ ℙ𝑛𝑖 , 𝑖 = 1, 2, we can find a third one dominating both, namely, 𝜄 ∶ ℙ𝑟 ↪
𝑈 ⊆ ℙ𝑁 , where 𝑁 = 𝑛1 + 𝑛2 + 1 with projective coordinates 𝑧0, … , 𝑧𝑁 and

𝑈 =
(
ℙ𝑁 ⧵ 𝑉(𝑧0, … , 𝑧𝑛1

) ∩ pr−1
1 (𝑈1)

)
∩
(
ℙ𝑁 ⧵ 𝑉(𝑧𝑛1+1, … , 𝑧𝑛1+𝑛2+1) ∩ pr−1

2 (𝑈2)
)
.

And for any two morphisms 𝑓, g ∶ 𝑈1 → 𝑈2 commuting with 𝜄𝑖 as above, we can equalize them
by defining 𝑈0 = {𝑓 = g} ⊆ 𝑈1, and noticing that 𝜄1 factors through 𝑈0, and the closure of 𝑈0 in
ℙ𝑛1 is a linear subspace ℙ𝑛0 ⊆ ℙ𝑛1 .

The tropicalization 𝑈trop of a torus-invariant open subset or ℙ𝑛 is a special case of the trop-
icalization of toric varieties, as introduced in [32, section 3]. In our case, this means removing
those tropical torus-orbits from 𝕋ℙ𝑛, for which the corresponding algebraic torus orbit is not con-
tained in 𝑈. For a toric morphism 𝜑∶ 𝑈 → 𝑈′ such that 𝜑◦𝜄 = 𝜄′, we have a natural induced
map 𝜑trop ∶ 𝑈trop → 𝑈′ trop such that 𝜑trop(Trop(ℙ𝑟, 𝜄)) ⊆ Trop(ℙ𝑟, 𝜄′). In particular, if 𝜙 is a coor-
dinate projection, then 𝜙trop is the analogous tropical coordinate projection. We refer the reader
to [32], to [33, sections 3 and 5], and to [30, section 6.2] for more details on the tropical geometry
of toric varieties.
Let 𝜄 ∶ ℙ𝑟 ↪ 𝑈 be a linear closed immersion, where 𝑈 is a torus-invariant open subset of ℙ𝑛,

and let 𝚥 ∶ 𝑈 → ℙ𝑛 be the inclusion. Then we have a homeomorphism of tropicalizations

Trop(ℙ𝑟, 𝜄)
𝚥trop

����→ Trop(ℙ𝑟, 𝚥◦𝜄) ⊆ 𝕋ℙ𝑛.

Using this observation we will henceforth identify any tropicalization arising from a linear
morphism ℙ𝑟 → 𝑈 with a subset of 𝕋ℙ𝑛.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 17 of 37

Lemma 3.4. Let 𝜄 ∶ ℙ𝑟 ↪ 𝑈 ⊆ ℙ𝑛 and 𝜄′ ∶ ℙ𝑟 ↪ 𝑈′ ⊆ ℙ𝑛′ be linear embeddings and 𝜑 ∶ 𝑈 → 𝑈′

be a toric morphism with 𝜑◦𝜄 = 𝜄′. Then the diagram

commutes.

Proof. This follows immediately from Proposition 2.11 and the fact that the same holds for the
Berkovich analytification [32].

□

This lemma yields a well-defined continuous map

𝑟(𝐾)
lim
←�𝜄∈𝐼

𝜋𝜄

�������→ lim
←��
𝜄∈𝐼

Trop (ℙ𝑟, 𝜄)

where the limit runs over all linear embeddings 𝜄 ∶ ℙ𝑟 → 𝑈 ⊆ ℙ𝑛 into torus-invariant open sub-
sets. The limit is endowed with the coarsest topology making all projections continuous; in
particular, the limit topology is generated by (the preimage under projection of) all opens in
all (finite) tropicalized linear spaces. The right-hand side is thus a pro-object in the category of
topological spaces.

Theorem 3.5 (Theorem A). The map

lim
←��
𝜄∈𝐼

𝜋𝜄 ∶ 𝑟(𝐾) ⟶ lim
←��
𝜄∈𝐼

Trop (ℙ𝑟, 𝜄)

is a homeomorphism.

Proof. As lim
←��𝜄∈𝐼

Trop(ℙ𝑟, 𝜄) is aHausdorff space and𝑟(𝐾) is compact by Proposition 2.7, it suffices
to show bijectivity.
We first show the “injectivity” of lim

←��𝜄∈𝐼
𝜋𝜄. Assume that lim←��𝜄∈𝐼

𝜋𝜄(𝑥) = lim
←��𝜄∈𝐼

𝜋𝜄(𝑥
′) for 𝑥, 𝑥′ ∈

𝑟(𝐾). We choose representatives 𝑦 and 𝑦′ of the homothety classes 𝑥 and 𝑥′, respectively.

Claim. The seminorms 𝑦 and 𝑦′ have the same kernel.
By symmetry, it suffices to show one inclusion. Let 0 ≠ 𝑓 ∈ (𝐾𝑟+1)∗ with ||𝑓||𝑦 = 0. Then by

extending 𝑓 to a generating set 𝑓, 𝑓1, … , 𝑓𝑛 of (𝐾𝑟+1)∗ and looking at the corresponding embed-
ding 𝜄 = [𝑓 ∶ 𝑓1 ∶ … ∶ 𝑓𝑛] ∶ ℙ𝑟 → ℙ𝑛, we obtain that the first coordinate of 𝜋𝜄(𝑥) = 𝜋𝜄(𝑥

′) equals
− log ||𝑓||𝑦 = ∞. By assumption, also − log ||𝑓||𝑦′ = ∞ and thus also ||𝑓||𝑦′ = 0.
Let now 𝑓0, 𝑓1 ∈ (𝐾𝑟+1)∗, with ||𝑓0||𝑦 ≠ 0 and ||𝑓1||𝑦 ≠ 0. Then also ||𝑓0||𝑦′ ≠ 0 and ||𝑓1||𝑦′ ≠

0 and we need to show that ||𝑓0||𝑦||𝑓0||𝑦′ =
||𝑓1||𝑦||𝑓1||𝑦′ , as this immediately implies that 𝑦, 𝑦′ are homothetic

and thus 𝑥 = 𝑥′.We extend𝑓0, 𝑓1 to a generating set𝑓0, 𝑓1, … , 𝑓𝑛 of (𝐾𝑟+1)∗. Let 𝜄 = [𝑓0 ∶ … ∶ 𝑓𝑛]
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18 of 37 BATTISTELLA et al.

be the corresponding embedding from ℙ𝑟 into ℙ𝑛, then 𝜋𝜄(𝑦) = 𝜋𝜄(𝑦
′) and thus their difference is

a multiple of 𝟙, in particular

− log
||𝑓0||𝑦||𝑓0||𝑦′ = −

(
log ||𝑓0||𝑦 − log ||𝑓0||𝑦′) = −

(
log ||𝑓1||𝑦 − log ||𝑓1||𝑦′) = − log

||𝑓1||𝑦||𝑓1||𝑦′ .
We now show the “surjectivity” of lim

←��𝜄∈𝐼
𝜋𝜄. Let (𝑦𝚥)𝚥∈𝐼 ∈ lim

←��𝚥∈𝐼
Trop(ℙ𝑟, 𝚥). First, we consider

the identity id = [𝑒∗0 ∶ … ∶ 𝑒∗𝑟 ] ∶ ℙ𝑟 → ℙ𝑟. After a permutation of coordinates, wemay assume that
the first coordinate 𝑦id,0 of 𝑦id ∈ 𝕋ℙ𝑟 is not∞. We will construct a seminorm ||.|| with ||𝑒∗0 || = 1
and 𝜋𝚥(||.||) = 𝑦𝚥 for all 𝚥 ∈ 𝐼.

Claim. For all linear embeddings 𝜄 = [𝑒∗0 ∶ 𝑓1 ∶ ⋯ ∶ 𝑓𝑛], the first coordinate 𝑦𝜄,0 is not∞.
After composing with the corresponding embedding into projective space we can assume that

the codomain of 𝜄 is ℙ𝑛. We consider the linear embedding[
𝑒∗0 ∶ ⋯ ∶ 𝑒∗𝑟 ∶ 𝑓1 ∶ ⋯ ∶ 𝑓𝑛

]
∶ ℙ𝑟 → 𝑈 ⊂ ℙ𝑟+𝑛

where 𝑈 = ℙ𝑟+𝑛 ⧵ 𝑉(𝑥0, … , 𝑥𝑟) ∪ 𝑉(𝑥0, 𝑥𝑟+1, … , 𝑥𝑟+𝑛). Then we have a projection 𝑈 → ℙ𝑟 onto
the first 𝑟 + 1 coordinates and a projection 𝑈 → ℙ𝑛 given by [𝑥0 ∶ … ∶ 𝑥𝑟+𝑛] ↦ [𝑥0 ∶ 𝑥𝑟+1 ∶ … ∶
𝑥𝑟+𝑛]. As (𝑦𝚥)𝚥∈𝐽 is an inverse system, this shows that the first coordinate of 𝑦𝜄 cannot be∞.
Construction of the seminorm. Let 𝑓 ∈ (𝐾𝑟+1)∗. We choose an embedding 𝚥 = [𝑒∗0 ∶ 𝑓 ∶ 𝑓2 ∶

⋯ ∶ 𝑓𝑛] ∶ ℙ𝑟 → ℙ𝑛 and define

||𝑓|| ∶= exp(𝑦𝚥,0 − 𝑦𝚥,1)

wherewe set exp(−∞) = 0. Note that 𝑦𝚥,0 ≠ ∞ and that this does not depend on the representative
of 𝑦𝚥 ∈ 𝕋ℙ𝑛.
We show that this is independent of the choice of 𝚥. Let 𝚥′ = [𝑒∗0 ∶ 𝑓 ∶ 𝑓′

2 ∶ … ∶ 𝑓′
𝑛′ ]. Similarly

to before, consider the embedding[
𝑒∗0 ∶ 𝑓 ∶ 𝑓2 ∶ ⋯ ∶ 𝑓𝑛 ∶ 𝑓′

2 … ∶ 𝑓′
𝑛′

]
∶ ℙ𝑟 ⟶ 𝑈 ⊆ ℙ𝑛+𝑛′−1

where𝑈 = ℙ𝑛+𝑛′−1 ⧵ 𝑉(𝑥0, … , 𝑥𝑛) ∪ 𝑉(𝑥0, 𝑥1, 𝑥𝑛+1, … , 𝑥𝑛+𝑛′−1) as before. By the same argument,
applying the projections to ℙ𝑛 and ℙ𝑛′ shows that 𝑦𝚥,0 − 𝑦𝚥,1 = 𝑦𝚥′,0 − 𝑦𝚥′,1.
By a permutation automorphism one can show that for any linear embedding 𝜄 = [𝑒∗0 ∶ ⋯ ∶ 𝑓 ∶

⋯], where 𝑓 is in the 𝑖th entry, we have ||𝑓|| ∶= exp(𝑦𝚥,0 − 𝑦𝚥,𝑖).
We check that the constructed map is indeed a seminorm. For 𝑓 ∈ (𝐾𝑟+1)∗ and 𝜆 ∈ 𝐾 consider

any embedding 𝚥 = [𝑒∗0 ∶ 𝑓 ∶ 𝜆𝑓 ∶ …]. Then, by Proposition 2.12, for every 𝑦𝚥 ∈ Trop(ℙ𝑟, 𝚥) there
is a class of a seminorm [||.||′] ∈ 𝑟(𝐾) with

𝑦𝚥 = 𝜋𝚥

([||.||′])
=
(
trop

𝑛
◦(𝚥)

)([||.||′])
=
[
− log ||𝑒∗0 ||′ ∶ − log ||𝑓||′ ∶ − log ||𝜆𝑓||′ ∶ ⋯

]
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 19 of 37

and thus 𝑦𝚥,1 + val(𝜆) = 𝑦𝚥,2, where val is the valuation on 𝐾. Therefore,

||𝜆𝑓|| = exp(𝑦𝚥,0 − 𝑦𝚥,2) = exp
(
𝑦𝚥,0 − (𝑦𝚥,1 + val(𝜆))

)
= |𝜆| ⋅ ||𝑓||.

For 𝑓, g ∈ (𝐾𝑟+1)∗, the inequality ||𝑓 + g|| ⩽ max{||𝑓||, ||g||} follows similarly by considering an
embedding containing 𝑓, g and 𝑓 + g .
By construction, the seminorm ||.|| is an inverse image of (𝑦𝚥)𝚥∈𝐼 : Let 𝚥 = [𝑓1 ∶ … ∶ 𝑓𝑛] ∶ ℙ𝑟 ⟶

𝑈 ⊆ ℙ𝑛−1 be a linear embedding into a torus-invariant open subset 𝑈 ⊆ ℙ𝑛−1. Consider the
embedding 𝚥′ = [𝑒∗0 ∶ 𝑓1 ∶ … ∶ 𝑓𝑛] ∶ ℙ𝑟 ⟶ 𝑉 ⊆ ℙ𝑛 where 𝑉 is the complement of the intersec-
tion of the last 𝑛 coordinate hyperplanes. As the projection of 𝑉 onto the last 𝑛 coordinates is
a toric morphism, we have an induced projection map Trop(ℙ𝑟, 𝚥′) ⟶ Trop(ℙ𝑟, 𝚥). The same
permutation argument as before shows

[− log (||𝑓1||) ∶ ⋯ ∶ − log (||𝑓𝑛||)] = [− log(exp(𝑦𝚥′,0 − 𝑦𝚥′,1)) ∶ ⋯ ∶ − log(exp(𝑦𝚥′,0 − 𝑦𝚥′,𝑛))
]

=
[
𝑦𝚥′,1 − 𝑦𝚥′,0 ∶ ⋯ ∶ 𝑦𝚥′,𝑛 − 𝑦𝚥′,0

]
=
[
𝑦𝚥′,1 ∶ ⋯ ∶ 𝑦𝚥′,𝑛

]
=
[
𝑦𝚥,0 ∶ ⋯ ∶ 𝑦𝚥,𝑛−1

]
.

□

Remark 3.6. Instead of the category 𝐼 used above, several subcategories would yield the same
limit.

(a) The full subcategory 𝐼′ of 𝐼 of nondegenerate embeddings where no coordinate equals
0. Then 𝐼′ is cofinal in 𝐼, and thus the respective limits of tropicalizations are naturally
isomorphic.

(b) The full subcategory of 𝐼 of nondegenerate embeddings that are different in every
coordinate.

(c) The wide subcategory of 𝐼, where instead of all (linear) toric morphisms we only allow
coordinate projections. Note that these morphisms are the only ones used in the proof
of 3.5.

Following the proof of Theorem 3.5, one can similarly show that the restriction of the map
lim
←��𝜄∈𝐼′

𝜋𝜄 to the noncompactified space 𝑟(𝐾) induces a homeomorphism

𝑟(𝐾)
∼
�→ lim

←��
𝜄∈𝐼′

Trop
(
𝜄(ℙ𝑟) ∩ 𝔾

𝑛𝜄
𝑚

)
= lim

←��
𝜄∈𝐼′

(
Trop (ℙ𝑟, 𝜄) ∩ ℝ𝑛𝜄+1∕ℝ ⋅ 𝟙

)
,

where 𝑛𝜄 is the dimension of projective space that is the codomain of 𝜄.

Remark 3.7. In [22], the authors consider a projective limit of tropicalizations with respect to
all linear re-embeddings of a fixed affine variety. They, in particular, show that this construc-
tion recovers the whole Berkovich analytification in the case of an affine smooth algebraic
curve. Theorem A may be thought of as a natural linear-algebraic incarnation of the authors’
ideas.
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20 of 37 BATTISTELLA et al.

4 VALUATEDMATROIDS AND TROPICAL LINEAR SPACES

In this section, we recall some of the basic definitions and results on valuated matroids in the
sense of Dress and Wenzel [13], in particular, how to associate a (projective) tropical linear space
to a valuated matroid and to describe its local structure.

4.1 Essentials of matroids

A matroid𝑀 of rank 𝑟 is given by an arbitrary set 𝐸, called the ground set, and a set  of subsets
of 𝐸, called independent sets, such that the following axioms are satisfied.

(I1) The empty set is independent.
(I2) Subsets of independent sets are independent.
(I3) If 𝐴, 𝐵 ∈  and |𝐴| > |𝐵|, then there is 𝑎 ∈ 𝐴 such that 𝐵 ∪ {𝑎} ∈ .
(I4) If 𝐴 is an inclusion-wise maximal independent set, then |𝐴| = 𝑟.

Note that if the ground set 𝐸 is finite, then axiom (I4) follows from (I3), but if 𝐸 is infinite then
(I4) is a necessary axiom. Clearly, these axioms are modeled after linear independence of a set of
vectors whose span is 𝑟-dimensional; for example, we get a matroid by considering the linearly
independent subsets of a subset 𝐸 of a vector space 𝐾𝑛. The rank of 𝐴 ⊆ 𝐸 is the cardinality of a
maximal independent in 𝐴. The familyℬ(𝑀) of inclusion-wise maximal sets of  are called the
bases of𝑀, and by axiom (I2) they determine . A circuit 𝐶 ⊆ 𝐸 is a minimal dependent set, and
a flat is a subset 𝐹 ⊂ 𝐸 such that |𝐶 ⧵ 𝐹| ≠ 1 for all circuits 𝐶. A set is a flat if and only if adding
any other element to it increases its rank. A loop is an element in 𝐸 that is contained in no basis;
equivalently the singleton with only this element is dependent.

4.2 Valuated matroids

We begin with the following definition due to Dress and Wenzel [13].

Definition 4.1. A valuated matroid of rank 𝑟 on a ground set 𝐸 is a function

𝑣∶

(
𝐸
𝑟

)
⟶ ℝ

that fulfils the following axioms.

(i) There exists 𝐴 ∈
(𝐸
𝑟

)
with 𝑣(𝐴) ≠ ∞.

(ii) For all 𝐴, 𝐵 ∈
(𝐸
𝑟

)
and 𝑎 ∈ 𝐴 − 𝐵 we have the valuated basis exchange property

𝑣(𝐴) + 𝑣(𝐵) ⩾ min
𝑏∈𝐵

{
𝑣(𝑏 ∪ 𝐴 ⧵ 𝑎) + 𝑣(𝑎 ∪ 𝐵 ⧵ 𝑏)

}
.

The elements 𝐴 ∈
(𝐸
𝑟

)
with 𝑣(𝐴) < ∞ form the set of bases of a matroid, called the underlying

matroid of 𝑣. We explicitly do not require the underlying set 𝐸 to be finite.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 21 of 37

Remark 4.2. Valuated matroids on 𝐸 of rank 𝑟 are parameterized by the DressianDr(𝐸, 𝑟) ⊆ ℝ
(𝐸𝑟).

This is the tropical prevariety of points 𝑣 ∈ ℝ
(𝐸𝑟) such that for all 𝜏 ∈

( 𝐸
𝑟+1

)
and all 𝜎 ∈

( 𝐸
𝑟−1

)
the

expression

min
𝑗∈𝜏

(𝑣(𝜏 ⧵ 𝑗) + 𝑣(𝜎 ∪ 𝑗)) (2)

attains the minimum at least twice. It is straightforward to verify that the basis exchange axiom of
valuated matroids is equivalent to the minimum in Equation (2) being attained at least twice for
all 𝜏 ∈

( 𝐸
𝑟+1

)
and all 𝜎 ∈

( 𝐸
𝑟−1

)
. If 𝑣 is a point in the interior Dr(𝐸, 𝑟)◦ = Dr(𝐸, 𝑟) ∩ ℝ(𝐸𝑟), then the

underlying matroid of 𝑣 is the uniform matroid on 𝐸 of rank 𝑟, that is, the bases are all subsets of
cardinality 𝑟. Valuated matroids with different underlying matroids lie at the boundary. That is, if
𝑀 is a matroid on 𝐸 of rank 𝑟, we obtain the Dressian with underlying matroid𝑀 by intersecting
with hyperplanes at infinity:

Dr(𝑀) = Dr(𝐸, 𝑟) ∩
⋂

𝜎∈(𝐸𝑟)
𝜎 not a base

{
𝑣 ∈ ℝ

(𝐸𝑟) || 𝑣(𝜎) = ∞
}
.

Example 4.3 (Realizable valuated matroids). Let 𝐾 be a field with a non-Archimedean valuation
val ∶ 𝐾 → ℝ.

(a) Let {𝑓0, … , 𝑓𝑛} be a generating subset of 𝐾𝑟+1. The map

𝑣∶

(
[𝑛]
𝑟 + 1

)
⟶ ℝ

𝐴 = {𝑎0, … , 𝑎𝑟} ⟼ val
(
det
[
𝑓𝑎0

⋯ 𝑓𝑎𝑟

])
defines a valuated matroid or rank 𝑟 + 1. This follows from theGrassmann–Plücker identity:

det(𝑣0, … , 𝑣𝑟) ⋅ det(𝑤0, … ,𝑤𝑟) =
𝑛∑

𝑖=0

det(𝑣0, … , 𝑣𝑖−1, 𝑤0, 𝑣𝑖+1, … , 𝑣𝑟) ⋅ det(𝑣𝑖, 𝑤0, … ,𝑤𝑟)

for all 𝑣0, … , 𝑣𝑟, 𝑤0, … ,𝑤𝑟 ∈ 𝐾𝑟+1. All valuated matroids of this form are called realizable.
(b) Extending on (a), the map

𝑤univ ∶

(
(𝐾𝑟+1)∗

𝑟 + 1

)
⟶ ℝ

induced by the permutation-invariant map val ◦ det∶ 𝐾(𝑟+1)×(𝑟+1) → ℝ is a valuated matroid,
called the universal realizable matroid.

(c) If the valuation on 𝐾 is trivial, then in (a) we have

𝑣(𝐴) =

{
0 if 𝐴 is a basis,
∞ if 𝐴 is dependent.
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22 of 37 BATTISTELLA et al.

Thus, the notion of an ordinary matroid that is realizable over a fix trivially valued field cor-
responds exactly to that of a valuated matroid that is realizable over the same trivially valued
field.

4.3 Tropical linear spaces and matroid polytopes

Valuated matroids 𝑣 with ground set 𝐸 and rank 𝑟 + 1 have an associated polyhedral complex
(𝑣) of pure dimension 𝑟 in 𝕋ℙ𝐸 that is connected through codimension 1 and that satisfies
intersection-theoretic properties analogous to linear spaces. Hence, the (𝑣) are called tropical
linear spaces. We recall the definition, some properties, the associated Matroid polytope, and a
regular subdivision induced by 𝑣 that is dual to(𝑣). When thematroid is realizable, this recovers
the coordinate-wise tropicalization of any linear subspace associated to 𝑣.
In the following, let 𝐸 = {0, … , 𝑛} be the (finite) ground set of a valuatedmatroid 𝑣 of rank 𝑟 + 1

with underlying matroid𝑀.

Definition4.4. The tropical linear space(𝑣) ⊂ 𝕋ℙ𝑛 associated to 𝑣 is the locus of those (𝑢𝑒)𝑒∈𝐸 ∈
𝕋ℙ𝑛 such that for any 𝜏 ∈

( 𝐸
𝑟+2

)
the minimum in 𝑣(𝜏 ⧵ 𝑒}) + 𝑢𝑒 is attained at least twice.

If some 𝑓 ∈ 𝐸 is a loop, by taking 𝜏 = 𝐵 ∪ {𝑓} for any basis 𝐵, one can see that 𝑢𝑓 = ∞ for
each (𝑢𝑒)𝑒∈𝐸 ∈ (𝑣). Thus, adding or deleting loops only yields homeomorphic associated tropical
linear spaces. Consequently, for simplicity, we now assume that𝑀 has no loops.
Now,we give a characterization ofmatroids in terms of polytopes.Weuse the followingnotation

for the indicator vector in ℝ𝐸 of a set 𝐴 ⊂ 𝐸:

𝑒𝐴 =
∑
𝑖∈𝐴

𝑒𝑖 ∈ ℝ𝐸.

Definition 4.5. Thematroid polytope 𝑃𝑀 of a matroid𝑀 is the convex hull of{
𝑒𝐵 || 𝐵 ∈ ℬ(𝑀)

}
⊆ ℝ𝑛+1.

The valuated matroid 𝑣 can be regarded as a height function on the vertices of the polytope 𝑃𝑀

giving rise to the lifted polytope Γ(𝑣), which is defined to be the convex hull of{
(𝑒𝐵, 𝑣(𝐵)) ∈ ℝ𝑛+2 ∣ 𝐵 ∈ ℬ(𝑀)

}
.

Projecting the lower facets of Γ(𝑣) back to ℝ𝑛+1 induces a polytopal subdivision𝑣 of 𝑃𝑀 , called
the regular subdivision induced by 𝑣. By [42, Proposition 2.2] (also see [30, Lemma 4.4.4] or [25,
Theorem 10.36]), a real-valued function from the vertices of 𝑃𝑀 is a valuated matroid if and only
if all the faces of the induced regular subdivision are matroid polytopes.
A vector 𝑢 ∈ ℝ𝑛+1 selects a face of the regular subdivision induced by 𝑣 by taking the convex

hull of all vertices 𝑒𝐵 of 𝑃𝑀 such that 𝑣(𝐵) − 𝑢 ⋅ 𝑒𝐵 is minimized. Such a face corresponds to the
polytope of a matroid, the so-called inital matroid𝑀𝑢 of𝑀 at 𝑢. For a loopless valuated matroid
𝑣, we have that:
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 23 of 37

Proposition 4.6 [15] or [42, Proposition 2.3]. The interior of the tropical linear space (𝑣), that
is, the points with finite coordinates and satisfying Equation (2), equals the set

(𝑣)◦ = {𝑢 ∈ ℝ𝑛+1 ∣ 𝑀𝑢 has no loops}.

The closure operation only adds points with infinite coordinates.

The condition of𝑀𝑢 not having loops is related to the minimum being achieved twice in Equa-
tion (2). The set (𝑣)◦ has a natural polyhedral structure labeled by the initial matroids, where a
cell consists of all the points in (𝑣) whose associated initial matroid is constant, a given𝑀𝑢. By
taking the closure, this polyhedral structure extends to (𝑣).

4.4 Tropicalized linear spaces

Let 𝜄 = [𝑓0 ∶ ⋯ ∶ 𝑓𝑛]∶ ℙ𝑟 ↪ ℙ𝑛 with 𝑓0, … , 𝑓𝑛 ∈ (𝐾𝑟+1)∗ be a linear embedding. Let 𝑣 be the
valuated matroid of rank 𝑟 + 1 on 𝐸 = {0, … , 𝑛} associated to the 𝑓0, … , 𝑓𝑛, as in Example 4.3.
Note that another representative 𝑓′

0, … , 𝑓′
𝑛 of [𝑓0 ∶ ⋯ ∶ 𝑓𝑛] is related bymultiplying with a scalar

𝜆 ≠ 0. Hence, its associated valuated matroid 𝑣′ satisfies that 𝑣′ = 𝑣 + (𝑟 + 1) ⋅ val 𝜆. So, both 𝑣
and 𝑣′ define the same tropical linear space (𝑣) and the same underlying matroid𝑀. Moreover,
we have:

Theorem 4.7 [7, Theorem B; 42, Proposition 4.2]. The tropical linear space associated with
a realizable valuated matroid coincides with the tropicalization of the corresponding linear
embedding:

(𝑣) = Trop(ℙ𝑟, 𝜄).

Without loss of generality, we may assume that 𝑓𝑖 ≠ 0 for all 𝑖 ∈ {0, … , 𝑛}. Then Trop(ℙ𝑟, 𝜄)
equals the closure in 𝕋ℙ𝑛 of the noncompactified tropicalization

Trop(ℙ𝑟, 𝜄) ∩ ℝ𝑛+1∕ℝ𝟙 = Trop
(
𝜄(ℙ𝑟) ∩ 𝔾𝑛

𝑚

)
.

Again, we can get an initial matroid 𝑀𝑢 from 𝑢 = [𝑢0 ∶ ⋯ ∶ 𝑢𝑛] ∈ Trop(𝜄(ℙ𝑟) ∩ 𝔾𝑛
𝑚) by consid-

ering the matroid of rank 𝑟 + 1 on 𝐸 whose bases are the bases 𝐵 = {𝑏0, … , 𝑏𝑟} of 𝑀 such that
𝑣(𝐵) − 𝑢𝑏0

− … − 𝑢𝑏𝑟
is minimal. This definition is independent of the choice of representative of

𝑢.
In [37], the author defines the notion of a local tropical linear space that can be extended to our

compact setting, that is, for tropical linear spaces in 𝕋ℙ𝑛.

Definition 4.8. Let 𝐵 = {𝑏0, … , 𝑏𝑟} be a basis of𝑀. The local tropical linear space Trop(ℙ𝑟, 𝜄)𝐵 ⊂
𝕋ℙ𝑛 is defined as the closure of the set of vectors 𝑢 ∈ Trop(𝜄(ℙ𝑟) ∩ 𝔾𝑛

𝑚) such that𝑀𝑢 contains the
basis 𝐵.

The tropical linear space Trop(ℙ𝑟, 𝜄) is the union of all its local tropical linear spaces
Trop(ℙ𝑟, 𝜄)𝐵.
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24 of 37 BATTISTELLA et al.

F IGURE 3 The compactified cones of Trop(ℙ2, id) = 𝕋ℙ2 given by flats of the uniform matroid 𝑈3,3. This
also represents the compactified apartment in the spherical building 2(𝐾).

Remark 4.9. In terms of polyhedral subdivisions, the (open part) of the local tropical linear space
Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙 is a polyhedral complex dual to the faces of the regular subdivision 𝑣

that contain the vertex 𝑒𝐵. For details, we refer the reader to [37, Corollary 2.5].

4.5 The trivial valuation case

Throughout this subsection, we assume that 𝑣 is trivially valued, that is, for all𝐴 ∈
( 𝐸
𝑟+1

)
, we have

that 𝑣(𝐴) = 0 if and only if 𝐴 is a basis. This way we may identify 𝑣 with its underlying matroid
𝑀 and the subdivision𝑣 of 𝑃𝑀 from Subsection 4.3 is trivial. So, the polyhedral complex of (𝑣)
is a fan, known as the Bergman fan of𝑀 (cf. [30, section 4.2]).
The following theorem refines the polyhedral structure of the Bergman fan, by realizing its

support as the order complex associated to the poset of flats of𝑀.

Theorem 4.10 [30, Theorem 4.2.6]. Let 𝑀 be a loopless matroid. The cones ⟨𝑒𝐹1
, … , 𝑒𝐹𝑙

⟩ℝ⩾0
+ ℝ𝟙

in ℝ𝑛+1∕𝟙 for every chain of flats ∅ ⊊ 𝐹1 ⊊ ⋯ ⊊ 𝐹𝑙 form a fan with support (𝑀). In particular,
(𝑀) ∩ ℝ𝑛+1∕𝟙 is homeomorphic to the cone over the order complex of the lattice of flats of𝑀.

With this polyhedral structure, we can describe the boundary at infinity of the cones, and see
that it differs from a usual coordinate-wise compactification at infinity. Namely, for any cone 𝜎
given by a chain of flats ∅ ⊊ 𝐹1 ⊊ ⋯ ⊊ 𝐹𝑙, the closure in 𝕋ℙ𝑛 is given by ⟨𝑒𝐹1

, … , 𝑒𝐹𝑙
⟩ℝ⩾0

+ ℝ𝟙.
In particular, if the 𝑖th coordinate of a point in 𝜎 is infinite, then we consider the minimal 𝑗
such that 𝑖 ∈ 𝐹𝑗 , and we have that the 𝑖′th coordinate is also infinity for any 𝑖′ ∈ 𝐹𝑗 . Thus,
there is a single maximal stratum in the boundary of (𝑣) for each cone, which can alterna-
tively be explained by the fact that the cone structure above triangulates the Bergman fan of 𝑀
(see [30, section 4.2]).

Example 4.11. We consider the embedding ℙ2
id
��→ ℙ2. Then the associated matroid has

as ground set {𝑒∗0 , 𝑒
∗
1 , 𝑒

∗
2 }, and every subset is independent, that is, we have the uniform

matroid 𝑈3,3. The Bergman fan of 𝑈3,3 consists of a single cone ℝ2. However, there
are six nontrivial flats, namely all three 1-dimensional subspaces and three 2-dimensional
subspaces. In Figure 3, we labeled all 1-dimensional cones corresponding to nontrivial
flats.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 25 of 37

5 FAITHFUL LINEAR TROPICALIZATION

The goal of this section is to show Theorem B from the introduction. We recall its statement:

Theorem 5.1 (Theorem B). Let 𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 be a linear closed immersion. Then there is a natural
piecewise linear embedding 𝐽 ∶ Trop(ℙ𝑟, 𝜄) → 𝑟(𝐾) that makes the following diagram commute

By a piecewise linear embedding 𝐽, we mean that we have a finite covering of Trop(ℙ𝑟, 𝜄) by
subcomplexes such that the image of each subcomplex lies in an apartment and the restriction
of 𝐽 on each subcomplex is piecewise linear. In particular, 𝜋𝜄 induces a piecewise linear homeo-
morphism between the union of apartments

⋃
𝐵∈ℬ(𝑀) (𝐵) and the tropicalized linear subspace

Trop(ℙ𝑟, 𝜄).
Choose𝑓0, … , 𝑓𝑛 ∈ (𝐾𝑟+1)∗ defining the embedding 𝜄 ∶ ℙ𝑟 ↪ ℙ𝑛 and let 𝑣 be the corresponding

valuated matroid of rank 𝑟 + 1 on 𝐸 = {0, … , 𝑛} as in Example (4.3) (a). As above, we assume
that 𝑓𝑖 ≠ 0 for all 𝑖 ∈ 𝐸. Let 𝐵 ∈ ℬ(𝑀) be a basis of the underlying matroid 𝑀. Recall that the
compactified apartment(𝐵) in 𝑟(𝐾) denotes the set of all seminorms on (𝐾𝑟+1)∗ diagonalized
by 𝐵. It is homeomorphic to 𝕋ℙ𝑟: a parameterization 𝕋ℙ𝑟

∼
�→ (𝐵) is given by

𝑣 = [𝑣0 ∶ ⋯ ∶ 𝑣𝑟] ⟼ ‖⋅‖𝐵,𝑣.
This map is well-defined because different projective representatives 𝑣′ = 𝑣 + 𝜆𝟙 give rise to
homothetic seminorms ‖ ⋅ ‖𝐵,𝑣′ = exp(−𝜆)||.||𝐵,𝑣 .
For the proof of TheoremB,we need a couple of technical results first.We beginwith a valuative

version of Cramer’s rule.

Lemma 5.2. Let 𝐵 be a basis of 𝑀, and 𝑘 ∈ 𝐸 ⧵ 𝐵. Write 𝑓𝑘 =
∑

𝑏∈𝐵 𝜆𝑏𝑓𝑏 with 𝜆𝑏 ∈ 𝐾. For all
𝑏 ∈ 𝐵 we have

val(𝜆𝑏) = 𝑣(𝑘 ∪ 𝐵 ⧵ 𝑏) − 𝑣(𝐵).

Proof. Label the elements of 𝐵 as 𝑏0, … , 𝑏𝑟, with 𝑏0 equal to our chosen 𝑏. Using multilinearity of
the determinant and properties of the valuation we find:

𝑣(𝑘 ∪ 𝐵 ⧵ 𝑏) = val
(
det
[
𝑓𝑘 𝑓𝑏1

⋯ 𝑓𝑏𝑟

])
= val

(∑
𝑖∈𝐵

𝜆𝑖 det
[
𝑓𝑖 𝑓𝑏1

⋯ 𝑓𝑏𝑟

])

= val
(
𝜆𝑏0

⋅ det
[
𝑓𝑏0

⋯ 𝑓𝑏𝑟

])
= val(𝜆𝑏) + 𝑣(𝐵).

□
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26 of 37 BATTISTELLA et al.

Lemma 5.3. Let 𝐵 be a basis of (𝐸, 𝑣). If 𝑢 is in (𝑣), then there is 𝑘 ∈ 𝐵 such that 𝑢𝑘 ≠ ∞.

Proof. If 𝐵 = 𝐸, the statement follows from the definition of tropical projective space. Otherwise,
assume there is 𝑢 ∈ (𝑣) with 𝑢𝑖 = ∞ for all 𝑖 ∈ 𝐵. Choose 𝑘 ∈ 𝐸 ⧵ 𝐵 such that 𝑢𝑘 < ∞ and set
𝜏 = 𝑘 ∪ 𝐵. As 𝐵 is a basis, we have that 𝑣(𝐵) + 𝑢𝑏 < ∞. But this is the only finite term in the
minimum for Definition 4.4 hence it is not attained twice for 𝜏, which is a contradiction. □

For the following statement we interpret [37, Theorem 2.6] in our setting and extend to the
compactifications. It gives a piecewise linear homeomorphism between the local tropical linear
space Trop(ℙ𝑟, 𝜄)𝐵 (as in Definition 4.8) and the compactified apartment(𝐵).

Proposition 5.4. Let 𝐵 = {𝑏0, … , 𝑏𝑟} be a basis of 𝑀. The map 𝐽𝐵 sending 𝑢 ∈ Trop(ℙ𝑟, 𝜄)𝐵 to
the seminorm ‖ ⋅ ‖𝐵,𝑢𝐵

, where 𝑢𝐵 = [𝑢𝑏0
∶ ⋯ ∶ 𝑢𝑏𝑟

], is a piecewise linear homeomorphism between
Trop(ℙ𝑟, 𝜄)𝐵 and(𝐵). Its inverse is the restriction of𝜋𝜄. Explicitly, the seminorm 𝑥 = ||.||𝐵,𝑣 ∈ (𝐵)
is mapped to 𝜋𝜄(𝑥) ∈ Trop(ℙ𝑟, 𝜄)𝐵 with

𝜋𝜄(𝑥)𝑘 =

{
𝑣𝑘 if 𝑘 ∈ 𝐵,

min𝑖∈𝐵 𝑣(𝑘 ∪ 𝐵 ⧵ 𝑖) − 𝑣(𝐵) + 𝑣𝑘 otherwise.

Proof. First, we define 𝐽𝐵 on the open dense subset Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙 and show that this
gives a piecewise linear homeomorphism to(𝐵). Clearly, the map 𝜋𝜄 is injective on(𝐵). So, we
show that 𝜋𝜄◦𝐽𝐵 is the identity on Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙, that is for 𝑢 in the latter set we show

𝜋𝜄(𝐽𝐵(𝑢)) = 𝜋𝜄

(||.||𝐵,𝑢𝐵

)
=
[
− log ||𝑓0||𝐵,𝑢𝐵

∶ ⋯ ∶ − log ||𝑓𝑛||𝐵,𝑢𝐵

]
= [𝑢0 ∶ ⋯ ∶ 𝑢𝑛].

As − log ‖𝑓𝑏‖𝐵,𝑢𝐵
= 𝑢𝑏 for 𝑏 ∈ 𝐵, we only need to check the equality for 𝑘 in 𝐸 ⧵ 𝐵. As 𝑢 ∈

Trop(ℙ𝑟, 𝜄), the condition in Definition 4.4 for 𝐵 ∪ {𝑘} says that the minimum is attained at least
twice in

min
𝑖∈𝑘∪𝐵

{
𝑣(𝑘 ∪ 𝐵 ⧵ 𝑖) + 𝑢𝑖

}
.

By subtracting 𝑢 ⋅ 𝑒𝑘∪𝐵 we see it is equivalent to the minimum being attainted at least twice in

min
𝑖∈𝑘∪𝐵

{
𝑣(𝑘 ∪ 𝐵 ⧵ 𝑖) − 𝑢 ⋅ 𝑒𝑘∪𝐵⧵𝑖

}
.

As 𝐵 is a basis of the initial matroid 𝑀𝑢, it minimizes the expression 𝑣(𝜎) − 𝑢 ⋅ 𝑒𝜎 over all
𝜎 ∈

( 𝐸
𝑟+1

)
. So, the minimum is achieved at 𝑖 = 𝑘 and some other 𝑖 = 𝑙. That is, for all 𝑖 ∈ 𝐵

we have

𝑣(𝐵) + 𝑢𝑘 = 𝑣(𝑘 ∪ 𝐵 ⧵ 𝑙) + 𝑢𝑙 ⩽ 𝑣(𝑘 ∪ 𝐵 ⧵ 𝑖) + 𝑢𝑖.

Writing 𝑓𝑘 =
∑

𝑖∈𝐵 𝜆𝑖𝑓𝑖 , by Lemma 5.2 this is equivalent to

𝑢𝑘 = val(𝜆𝑙) + 𝑢𝑙 ⩽ val(𝜆𝑖) + 𝑢𝑖

for all 𝑖 ∈ 𝐵. Hence, − log ‖𝑓𝑘‖𝐵,𝑢𝐵
= min𝑖∈𝐵(val(𝜆𝑖) + 𝑢𝑖) = 𝑢𝑘.
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 27 of 37

This also gives the alternative description of 𝜋𝜄. We are left to show that 𝜋𝜄((𝐵)) lies in
Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙 for which we refer to [37, Theorem 2.6]. Hence, 𝐽𝐵 and the restriction
of 𝜋𝜄 are piecewise linear inverse homeomorphisms between Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙 and (𝐵).
We now extend 𝐽𝐵 naturally to a piecewise linear map Trop(ℙ𝑟, 𝜄)𝐵 ⟶ (𝐵) by sending 𝑢 =
[𝑢0 ∶ ⋯ ∶ 𝑢𝑛] to ||.||𝐵,𝑢𝐵

. This is well-defined if [𝑢𝑏0
∶ ⋯ ∶ 𝑢𝑏𝑟

] lies in 𝕋ℙ𝑟, namely if there is at
least one finite coordinate in [𝑢𝑏0

∶ ⋯ ∶ 𝑢𝑏𝑟
]; this is proven in Lemma 5.3 and using the fact that

Trop(ℙ𝑟, 𝜄) = (𝑣). Then, 𝜋𝜄◦𝐽𝐵 is the identity on Trop(ℙ𝑟, 𝜄)𝐵 because we have seen it is the iden-
tity for a dense subset and Trop(ℙ𝑟, 𝜄)𝐵 is Hausdorff. As(𝐵) is dense in(𝐵), the image𝜋𝜄((𝐵))
is exactly the closure of Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙 which is Trop(ℙ𝑟, 𝜄)𝐵. As before, 𝐽𝐵◦𝜋𝜄|(𝐵) = id

on(𝐵) which concludes the proof. □

Proof of Theorem B. Recall that Trop(ℙ𝑟, 𝜄) is the union of all its local tropical linear spaces
Trop(ℙ𝑟, 𝜄)𝐵 where 𝐵 runs over the bases of the matroid 𝑀 associated to Trop(ℙ𝑟, 𝜄). Thus, we
define 𝐽 locally as 𝐽𝐵 and show that the maps 𝐽𝐵 glue. For 𝐴, 𝐵 ∈ (𝑀), we show that 𝐽𝐴 and
𝐽𝐵 glue on the open part Trop(ℙ𝑟, 𝜄)𝐴 ∩ Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙. Choose 𝑢 = [𝑢0 ∶ ⋯ ∶ 𝑢𝑛] in the
latter set and let (𝑢0, … , 𝑢𝑛) ∈ ℝ𝑛+1 be a representative. As in Proposition 5.4, we write 𝑢𝐴, 𝑢𝐵 for
the vectors inℝ𝑟+1 with the coordinates of 𝑢 indexed by𝐴 and𝐵, respectively. If ‖ ⋅ ‖𝐴,𝑢𝐴

equals ‖ ⋅‖𝐵,𝑢𝐵
, we get a piecewise linear homeomorphism between Trop(ℙ𝑟, 𝜄)𝐴 ∩ Trop(ℙ𝑟, 𝜄)𝐵 ∩ ℝ𝑛+1∕ℝ𝟙

and(𝐴) ∩(𝐵).

Claim. The seminorms ‖ ⋅ ‖𝐴,𝑢𝐴
and ‖ ⋅ ‖𝐵,𝑢𝐵

are equal.
First assume that 𝐴 and 𝐵 differ by two elements, that is, there are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such

that 𝐴 ⧵ 𝑎 = 𝐵 ⧵ 𝑏. Choose 𝑣 ∈ (𝐾𝑟+1)∗ and write it in terms of the bases 𝐴 and 𝐵: let 𝑣 =∑
𝑖∈𝐴 𝛼𝑖𝑓𝑖 = 𝛼𝑎𝑓𝑎 +

∑
𝑖∈𝐴⧵𝑎 𝛼𝑖𝑓𝑖 and 𝑓𝑎 = 𝛽𝑏𝑓𝑏 +

∑
𝑗∈𝐵⧵𝑏 𝛽𝑗𝑓𝑗 . Replacing, we get 𝑣 = 𝛼𝑎𝛽𝑏𝑓𝑏 +

𝛼𝑎
∑

𝑗∈𝐵⧵𝑏 𝛽𝑗𝑓𝑗 +
∑

𝑖∈𝐴⧵𝑎 𝛼𝑖𝑓𝑖 = 𝛼𝑎𝛽𝑏𝑓𝑏 +
∑

𝑗∈𝐵⧵𝑏(𝛼𝑎𝛽𝑗 + 𝛼𝑗)𝑓𝑗 . We want to show equality of
the expressions

− log ‖𝑣‖𝐴,𝑢𝐴
= min

{
val(𝛼𝑎) + 𝑢𝑎, min

𝑖∈𝐴⧵𝑎
val(𝛼𝑖) + 𝑢𝑖

}
, (3)

− log ||𝑣||𝐵,𝑢𝐵
= min

{
val(𝛼𝑎) + val(𝛽𝑏) + 𝑢𝑏, min

𝑗∈𝐵⧵𝑏
{val(𝛼𝑎𝛽𝑗 + 𝛼𝑗) + 𝑢𝑗}

}
.

By Lemma 5.2, we have for every 𝑗 ∈ 𝐵 that

val(𝛽𝑗) = 𝑣(𝑎 ∪ 𝐵 ⧵ 𝑗) − 𝑣(𝐵) = 𝑣(𝐴 ∪ 𝐵 ⧵ 𝑗) − 𝑣(𝐵). (4)

As 𝑢 ∈ Trop(ℙ𝑟, 𝜄)𝐵, the basis 𝐵 is in the initial matroid 𝑀𝑢, so 𝐵 minimizes the expres-
sion 𝑣(𝜎) − 𝑢 ⋅ 𝑒𝜎 over all 𝜎 ∈

( 𝐸
𝑟+1

)
, so 𝑣(𝐵) − 𝑢 ⋅ 𝑒𝐵 ⩽ 𝑣(𝐴 ∪ 𝐵 ⧵ 𝑗) − 𝑢 ⋅ 𝑒𝐴∪𝐵⧵𝑗 for all 𝑗 ∈ 𝐵. By

Equation (4), we get

𝑢𝑎 − 𝑢𝑗 = 𝑢 ⋅ (𝑒𝐴∪𝐵⧵𝑗 − 𝑒𝐵) ⩽ 𝑣(𝐴 ∪ 𝐵 ⧵ 𝑗) − 𝑣(𝐵) = val(𝛽𝑗). (5)

Also 𝑢 is in Trop(ℙ𝑟, 𝜄)𝐴, so 𝐴 is in the initial matroid𝑀𝑢, thus 𝑣(𝐴) − 𝑢 ⋅ 𝑒𝐴 ⩽ 𝑣(𝐵) − 𝑢 ⋅ 𝑒𝐵 and
so

𝑢𝑎 − 𝑢𝑏 ⩾ 𝑣(𝐴) − 𝑣(𝐵) = val(𝛽𝑎). (6)
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28 of 37 BATTISTELLA et al.

If we set 𝑗 equals 𝑏 in Equation (5) and combine it with Equation (6), we get val(𝛽𝑏) + 𝑢𝑏 =
val(𝛽𝑎) + 𝑢𝑎, and furthermore val(𝛼𝑎) + val(𝛽𝑏) + 𝑢𝑏 = val(𝛼𝑎) + 𝑢𝑎. So, equality in the first
terms of Equation (3) happens.
It remains to show for 𝑖 ∈ 𝐴 ⧵ 𝑎 that either val(𝛼𝑎𝛽𝑖 + 𝛼𝑖) = val(𝛼𝑖) or val(𝛼𝑖) + 𝑢𝑖 ⩾

val(𝛼𝑎𝛽𝑖 + 𝛼𝑖) + 𝑢𝑖 ⩾ val(𝛼𝑎) + val(𝛽𝑏) + 𝑢𝑏. By properties of valuations we have

val(𝛼𝑎𝛽𝑖 + 𝛼𝑖) ⩾ min (val(𝛼𝑎) + val(𝛽𝑖), val(𝛼𝑖)),

andmoreover if val(𝛼𝑎) + val(𝛽𝑖) > val(𝛼𝑖), then val(𝛼𝑎𝛽𝑖 + 𝛼𝑖) = val(𝛼𝑖) andwe are done. Thus,
assume that val(𝛼𝑎) + val(𝛽𝑖) ⩽ val(𝛼𝑖). In that case, we calculate using Equations (4) and (6), the
following

(val(𝛼𝑎𝛽𝑖 + 𝛼𝑖) + 𝑢𝑖) − (val(𝛼𝑎) + val(𝛽𝑏) + 𝑢𝑏) ⩾ val(𝛽𝑖) − val(𝛽𝑏) + 𝑢𝑖 − 𝑢𝑏

⩾ 𝑢𝑎 − 𝑢𝑏 − val(𝛽𝑏) ⩾ 0.

Thus, both minima in Equation (3) coincide. For the general case where 𝐴Δ𝐵 has 2𝑚 elements,
as both 𝐴 and 𝐵 are bases in the initial matroid 𝑀𝑢, by the basis exchange axiom there is a
sequence of bases 𝐵0, 𝐵1, … , 𝐵𝑚 such that 𝐵0 = 𝐴 and 𝐵𝑚 = 𝐵 and every pair 𝐵𝑞, 𝐵𝑞+1 differs by
two elements. Thus, we may apply our previous argument to every pair 𝐵𝑞, 𝐵𝑞+1 to conclude the
claim for inner points of the local maps. Again, extending to the compactifications concludes the
proof. □

6 EXAMPLES: THE TRIVIALLY AND THE DISCRETELY VALUED
CASE

6.1 The trivial valuation case

We can make Theorems A and B explicit when the valuation is trivial. Recall from Example 1.10,
that there is a bijection

(𝑉)
1∶1
⟷

{
(0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = 𝑉∗, 𝑐1 > … > 𝑐𝑙−1) || 𝑐1, … , 𝑐𝑙−1 ∈ ℝ>0

}
𝑙=1,…,𝑟+1

.

In other words, a class of a seminorm is given by a flag of subspaces together with decreasing coor-
dinates corresponding to logarithms of the (constant) values of the representative with generic
value 1. We fix an embedding 𝜄 = [𝑓0 ∶ … ∶ 𝑓𝑛] ∶ ℙ𝑟 → ℙ𝑛 and obtain a realizable matroid𝑀 on
[𝑛]. Recall that we can compute Trop(ℙ𝑟, 𝜄) as a compactification of the cone complex over the
order complex of flats of𝑀, see Theorems 4.7 and 4.10.

Theorem A

We can explicitly compute the maps 𝜋𝜄 in terms of both the coordinates of the building above and
the description and coefficients for flats of𝑀.
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Let 𝑥 ∈ 𝑟(𝐾) be given by a flag 0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = (𝐾𝑟+1)∗ and coordinates 𝑐1 > … >
𝑐𝑙−1 as in Example 1.10. We formally set 𝑐0 ∶= ∞, 𝑐𝑙 ∶= 0. Let ||.|| ∈ 𝑥 be a representative with
generic value 1 and 𝑑𝑗 ∶= exp(−𝑐𝑗). Recall that then 𝑑𝑗 is the constant value of ||.|| on 𝑉𝑗 for 𝑗 =
0,… , 𝑙. Fix a given coordinate 𝑖 ∈ [𝑛] and let 𝑗 be minimal such that 𝑓𝑖 ∈ 𝑉𝑗 . Then− log(||𝑓𝑖||) =
− log(𝑑𝑗) = 𝑐𝑗 . We consider the matroid on [𝑛] induced by 𝜄 and for 𝑗 = 0,… , 𝑙 we define a flat
𝐹𝑗 = {𝑖 ∈ [𝑛] ∣ 𝑓𝑖 ∈ 𝑉𝑗}. Then the above computation shows

𝜋𝜄(||.||) = [− log(||𝑓0||) ∶ ⋯ ∶ − log(||𝑓𝑛||)]
=

𝑙−1∑
𝑗=0

(𝑐𝑗 − 𝑐𝑗+1)𝑒𝐹𝑗
∈ Trop(ℙ𝑟, 𝜄).

Theorem B

A point 𝑢 = [𝑢0 ∶ ⋯ ∶ 𝑢𝑛] ∈ Trop(ℙ𝑟, 𝜄) can be written as

𝑢 =
𝑙∑

𝑗=0

𝑎𝑗𝑒𝐹𝑗

for 𝑎𝑗 ∈ ℝ⩾0 and a chain of flats 𝐹0 ⊆ ⋯ ⊆ 𝐹𝑙 = [𝑛]. Note that each flat 𝐹𝑗 of 𝑀 yields a
subspace 𝑉𝑗 of (𝐾𝑟+1)∗ and that proper inclusions of flats yield proper inclusions of their
corresponding subspaces.
Let 𝐵 ∈ ℬ(𝑀) be any basis such that for all 𝑗 = 0,… , 𝑙 the rank of 𝐹𝑗 ∩ 𝐵 equals the rank of 𝐹𝑗 .

Such a basis can be obtained by successively extending bases of the flats. Then 𝑢 lies in the local
tropical linear space Trop(ℙ𝑟, 𝜄)𝐵. We want to compute the map 𝐽𝐵 ∶ Trop(ℙ𝑟, 𝜄)𝐵 → 𝑟(𝐾) from
Proposition 5.4.
Fix 𝑖 ∈ 𝐵 and let 𝑗 be minimal such that 𝑖 ∈ 𝐹𝑗 . Then we have

𝑢𝑖 =
∑

𝑘∶𝑖∈𝐹𝑘

𝑎𝑘 =
𝑙∑

𝑘=𝑗

𝑎𝑘.

Then 𝐽𝐵 sends𝑢 to the homothety class of the seminormhaving generic constant value exp(−𝑢𝑖) =
exp(−

∑𝑙
𝑘=𝑗 𝑎𝑘) on 𝑉𝑗 . In the coordinates from Example 1.10, if we set 𝑐𝑗 ∶=

∑𝑙−1
𝑘=𝑗 𝑎𝑘, we have

𝐽(𝑢) = 𝐽𝐵(𝑢) =
(
0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑙 = (𝐾𝑟+1)∗, 𝑐1 > … > 𝑐𝑙−1

)
.

6.2 Lattices and the discrete valuation case

Let 𝑉 be a vector space of dimension 𝑟 + 1 over 𝐾.

Definition 6.1. A lattice in 𝑉∗ is an 𝐾-submodule Λ such that

Λ ⊗𝐾
𝐾 ≃ 𝑉∗.
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30 of 37 BATTISTELLA et al.

To a linear map 𝑓∶ 𝑉 → 𝑊 and a lattice Λ ⊆ 𝑉∗, we can associate the lattice (𝑓𝑡)−1(Λ) in𝑊∗.

Remark 6.2. That Λ ⊗𝐾
𝐾 ≃ 𝑉∗ is equivalent to the following: for every 𝑓 ∈ 𝑉∗ there exists a 𝑐

in 𝐾 such that 𝑐−1𝑓 is in Λ.

Note that, despite 𝐾 being generated over 𝐾 by infinitely many elements 𝑒−𝛾, 𝛾 ∈ Γ⩾0 (where
val(𝑒−𝛾) = −𝛾), these generators satisfy obvious relations 𝑒−𝛾1

= 𝑟12𝑒−𝛾2
with 𝑟12 ∈ 𝐾 for 𝛾1 <

𝛾2. When inverting all the 𝑟𝑖𝑗 , the relations show that the resulting module is freely generated
by one element 𝑒0, which can be taken to be 1 ∈ 𝐾, showing that 𝐾 ⊗𝐾

𝐾 ≃ 𝐾. So, a lat-
tice could contain a vector subspace of 𝑉∗, in which case it would not be finitely generated as
an 𝐾-module.

Lemma 6.3. If a lattice is finitely generated, then it is free on 𝑟 + 1 generators.

Proof. As the lattice spans a vector space of dimension 𝑟 + 1 over 𝐾, 𝑟 + 1 is clearly the minimum
number of generators. Suppose that there were 𝑟 + 2. Then we would find a nontrivial 𝐾-linear
dependence relation. Compare the denominators andmultiply by the one (say it is the 0th) achiev-
ing the highest absolute value. We thus obtain an 𝐾-linear dependence relation with invertible
0th coefficient, showing that the 0th generator is redundant. □

In the following we present ways to go between seminorms and lattices. In general, they are
not inverse to one another (see [40, Lemma I.2.2]).

Definition 6.4. Let Λ ⊆ 𝑉∗ be a lattice. The seminorm associated to Λ is (called its gauge):

𝑞Λ(𝑓) = inf
𝑓∈𝑐Λ

|𝑐| ∈ ℝ.

Definition 6.5. The lattice associated to a seminorm 𝑞 is the closed unit ball Λ𝑞 = 𝑞−1([0, 1]).

Remark 6.6. If Λ contains a vector subspace of 𝑉∗, the associated seminorm is not a norm, and
vice versa.

Note that all norms on a finite-dimensional vector space are equivalent. In particular, the space
is complete with respect to any norm. Once a basis𝑉 ≃ 𝐾𝑟+1 is chosen, one such norm is given by||(𝜆0, … , 𝜆𝑟)||∞ = max𝑖 |𝜆𝑖|, which is clearly diagonalizable. The closed unit polydisc is the lattice
{𝑣 ∈ 𝑉∶ ||𝑣||∞ ⩽ 1}. It is finitely generated by the elements of the chosen basis.

Proposition 6.7. If 𝐾 is spherically complete, the correspondences above induce an equivalence
between closed unit polydiscs (with respect to some basis and || ⋅ ||∞) and Γ-valued norms.

Proof. Let 𝑞 be a Γ-valued norm. As 𝐾 is spherically complete, there exists a basis {𝑣0, … , 𝑣𝑟} of
𝑉∗ such that 𝑞(𝜆0𝑣0 +⋯ + 𝜆𝑟𝑣𝑟) = max𝑖(|𝜆𝑖|𝛼𝑖). Note that 𝛼𝑖 = 𝑞(𝑒𝑖) is an element of the value
group by assumption. Let 𝑐𝑖 ∈ 𝐾 be any element such that |𝑐𝑖| = 𝛼𝑖 . Then the associated lattice
Λ𝑞 is the closed unit polydisc with respect to the basis {𝑐−1

0 𝑣0, … , 𝑐−1
𝑟 𝑣𝑟}.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12850 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 31 of 37

Vice versa, if Λ is the closed unit polydisc with respect to a basis {𝑣0, … , 𝑣𝑟}, then 𝑞Λ = || ⋅ ||∞
with respect to the same basis. Note that 𝑣 ∈ 𝑐Λ𝑞 if and only if 𝑞(𝑣) ⩽ |𝑐|, therefore

𝑞Λ𝑞
(𝑣) = inf

{|𝑐| || 𝑣 ∈ 𝑐Λ𝑞

}
= 𝑞(𝑣),

as we have assumed that 𝑞 takes values in Γ. The inclusion Λ ⊆ Λ𝑞Λ
is always true. On the other

hand, 𝑣 ∈ Λ𝑞Λ
if and only if 𝑞Λ(𝑣) ⩽ 1; but as 𝑞Λ = || ⋅ ||∞ with respect to some basis for which Λ

is the closed unit polydisc, it is clear that 𝑞Λ(𝑣) ⩽ 1 if and only if 𝑣 ∈ Λ. □

Remark 6.8. In the spherically complete case, a description of all lattices can be found in [8,
Theorem 3.6].

Corollary 6.9. If 𝐾 is a complete discretely valued field, the correspondences above induce an
equivalence between finitely generated lattices and integer-valued norms.

Aswe are interested in the building of 𝑃𝐺𝐿, we consider (semi)norms up to homothety (𝑞 ∼ 𝛾𝑞
for any 𝛾 ∈ exp(Γ)), which correspond to lattices up to homothety (Λ ∼ 𝑐Λ for any 𝑐 ∈ 𝐾∗).

Simplices
In the discretely valued case, there is a way of reconstructing the simplicial structure of the
building in terms of nested sequences of finitely generated lattices and collections of real numbers.
Indeed, to any norm 𝑞 we can associate a nested sequence of lattices{

Λ(𝑐) = 𝑞−1([0, 𝑐]) || 𝑐 ∈ [1, 𝑒]
}
.

Up to homothety, this list consists of 0 < 𝑘 + 1 ⩽ 𝑟 + 1 lattices Λ0 ⊆ … ⊆ Λ𝑘 ⊆ 𝜋−1Λ0, where 𝜋 is
a uniformizer of 𝐾 . Moreover, we can associate to 𝑞 the list of jumps:

{𝑐𝑖 = inf {𝑐 ∈ (1, 𝑒] ∣ Λ(𝑐) = Λ𝑖}}𝑖=1,…,𝑘.

Vice versa, given a nested sequence of lattices Λ0 ⊆ … ⊆ Λ𝑘 ⊆ 𝜋−1Λ0, we can find a basis
{𝑒0, … , 𝑒𝑟} of Λ𝑘 such that

Λℎ−1 = ⟨𝜋𝑒0, … , 𝜋𝑒𝑖ℎ , 𝑒𝑖ℎ+1, … , 𝑒𝑟⟩
for some 0 ⩽ 𝑖𝑘 < … < 𝑖1 < 𝑟 =∶ 𝑖0. Given 𝑐1, … , 𝑐𝑘 ∈ (1, 𝑒), we set 𝑐0 = 1 and 𝛼𝑖 = 𝑐𝑗 if 𝑖𝑗 < 𝑖 ⩽
𝑖𝑗−1. We then define the associated norm

𝑞(𝜆0𝑒0 +⋯ + 𝜆𝑟𝑒𝑟) = max
𝑖

{|𝜆𝑖|𝛼𝑖

}
.

Remark 6.10. Possibly infinitely generated lattices in𝑉∗ are dual to finitely generated submodules
of possibly nonmaximal rank in 𝑉, which provides another description of the compactification of
the building, as explained in [43, sections 3–4] in the case of a local field.

Convexity
In the discretely valued case, there are various notions of convexity in the building: Weyl con-
vexity (see, for instance, [1, section 4.11]) is the one that bears the closest resemblance to the
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32 of 37 BATTISTELLA et al.

metric approach to buildings. There are weaker notions of convexity that have been studied in
[26] from a tropical perspective: a set of lattices up to homothety is+-convex (resp., ∩-convex) if it
is closed under rescaling and taking sums (resp., intersections) as submodules of 𝐾𝑟+1. In terms
of norms, these operations correspond to taking pointwise maximum (resp., the largest norm that
is bounded above by pointwise minimum).
Membranes, introduced in [27], are +-convex unions of apartments, consisting of all lattices

admitting a basis of the form {𝜋𝑎0𝑓𝑖0
, … , 𝜋𝑎𝑟𝑓𝑖𝑟

}, where the 𝑎𝑖 ’s are integers and the 𝑓𝑖 ’s are chosen
from a fixed set of 𝑛 + 1 vectors {𝑓0, … , 𝑓𝑛} in𝐾𝑟+1. In [27, Theorem 4.11] and [26, Theorem 18], the
authors show that the lattice points in the membrane [𝑀] correspond bijectively to integer points
in Trop(ℙ𝑟, 𝜄), where 𝜄 denotes the embedding [𝑓0 ∶ … ∶ 𝑓𝑛] ∶ ℙ𝑟 �→ ℙ𝑛. Both the membrane and
the tropical linear space are indeed the tropical convex hull of finitely many points (at infin-
ity). The correspondence is based upon the nearest point map onto the tropical lattice polytope
Trop(ℙ𝑟, 𝜄) described in [26, Lemma 21], which can be interpreted as the tropicalization map 𝜋𝜄

and the section 𝐽 (see Section 5 for the definitions) restricted to the affine partTrop(ℙ𝑟, 𝜄) ∩ ℝ𝑛∕ℝ𝟙.

7 The UNIVERSAL REALIZABLE VALUATEDMATROID

7.1 Infinite tropicalization

Let 𝑣 be a valuated matroid on a, possibly infinite, ground set 𝐸, and let 𝐸′ ⊂ 𝐸 be any subset con-
taining a basis. Then the restriction of 𝑣 to

( 𝐸′

𝑟+1

)
yields again a valuated matroid 𝑣′. We associate

a tropical linear space to 𝑣 in general, by gluing together the usual construction for finite valuated
matroids. We define the sets

𝕋ℙ𝐸 ∶=
(
{(𝑢𝑒)𝑒∈𝐸 ∣ 𝑢𝑒 ∈ ℝ} ⧵ {(∞)𝑒∈𝐸}

)
∕ℝ𝟙

𝑈𝑣 ∶=
{
(𝑢𝑒)𝑒∈𝐸 ∈ 𝕋ℙ𝐸 || for all bases 𝐴 ⊂ 𝐸 there is 𝑎 ∈ 𝐴 with 𝑢𝑎 ≠ ∞

}
⊂ 𝕋ℙ𝐸.

Definition 7.1. The tropical linear space (𝑣) ⊂ 𝕋ℙ𝐸 associated to 𝑣 is the set of (𝑢𝑒)𝑒∈𝐸 ∈ 𝕋ℙ𝐸

such that for any 𝜏 ∈
( 𝐸
𝑟+2

)
the minimum in 𝑣(𝜏 ⧵ {𝑒}) + 𝑢𝑒 is attained at least twice.

Note that the proof of Lemma 5.3, does not use the finiteness condition of 𝐸, hence we have for
a valuated matroid 𝑣 and its associated tropical linear space that

(𝑣) ⊆ 𝑈𝑣 ⊆ 𝕋ℙ𝐸.

Passing to the smaller set 𝑈𝑣 allows us to endow it with a limit topology as follows. Let 𝐼 be the
category of finite subsets 𝐸′ of 𝐸 containing a basis, with inclusions as morphisms. Then we have
a functor from 𝐼op into the category of topological spaces, assigning to each 𝐸′ the space 𝑈𝑣′ ⊆
𝕋ℙ𝐸′ , where 𝑣′ is the restriction of 𝑣 to 𝐸′, and to every inclusion the corresponding coordinate
projection. Note that these coordinate projections are well-defined by the construction of the𝑈𝑣′ .
We see that

𝑈𝑣 = lim
←��
𝐸′∈𝐼

𝑈𝑣′ ,
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BUILDINGS, VALUATEDMATROIDS, AND TROPICAL LINEAR SPACES 33 of 37

and we can endow it with the limit topology. As we also have an identification

(𝑣)
∼
�→ lim

←��
𝐸′∈𝐼

(𝑣′),

and in particular we can endow (𝑣) with the limit topology.
Wenow restrict our attention to realizable valuatedmatroids. Recall that theuniversal realizable

matroid𝑤univ is given by𝑤univ(𝐴) = val(det(𝐴)) for𝐴 ∈
((𝐾𝑟+1)∗

𝑟+1

)
. TheoremA and Speyer’s result

on the tropicalization of finite linear subspaces (Theorem 4.7) allow us to identify the space of
seminorms on (𝐾𝑟+1)∗ up to homothety with the tropical linear space associated to the universal
realizable matroid.

Theorem 7.2 (Theorem C). The Goldman–Iwahori space is the tropical linear space associated to
the universal realizable matroid 𝑤univ , that is,

𝑟(𝐾) = (𝑤univ).

Proof. By Theorem A and Remark 3.6 (c), we can write 𝑟(𝐾) as the limit of all lin-
ear tropicalizations with respect to the category of coordinate projections. The tropicaliza-
tion functor from this category is naturally equivalent to the functor that associates to an
embedding 𝜄 = [𝑓0 ∶ ⋯ ∶ 𝑓𝑛] the tropical linear space associated to the valuated matroid
given by {𝑓0, … , 𝑓𝑛}, as repeating entries and permuting coordinates yields homeomorphic
tropicalizations. □

Let 𝐸 denote the set of (nonzero) vectors in 𝐾𝑟+1. We obtain linear maps⨁
𝐸

𝐾 ↠ 𝐾𝑟+1, (7)

and dually

𝜄univ ∶ 𝐾𝑟+1 ��→ 𝐾𝐸.

As in Example 4.3 and Subsection 4.4, we may associate to 𝜄univ the realizable valuated matroid
𝑤univ . Hence, we can interpret 𝑟(𝐾) as the tropicalization of the universal projective linear
subspace of rank 𝑟.
In the following, we will show that 𝑟(𝐾) is cut out by much simpler equations than

the ones coming from the universal realizable valuated matroid. We can think of (7) as the
(𝑟 + 1) × 𝐸 matrix whose 𝑒th column vector represents 𝑒 in the standard basis of 𝐾𝑟+1. It
follows that the 𝑖th row corresponds to the 𝑖th coordinate projection as a function on 𝐸,
that is:

Proposition 7.3. The image of 𝜄univ ∶ 𝐾𝑟+1 ↪ 𝐾𝐸 consists of (the restrictions of) all the linear
maps from 𝐾𝑟+1 (resp., 𝐸) to 𝐾. In particular, the equations of 𝜄univ involve only finitely many
variables.
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Proof. Let 𝑥𝑒 denote the coordinate on 𝐾𝐸 such that 𝑥𝑒(𝑓) = 𝑓(𝑒). The equations of 𝜄univ are

𝑥𝜆𝑒 = 𝜆𝑥𝑒, for 𝜆 ∈ 𝐾×, 𝑒, 𝜆𝑒 ∈ 𝐸;

𝑥𝑒1+𝑒2
= 𝑥𝑒1

+ 𝑥𝑒2
, for 𝑒1, 𝑒2, 𝑒1 + 𝑒2 ∈ 𝐸.

□

Remark 7.4. These are the equations of 𝐾𝑟+1 ↪ 𝐾𝐸′ for any subset 𝐸′ ⊆ 𝐸 and the corresponding
projection 𝐾𝐸 → 𝐾𝐸′ (restriction of functions).

Given a basis (𝑒1, … , 𝑒𝑟+1) of 𝐾𝑟+1 (e.g., the standard one), these equations are equivalent to

𝑥𝑒 =
𝑟+1∑
𝑖=1

[𝑒]𝑖𝑥𝑒𝑖
.

As a curiosity, we note that the large circuits of Definition 4.4 are equivalent to the
tropicalization of the small circuits from Proposition 7.3.

Proposition 7.5. Write 𝑤 for 𝑤univ . The minimum is attained at least twice in all

min (𝑢𝜆𝑒, 𝑢𝑒 + val(𝜆)) for 𝜆 ∈ 𝐾× and 𝑒, 𝜆𝑒 ∈ 𝐸; (8)

min
(
𝑢𝑒1+𝑒2

, 𝑢𝑒1
, 𝑢𝑒2

)
for 𝑒1, 𝑒2, 𝑒1 + 𝑒2 ∈ 𝐸; (9)

if and only if the minimum is attained at least twice in all

min
𝑖∈𝜏

(𝑢𝑖 + 𝑤(𝜏 ⧵ 𝑖)) for 𝜏 ∈

(
𝐸

𝑟 + 2

)
. (10)

Proof. (10)⇒(8): If 𝑒 is not 0, consider a basis 𝐵 = {𝑒, 𝑒1, … , 𝑒𝑟} and apply (10) to {𝜆𝑒} ∪ 𝐵. Note that
𝑤(𝜏 ⧵ 𝑖) = ∞ unless 𝑖 = 𝑒, 𝜆𝑒. Equation (8) follows. Equation (9) follows similarly.
(8) and (9)⇒(10): From Equation (8), we get 𝑢𝜆𝑒 = 𝑢𝑒 + val(𝜆), and by induction from

Equation (9) we get that for 𝑘 ⩾ 2 the minimum is attained at least twice in

min(𝑢𝑒1+⋯+𝑒𝑘
, 𝑢𝑒1

, … , 𝑢𝑒𝑘
). (11)

Let 𝜏 ∈
( 𝐸
𝑟+2

)
. If 𝜏 contains no basis, then Equation (10) is trivially true. Thus, suppose 𝜏 = 𝑓 ∪ 𝐵,

with 𝐵 a basis, and write 𝑓 =
∑

𝑒∈𝐵 𝜆𝑒𝑒. By Lemma 5.2, we have that val(𝜆𝑖) = 𝑤(𝜏 ⧵ 𝑖) − 𝑤(𝐵) for
all 𝑖 ∈ 𝐵. If we set 𝜆𝑓 = 1, so val(𝜆𝑓) = 0 and val(𝜆𝑖) = 𝑣(𝜏 ⧵ 𝑖) − 𝑤(𝐵) also for 𝑖 = 𝑓, we get

min
𝑖∈𝜏

(𝑢𝑖 + 𝑤(𝜏 ⧵ 𝑖)) − 𝑤(𝐵) =min
𝑖∈𝜏

(𝑢𝑖 + 𝑤(𝜏 ⧵ 𝑖) − 𝑤(𝐵))

=min
𝑖∈𝜏

(𝑢𝑖 + val(𝜆𝑖)) = min
𝑖∈𝜏

(𝑢𝜆𝑖𝑖
),

and the conclusion follows from Equation (11). □
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7.2 Tight spans

Many of our results extend work by Dress and collaborators in T-theory [10]. A tight span is an
isometric embedding of a metric space 𝐸 into a hyperconvex metric space 𝑇𝐸 . The motivation for
these spaces is fitting phylogenetic data; see the citedwork for a discussion. There are also applica-
tions to extending valuations in 𝑝-adic geometry [12]. A so-called four-point condition [10, section
4.6] is necessary and sufficient for a tight span to be anℝ-tree; see Figure 1 for an example of anℝ-
tree. This condition is essentially the basis exchange property for rank-2 valuatedmatroids.Hence,
generalizing to higher dimensions, [12] introduces the tight span of a rank-𝑟 valuated matroid
(𝐸, 𝑣) as

𝑇(𝐸,𝑣) =
{
𝑝 ∈ ℝ𝐸 ||| ∀𝑒 ∈ 𝐸 ∶ 𝑝(𝑒) = max

𝑒2,…,𝑒𝑟∈𝐸

{
𝑣(𝑒, 𝑒2, … , 𝑒𝑟) −

𝑟∑
𝑖=2

𝑝(𝑒𝑖)
}}

. (12)

The maximum in Equation (12) says that the functions 𝑝 efficiently satisfy a triangle inequality.
Their formulation usingmax is dual to our work usingmin. Another difference is that their space
is in affine ℝ𝐸 instead tropical projective space 𝕋ℙ𝑛.
Recall from Definition 4.8 the concept of local tropical linear space, and from Proposition 5.4

the homeomorphism between a local tropical linear space and a compactified apartment in the
building. In the setting of tight spans, an analogous description by local pieces holds: Given a basis
𝐵 = {𝑏1, … , 𝑏𝑟}, the map Φ𝐵 that sends a point (𝑢1, … , 𝑢𝑟) in the hyperplane 𝐻𝑣(𝐵) = {

∑𝑟
𝑖=1 𝑢𝑖 =

𝑣(𝐵)} to the linear map Φ𝐵(𝑢) ∶ 𝐸 → ℝ given by

𝑒 ⟼ max
𝑖∈𝐵

{
𝑣(𝑒 ∪ 𝐵 ⧵ 𝑖) + 𝑢𝑖

}
− 𝑣(𝐵)

is injective [11, Proposition 1]. There is also a polyhedral description for intersections Φ𝐴(𝐻) ∩
Φ𝐵(𝐻)with 𝐴 and 𝐵 bases of (𝐸, 𝑣). Moreover, as 𝐵 varies over all bases of (𝐸, 𝑣), the whole 𝑇(𝐸,𝑣)

is covered. It can be shown via the theory of (𝐵,𝑁)-pairs that the Φ𝐵(𝐻) form the apartments of
what is sometimes called the extended affine building of GL𝑛.

Theorem 7.6 [11, Theorem 1]. Let𝐾 be a non-Archimedean field with discrete valuation, and𝑤univ

the universal realizable matroid of rank 𝑟 as in Example 4.3. The space 𝑇(𝐾𝑟⧵0,𝑤univ )
is equal to the

space (𝑉) for 𝑉 = 𝐾𝑟.

A point 𝑝 ∈ 𝑇(𝐾𝑟⧵0,𝑤univ )
given by 𝑝 = Φ𝐵(𝑢) corresponds to seminorm ‖ ⋅ ‖𝑝 ∶ 𝐾𝑟 ⧵ 0 → ℝ

given by ‖ ⋅ ‖𝑝 = exp𝑝(⋅), which by Lemma 5.2 is diagonalizable by 𝐵 and 𝑢. The expression
Φ𝐵(𝑢)(𝑒) − 𝑣(𝐵) attains theminimumat least twice for all 𝑒 ∈ 𝐸 ⧵ 𝐵, that is, once for 𝑒 and once for
some 𝑖 in 𝐵. Hence, the equations from Definition 4.4 are satisfied for all 𝜏 = 𝑒 ∪ 𝐵. It is straight-
forward to show that these equations imply the same result for arbitrary 𝜏. Thus, as remarked by
Speyer on [42, p. 6], the tight span 𝑇(𝐸,𝑣) is a lift of (𝑣) to ℝ𝐸 .
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