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Abstract We study the effect of rotation on the spectrum of bound states for dust cores that source (quantum) black holes found in
Eur. Phys. J. C 82 (2022) 10. The dust ball is assumed to spin rigidly with sufficiently slow angular velocity that perturbation theory
can be applied. Like the total mass, the total angular momentum is shown to be quantised in Planck units, hence so is the horizon
area. For sufficiently small fraction of mass in the outermost layer, the model admits ground states which can spin fast enough within
the perturbative regime so as to describe regular rotating objects rather than black holes.

1 Introduction

Many proposals for resolving the classical spacetime singularities [1] in approaches to quantum gravity have been put forward
(for a necessarily limited selection, see Refs. [2–7]). Quite remarkably, a general feature obtained in semiclassical models of the
gravitational collapse is the appearance of a bounce at a minimum radius [8–10], which suggests that understanding the dynamics
of matter in the description of black hole formation [11] (and subsequent evolution [12]) is crucial. However, the nonlinearity of
Einstein’s equations makes it impossible to study realistic classical models analytically, and this furthermore renders their quantum
description intractable in general.

One can still hope to make some progress by studying those (over)simplified models obtained by forcing a strong symmetry and
unphysical equations of state for the collapsing matter which are employed to solve the Einstein equations at the classical level. One
such example is given by the Oppenheimer and Snyder model of a ball of dust collapsing solely under its own weight [13]. A discrete
spectrum of bound states for this prototype of matter core was found in Ref. [14] (see also Ref. [15] for more results1) for which we
will here estimate the effect of rotation. The key idea in Ref. [14] was to quantise the radial geodesic equation for dust located at the
areal radius of the ball in the Schwarzschild spacetime as an effective quantum mechanical description of the outermost layer. In
order to deal with rotation, we shall here include the term in that geodesic equation containing the angular momentum for a rigidly
rotating ball and compute its perturbative effects on the spectrum for sufficiently slow angular velocity.

2 Core quantum spectrum

Let us start by considering the collapse of a perfectly isotropic ball of dust with total ADM mass [21] M and areal radius R � R(τ ).
Here τ is the proper time of the dust particles following radial geodesics r � r (τ ) in the Schwarzschild spacetime metric2

ds2 � −
(

1 − 2 GN M0

r

)
dt2 +

(
1 − 2 GN M0

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) (2.1)

where M0 � M0(r ) is the (constant) fraction of ADM mass inside the sphere of radius r � r (τ ).

1 For thin shells, see Refs. [16–20].
2 We shall always use units with c � 1 and often write the Planck constant � � �pmp and the Newton constant GN � �p/mp, where �p and mp are the
Planck length and mass, respectively.
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In particular, we consider the outermost (thin) layer of (average) radius r � R(τ ) and mass μ � ε M , where 0 < ε < 1 is the
fraction of mass in that layer. 3 The evolution of R is governed by the mass-shell condition for the massive layer of four-velocity
uα � (ṫ, Ṙ, 0, 0), that is

E2
μ

μ2 − Ṙ2 +
2 GN M0

R
−

(
1 − 2 GN M0

R

)
L2

μ

R2 μ2 � 1 (2.2)

where dots denote derivatives with respect to τ , M0 � (1− ε) M , and Eμ and Lμ are the conserved momenta conjugated to t � t(τ )
and φ � φ(τ ), respectively.

2.1 Zero angular momentum and mass quantisation

The case of purely radial motion was analysed in Refs. [14, 15], which we briefly review here. For Lμ � 0, Eq. (2.2) reads

H0 ≡ P2

2 ε M
− ε(1 − ε)GN M2

R
� ε M

2

(
E2

μ

ε2 M2 − 1

)
≡ E (2.3)

where P � ε M Ṙ is the momentum conjugated to R � R(τ ). The canonical quantisation prescription with P̂ � −i � ∂R allows us
to write Eq. (2.3) as the time-independent Schrödinger equation

Ĥ0 	n̄ �
[
− �

2

2 ε M

(
d2

dR2 +
2

R

d

dR

)
− ε(1 − ε)GN M2

R

]
	n̄ � En̄ 	n̄ (2.4)

which is formally the same as the one for the s-states of the hydrogen atom. The solutions are thus given by the Hamiltonian
eigenfunctions

	n̄(R) �
√

ε6(1 − ε)3M9

π �3
p m

9
p n̄

5
exp

(
−ε2 (1 − ε) M3 R

n̄ m3
p �p

)
L1
n̄−1

(
2 ε2 (1 − ε) M3 R

n̄ m3
p �p

)
(2.5)

where the normalisation is defined in the scalar product

〈 n̄ | n̄′ 〉 � 4 π

∫ ∞

0
R2 	 ∗̄

n (R) 	n̄′ (R) dR � δn̄n̄′ (2.6)

the functions L1
n̄−1 are Laguerre polynomials and the nonnegative integer quantum number n̄ corresponds to the eigenvalues

En̄ � −ε3 (1 − ε)2 M5

2 n̄2 m4
p

. (2.7)

The expectation value of the areal radius on these states is given by

R̄n̄ ≡ 〈n̄|R̂|n̄〉 � 3 �p n̄2 m3
p

2 ε2 (1 − ε) M3 (2.8)

so that the quantum picture is the same that one would have in Newtonian physics. In particular, the ground state n̄ � 1 has a width
R̄1 ∼ �p (mp/M)3 and energy E1 ∼ −M (M/mp)4, which makes it practically indistinguishable from a point-like singularity if
M 
 mp.

In fact, the only general relativistic feature that the model retains is given by E � E(Eμ) in Eq. (2.3). By then assuming that Eμ

is well defined for the allowed quantum states, we obtain

0 ≤ E2
μ

ε2 M2 � 1 − ε2 (1 − ε)2

n̄2

(
M

mp

)4

(2.9)

which yields the lower bound

n̄ ≥ NM ≡ ε (1 − ε)

(
M

mp

)2

. (2.10)

The fundamental state of the outermost layer hence corresponds to n̄ � NM 
 1, with

ENM � −ε M

2
. (2.11)

3 See Ref. [15] for more details about the role of ε.
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This result clearly resembles Bekenstein’s famous area law quantisation [22], since the allowed values of the mass and gravitational
area are quantised in Planck units according to 4

AM � 16 π G2
N M2 � 16 �2

p NM

ε (1 − ε)
(2.12)

where the entire spectrum is given by n̄ � NM + n, with n a nonnegative integer.
We can now see that the singularity is precluded, as one expects from semiclassical models [8, 9], since

R̄NM � 3

2
(1 − ε)GN M � 3

4
(1 − ε) RH (2.13)

and R̄NM ∼ RH 
 �p unless the value of ε is extremely close to 1. Furthermore R̄NM < (3/4) RH for any value of 0 < ε < 1, so
that a non-spinning dust ball in the ground state can be the matter core of a quantum black hole for any mass M. We also notice that
the relative uncertainty in the areal radius is given by

�Rn̄

R̄n̄
≡

√
〈n̄|R̂2|n̄〉 − R̄2

n

R̄n̄
�

√
n̄2 + 2

3 n̄
(2.14)

which asymptotes to a minimum of 1/3 for n̄ → ∞. In the following, for simplicity, we will mostly consider the ground state
n̄ � NM with M 
 mp. 5

2.2 Rigidly rotating ball

Next, we consider the case of a dust ball which rotates rigidly with angular velocity ω. A proper general relativistic treatment would
require replacing the outer Schwarzschild geometry with the Kerr metric, but we will here be satisfied with a perturbative approach
for the quantum system described previously. In particular, the outermost layer would have classical angular momentum

Lε � 2

3
ε M R2 ω (2.15)

which we assume is small enough and replace for Lμ in Eq. (2.2). This yields the total Hamiltonian H � H0 + VL , where H0 is
given in Eq. (2.3) and

VL �
(

1 − 2 GN (1 − ε) M)

R

)
L2

ε

2 ε M R2

� 2

9
ε M

[
R2 − 2 GN (1 − ε) M R

]
ω2. (2.16)

In perturbation theory, this term will result in a correction to the eigenvalues (2.7) given by

�En̄ ≡ 〈n̄| V̂L |n̄〉 � 2

9
ε M R̄n̄

[
10

9
R̄n̄ − 2 GN (1 − ε) M

]
ω2 (2.17)

where we used Eq. (2.14) for n̄ 
 1 and R̄n̄ is given in Eq. (2.8).
For the ground state n̄ � NM , we thus find

�ENM � m4
p − ε2 (1 − ε)2 M4

9 ε M
G2

N ω2

� −1

9
ε M (1 − ε)2 G2

N M2 ω2 (2.18)

in which we assumed that ε (1 − ε) M2 
 m2
p. We then have

〈NM | Ĥ |NM 〉 � ENM + �ENM � ENM

[
1 +

2

9
(1 − ε)2 G2

N M2 ω2
]
. (2.19)

This result is acceptable as long as |�ENM |� |ENM |, or

|ω| � 3√
2(1 − ε)GN M

≡ ωmax (2.20)

We further notice that ωmax corresponds to a total angular momentum per unit mass given by

amax ≡ Lc

M
� 2

5
〈NM | R̂2 |NM 〉 ωmax � 2 (1 − ε)GN M. (2.21)

4 We recall that RH � 2 GN M is the classical Schwarzschild (or gravitational) radius of the ball.
5 For instance, for M � M� � 1030 kg, one finds NM ∼ 1076.

123



  104 Page 4 of 6 Eur. Phys. J. Plus         (2023) 138:104 

In the same approximation, we can compute the correction to the ground state quantum number to leading order in ω, which is given
by

NML � NM

[
1 +

1

9
(1 − ε)2 G2

N M2 ω2
]
. (2.22)

As expected, the angular momentum acts as an effective potential barrier and increases the minimum allowed quantum number from
NM to NML , corresponding to a larger radius

R̄NML � R̄NM

[
1 +

2

9
(1 − ε)2 G2

N M2 ω2
]
. (2.23)

In particular, for ω � ωmax, one obtains

Nmax � 3

2
ε (1 − ε)

(
M

mp

)2

� 3

2
NM (2.24)

corresponding to a radius R̄max � 2 R̄NM � 3 (1 − ε)GN M .

2.3 Outer geometry

We can now study the geometry outside the ball in the ground state by assuming that it is indeed given by the Kerr metric. We recall
that the outer horizon for a Kerr metric is located at

R+ � GN M +
√
G2

N M2 − a2

� 2 GN M

[
1 − 1

4
(1 − ε)4 G2

N M2 ω2
]

(2.25)

whereas the inner Cauchy horizon would be at

R− �GN M −
√
G2

N M2 − a2

� 1

2
(1 − ε)4 G3

N M3 ω2 � R̄NM . (2.26)

Since R− is located well inside the dust core, the relevant geometry will differ from the Kerr vacuum there and the inner horizon
cannot be realised (at least) within the perturbative approximation. On the other hand, R+ is larger than the core for

|ω|< ωH �
√

3 + 9 ε

(1 − ε)3 (5 − 3 ε)

1

GN M
(2.27)

which is approximately equal to ωmax in Eq. (2.20) for ε � 0.5 (see Fig. 1). The inner matter core approaches the outer horizon
radius R+ for ω � ωH, with ωH < ωmax for 0 < ε � 0.5 and ωH > ωmax for 0.5 � ε < 1. In general, it would seem that one can
consider small enough values of ω so that the outer horizon is realised. Moreover, for sufficiently small ε, one can also describe
cores that spin fast enough, so as not to form a black hole, within the perturbative regime. We will come back to this point in the
following.

2.4 Angular momentum quantisation

In the above analysis, we considered the angular velocity ω as a (free) perturbative parameter, but Eq. (2.22) implies the necessary
quantisation of the angular momentum. In fact, both NM and NML must be (positive) integers in order to correspond to allowed
states in the spectrum (2.5). This implies that NML � NM + n, with n a (nonnegative) integer (much smaller than NM for the
perturbative result to hold), and we can write

ω2 � ω2
n � 9 ε n

(1 − ε) N 2
M �2

p
(2.28)

corresponding to a quantised angular momentum

Ln � 3

ε
�p mp

√
NM n (2.29)

or

an ≡ Ln

M
� 3 �p

√
1 − ε

ε
n (2.30)
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Fig. 1 Top left panel: ratio ωH/ωmax for 0 < ε < 1 (shaded area corresponds to ωH < ωmax). Top right to bottom left panels: core radius (solid line), outer
horizon radius (dashed line) and inner horizon radius (dotted line) for 0 < ω < ωmax(ε) with ε � 0.8, 0.5 and 0.1 (all quantities in units of GN M)

Fig. 2 Left panel: angular momentum-to-mass ratio (2.30) (in units of �p). Right panel: ratio nc/NM in Eq. (3.1) (shaded region marks the perturbative
regime)

which is plotted in the left panel of Fig. 2 for a first few values of n and the same values of ε used in Fig. 1. Note that the condition (2.20)
of small angular velocity then simply yields n � NM/2 ∼ NM .

We can further notice that the quantisation of the mass and angular momentum lead to a quantisation of the outer horizon
radius (2.25) and area in Planck units, namely

A+ � 4 π R2
+ � AM

[
1 − 9

2
(1 − ε)2 n

NM

]
(2.31)
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where AM is the horizon area (2.12) for a Schwarzschild black hole of mass M. We then see that increasing the mass (that is NM )
makes the horizon larger, whereas increasing the angular momentum (that is n) makes it smaller, consistently with the classical
theory.

3 Final remarks

We have considered the perturbation induced by rotation on the quantum spectrum of dust balls found in Ref. [14]. Quite expectedly,
we have found that adding angular momentum increases the size of the ground state. Moreover, no inner Cauchy horizon can appear
within the perturbative regime, and the event horizon area (2.31) is now quantised in terms of two quantum numbers, namely n̄ � NM

corresponding to the total mass M and n for the quantised total angular momentum of the system.
Increasing NM makes both core and horizon larger, whereas increasing n makes the core larger but the event horizon smaller.

There is therefore a critical angular velocity ωnc � ωH, that is

nc

NM
� 1 + 3 ε

3 (1 − ε) (5 − 3 ε)
(3.1)

above which the core remains larger than the (would be outer) horizon and the system is not a black hole. From the right panel of
Fig. 2, we see that this can occur within the perturbative regime if 0 < ε � 0.5, consistently with the top left panel of Fig. 1. An
example is provided by the bottom right panel of Fig. 1, where ε � 0.1 and the transition from a rotating black hole to a horizonless
compact object occurs for GN M ω � 1. Of course, beside the qualitative behaviour, the precise values obtained from such a simple
model should not be trusted to bear a phenomenological relevance.
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