
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

A low-rank matrix equation method for solving PDE-constrained optimization problems

Published:
DOI: http://doi.org/10.1137/20M1341210

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/838353 since: 2021-11-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1137/20M1341210
https://hdl.handle.net/11585/838353

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Bünger, A., Simoncini, V., & Stoll, M. (2021). A LOW-RANK MATRIX EQUATION
METHOD FOR SOLVING PDE-CONSTRAINED OPTIMIZATION PROBLEMS. SIAM
Journal on Scientific Computing, 43(5), S637-S654

The final published version is available online at
https://dx.doi.org/10.1016/j.jde.2021.07.006

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.jde.2021.07.006
https://dx.doi.org/10.1016/j.jde.2021.07.006

A low-rank matrix equation method for solving PDE-constrained optimization
problems∗

Alexandra Bünger† , Valeria Simoncini‡ , and Martin Stoll§

Abstract. PDE-constrained optimization problems arise in a broad number of applications such as hyperthermia
cancer treatment or blood flow simulation. Discretization of the optimization problem and using a
Lagrangian approach result in a large-scale saddle-point system, which is challenging to solve, and
acquiring a full space-time solution is often infeasible. We present a new framework to efficiently
compute a low-rank approximation to the solution by reformulating the KKT system into a Sylvester-
like matrix equation. This matrix equation is subsequently projected onto a small subspace via an
iterative rational Krylov method and we obtain a reduced problem by imposing a Galerkin condition
on its residual. In our work we discuss implementation details and dependence on the various
problem parameters. Numerical experiments illustrate the performance of the new strategy also
when compared to other low-rank approaches.

Key words. PDE-constrained Optimization, Matrix Equation, Rational Krlyov Subspace

1. Introduction. A vast number of todays technological advancements is due to the ever
advancing improvement in modeling and solving of partial differential equation (PDE) prob-
lems. One class of especially challenging problems is PDE-constrained optimization which
has a broad number of applications, reaching from engineering design and control problems
to medical applications like cancer treatment [21, 4, 9].

We consider a typical PDE-constrained optimization problem on a space-time cylinder
[0, T]× Ω given by

min
y,u

J(y, u)(1.1)

subject to ẏ = L(y) + u,(1.2)

where we are interested in the minimization of the functional J(y, u) constrained by a dif-
ferential operator L(y) with space and time dependent state y and control u. An extensive
analysis of this type of problems can be found e.g. in [26] or [11]. In this work, we will fol-
low the popular approach of first discretizing the problem and then formulating the discrete
first-order optimality conditions as described in [12]. Finding an efficient numerical solution
to the large system of equations resulting from these conditions is of high interest and many
approaches exist to solve the resulting saddle point system such as using a block precondi-
tioner to subsequently solve the preconditioned system with iterative solvers like Minres(cf.
[20, 17, 19, 22]).

However, todays PDE models often result in millions of variables and solving optimiza-
tion problems governed by such huge models is still a challenging task due to their size and

∗This version dated February 19, 2021.
†Technische Universität Chemnitz, alexandra.buenger@mathematik.tu-chemnitz.de
‡Alma Mater Studiorum - Università di Bologna, Italy, and IMATI-CNR, Pavia. valeria.simoncini@unibo.it
§Technische Universität Chemnitz, martin.stoll@mathematik.tu-chemnitz.de

1

mailto:alexandra.buenger@mathematik.tu-chemnitz.de
mailto:valeria.simoncini@unibo.it
mailto:martin.stoll@mathematik.tu-chemnitz.de

2 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

complexity. They often even prove to be impossible to solve on a normal computer due to
the memory required to store the usually large and dense solution computed by standard
algorithms. Therefore, memory efficient solvers, which compute reduced approximations to
the solution are a desirable approach to solve these challenging problems. We here propose a
widely applicable low-rank solver, which computes a projection of the solution onto a small
subspace.

The method relies on the reformulation of the problem into a matrix equation, which
will be illustrated in section 2. The numerical solution of this PDE-constrained optimization
problem poses a significant challenge regarding the complexity of both storage and computa-
tional resources. We show that it is possible to separate spatial and temporal data via a novel
low-rank matrix equation solver in section 3. We introduce a method to reduce the system
of equations into a single low-rank matrix equation. In section 4 we discuss the choice of the
approximation space, while in section 5 we analyze stopping criteria and a fast update scheme
of the residual computation. And finally in section 6, we examine the performance and appli-
cability of our method on various numerical examples. We show the method’s robustness with
respect to the various problem parameters as well as assess the performance of our method
compared with a previously proposed low-rank approach on a distributed heat equation model
as well as a boundary control problem. Further, we show the applicability of our method to
more challenging problems such as a partial state observation and a non-symmetric PDE
constraint.

2. Problem formulation. We consider a PDE-constrained optimal control problem on a
space-time cylinder with time interval [0, T] and a spatial domain Ω as in Equation (1.1)-(1.2).
The functional we want to minimize reads,

(2.1) J(y, u) =
1

2

∫ T

0

∫
Ω1

(y − ŷ)2 dx dt+
β

2

∫ T

0

∫
Ωu

u2 dx dt.

Here y is the state, ŷ the desired state given on a subset Ω1 of Ω, and u is the control on a
subset Ωu of Ω, which is regularized by the control cost parameter β.

For the PDE subject to which we want to minimize the functional J(y, u) let us exemplarily
consider the heat equation with L(y) = ∆y and Dirichlet boundary condition,

ẏ −∆y = u in Ωu,(2.2)

ẏ −∆y = 0 in Ω/Ωu,(2.3)

y = 0 on ∂Ω.(2.4)

There are two distinctive options to proceed with this problem. Either we formulate the
optimality conditions and discretize them subsequently or we first discretize the problem and
then formulate the discrete first-order optimality conditions, known as the Karush-Kuhn-
Tucker (KKT) conditions [12]. In this work we follow the second approach.

We discretize space and time in an all-at-once approach. The spatial discretization is done
with finite elements and to discretize in time, we split the time interval into nT intervals of

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 3

length τ = T
nT

. Using a rectangle rule, the discretization of (2.1) becomes

(2.5)

nT∑
t=1

τ

2
(yt − ŷt)TM1(yt − ŷt) +

τβ

2
uTt Muut,

where yt, ŷt, and ut are spatial discretizations of y, ŷ of size n and u of size nu for each time
step t = 1, . . . , nT . Using an implicit Euler-scheme [14] the discrete formulation of the PDE
(2.2) reads

M(yt − yt−1)

τ
+Kyt = Nut, for t = 1, . . . , nT ,(2.6)

y0 = 0.(2.7)

Here, M,M1 ∈ Rn×n, Mu ∈ Rnu×nu , and N ∈ Rn×nu are the mass matrices of the spatial
discretization and K ∈ Rn×n denotes the so-called stiffness matrix resulting from the dis-
cretization of the differential operator L(y). The boundary constraints are incorporated into
the stiffness matrix. On further details about the discretization of PDE operators we refer
the reader to [23].

In the course of this paper we cover three distinct setups for this problem,
(i) All domains are the same, Ω = Ω1 = Ωu, thus we have a full domain observation and

control, leading to n = nu and M = M1 = Mu = N ;
(ii) We have a full observation Ω1 = Ω but only a partial control, e.g., a boundary control

Ωu = ∂Ω leading to nu < n and M = M1 6= Mu, and N being rectangular;
(iii) We have a full domain control Ωu = Ω but only a partial observation on a smaller

domain Ω1, leading to M1 6= M with M1 being singular due to entries set to zero on
the non-observed parts of the state.

Additionally, we will address the case of K 6= KT later on.
We collect the discretizations of the variables in matrices Y = [y1, . . . , ynT] ∈ Rn×nT and

denote their vectorizations by Y = vec(Y), respectively for ŷ and u. With this we write the
optimization problem in compact form as

min
Y,U

τ

2
(Y − Ŷ)TM1(Y − Ŷ) +

τβ

2
UTMuU,(2.8)

s. t. KY − τNU = 0,(2.9)

with the matrices

M =


M

M
. . .

M

 , K =


M + τK

−M . . .
. . .

. . .

−M M + τK

 ,(2.10)

where mass matrices M ∈ Rn×n and stiffness matrix K ∈ Rn×n repeat nT times each. The
matricesMu and N are block diagonal matrices likeM but with the different mass matrices
Mu, and N respectively on the diagonal.

4 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

To solve the discrete problem (2.8) - (2.9), we have to solve the system of equations
resulting from the first order optimality conditions [3], They state that an optimal solution
must be a saddle point of the Lagrangian of the problem,

(2.11) ∇L(Y ∗, U∗,Λ∗) = 0.

The Lagrangian of this problem reads

(2.12) L(Y , U,Λ) =
τ

2
(Y − Ŷ)TM1(Y − Ŷ) +

τβ

2
UTMuU + ΛT (KY − τNU),

with Lagrange multipliers Λ. Thus, the optimal solution solves the following set of linear
equations,

0 = ∇Y L(Y , U,Λ) = τM1(Y − Ŷ) +KTΛ,(2.13)

0 = ∇UL(Y , U,Λ) = τβMuU − τN TΛ,(2.14)

0 = ∇ΛL(Y , U,Λ) = KY − τNU.(2.15)

Memory-wise, an effective approach to solve this large-scale problem is to use a low-rank
approach, which finds a cheap representation of the solution matrix within a low-rank subspace
range(V) and a reduced solution Z, whose number of columns is related to the number of
employed time steps,

(2.16) Y ≈ V Z,

and similarly for the other matrix variables U and Λ.
In this work we show that we can compute such a low-rank solution based on a matrix

equation rather than using the saddle point formulation used in [25]. This is achieved by
rearranging the large system of equations (2.13)-(2.15) into a generalized Sylvester matrix
equation of the form

(2.17) A1X +XC +A2XI0 −A3XD − F1F2 = 0.

The resulting matrix equation can be efficiently solved by using a tailored low-rank Krylov-
subspace method. This new approach greatly reduces storage and time requirements while
being robust to parameter changes. This matrix equation oriented methodology allows one
to clearly identify space and time dimensions, and aims at reducing the problem dimension
in the space variables; the time variable is handled using an all-at-once procedure. Similar
strategies have been used, for instance, in [5, 16].

One assumption we make is that we have a low-rank approximation or representation of
the desired state as

(2.18) Ŷ ≈ Y1Y2,

with Y1 ∈ Rn×r, Y2 ∈ Rr×nT and r < nT . First, we introduce the auxiliary matrices

I =

1
. . .

1

 and C =


1
−1 1

. . .
. . .

−1 1

 ,(2.19)

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 5

to rewrite the system matrices as Kronecker productsM = I⊗M ,M1 = I⊗M1, N = I⊗N
and K = I ⊗ τK + C ⊗M . Note that here C results from the implicit Euler scheme. This
scheme can be replaced by a different time stepping method like a Crank-Nicolson scheme
[13], in which case C and the identities I in N and K will become different block matrices.
This would maintain the structure of the following steps but would naturally make solving
the resulting matrix equation more challenging.

With this our system of KKT conditions (2.13) - (2.15) becomes

τ(I ⊗M1)Y + (I ⊗ τKT + CT ⊗MT)Λ− τ(I ⊗M1)Ŷ = 0,(2.20)

τβ(I ⊗Mu)U − τ(I ⊗NT)Λ = 0,(2.21)

(I ⊗ τK + C ⊗M)Y − τ(I ⊗N)U = 0.(2.22)

We exploit the relation

(2.23) (W T ⊗ V)vec(Y) = vec(V YW)

to rewrite the equations (2.20) - (2.22) as

τM1Y + τKTΛ +MTΛC − τM1Ŷ = 0,(2.24)

τβMuU − τNTΛ = 0,(2.25)

τKY +MYCT − τNU = 0.(2.26)

The mass matrix M arising from a standard Galerkin method is symmetric and can be
considered lumped, i.e., diagonal. Therefore, we can eliminate Equation (2.25) by setting
U = 1

βM
−1
u NTΛ in the remaining two equations,

τM1Y + τKTΛ +MTΛC − τM1Ŷ = 0,(2.27)

τKY +MYCT − τ

β
NM−1

u NTΛ = 0,(2.28)

which are equivalent to

M−1M1Y +M−1KTΛ + ΛC̃ −M−1M1Ŷ = 0,(2.29)

M−1KY + Y C̃T − 1

β
M−1NM−1

u NTΛ = 0,(2.30)

where C̃ = 1
τC. For now, let us assume that K = KT but our approach can be easily

generalized for non-symmetric K as we will demonstrate later on. Now this representation
corresponds to

M−1K
[
Y Λ

]
+
[
Y Λ

] [C̃T 0

0 C̃

]
︸ ︷︷ ︸

C1

+M−1M1

[
Y Λ

] [0 I
0 0

]
︸ ︷︷ ︸

I0

+

1

β
M−1NM−1

u NT
[
Y Λ

] [0 0
−I 0

]
︸ ︷︷ ︸

D

−
[
0 M−1M1Ŷ

]︸ ︷︷ ︸
F1F2

=
[
0 0

]
.

(2.31)

6 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

We denote X =
[
Y Λ

]
, A1 = M−1K, A2 = M−1M1, A3 = 1

βM
−1NM−1

u NT , F1 =

M−1M1Y1 and F2 =
[
0r×nT Y2

]
, where Ŷ = Y1Y2 with Y1, Y2 of low column and row rank,

respectively. Then we get the desired format from Equation (2.17) as

A1X +XC1 +A2XI0 +A3XD − F1F2 = 0,(2.32)

where the left-hand coefficient matrices A1, A2, and A3 have size n× n while the right-hand
ones C1, I0, and D have size 2nT × 2nT , so that X ∈ Rn×2nT .

3. Low rank solution. The generalized Sylvester equation in (2.32) replaces the large
Kronecker product based system of equations (2.20) - (2.22). Since the solution matrix X ∈
Rn×2nT will be dense and potentially very large, to exploit the new setting it is desirable
to find an appropriate approximation space and a low-rank reduced matrix approximation
Z ∈ Rp×2nT such that

(3.1) X ≈ VpZ.

where the orthonormal columns of Vp ∈ Rn×p generate the approximation space. With this
setting we can construct a reduced version of the matrix equation (2.32). Let us assume we
compute an approximation as in (3.1). Then the residual matrix associated with (2.32) reads

R = A1VpZ + VpZC1 +A2VpZI0 +A3VpZD − F1F2.(3.2)

We impose the Galerkin orthogonality of the residual matrix with respect to the approximation
space, which in the matrix inner product is equivalent to writing V T

p R = 0, so that our
equation becomes

(3.3) V T
p A1VpZ + V T

p VpZC1 + V T
p A2VpZI0 + V T

p A3VpZD − V T
p F1F2 = 0.

Let us denote the reduced p × p coefficient matrices as A1,r := V T
p A1Vp, A2,r := V T

p A2Vp,

A3,r := V T
p A3Vp and set F1,r = V T

p F1 ∈ Rp×1. The resulting reduced equation

(3.4) A1,rZ + IpZC1 +A2,rZI0 +A3,rZD − F1,rF2 = 0

has the same structure as the original matrix equation (2.32) but its size is reduced to p×2nT .
By exploiting once again the relation in Equation (2.23), we get the small linear system of
equations

(3.5)
(
(I2nT ⊗A1,r) + (CT1 ⊗ Ip) + (IT0 ⊗A2,r) + (DT ⊗A3,r)

)
Z = vec(F1,rF2),

with Z = vec(Z). For a small subspace size p � n this system of equations is significantly
easier to solve and we can either use a direct or an iterative method to do so. If the obtained
approximate solution VpZ is not sufficiently good, then the approximation space can be ex-
panded and a new approximation constructed, giving rise to an iterative method. The use of
low-rank methods within optimization of large-scale systems has been successfully documented
in several articles, and we refer the reader to [25, 7, 6, 2] for recent accounts.

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 7

4. Subspace computation. To construct the projection (3.1) we need an iterative sub-
space method, which constructs a relevant subspace for our problem. For this we make use of
rational Krylov subspaces

(4.1) Kp(A, v, s) = span
{
v, (A+ s1I)−1v, . . . ,

p−1∏
j=1

(A+ sjI)−1v
}

with shifts s = [s1, . . . , sj] as described in [24]. Rational Krylov subspaces have become
an important tool in many dimension reduction problems such as in eigenvalue problems,
dynamical systems, approximation of matrix functions, multiterm matrix equations. The main
advantage is that they are able to capture crucial spectral information on the matrix A in
(4.1) already with small values of p, compared with standard (polynomial) Krylov subspaces.
The reduced problem obtained by projection onto a rational Krylov subspace is thus able
to preserve the leading spectral and functional properties of the original problem, but in a
dramatically smaller dimensional space. As an initial vector (or block of vectors, in case of
rank(F1) > 1) we take the right-hand side, v0 = F1, and to construct the subspace (4.1) we
employ a tailored strategy to adapt to the different settings.

The idea is to generate an approximation space that contains spectral information of
all matrices Ai, i = 1, . . . , 3, so as to be effective already for a small dimension. Without
further information, this goal would be achieved by generating a subspace that is the sum
of Kp(Ai, v0, s), of dimension at most three times p. However, by accurately selecting the
matrices involved in the generation of the Krylov subspaces, smaller dimensional spaces can
be determined. We recall the three previously described setups and make distinct subspace
choices for each of them:

(i) M1 = M = N = Mu, all full rank. In this case A2 = I and A3 is a diagonal nonsingular
matrix. We construct a rational Krylov subspace from A = A1.

(ii) M1 6= M , M = Mu = N , and M1 of lower rank. We construct a mixed subspace
where we add the following two new vectors in step k,

(4.2) {(A1 + s
(1)
k I)−1vk, (A2 + s

(2)
k I)−1vk},

so that the space dimension grows by at most two per iteration, instead of one. This
adds influence of M1 to the constructed subspace.

(iii) M1 = M , N tall, nu < n. Here, A2 = I while A3 = M−1NM−1
u NT is not invertible.

We thus define A3(α) = A3 +αA1; this selection is justified below. In this case we use
the following two new vectors in step k,

(4.3) {(A1 + s
(1)
k A3(α))−1vk, (A3(α) + s

(2)
k A1)−1vk},

and once again the space dimension grows by at most two per iteration, instead of
one.

(iv) M = M1 = Mu = N , all full rank, K 6= KT . For a number of PDE constraints,
like convection-diffusion problems, the stiffness matrix is non-symmetric. In this

case, we have to slightly modify the first component A1X in (2.32) to A1X

[
I 0
0 0

]
+

8 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

M−1KTX

[
0 0
0 I

]
. Here, again we construct a mixed subspace where we add two new

vectors in step k,

(4.4) {(A1 + s
(1)
k I)−1vk, (M−1KT + s

(2)
k I)−1vk}.

A strategy similar to (ii)-(iv) was successfully adopted in [18] for a multiterm linear matrix
equation in a different context. The effectiveness of the mixed approaches in (ii)-(iii) relies
on the fact that the generated space be rich in eigencomponents of both matrices. In (ii)
where A2 is diagonal and singular with a bounded and tight nonzero spectral interval, a good
spectral homogeneity in the space construction can be reached by shifting the matrix A2 by
some α so that the spectra of A1 and A2 + α2In are contained in the same interval. Hence,
we introduce a shift parameter α2 in (2.32) to get

(4.5) A1X +X(C1 − α2I0) + (A2 + α2In)XI0 −A3XD − F1F2 = 0.

With these premises, an ap propriate choice for α2 is a rough approximation to the largest
eigenvalue of A1. Due to the good properties of the transformed spectrum, the shifts were
computed by only using the projection of the matrix A1 onto the generated space; more details
on the shift selection can be found in [8]. In the cases i) and iv), A2 is not singular but still
the spectra of A1 and A2 differ greatly. Applying the same strategy to shift A2 as in (4.5)
also proved to be beneficial in these cases.

In (iii), the structure and singularity of A3 was significantly more challenging, because
‖A3‖ inversely depends on β, hence the spectrum of a shifted version of A3 may not be
enclosed in that of A1. We propose to consider the equivalent problem

(4.6) A1X(I − α3D) +XC1 +A2XI0 − (A3 + α3A1)XD − F1F2 = 0.

where α3 = 1√
β
‖A3‖F /‖A1‖F . With this choice the Frobenius norms of α3A1 and A3 have

similar magnitude and the influence of β is reflected realistically in the equation. With this
formulation, we found particularly successful the use of the projection of the pair (A1, A3 +
α3A1) onto the current approximation space to determine the next shifts during the iteration.

Further subspace reduction. By computing X ≈ VpZ we want to reduce storage require-
ments and computation time. This goal is only achieved if the approximation space dimension
remains considerably smaller than nT . By enriching the subspace as outlined above, however,
the space dimension may in principle grow up to n in case the solution is not sufficiently
accurate. To keep the subspace as small as possible when it is not optimal we include a trun-
cation scheme which bounds the subspace dimension to less than nT . Thus, in the worst case
the solution will have maximum rank. To reduce the dimension we compute a singular value
decomposition of Z = UΣV T , with Σ = diag(σ1, . . . , σp) where σ1 ≥ . . . ≥ σp are the singular
values of Z. In case some of the singular values are too small, say σi < ε for some i, it is clear
that some of the subspace information is not needed for computing a good approximation to
the solution. If this occurs we truncate the subspace with p̃ = i− 1 by setting

(4.7) Vp̃ = VpUp̃,

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 9

with Up̃ denoting the first p̃ columns of U . Note that the next subspace additions (4.2) are
still conducted using vk from the latest generated vectors in the original subspace Vp, and
orthogonalized with respect to the reduced subspace. We refer the reader to the discussion of
Table 6.4 for an illustration of the achievable memory savings by adopting this strategy.

5. Residuals and stopping criteria. To determine a computable stopping criterion we
monitor the residuals of the two equations (2.27) and (2.28),

R1 = τM1Y + τKTΛ +MTΛC − τM1Ŷ ,(5.1)

R2 = τKY +MYCT − τ

β
NM−1NTΛ,(5.2)

which are closely related to the original system.
Computing the residuals poses a bottleneck in this scheme as straightforward computation

is time consuming and would require forming the full solution [Y Λ] = VpZ. To avoid this and
substantially speed up the computation time, we rely on a low-rank representation of the
residual and calculate its norm making use of an updated QR method. The matrix residuals
can be rewritten as

R1 = τM1VpZY + τKTVpZΛ +MVpZΛC − τM1Ŷ(5.3)

=
[
τM1Vp τKTVp MVp −τM1Y1

]
·


ZY
ZΛ

ZΛC
Y2

 ,(5.4)

R2 = τKVpZY +MVpZY C
T − τ

β
NM−1NTVpZΛ(5.5)

=
[
τKVp MVp − τ

βNM
−1NTVp

]
·

 ZY
ZY C

T

ZΛ

 ,(5.6)

where ZY denotes the Y -component of Z and ZΛ denotes the component associated with Λ
respectively. Let any of the two quantities be denoted by

(5.7) R = RLRR.

Here the matrices have dimensions RL ∈ Rn×(3p+1) and RR ∈ R(3p+1)×nT . We consider a
reduced QR decomposition of the tall and skinny matrix RL,

(5.8) RL = Q1R1,1, with Q1 ∈ Rn×(4p+1), R1,1 ∈ R(4p+1)×(4p+1).

At each iteration new columns are added to the matrices RL and new rows to RR. To
further reduce the computational cost, we update the QR decomposition so as to avoid a new
factorization from scratch at each iteration. Assume that we have a current subspace of size
p, so that Vp = [v1, . . . , vp] and we add another vector vp+1 to the space. Thus, four new
columns are added to RL, which we add to the end of RL, while keeping the same reordering
for RR. Adding a new column vp+1 gives

(5.9)
[
RL vp+1

]
=
[
Q1R1,1 vp+1

]
=
[
Q1 q2

] [R1,1 R1,2

0 R2,2

]
,

10 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

where only two column vectors q2 and R1,2 and a scalar value R2,2 have to be computed. We
have

(5.10) Q1R1,2 + q2R2,2 = vp+1.

Setting R1,2 = QT1 vp+1 and constructing the vector

(5.11) q̂2 = v −Q1(QT1 vp+1) = vp+1 −Q1R1,2,

we can set q2 = q̂2
‖q̂2‖ and thus R2,2 = ‖q̂2‖. With this, Equation (5.10) holds and the new

column q2 is orthogonal to Q1,

(5.12) QT1 q2 = QT1
q̂2

R2,2
=
QT1 vp+1 −QT1 Q1Q

T
1 vp+1

R2,2
= 0.

Now we can completely avoid forming the full residuals, as with R = RLRR = Q1R1,1RR
the desired Frobenius norm of the residual becomes

(5.13) ‖R‖F =
√

trace(RTR) =
√

trace(RTRR
T
1,1Q

T
1 Q1R1,1RR) =

√
trace(RTRR

T
1,1R1,1RR).

To compute the residual norms in this form only a very small matrix of size nT × nT has to
be computed. With this the norm of both residuals in Equations (5.1) and (5.2), ‖R1‖F and
‖R2‖F , can be computed cheaply without forming the approximations Y and Λ.

Following the guidelines in [10] for linear matrix equations, we also monitor a scaled
backward error norm of the two equations, that is

(5.14)

ρ3 =
‖R1‖F

τ(‖M1‖F ‖ZY ‖F + ‖K‖F ‖ZΛ‖F + ‖M‖F ‖Ŷ ‖F) + ‖M‖F ‖ZY ‖F ‖C‖F
,

+
‖R2‖F

τ(‖K‖F ‖ZY ‖F + 1
β‖M‖F ‖ZΛ‖F + ‖M‖F ‖ZY ‖F ‖C‖F

.

which takes into account the data order of magnitude. Summarizing, we stop our iteration
whenever

(5.15) max{‖R1‖F , ‖R2‖F , ρ3} ≤ tol

where tol is a prescribed tolerance. Note that this criterion requires that both the relative and
absolute quantities satisfy the condition for the iteration to stop. We also remark that the use
of the formulation in (5.13) may lead to small inaccuracies adding up to be significantly larger
than machine precision. However, these inaccuracies always stayed far below our convergence
tolerance which was usually set even larger, say tol =10−6.

6. Numerical Results. We now present the performance and flexibility of our method
on multiple examples for different PDE-constrained optimization problems. The spatial FE-
discretizations of the PDE operator were conducted using the deal.II framework [1] with Q1
finite elements and the method described in the previous section was implemented in matlab

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 11

R2018b. All experiments were run on a desktop computer with an Intel Core i7-4770
Quad-core processor running at 4 × 3400 MHz with 32 GB of RAM.

We will show robustness with respect to the discretization sizes n and nT as well as
the control parameter β. Furthermore, we demonstrate the applicability of our method to
multiple different setups such as partial observation of the desired state, boundary control
and a different non-symmetric PDE-operator.

Other low-rank solvers. To emphasize the competitiveness of our new approach we
compare it with another low-rank method aimed at the same problem class. The idea of
exploiting the system structure to avoid forming a large system of equations and finding a
low-rank way to compactly represent the solution is not an entirely new approach. Earlier,
in [25] the authors developed a technique rewriting the problem in a low-rank context and
solving it with a preconditioned Krylov subspace solver, namely Minres introduced in [15].
We denote this solver as lrminres (low-rank Minres)1.

Here, the variables are represented in a low-rank matrix format rather than vectors, as
Y = WY V

T
Y , U = WUV

T
U and Λ = WΛV

T
Λ and the system of equations (2.24) - (2.26) is split

into a matrix product as

(6.1)
[
τM1WY τKTWΛ MΛ

]  V T
Y

V T
Λ

V T
Λ C

 = τM1Ŷ

for Equation (2.24) and respectively for Equations (2.25) and (2.26). From here, the system
of equations is solved with a tailored version of Minres. Opposed to the original version of
Minres, the residual and all other upcoming variables are formulated as low-rank matrices
rather than vectors and subsequently truncated to keep memory requirements low. Combined
with exploiting the structure of the low-rank equation system in the upcoming matrix vector
products and preconditioning, this method provides a memory efficient and fast alternative
to established approaches for solving PDE constrained optimization problems.

A bottleneck in this approach, however, is the setup of a preconditioner. This becomes
increasingly difficult for decreasing β. To construct the necessary low-rank preconditioner,
a large-scale matrix equation needs to be solved which significantly affects the overall per-
formance. Opposed to this, our approach directly starts from a matrix equation and gains
convergence speed from carefully selecting the subspace which makes additional precondition-
ing obsolete. This appears to be more stable with respect to changing β. Therefore, our
approach proves to be superior in many setups. Theoretical justification for the effectiveness
of rational spaces can be found in the literature; see related references in [24].

6.1. Setup (i) – Fully observed heat equation. As a first example PDE we use the heat
equation with a full observation, thus Ω1 = Ω and M1 = M . This leads to a simplified version
of Equation (2.17) as

(6.2) A1X +XC1 +XI0 +A3XD − Y1F
T
2 = 0.

1The lrminres MATLAB code used for our comparison is available under https://www.tu-
chemnitz.de/mathematik/wire/pubs/PubCodes.zip.

12 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

First, we will use this simple setup to investigate the convergence behavior and our choice of
stopping criteria by comparing the results to a solution obtained by a direct solver accurate
up to machine precision. The constant-in-time desired state Ŷ is displayed in Figure 6.1. This
constant desired state leads to a low-rank representation of the right hand side of rank 1. The
reference solution was obtained by solving the linear equation system of a small setup with
MATLABs backslash operator. We used a discretization of n = 1089 and nT = 100.

Figure 6.1: Constant-in-time desired state for the experiments in section 6.1 with Q1- Finite
Elements on square domain. Here, the desired state is realized with n = 1089 spatial nodes
and Dirichlet boundary conditions set to zero.

The monitored quantities (5.1), (5.2), (5.14) and the actual relative errors to the reference
solution are displayed in Figure 6.2. We see that the monitored quantities are a good estima-
tion for the magnitude of the errors as R1 stays close above the actual errors. Inserting the
direct solution into Equation (2.32) gives a residual of 5.11 · 10−9. Thus, the different scaling
of the matrix equation prohibits further accuracy gains once a high accuracy is reached. This
effect is reflected in Figure 6.2 as the last iterations do not provide further accuracy gains.

Example 6.1. We continue with the above simple example, i.e. the heat equation with full
observation, Ω1 = Ω and M1 = M and a constant-in-time desired state. We now investigate
the performance of our method with respect to time and space discretization. We vary the
number of time steps from 20 to 2500 and the number of spatial discretization nodes from
n = 1089 to n = 263169, which roughly resembles up to a total of 78 million degrees of freedom.
Here, again we fix the control parameter to β = 10−4. As seen in Table 6.1, increasing the
discretization size barely impacts the resulting subspace sizes p. Additionally, the time needed
to solve the optimization problems increases considerably slowly.

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 13

Figure 6.2: Observed stopping criteria and actual error progression.

n 1089 4225 16641 66049 263169
nT p time (s) p time (s) p time (s) p time (s) p time (s)

20 8 0.02 11 0.07 11 0.23 11 0.95 12 5.37
100 7 0.03 11 0.09 11 0.25 11 1.02 12 5.37
500 6 0.04 11 0.19 11 0.36 11 1.11 13 6.06
2500 6 0.18 11 0.89 11 1.04 10 1.47 15 8.85

Table 6.1: Example 6.1 Subspace size p and required time for different discretizations.

n 1089 4225 16641
β method p r time (s) p r time (s) p r time (s)

10−1 sys2mateq 6 6 0.09 5 5 0.05 5 5 0.14
lrminres 20 17 4.00 22 21 7.49 22 21 31.59

10−3 sys2mateq 7 7 0.07 7 7 0.09 7 7 0.22
lrminres 11 7 1.80 14 11 5.46 11 10 24.75

10−5 sys2mateq 14 13 0.19 14 13 0.23 14 13 0.53
lrminres 7 6 1.08 7 6 4.75 - - -

Table 6.2: Example 6.2. Comparison of the resulting subspace size p, the solution rank r, and
required CPU time between the new sys2mateq and another low-rank scheme, lrminres for
Ŷ with rank one.

Example 6.2. With the same data as in Example 6.1 we report on performance compar-
isons with the low-rank preconditioned Minres (lrminres) proposed in [25] and introduced

14 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

above. We fixed the number of time steps to nT = 100 and computed solutions for differ-
ent discretization sizes and control parameters β. The maximum discretization size here is
n = 16641. The results in Table 6.2 reveal that our method’s performance is superior re-
garding both required memory and CPU time. Here, our method is labeled as sys2mateq.
This acronym stands for system to matrix equation. The column denoted by p states the
subspace size for sys2mateq, while for lrminres it denotes the maximum rank per vector
needed during the iterations of which up to 15 are required. The column r states the rank
of the final solution in both methods. Note that even though sometimes the ranks achieved
by lrminres are smaller the required memory to store the solution is still greater. This is
because the lrminres scheme needs to store a low-rank representation U1U

T
2 for each of the

three variables as opposed to sys2mateq where the same subspace Vp is used for all vari-
ables. Additionally, during the iterations our method needs to store only one subspace of size
p, whereas lrminres requires to store multiple vectors of size p. Also, our scheme does not
rely on the often time consuming computation of a preconditioner as is needed in lrminres.
The convergence speed depends on the quality of the preconditioner, and for lrminres this
requires the solution of two matrix equations as part of the Schur-complement approximation
of the saddle point system. In order to achieve this, lrminres relies on the KPIK method
introduced in [5] for a similar situation. This gets harder for large spatial discretizations com-
bined with decreasing β. As a result the last entry of Table 6.2 does not show convergence
for lrminres.

With the same settings as before, we now raise the rank of the desired state Ŷ to 6 –
leading to a larger rank matrix F1F

T
2 – and compare both methods once again. Table 6.3

displays the results as before. Again, our method successfully converges with a small subspace
size within a very short amount of time, whereas lrminres is considerably slower especially
for larger problem sizes and does not converge for the largest discretization with β being very
small.

n 1089 4225 16641
β method p r time (s) p r time (s) p r time (s)

10−1 sys2mateq 21 21 0.38 21 21 0.47 19 19 0.72
lrminres 29 22 20.77 27 25 13.38 29 29 23.63

10−3 sys2mateq 31 31 1.08 30 30 1.09 30 29 1.77
lrminres 15 11 2.22 17 11 11.19 19 15 31.05

10−5 sys2mateq 49 43 3.75 49 44 3.97 51 41 5.88
lrminres 11 8 1.49 11 9 6.14 - - -

Table 6.3: Example 6.2. Comparison of sys2mateq and lrminres for rank(Ŷ)=6. The
resulting subspace size p, the solution rank r, and CPU time are displayed.

We are also interested in the memory savings our method provides. Therefore, we monitor
the memory consumption of sys2mateq, lrminres and a full rank Minres method for the
same setups displayed in Table 6.3. For sys2mateq we monitor the memory needed to
construct the subspace, the reduced solution and the setup of the reduced equation system

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 15

(3.5). For lrminres we monitor the memory for all vectors that are used. For comparison we
additionally report the memory consumed by a standard Minres method only to store the
required vectors, not taking into account the system matrix and preconditioner. The results
are shown in Table 6.4. The quantities refer to the overall memory consumption in megabytes
during the process of solving the equation system with the respective method. We see that
even with the construction of the reduced equation (3.5). The memory requirements stay well
below those of the competing approaches.

Memory (MB)
n β sys2mateq lrminres minres

1089 1e-1 4.46 8.11 15.39
1e-3 8.06 6.14 15.39
1e-5 17.58 4.54 15.39

4225 1e-1 8.58 19.21 60.46
1e-3 12.57 19.35 60.46
1e-5 24.36 16.15 60.46

16641 1e-1 23.50 71.74 241.84
1e-3 31.86 80.56 241.84
1e-5 51.91 205.85 241.84

Table 6.4: Example 6.2. Memory requirements of all considered methods.

6.2. Setup (ii) – Partial observation on heat equation. Until now we only investigated
the case where M = M1 and therefore the matrix A2 being the identity. One highly interesting
and challenging problem is the optimization under partial observation, meaning the desired
state is only of interest in certain measurement areas on a partial domain Ω1. This leads to a
singular matrix M1, which further increases the difficulty of the PDE-constrained optimization
problem. When we set up the rational Krylov subspace with only A1 for this setting, we do
not reach convergence. Therefore, we add up to two new vectors in each iteration as outlined
in Section 4.

Example 6.3. We solved the problem with control parameter β = 10−4 and 100 time steps
on a grid of 1089 spatial DoFs. In Figure 6.3a we see the desired state for this problem
and the white area is an example of 100 non-observed nodes, roughly 10 %. Hence, the
corresponding entries in M1 are set to 0. Figure 6.3b and 6.3c show the resulting state and
control respectively for a fixed time step t = 25. Table 6.5 shows the results when increasing
the number of unobserved nodes from n0 = 0 to n0 = 900 which is about 90% of the nodes.
Here, the constructed subspaces are far from optimal as the resulting solution rank r is much
smaller than the achieved subspace size p in the first column of Table 6.5. Thus, we make
use of the truncation modification outlined in Chapter 4. We see that the time and iterations
needed to solve this more challenging problem are higher than for the fully observed case in
the table’s first row. For the non-truncated case with full Vp, the columns denoted by p for the
subspace size and r for the solution rank show a discrepancy which disappears with stricter

16 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

truncation. When truncating with a tolerance of 10−10 both values coincide for all cases. In
some cases applying this truncation greatly increases the number of iterations needed to find
a solution but the end result is a higher memory reduction. Thus, this option can be toggled
to better reflect the desired behavior.

Unfortunately, the lrminres scheme from [25] is not adapted to the case of M 6= M1.
Hence, we have no other low-rank method to compare the performance of our method with.

(a) Partially observed desired
state

(b) State solution for partial ob-
servation

(c) Control solution for partial
observation

Figure 6.3: Example 6.3. Solution at a fixed time instant for a partial observation.

full Vp truncated Vp, 10−12 truncated Vp, 10−10

n0 time (s) iters p r time (s) iters p r time (s) iters p r

0 0.06 7 7 7 0.05 7 7 7 0.06 7 7 7
100 0.67 19 31 29 0.67 19 30 29 0.69 19 23 23
300 1.46 26 42 34 1.41 26 35 34 1.20 28 26 26
500 2.55 32 51 37 2.52 34 38 36 24.41 142 29 29
700 1.50 26 42 37 1.59 27 38 36 2.46 42 29 29
900 0.82 21 34 34 0.84 21 33 33 0.75 21 25 25

Table 6.5: Example 6.3. Results for different levels of partial observation with subspace
truncation. We compare the number of iterations, the resulting subspace size p, and the
solution rank r.

6.3. Setup (iii) – Boundary Control. Another setup of high interest is having a non-
distributed control. Here, we take a boundary control problem as an example. This leads
to the control u not being distributed on Ω but only on a smaller part of the domain Ωb.
Therefore, we get a smaller mass matrix Mu ∈ Rnb×nb associated with U present on nb < n
spatial nodes, and N ∈ Rn×nb is now rectangular (tall). Therefore, we have a modification of

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 17

Equation (2.32) as

(6.3) A1X +XC1 +XI0 +A3XD − F1F
T
2 = 0

with A1 = M−1K and A3 = M−1NM−1
u NT . Here, the subspace we compute is derived from

A1 and A3 as in (4.2).

Example 6.4. As before, we use nT = 100 time steps and a convergence threshold of 10−4

for this setup. Results with a constant in time desired state for different levels of spatial
discretization and different values for β are displayed in Table 6.6. sys2mateq produces
robust results with respect to the discretization size as we can only see a small increase in the
ranks throughout discretization. Additionally, the results are acquired within a short amount
of time even for small β. For larger discretization sizes the required time grows only slightly
opposed to lrminres where time requirements increase substantially for larger discretization
sizes.

n 1089 4225 16641
β method p r time (s) p r time (s) p r time (s)

10−1 sys2mateq 72 47 3.92 80 47 7.33 80 47 16.35
lrminres 29 15 29.47 28 16 113.99 28 16 496.70

10−3 sys2mateq 64 46 3.68 68 46 5.08 74 46 14.35
lrminres 25 12 12.70 24 14 35.53 24 14 158.82

10−5 sys2mateq 104 45 12.36 116 44 18.95 107 44 28.48
lrminres 21 16 34.20 21 16 142.83 20 16 694.93

Table 6.6: Example 6.4. Comparisons between the new sys2mateq and lrminres for a
boundary control problem, regarding the subspace size p, the solution rank r, and required
CPU time.

6.4. Setup (iv), Non-symmetric convection-diffusion PDE. Until now we only investi-
gated the performance of our method under the constraint of a heat equation. But for more
general PDEs our method works just as well, e.g. the convection-diffusion equation,

(6.4) ẏ = ε∇2y − v · ∇y + u,

with diffusion coefficient ε and velocity field v. When ε � 1, the equation is convection-
dominated and solving it is a challenging task. As the stiffness matrix K of the resulting
equation system is non-symmetric, we have to adjust the matrix equation accordingly. Thus,
we get another modification of Equation (2.32) for this setup as

A1X

[
I 0
0 0

]
+M−1KTX

[
0 0
0 I

]
+XC1 +A2XI0 +A3XD − F1F

T
2 = 0.(6.5)

18 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

Example 6.5. We consider example 3.1.4 from [23] with a recirculating wind v(x, y) =
(2y(1 − x2),−2x(1 − y2)) as the underlying model. The velocity field v is displayed in Fig-
ure 6.4a. In Figures 6.4b-6.4c the desired state and a snapshot of a control solution for
β = 10−5 are displayed for n = 4225 and nT = 100. The sys2mateq method produces
reliable results throughout a range of different values for ε and β as reported in Table 6.7.
Even very small values in ε do not pose a problem to the solver.

(a) Velocity field v (b) Desired state (c) Control solution

Figure 6.4: Example 6.5. Solution at a fixed time instant for convection-diffusion problem.

n 4225 16641 66049
β ε p r time p r time p r time

10−1 10−0 2 2 0.18 2 2 0.37 2 2 4.44
10−1 10 10 0.27 8 8 0.79 2 2 3.07
10−2 22 22 0.72 18 18 2.31 10 10 7.78
10−3 24 24 0.91 18 18 3.15 10 10 11.04

10−3 10−0 12 12 0.44 14 14 1.67 10 10 9.92
10−1 18 18 0.53 16 16 1.71 18 18 14.63
10−2 6 6 0.14 4 4 0.49 4 4 3.10
10−3 56 43 5.82 6 6 1.49 4 4 6.00

10−5 10−0 52 23 4.47 62 22 13.45 46 20 42.52
10−1 52 22 4.67 46 20 7.92 38 19 32.55
10−2 6 6 0.12 4 4 0.51 4 4 3.03
10−3 6 6 0.19 4 4 1.15 4 4 5.90

Table 6.7: Example 6.5. Results for different diffusion coefficients ε for the convection-diffusion
problem with different parameters β and different spatial discretizations, regarding required
subspace size p, solution rank r and CPU time

LOW-RANK MATRIX EQUATION METHOD FOR PDE-CONSTRAINED OPTIMIZATION 19

7. Conclusion and Outlook. We proposed a new scheme to solve a class of large-scale
PDE-constrained optimization problems in a low-rank format. This method relied on the
reformulation of the KKT saddle point system into a matrix equation, which was subsequently
projected onto a low dimensional space generated with rational Krylov type iterations. We
showed that the method’s convergence is robust with respect to different discretizations and
parameters. Furthermore we demonstrated higher memory and time savings compared to an
established low-rank scheme. Additionally, the sys2mateq is very flexible with respect to
different constraints such as non-symmetric PDE operators or partial state observation.

In the future, we plan on further investigating the subspace choice and the performance of
our scheme for other challenging setups. Further improvements are expected from realizing a
truncation or restarting mechanism in cases where the subspaces become unexpectedly large.

Acknowledgments. The work of the first and third authors was supported by the Ger-
man Science Foundation (DFG) through grant 1742243256 - TRR 9. The second author is
a member of Indam-GNCS. Its support is gratefully acknowledged. This work was also sup-
ported by the DAAD-MIUR Mobility Program 2018 “Optimization and low-rank solvers for
isogeometric analysis (34876)” between TU-Chemnitz and the Università di Bologna.

REFERENCES

[1] W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II - A General-purpose Object-oriented Finite
Element Library, ACM Transactions on Mathematical Software, 33 (2007), https://doi.org/10.1145/
1268776.1268779.

[2] P. Benner, A. Onwunta, and M. Stoll, Block-diagonal preconditioning for optimal control problems
constrained by pdes with uncertain inputs, SIAM Journal on Matrix Analysis and Applications, 37
(2016), pp. 491–518, https://doi.org/10.1137/15M1018502.

[3] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numerica,
14 (2005), p. 1137, https://doi.org/10.1017/S0962492904000212.

[4] L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, Large-scale PDE-
constrained optimization: an introduction, in Large-Scale PDE-Constrained Optimization, Springer,
2003, pp. 3–13, https://doi.org/10.1007/978-3-642-55508-4.

[5] T. Breiten, V. Simoncini, and M. Stoll, Fast iterative solvers for fractional differential equations,
ETNA, 45 (2016), pp. 107–132.

[6] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and D. Mandic,
Tensor networks for dimensionality reduction and large-scale optimizations. part 2 applications and
future perspectives, Now Foundation and Trends, 2017, https://doi.org/10.1561/2200000067.

[7] S. Dolgov, J. W. Pearson, D. V. Savostyanov, and M. Stoll, Fast tensor product solvers for
optimization problems with fractional differential equations as constraints, Applied Mathematics and
Computation, 273 (2016), pp. 604–623, https://doi.org/10.1016/j.amc.2015.09.042.

[8] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems,
System & Control Letters, 60 (2011), pp. 546–560, https://doi.org/10.1016/j.sysconle.2011.04.013.

[9] M. Fisher, J. Nocedal, Y. Trémolet, and S. J. Wright, Data assimilation in weather forecasting:
a case study in pde-constrained optimization, Optimization and Engineering, 10 (2009), pp. 409–426,
https://doi.org/10.1007/s11081-008-9051-5.

[10] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Other Titles in Applied Mathematics,
Society for Industrial and Applied Mathematics, 2nd ed., 2002, https://doi.org/10.555/579525.

[11] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, vol. 23 of
Mathematical Modelling: Theory and Applications, Springer-Verlag, New York, 2009, https://doi.
org/10.1007/978-1-4020-8839-1.

[12] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, vol. 15 of

https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1137/15M1018502
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1007/978-3-642-55508-4
https://doi.org/10.1561/2200000067
https://doi.org/10.1016/j.amc.2015.09.042
https://doi.org/10.1016/j.sysconle.2011.04.013
https://doi.org/10.1007/s11081-008-9051-5
https://doi.org/10.555/579525
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/978-1-4020-8839-1

20 ALEXANDRA BÜNGER, VALERIA SIMONCINI, AND MARTIN STOLL

Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2008, https://doi.org/10.1137/1.9780898718614.

[13] M. L. Juncosa and D. Young, On the crank-nicolson procedure for solving parabolic partial differential
equations, Mathematical Proceedings of the Cambridge Philosophical Society, 53 (1957), p. 448461,
https://doi.org/10.1017/S0305004100032436.

[14] H. Mingyou and V. Thome, On the backward euler method for parabolic equations with rough initial
data, SIAM Journal on Numerical Analysis, 19 (1982), pp. 599–603, https://doi.org/10.1137/0719040.

[15] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM
Journal on Numerical Analysis, 12 (1975), pp. 617 – 629, https://doi.org/10.1137/0712047.

[16] D. Palitta, Matrix equation techniques for certain evolutionary partial differential equations, Journal of
Scientific Computing, 3 (2021), https://doi.org/10.1007/s10915-021-01515-x.

[17] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for time-dependent
PDE-constrained optimization problems, SIAM Journal on Matrix Analysis and Applications, 33
(2012), pp. 1126–1152, https://doi.org/10.1137/110847949.

[18] C. E. Powell, D. Silvester, and V. Simoncini, An efficient reduced basis solver for stochastic galerkin
matrix equations, SIAM Journal on Scientific Computing, 39 (2017), pp. A141–A163, https://doi.org/
10.1137/15M1032399.

[19] T. Rees, H. S. Dollar, and A. J. Wathen, Optimal solvers for PDE-constrained optimization, SIAM
Journal on Scientific Computing, 32 (2010), pp. 271–298, https://doi.org/10.1137/080727154.

[20] T. Rees and M. Stoll, Block-triangular preconditioners for PDE-constrained optimization, Numerical
Linear Algebra with Applications, 17 (2010), pp. 977–996, https://doi.org/10.1002/nla.693.

[21] O. Schenk, M. Manguoglu, A. Sameh, M. Christen, and M. Sathe, Parallel scalable PDE-
constrained optimization: antenna identification in hyperthermia cancer treatmentplanning, Computer
Science - Research and Development, 23 (2009), pp. 177–183, https://doi.org/10.1007/s00450-009-
0080-x.

[22] J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with
applications to PDE-constrained optimization problems, SIAM Journal on Matrix Analysis and Ap-
plications, 29 (2007), pp. 752–773, https://doi.org/10.1137/060660977.

[23] D. Silvester, H. Elman, and A. Wathen, Finite Elements and Fast Iterative Solvers: With Applica-
tions in Incompressible Fluid Dynamics, Oxford University Press, United Kingdom, first ed., 2005,
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001.

[24] V. Simoncini, Computational Methods for Linear Matrix Equations, SIAM Review, 58 (2016), pp. 377–
441, https://doi.org/10.1137/130912839.

[25] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization, SIAM Journal
on Scientific Computing, 37 (2014), https://doi.org/10.1137/130926365.

[26] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications,
vol. 112 of Graduate Studies in Mathematics, AMS, 2010, https://doi.org/10.1090/gsm/112.

https://doi.org/10.1137/1.9780898718614
https://doi.org/10.1017/S0305004100032436
https://doi.org/10.1137/0719040
https://doi.org/10.1137/0712047
https://doi.org/10.1007/s10915-021-01515-x
https://doi.org/10.1137/110847949
https://doi.org/10.1137/15M1032399
https://doi.org/10.1137/15M1032399
https://doi.org/10.1137/080727154
https://doi.org/10.1002/nla.693
https://doi.org/10.1007/s00450-009-0080-x
https://doi.org/10.1007/s00450-009-0080-x
https://doi.org/10.1137/060660977
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1137/130912839
https://doi.org/10.1137/130926365
https://doi.org/10.1090/gsm/112

	Copertina_postprint_IRIS_UNIBO (2)
	manuscript.pdf
	Introduction
	Problem formulation
	Low rank solution
	Subspace computation
	Residuals and stopping criteria
	Numerical Results
	Setup (i) – Fully observed heat equation
	Setup (ii) – Partial observation on heat equation
	Setup (iii) – Boundary Control
	Setup (iv), Non-symmetric convection-diffusion PDE

	Conclusion and Outlook

